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Abstract14

The structre of mutualistic networks is likely to result from the simultaneous15

in�uence of neutrality and the constraints imposed by complementarity in species16

phenotypes, phenologies, spatial distributions, phylogenetic relationships and17

sampling artifacts. We develop a conceptual and methodological framework to18

evaluate the relative contributions of these potential determinants. Applying this19

approach to the analysis of a plant�pollinator network, we show that information on20

relative abundance and phenology su�ces to predict several aggregate network21

properties (connectance, nestedness, interaction evenness and interaction22

asymmetry). However, such information falls short of predicting the detailed23

network structure (the frequency of pairwise interactions), leaving a large amount of24

variation unexplained. Taken together, our results suggest that both relative species25

abundance and complementarity in spatio�temporal distribution contribute26

substantially to generate observed network patters, but that this information is by27

no means su�cient to predict the occurrence and frequency of pairwise interactions.28

Future studies could use our methodological framework to evaluate the generality of29

our �ndings in a representative sample of study systems with contrasting ecological30

conditions.31
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pollination; Villavicencio network33

∗Article in press in Ecology

1



D. P. Vázquez et al.: The structure of mutualistic networks

Introduction34

There is growing interest in the study of networks of interacting plant and animal35

mutualists. This interest stems from the realization that considering the community36

context is important to understand the ecological and evolutionary implications of37

mutualistic interactions (Strauss and Irwin, 2004). Studies of mutualistic networks have38

uncovered some apparently general structural properties, such as the skewed distribution39

of links per species (many species with few links and few species with many links;40

Jordano et al., 2003; Vázquez and Aizen, 2003), the nested organization of the interaction41

matrix (Bascompte et al., 2003) and the frequent occurrence of asymmetric interactions42

(Vázquez and Aizen, 2004; Bascompte et al., 2006).43

Recent discussion about the potential ecological and evolutionary determinants of44

these structural patterns has centered around the relative importance of neutrality vs.45

the so-called �forbidden links�. The neutrality hypothesis posits that network patterns46

result from the fact that individuals interact randomly, so that abundant species interact47

more frequently and with more species than rare species (Dupont et al., 2003; Ollerton48

et al., 2003; Vázquez et al., 2007). The forbidden links hypothesis posits that network49

patterns result from constraints to interactions imposed by the complementarity in50

species phenotypes, phenologies, spatial distributions and phylogenetic relationships51

(Jordano et al., 2003; Rezende et al., 2007; Santamaría and Rodríguez-Gironés, 2007;52

Stang et al., 2007). For example, two species cannot interact if their phenologies do not53

overlap, regardless of what their abundance alone predicts.54

Available evidence suggests that both neutrality and forbidden links contribute to some55

extent to determine network structure (Bascompte and Jordano, 2007; Vázquez et al.,56

2009). For example, Vázquez et al. (2007) have shown that relative species abundance57

partly (but not entirely) explains the observed asymmetry in the strength of pairwise58

interactions, whereas Stang et al. (2007) showed that information on both abundance and59

morphological traits of plants and pollinators are needed to predict asymmetry and60

nestedness in binary networks. Several recent studies have also shown that phenologies61

and inter-annual dynamics of plant and animal species in�uence network structure62

(Basilio et al., 2006; Alarcón et al., 2008; Olesen et al., 2008; Petanidou et al., 2008). In a63

similar vein, a recent simulation study has shown that the degree of mixing resulting from64

the spatial aggregation of plant individuals and the scale of animal movement decisions65

has strong in�uences on network structure (Morales and Vázquez, 2008). The key66

unanswered question is how important each of these processes is in determining network67

structure. Here we develop a conceptual and methodological framework to answer this68

question and apply it to investigate the determinants of a plant�pollinator network.69

