corHMM 2.1: Generalized hidden Markov models

James D. Boyko and Jeremy M. Beaulieu

The vignette is comprised of three sections, where we demonstrate all new extensions as well as other new
and useful features:

e Introduction Some background information
e Section 1 Default use of corHMM

— 1.1: No hidden rate categores
— 1.2: Any number of hidden rate categories

e Section 2 How to make and interpret custom models

— 2.1: Creating and using custom rate matrices
x 2.1.1: One rate category
% 2.1.2: Any number of rate categories
— 2.2: Some examples of “biologically informed” models
% 2.2.1: Ordered habitat change
* 2.2.2: Precursor model
x 2.2.3: Ontological relationship of multiple characters

e Section 3 Estimating models when node states are fixed

— 3.1: Fixing a single node
— 3.2: Estimating rates under a parsimony reconstruction
— 3.3: Fixing nodes when the model contains hidden states

Introduction

The original version of corHMM contained a number of distinct functions for conducting analyses of discrete
morphological characters. This included the corHMM() function for fitting a hidden rates model, which uses
“hidden” states as a means of allowing transition rates in a binary character to vary across a tree. In reality,
the hidden rates model falls within a general class of models, hidden Markov models (HMM), that may also
be applied to multistate characters. So, whether the focal trait is binary or contains multiple states, or
whether the observed states represents a set of binary and multistate characters, hidden states can be applied
as a means of allowing heterogeneity in the transition model. Choosing a model specific to your question is of
utmost importance in any comparative method, and in this new version of corHMM we provide users with the
tools to create their own hidden Markov models.

Before delving into this further it may be worth showing a little of what is underneath the hood. To begin,
consider a single binary character with states 0 and 1. If the question was to understand the asymmetry in
the transition between these two states, the model, Q, would be a simple 2x2 matrix,

- qo—1

@= |:(I1—>O :|
This transition rate matriz is read as describing the transition rate from ROW to COLUMN. Thus, there are
only two states, 0 and 1, and two transitions going from 0 — 1, and from 1 — 0. However, if we introduce a
second binary character, the number of possible states you could observe is expanded to account for all the
combination of states between two characters — that is, you could observe 00, 01, 10, or 11. To accommodate
this, we need to expand our model such that it becomes a 4x4 matrix,

- qo0—01 4900—10 4doo—11
q01—00 - q01—-10 qo1—11
d10—00 410—01 - q10—11
d11—00 d11—01 411—10 -

This model is considerably more complex, as the number of transitions in this rate matrix now goes from 2 to
12. However, with these models we often make a simplifying assumption that we do not allow for transitions
in two states to occur at the same time. In other words, if a lineage is in state 00 it must first transition to
either state 01 or 10, before transitioning to state 11. Therefore, we can simplify the matrix by removing
these “dual” transitions from the model completely,

- q00—01 40010 -
40100 - - qo1—-11
q10—00 - - q10—11

- d11—01 411—10 -

What we just described is the popular model of Pagel (1994), which tests for correlated evolution between
two binary characters. But, one thing that is not obvious: the states in the model need not be represented as
combinations of binary characters. For example, the focal character may be two characters, like say, flowers
that are red with and without petals, and blue flowers with and without petals. One could just code it as a
single multistate character, where 1=red petals, 2=red with no petals (i.e., sepals are red), 3=blue petals,
and 4=blue with no petals (i.e., sepals are blue). The model would then be,

- d1—2 q1-3 (q1—4
Q= g2—1 - q2—3 (424
d3—1 (32 - q3—4

q4—1 4qa—2 (G4-3 -

Notice it is the same as before, but the states are transformed from binary combinations to a multistate
character. As before, we may assume that transitions in two states cannot occur at the same time and remove
the “dual” transitions.

- d1—-2 (q1-3 -
Q= g2—1 : : q2—4
g3—1 q3—4

- q4—2 (443 -

Again, exactly the same.

The updated version of corHMM() now lets users transform a set of characters into a single multistate
character. This means that two characters need not have the same number of character states — that is,
one trait could have four states, and the other could be binary. We also allow any model to be expanded
to accomodate an arbitrary number of hidden states. Thus, corHMM() is completely flexible and naturally
contains rayDISC() and corDISC() capabilities - standalone functions in previous versions of corHMM that
may have been mistaken as different “methods.” As this vignette will show, they are indeed nested within a
broader class of HMMs.