Consider a mutualistic network depicted as an interaction matrix Y with I rows and J70

columns corresponding to the plant and animal species in the network, respectively, and a71

positive integer in cell yij representing the number of interactions recorded between plant72

i and animal j. This matrix is a function of multiple interaction probability matrices of73

the same size as Y, determined by relative species abundance (N), temporal (T) and74

spatial overlap (S) and phenotypic traits of interacting species (K). The e�ects of these75

factors on Y can be constrained by the phylogenetic relationships among plants (Pp) and76

animals (Pa) (Rezende et al., 2007). In addition, detection probabilities of interactions77

resulting from sampling e�ects (E) can also in�uence the observed network (Blüthgen78

et al., 2008). Thus,79

Y = f(N,T,S,K,Pp,Pa,E). (1)
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Below we use this conceptual framework to evaluate the contribution of abundance,80

spatial and temporal overlap and phylogenetic relatedness among species on the structure81

of a plant�pollinator network. Speci�cally, we address the following questions: (i) To82

what extent do relative abundance and spatio�temporal overlap predict aggregate83

network statistics (connectance, nestedness, interaction strength evenness and the84

distribution of interaction strength asymmetries)? (ii) To what extent do these factors85

predict pairwise interaction frequencies in the interaction matrix? (iii) Is there any86

detectable phylogenetic signal in the interaction matrix, suggesting that the in�uence of87

abundance and spatio�temporal overlap on network structure could have resulted from88

phylogenetic constraints imposed by the phylogenetic relationships among plants and89

among animals?90

Materials and Methods91

Study system Data come from a plant�pollinator network from the Monte desert at92

Villavicencio Nature Reserve (32◦ 32' S, 68◦ 57' W, 1270 masl), Mendoza, Argentina. We93

worked in four 1 ha plots, separated by 1-2 km. Predominant vegetation is a tall94

shrubland dominated by Larrea divaricata, Zuccagnia punctata, Prosopis �exuosa,95

Condalia microphylla, Acantholippia seriphoides and Opuntia sulphurea (Roig, 1972). We96

give only a summarized description of �eld methods here; further details can be found in97

the original publication describing the network (Chaco� et al., 2009).98

Plant�pollinator interactions Flower visiting insects were observed on plant species99

in weekly surveys in two consecutive �owering seasons (2006 and 2007) between100

September and January (2006) or December (2007). We attempted to sample101

plant�pollinator interactions in the whole community as comprehensively as possible,102

recording interactions between 41 plant species and 97 insect species. With these data we103

constructed a quantitative plant�pollinator interaction matrix Y = [yij], with rows104

corresponding to plant species and columns to pollinator species; cell entries yij are105

integers representing the number of �owers of plant species i visited by pollinator species106

j (Fig. 1a). This is the network we want to predict.107

Species abundance Plant abundance was assessed in weekly surveys along �ve �xed108

50 m × 2 m transects in the four sites, where we recorded the number of individuals of109

each entomophilous species and, for a subset of individuals, the number of �owers per110

individual. We also collected three fresh �owers from ten individuals of each species to111

estimate the number of pollen grains produced per �ower. We attempted to obtain nectar112

from �owers, but we failed for most plant species; �owers in this system usually have very113

small standing volumes of nectar. With these data we estimated the density of114

individuals, density of �owers (density of individuals × �owers per individual) and115

density of pollen (density of individuals × �owers per individual × pollen grains per116

�ower) for each species at each site. Arguably, density of �owers is the most appropriate117

measure of abundance from the �ower visitors' perspective: it is a better estimate of118

resource abundance than density of individual plants (because there is high variation119

among plant species in the mean number of �owers per individual) and focuses on the120

�ower as the resource unit for both pollen and nectar. However, because di�erent studies121

use di�erent measures of abundance, we considered the three measures to evaluate how122

the choice of a particular measure a�ects our results.123
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Because �owers of most species usually last less than a week, and because we were124

interested in an overall measure of abundance, we summed density across weeks and sites125

to obtain an overall estimate of abundance of each species. Thus, a plant species could be126

abundant because it produced many �owers in a short period or because it produced few127

�owers over a long period. These two forms of abundance were then distinguished by128

incorporating temporal and spatial structure in our network model, as described below129