Section 1: Default use of corHMM

1.1: No hidden rate categories

To start, we’ll use the primate dataset from Pagel and Meade (2006) that comes with corHMM:

set.seed(1985)
require (ape)

require (expm)

require (corHMM)
data(primates)

phy <- primates[[1]]
phy <- multi2di(phy)
data <- primates[[2]]

plot(phy, show.tip.label = FALSE)
data.sort <- data.frame(datal, 2], datal, 3], row.names = datal, 1])
data.sort <- data.sort[phy$tip.label,]

tiplabels(pch = 16, col = data.sort[, 1] + 1, cex
tiplabels(pch = 16, col data.sort[, 2] + 3, cex

0.5)
0.5, offset = 0.5)

—

|

1

[

!

|

|

1

HJ ﬁ M

L .

We have two characters each with two possible states: trait 1 is the absence (black) or presence (red) of estrus
advertisement in females, and trait 2 is single male (green) or multimale (blue) mating system in primates.

The default use of corHMM() only requires that you declare your phylogeny, your dataset, and the number of
rate categories (more detail about this later). We have updated corHMM() to handle different types of input
data. Now to use corHMM(), the first column must be species names (as in the previous version), but there
can be any number of data columns. If your dataset does have 2 or more columns of trait information, each
column is taken to describe a separate character. Note that when the corHMM() call is used, the function
automatically determines all the unique character combinations observed in the data set. In our primate
example only 3 of the 4 possible combinations are observed, and so the model is constructed accordingly. Also,
dual transitions are automatically disallowed. In other words, we expect that a species cannot go directly
from estrus advertisement being absent in a single male mating system to having estrus advertisement in a
multimale mating system. They must first evolve either estrus advertisement or multimale mating system.

Let’s give this a try:

MK_3state <- corHMM(phy = phy, data = data, rate.cat = 1)

##
Input data has more than a single column of trait information, converting...
4 unique trait combinations found.

1 2 NA 3
IIO & OII llo & 1I| II1 & OII Ill & 1Il
##

The potential number of trait combinations is 4, but only 3 were found.
##

State distribution in data:

States: 1 2 3

Counts: 29 10 21

Beginning thorough optimization search -- performing O random restarts
Finished. Inferring ancestral states using marginal reconstruction.

MK_3state

##

Fit

-1nL AIC AICc Rate.cat ntax
-41.90867 91.81734 92.54461 1 60
##

Rates

(1,R1) (2,R1) (3,R1)

(1,R1) NA 0.01900010 NA

(2,R1) 0.05664305 NA 0.0262821

(3,R1) NA 0.01610568 NA

##

Arrived at a reliable solution

When you run your corHMM object you are greeted with a summary of the model. Your model fit is described
by the log likelihood (InL), Akaike information criterion (AIC), and sample size corrected Akaike information
criterion (AICc). You are also given the number of rate categories (Rate.cat) and number of taxa (ntax).

The Rates section of the output describes transition rates between states and are organized as a matrix.
Again, the transition rate matriz is read as the transition rate from ROW to COLUMN. For example, if
you were interested in the transition rate from State 1 (i.e., absence of estrus advertisement in a single male
mating system) to State 2 (i.e., absence of estrus advertisement in a multimale mating system) you would be
looking at the Row 1, Column 2, entry. For a time calibrated ultrametric tree, these rates will depend on the
age of your phylogeny.

You may also notice that corHMM() printed a state legend to the screen. Thus, you can obtain the exact
coding for each species in an augmented dataframe provided by the corHMM() results object itself. This
dataframe uses the initial user data to create columns that corresponds to how each species was represented
in corHMM():

head (MK_3state$data.legend)

#H# Genus_sp T1 T2 legend
1 Cercocebus_torquatus 1 1 3
2 Cercopithecus_aethiops 0 1 2
3 Cercopithecus_mona O O 1
4 Cercopithecus_nictitans 0 O 1
5 Colobus_angolensis 0 1 2
6 Colobus_guereza 0 O 1

Alternatively, a user can supply their dataset to getStateMat4Dat, which outputs a legend that is consistent
with the corHMM() function. The other output is an index matrix (or rate matrix) that describes which rates
are to be estimated in corHMM(). We provide an in-depth discussion about this part of the index matrix later:

getStateMat4Dat (data)

$legend

1 2 NA 3
"0 & 0" "O & 1" "1 & O" "1 & 1"
##

$rate.mat

#it 1) (2 3

(1) o 2 0
(2) 1 0 4
(3) 0 3 0

Finally, interpreting a Markov matrix can be difficult, especially when you're just starting out. This problem
is compounded when users begin to apply the more complex hidden Markov models (i.e. setting rate.cat > 1).
To help users, we have implemented a new plotting function:

plotMKmodel (MK_3state)

Rate Category 1 (R1)

(2,‘ (1,R1)(2,R1)(3,R1)
(1LR1) —— 002 --
'R1)
(2,R1) 0.06 -- 0.03
(3,!«1) (3R1) -- 002 --

This function uses a corHMM object (which is the result of running corHMM()) or a custom rate matrix
(discussed in a later section) to plot the model in two parts. On the left is a ball and stick diagram that
depicts the state transitions. On the right is a simplified rate matrix that contains rounded values from the
solution output of corHMM(). The colors of the arrows correspond to the magnitude of the rates.

The final new plotting tool we have made available to users is a stochastic character mapping function,
makeSimmap (Bollback, 2006). We can use makeSimmap to create a character history for any corHMM model
and then use plotSimmap (from the popular R-package, phytools) to plot the output.

phy = MK_3state$phy

data = MK_3state$data

model = MK_3state$solution

model [is.na(model)] <- O

diag(model) <- -rowSums(model)

states = MK_3state$states

tip.states = MK_3state$tip.states

run get simmap (can be plotted using phytools)

simmap <- makeSimmap(tree = phy, tip.states = tip.states, states = states, model = model,
nSim = 1, nCores = 1)

we tmport phytools plotSimmap for plotting
phytools: :plotSimmap (simmap[[1]])

no colors provided. using the following legend:

1 2 3
"black" "red" "green3"
— — E R e
aCAYRItHER Statys
= Sl Q .
: — mESIS JE isi
15 = =
— alidnl=1m th
— HEEHS iRl 0
= eus
1 —— BHIHBAIARE nculus
— i el ans
{ = H
o [Ll!l Llﬂ’ Ve %ps
l —— plialus
L —— F aphaeus
¥ Siviele atus
— VA Hpieshens
E-«E-(E al
grace o a
————— M4tdbg)
. 4tdeg aris
iy ——
-H-E:g .
TLC———HlHHates licter
. SlaENS ylus
dod pd 4 13
—————Hy|8H4tE }
A e i

8s

20

1.2: A trait with any number of states and any number of hidden rate categories

The major difference between this version of corHMM and previous versions is allowing models of any number
of states and any number of hidden rate categories (hidden rate categories will be explained in more depth in
section 2). Running a hidden Markov model (HMM) only requires assigning a value greater than 1 to the
rate.cat input. Below, we have assigned 2 rate categories to the data from above:

HMM_3state <- corHMM(phy = phy, data = data, rate.cat = 2, model = "SYM", get.tip.states = TRUE)

You specified 'fixed.nodes=FALSE' but included a phy object with node labels. These node labels have
##

Input data has more than a single column of trait information, converting...

4 unique trait combinations found.

1 2 NA 3

"0 & 0" "0 & 1" "1 & O" "1 & 1"

##

The potential number of trait combinations is 4, but only 3 were found.
##

State distribution in data:
States: 1 2 3
Counts: 29 10 21

Beginning thorough optimization search -- performing O random restarts
Finished. Inferring ancestral states using marginal reconstruction.

HMM_3state

##

Fit

-1nL AIC AICc Rate.cat ntax

-41.54999 95.09998 96.68489 2 60

##

Rates

(1,R1) (2,R1) (3,R1) (1,R2) (2,R2) (3,R2)
(1,R1) NA 9.01973679 NA 0.038573708 NA NA
(2,R1) 9.01973679 NA 0.02982121 NA 0.038573708 NA
(3,R1) NA 0.02982121 NA NA NA 0.03857371
(1,R2) 0.01733009 NA NA NA 0.000000001 NA
(2,R2) NA 0.01733009 NA 0.000000001 NA 0.01204654
(3,R2) NA NA 0.01733009 NA 0.012046545 NA
##

Arrived at a reliable solution

Models with more states (larger state space) take longer to estimate because the number of transition rates
increases. Hidden rate models further expand state space. For example, adding a second rate category
incerases the number of transition rates from 4 to 10 (if the model is left as the default “ARD”). In section 1.1
we left our parameters unconstrained. We estimated all transisions as independent and allowed for transitions
from all states to any other state. However, we can constrain a model in corHMM in two different ways. The
easiest way is to set the model to either “SYM” or “ER”. This is what we’ve done for the HMM_ 3state model
above. By setting model = “SYM?”, we have forced the transition rates between any two states to be equal.
In comparison, model = “ER” constrains all transition rates between states to be the same. Finally, model =
“ARD?” (the default) allows all transition rates to be independently estimated. Although “ER” and “SYM are
common restrictions, it is often more useful to manually restrict your model to match a biological hypothesis
(which is described in the next section). Finally, we set get.tip.states to be true because it is necessary for
simmaps.