(see Spatial and temporal overlap).130

Insect abundance was de�ned as the total number of visits made by a particular insect131

species to any plant species (that is, the column sum of the interaction matrix), as done132

in previous studies (see, e.g., Vázquez et al., 2007).133

Spatial and temporal overlap To quantify spatial and temporal overlap of plant and134

pollinator species, we �rst compiled matrices of temporal and spatial occurrences, with135

species in rows and date or site in columns, and cells with ones for presences and zeros for136

absences. We thus had one temporal and one spatial occurrence matrix for plants, Ot
p137

and Os
p, and one of each for animals, Ot

a and Os
a. We then used matrix multiplication to138

calculate spatial and temporal overlap matrices between plants and animals, S = Os
pO

s
a
′

139

and T = Ot
pO

t
a
′, where the prime symbol indicates the transpose of a matrix o vector.140

Calculation of interaction probabilities We calculated interaction probability141

matrices expected under the assumptions that interactions were determined solely by142

relative species abundances, temporal overlap and spatial overlap. For relative abundance,143

interaction probability between a plant species i and a pollinator species j is simply the144

product of their relative abundances. In matrix notation, the interaction probability145

matrix expected from relative abundances is N = npna
′. For temporal and spatial146

overlap, we used overlap matrices T and S normalized so that their elements added up to147

one, so as to transform them into probabilities. (For simplicity, we call these normalized148

matrices T and S hereafter.) Thus, the greater the temporal or spatial overlap of two149

species, the greater their probability of interaction; species with no temporal or spatial150

overlap had zero probability of interaction. We also calculated combined probabilities as151

the element-wise multiplication of matrices N, T and S, again normalizing the resulting152

matrices so that their elements added up to one. These combined matrices represent the153

expected probability under the joint in�uence of more than one of these factors. For154

example, NS denotes the combined abundance�spatial overlap probability matrix, and155

represents the interaction probabilities expected if species interact proportionally to their156

abundances given that they co-occur at a particular site. Thus, we had seven probability157

matrices with all possible combinations of relative abundance and temporal and spatial158

overlap: N, T, S, NT, NS, TS and NTS. In addition, we de�ned an eighth probability159

matrix in which all pairwise interactions had the same probability 1/IJ of occurrence,160

where I and J are the numbers of plant and animal species in the network; this161

probability matrix, termed �Null� below (see Figs. 2 and 3), is taken as a benchmark null162

model for comparison with the other seven probability matrices.163

Analysis of aggregate network statistics We considered four aggregate network164

statistics frequently used in the analysis of plant�animal mutualisitic networks:165

connectance, nestedness, interaction evenness and interaction asymmetry. Connectance is166

the proportion of realized interspeci�c links, de�ned as C = L/(IJ), where L is the167

number of non-zero entries in the binary interaction network and I and J are, as above,168
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the numbers of plant and animal species in the network. Nestedness is the tendency of169

specialized species to interact with a subset of the interaction partners of more170

generalized species or, more precisely, the degree of symmetry in the distribution of171

unexpected absences and presences on each side of the boundary line de�ning perfect172

nestedness (Almeida-Neto et al., 2007). Thus, a nestedness value of 1 represents complete173

lack of symmetry (perfect nestedness), while a value of 0 represents the highest symmetry174

in the distribution of unexpected presences and absences, with absolute randomness175

falling somewhere in between 0 and 1. Nestedness was calculated with the176

BINMATNEST algorithm proposed by Rodríguez-Gironés and Santamaría (2006),177

implemented in the bipartite package (Dormann et al., 2008) of R statistical software (R178

Development Core Team, 2007); the BINMATNEST algorithm overcomes several179

limitations of the widely used nestedness temperature calculator developed by Atmar and180

Patterson (1993). Following Tylianakis et al. (2007), interaction evenness was de�ned as181

Shannon's index, H = pij log2 pij/ log2 F , where F is the total number of plant�pollinator182

interactions in the matrix (see eq. 2 below) and pij is the proportion of those interactions183

involving plant i and pollinator j. An uneven network is one with high skewness in the184

distribution of interaction frequencies. Interaction asymmetry for a given species was185

de�ned as Ai =

∑
j

dij

ki
, where ki is the degree of species i (i.e., the number of species with186

which i interacts) and dij is a measure of the symmetry of the strength of the pairwise187

interaction between i and j (Vázquez et al., 2007); as in previous publications, we used188

interaction frequency as a surrogate of interaction strength (see Vázquez et al., 2005;189

Bascompte et al., 2006; Vázquez et al., 2007).190

We used a randomization algorithm implemented in R (see Supplement) to evaluate to191

what extent interaction probabilities derived from relative abundance and spatial and192

temporal overlap of species occurrences predicted the observed aggregate network193

statistics. The algorithm assigned the total number of interactions originally observed in194

the interaction matrix according to the seven probability matrices de�ned by all possible195

combinations of abundance and temporal and spatial overlap (see Interaction probabilities196

above), with the only constraint that each species received at least one interaction.197

Likelihood analysis of pairwise interaction probabilities We used a likelihood198

approach to evaluate the ability of abundance, temporal overlap and spatial overlap to199

predict the detailed structure of the interaction matrix. Consider the observed interaction200

matrix Y and a probability matrix X, whose entries xij are the probabilities of201

occurrence for each pairwise interaction; we want to evaluate whether those probabilities202

match the observed frequencies of interaction. This evaluation can be done by calculating203

the likelihood of probability matrix X given the data (Y). We assumed that the pairwise204

probability of interaction between a plant i and a pollinator j followed a multinomial205

distribution. Thus, the likelihood of probability matrix l given the data is206

Ll =
F !∏I

i=1

∏J
j=1 yi,j!

I∏
i=1

J∏
j=1

x
yij

ijl (2)

where F is the total number of observed interactions (i.e., the sum of the elements of207

matrix Y), and I and J are the total number of animals and plants in Y, respectively.208

We calculated this likelihood using function dmultinom in the stats package of R. We209

then calculated Akaike's Information Criterion as AICl = Ll − 2kl, where kl is the210

number of parameters involved in generating probability matrix l. The number of211
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parameters was de�ned as the number of factors contributing to generate a particular212

probability matrix; thus, matrix N has one parameter, TS has two and NTS has three.213

Phylogenetic analysis Ideally, we would like to incorporate phylogenetic e�ects into214

our conceptual framework, constructing a phylogenetic probability matrix as we did with215

abundance, temporal overlap and spatial overlap. Regrettably, incorporation of216

phylogenetic e�ects was not possible because we found no way of predicting pairwise217

interactions from the plant and pollinator phylogenies alone, without reference to the218

observed interaction matrix. Alternatively, we evaluated the strength of the phylogenetic219

signal of the two phylogenies on the interaction matrix with the method developed by220

Ives and Godfray (2006): a linear model approach to �t the phylogenetic221

variance�covariance matrix to the interaction matrix. Using this method we calculated222

the independent signals of the plant (dp) and animal (da) phylogenies and the strength of223

the signal of both phylogenies combined (MSEd) (Appendix A).224

Results225

Aggregate network statistics No probability matrix predicted connectance and226

interaction evenness values whose con�dence intervals included observed values of these227

statistics (Fig. 2a, c). However, predictions from probability matrices NTS and NT, NS228

and N were extremely close to observed connectance and interaction evenness. Observed229

nestedness was included within the randomization con�dence intervals of the same four230

probability matrices (Fig. 2b). A similar result was observed for interaction asymmetry231

for pollinators (Fig. 2d), but not for plants (Fig. 2e). In the latter case, observed average232

asymmetry was close to zero (predominantly symmetric interactions) and similar to that233

predicted by the null model that assumes that all species have the same probability of234

interaction. Highly negative asymmetry in pollinators and high symmetry for plants235

matches previous results for other interaction networks (Vázquez et al., 2007). Thus,236

with the exception of asymmetry for plants, information on abundance and temporal237

overlap su�ces to simulate interaction networks whose aggregate structure resembles very238

closely the structure of the observed matrix Y. This result was the same regardless of the239

measure of abundance used (i.e., density of individuals, individuals × �owers or240

individuals × �owers × pollen; result not shown).241

Frequency of pairwise interactions Taking density of �owers as our measure of242

plant abundance (which, as explained above, is arguably the most appropriate measure),243

the combined probability matrix NT had the lowest dAIC value, with a di�erence with244

the next best-�tting probability matrix TS of 156, and several orders of magnitude with245

the null model (Fig. 3b). However, this best-�tting probability model was also orders of246

magnitude worse than the perfect �t obtained by �tting the interaction matrix to itself.247

These results suggest that abundance and temporal overlap are useful to predict part of248

the detailed structure of the interaction matrix, but that we are far from an accurate249

prediction, with much unexplained variation.250

The latter conclusion can be visualized by comparing the observed interaction matrix251

(Fig. 1a) with an example of a matrix resulting from the randomization procedure with252

the NT probability matrix (Fig. 1b). For example, although the two randomized253

matrices look roughly similar to the observed matrix in terms of connectance and254

nestedness, it is obvious that the most frequently observed interactions are not those255
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predicted to occur most frequently by NT. Thus, although knowledge of abundance and256

phenology allows us to predict aggregate network properties with high accuracy, we do257

rather poorly at predicting the detailed occurrence of pairwise interactions.258

Unlike results for aggregate network statistics, using a di�erent measure of abundance259

a�ects our ability to predict pairwise interactions (Figs. 3a, c): NT is now in sixth place,260

doing particularly badly when abundance is measured as density of pollen, almost as261

badly as the null model. Notice that because matrices not including abundance are the262

same between Figs. 3a, b and c, results can be directly compared, indicating that the263

NT probability matrix when abundance is measured as density of �owers provides the264

overall best �t.265

Phylogenetic signal The independent phylogenetic signal of the insect phylogeny was266

weak (da = 0.067) and its con�dence interval overlapped zero (95% con�dence limits: [0,267

0.286]). The independent plant phylogenetic signal was stronger (dp = 0.327) and did not268

overlap zero (95% con�dence limits: [0.189, 0.532]). The overall strength of the269

phylogenetic signal for the linear model �tted to the actual data (MSEd = 250.05) was270

much closer to that found under the assumption of no phylogenetic covariances (the �star�271

phylogeny: MSEstar = 269.29) than for the assumption of maximum phylogenetic signal272

(Brownian motion evolution: MSEb = 420.61). Taken together, these results suggest that273

only phylogenetic relationships among plants, not insects, impose some structure on the274

interaction matrix Y, but that the overall phylogenetic signal is extremely weak.275

Discussion276

We have developed a conceptual and methological framework to evaluate the277

simultaneous contributions of neutrality, forbidden links and sampling e�ects on the278

structure of mutualistic networks. We have used this framework to evaluate the in�uence279

of relative abundance (neutrality) and spatio�temporal overlap on a pollination network.280

Although we have not included information on phenotypic trait matching and sampling281

e�ects, if available this type of information can be easily incorporated to our conceptual282

and methodological framework. For example, Stang et al. (2006; 2007; 2009) have283

derived interaction probabilities based on rules of phenotypic matching between plants284

and nectar-feeding �ower visitors. From such information it would be straightforward to285

derive a probability matrix to evaluate the relative contribution of phenotypic matching286

to the structure of the interaction matrix. Similarly, if detection probabilities of287

particular interactions could be estimated, then a detection probability matrix E could288

be incorporated into our framework (our implicit assumption above has been that all289

interactions have a detection probability of one).290

One issue we have not been able to solve is how to incorporate phylogenetic291

information into our framework. This limitation stems from the di�culty of predicting292

interaction probabilities based on the independent plant and animal phylogenies, with no293

reference to the observed interaction matrix. Current methods for the detection of a294

phylogenetic signal in interaction networks (Ives and Godfray, 2006) use a linear model295

approach, �tting the phylogenetic variance�covariance matrix to the interaction matrix,296

and there is currently no way of deriving an expected probability matrix based on the297

independent phylogenies alone. We hope our e�orts can stimulate others to work out a298

solution to this crucial problem.299
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Using our conceptual and methodological framework, we have shown that interaction300

probabilities derived from abundance and temporal overlap predict very closely the301

aggregate properties of a plant�pollinator network. In contrast, our likelihood analysis302

shows that information on abundance and spatio�temporal distribution falls short of303

predicting the detailed network structure, leaving a large amount of variation304

unexplained. Thus, although information on abundance and spatio�temporal overlap305

allowed us to construct networks with the same aggregate features of real-world networks,306

we failed resoundingly when attempting to delve into the details of pairwise species307

interactions, which is arguably the ecologically and evolutionarily relevant scale of308

analysis. Taken together, our results suggest that both relative species abundance and309

complementarity in spatio�temporal distribution contribute substantially to generate310

observed network patterns, but that this information is by no means su�cient to predict311

the detailed structure of the interaction network.312

Of course, the above results for the Villavicencio network are by no means a general313

evaluation of the relative contribution of neutrality and forbidden links to the structure of314

mutualistic networks. Only future studies applying our (or a similar) approach to315

multiple datasets will allow such general evaluation. Unfortunately, most datasets316

available to date do not include the sort of detailed information needed for this317

comparison. Clearly, further progress in the understanding of the determinants of318

network patterns requires spatio�temporally explicit datasets with detailed natural319

history information that may allow deriving sensible rules of phenotypic complementarity.320

We believe this goal will be facilitated if research e�orts are focused on a sample of321

representative study systems with contrasting ecological conditions throughout the world.322
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Figure legends410

Figure 1. Plant�pollinator interaction matrices. (a) Observed plant�pollinator matrix411

in the Monte desert of Villavicencio Nature Reserve (Mendoza, Argentina). (b)412

Interaction matrix resulting from one iteration of the randomization algorithm, using the413

NT probability matrix to assign interactions. In each matrix, rows represent pollinator414

species, columns represent plant species, and circle diameter of a matrix element yij is415

proportional to the square root of the number of interactions between pollinator i and416

plant j.417

Figure 2. Comparison between aggregate network statistics observed in the418

Villavicencio network and those predicted by the probability matrices. In each panel, the419

vertical line represents the observed value of an aggregate statistic, the circles represent420

the value of the statistic expected from each probability matrix, with errorbars indicating421

95% con�dence intervals. Results are shown for the seven probability matrices resulting422

from all possible combinations of abundance (N), temporal overlap (T) and spatial423

overlap (S) and for the null probability matrix with homogeneous interaction424

probabilities across all pairwise interactions (Null).425

Figure 3. Likelihood analysis of pairwise interaction probabilities. Results are shown426

for three abundance measures (see Methods): (a) density of individuals, (b) density of427

�owers and (c) density of pollen. Each panel shows the dAIC values corresponding to each428

of the seven probability matrices resulting from all possible combinations of abundance429

(N), temporal overlap (T) and spatial overlap (S). The dAIC value for a null probability430

matrix with homogenous interaction probability across all pairwise interactions (Null)431

and the observed interaction matrix �tted to itself (Y) are also shown for comparison.432
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Electronic Appendices

Appendix A. Phylogenetic analyses.

Construction of plant and insect phylogenies. We used the plant phylogenetic
database Phylomatic (http://www.phylodiversity.net/phylomatic) to construct the plant
phylogeny. Phylomatic is based on the Angiosperm supertree built by Davies et al.
(2004), and allows inputting a list of plant species with their family a�liation to obtain a
phylogenetic tree. We selected the �conservative seed plant tree� option, which leaves
nodes with less of 80% support as soft polytomies. We also chose to estimate pseudo
branch lengths, which Phylomatic does by calibration with dates from Wikstrom et al.
(2001). The phylogeny returned by Phylomatic (Fig. A1a) was then used to calculate the
phylogenetic variance�covariance matrix U (Cunningham et al., 1998; Garland and Ives,
2000), using the vcv.phylo function in the ape package of R (Paradis et al., 2004).

For the insects, we assembled a family-level phylogeny from the Tree of Life (Maddison
and Schulz, 2007). For families with more than two species that could be identi�ed to
genus or species, we inserted within-family phylogenies into the family-level phylogeny.
Within-family phylogenies were drawn from the Tree of Life and from selected sources:
Syrphidae, Ståhls et al. (2003), Mengual et al. (2008); Halictidae, Danforth et al. (2008);
Megachilidae, Danforth et al. (2006). As for the plants, this phylogeny (Fig. A1b) was
used to calculate the variance�covariance matrix V.

Estimation of phylogenetic signal. We evaluated the strength of the phylogenetic
signal of the two phylogenies on the interaction matrices with the methods developed by
Ives and Godfray (2006), which use a linear model approach to �t the phylogenetic
variance�covariance matrix to the interaction matrix. Ives and Godfray (2006) propose
that the matrix of interaction strengths can be described by a linear model, Y = b0 + ε,
where Y is the interaction matrix in vectorized form (i.e., the result of �stacking�
columns into a single column vector), b0 is the phylogenetically corrected mean of
interaction strength, and ε is a column vector of the same dimension as Y. Vector ε has
an associated variance�covariance matrix E[εε′] = W, which is a function of the
phylogenies of plants and insects. Speci�cally, W = U

⊗
V, where U and V are the

phylogenetic variance�covariance matrices for plants and insects, respectively, and
⊗

is
the Kronecker product.

The overall strength of the phylogenetic signal can be assessed by comparing the mean
squared error (MSE) calculated by �tting the model with the actual data (MSEd), the
MSE derived under the assumption of no phylogenetic covariances (a �star� phylogeny;
MSEstar), and the MSE derived assuming maximum phylogenetic signal (i.e., Brownian
motion evolution, MSEb). Lower values of MSE indicate better �t of the speci�c model
to the data (i.e., the model with the lowest MSE leaves the smallest unexplained
variance). In addition, the independent signals of the plant and the animal phylogenies,
dp and da, can be estimated from b0 in the linear model. A value of d = 0 means no
phylogenetic signal, d = 1 means maximum phylogenetic signal under the assumption of
Brownian motion evolution, and d > 1 corresponds to disruptive selection. We used the
pblm function in the picante package of R (Kembel et al., 2008) to calculate these
measures of phylogenetic signal.
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Figure A1. Phylogenies of plants and insects included in the plant�pollinator interaction
network of Villavicencio Nature Reserve.
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Supplement. R functions used for analyses.

Main functions. This supplement contains R functions used for the analyses presented
in the main text. Main functions are plotmat, which draws plots of the interaction
matrices (Fig. 1); netstats, which calculates aggregate network statistics (Fig. 2); and
mlik, which calculates multinomial likelihood and AIC (Fig. 3). Other functions are
either called by these main functions to perform operations, or do other related
operations.

Function descriptions

confint Con�dence intervals of a vector or matrix of simulated values. Used by
netstats to calculate 95% con�dence intervals of simulated aggregate network
statistics.

intasymm Interaction strength asymmetry, calculated following Vázquez et al. (2007).

intereven Interaction evenness, calculated following Tylianakis et al. (2007).

mgen Matrix generating algorithm used by netstats to generate simulated interaction
matrices according to a given probability matrix.

mlik Calculation of multinomial likelihood and AIC according to a given probability
matrix. Usage: mlik(imatr, m.p, par), where imatr is the observed interaction
matrix, m.p is the probability matrix, and par is the number of parameters used to
calculate AIC.

netstats Aggregate network statistics: connectance, nestedness, interaction evenness
and mean interaction strength asymmetry for each group in the network. Usage:
netstats(imatr, randomize=TRUE, iter=1000, pmatr=NULL), where imatr is
the observed interaction matrix and pmatr is the probability matrix used for
generating predicted matrices. The R package bipartite (Dormann et al., 2008) is
required by netstats to calculate nestedness.

plotmat Graphic function to plot interaction matrices as in Fig. 1. Usage:
plotmat(imatr, xlabel="PLANTS", ylabel="POLLINATORS", cexmin=0.2,

cexmax=2, sortm=TRUE, sqroot=TRUE), where imatr is the interaction matrix to
be plotted, xlabel and ylabel are the texts for the x and y axes, cexmin and
cexmax are the minimum and maximum sizes of circles representing pairwise
interactions, sortm indicates whether matrix should be sorted (sortm=TRUE) or left
in the original order (sortm=FALSE), and sqroot indicates whether interaction
frequencies (matrix cells) are to be plotted in untransformed or square-root
transformed.

quant2bin Transformation of quantitative matrix into binary. Used by netstats to
calculate connectance.

sortmatr Matrix sorting algorithm used by plotmat. The matrix is sorted according to
row and column totals, so that nestedness can be visualized.

sortmatrext Matrix sorting algorithm used as an alternative to sortmatr. Here, the
matrix is sorted according to external vectors instead of row and column totals.
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