Interpreting the estimated rate matrix for this hidden Markov model is intimidating. But, the same principles
of interpreting the transition rate matrices apply — that is, you still read rates from row to column. However,
there is the added complexity of transitions among the different rate categories (as represented by R1 and
R2). plotMKmodel () will plot the underlying structure of model in discrete parts. In the following example,
the first 2 panels show how observed states transition within each rate category, and the last panel shows
transitions among the different rate classes:

plotMKmodel (HMM_3state, display = "row"

Rate Category 1 (R1) Rate Category 2 (R2) Rate Category Transitions
@ (1,R1)(2,R1)(3,R1) @, (1,R2)(2,R2)(3,R2) R R1 R2
(1,R1) - 902 -- (1,R2) -- <0.01 —-
"R1) R2) R1 -- 0.04
(2,R1) 9.02 —- 0.03 (2,R2)<0.01 -- 0.01
(3,R1) (3R1) — 003 — (3,R2) (8R2) — 001 — 1 |R2 0.02 —

And again we can plot the simmap of this corHMM result. It is important to note that a character history not
only generates hypotheses about ancestral states, but is an effective way to visualize the tempo of evolution.
This is particularly important for HMMs where rates of evolution can vary drastically across the tree.

get simmap inputs from corhmm outputs
phy = HMM_3state$phy

data = HMM_3state$data

model = HMM_3state$solution
model[is.na(model)] <- 0O
diag(model) <- -rowSums(model)
states = HMM_3state$states
tip.states = HMM_3state$tip.states

run get simmap (can be plotted using phytools)
simmap <- makeSimmap(tree = phy, tip.states = tip.states, states = states, model = model,
nSim = 1, nCores = 1)

we tmport phytools plotSimmap for plotting
phytools: :plotSimmap (simmap[[1]])

no colors provided. using the following legend:
1 2 3 4 5 6
"black" "red" '"green3d" "blue" "cyan" "magenta"

— B

— 2 : 1

ypueni
XX
U

Js
i

— Phet §|
_— [s 18[=Tely ip.i
T—: l|us
eus

L .—g Ajelajrarie nculus

[— . =1t M

—
— SE :L}J DS

—
—

—— ERfGius
L — F aRhaeus
: atus
: £ens

LY.
nn
XX
nn
IR UL B BE S |

NNNNNNNNNNNNN
X
n
X
n

oobrrobroroee

Section 2: How to make and interpret custom models

2.1: Creating and using custom rate matrices
2.1.1: One rate category

At its core, the purpose of a rate matrix (i.e., rate.mat) is to indicate to corHMM which parameters are being
estimated. It specifies to corHMM() which rates in the matrix are being estimated and if any of them are
expected to be identical.

A custom rate matrix allows you to specify explicit hypotheses. For example, such an approach allows for
tests of evolution of traits in a particular order, tests of different rates of evolution in different clades, or tests
of the presence of hidden precursors before a state can evolve.

Let’s start by using the getStateMat4Dat () function to get a generic rate.mat object:

LegendAndRateMat <- getStateMat4Dat(data)
RateMat <- LegendAndRateMat$rate.mat
RateMat

#it 1) @
(1) 0o 2 0
(2) 1 0 4
(3) 0 3 0

The numbers in this matrix are not rates, they are used to index the unique parameters to be estimated
by corHMM(). Each distinct number is a parameter to be estimated independently from all others. Let’s
manually create the symmetric model we used in secion 1.2. In the symmetric model we want transitions to a
state to be the same as from that state. This means that (1) — (2) & (2) — (1) are equal AND that (3)
—(2) and (2) — (3) are equal. In other words, based on the rate.mat above, we want parameters 1 & 2 to
be equal and we want parameters 3 & 4 to be equal as shown below:

pars2equal <- list(c(1, 2), c(3, 4))
StateMatA_constrained <- equateStateMatPars(RateMat, pars2equal)
StateMatA_constrained

##t (1 2 3
(1) 0 1 0
(2) 1 0 2
(3) 0 2 0

To manually create a symmetric model, we used the equateStateMatPars() function, in which the first argument
is the rate matrix being modified (i.e., rate.mat object) and second argument is list of the parameters to be
equated. One thing to note is that you must have the appropriate number of rate categories since a user
rate matrix is not duplicated or changed by corHMM(). Thus, this custom model can only be used if we set
rate.cat=1 since that is the appropriate number of rate categories. We can now provide this customized
rate.mat to corHMM():

MK_3state_customSYM <- corHMM(phy = phy, data = data, rate.cat = 1, rate.mat = StateMatA_constrained)

You specified 'fixed.nodes=FALSE' but included a phy object with node labels. These node labels have
##

Input data has more than a single column of trait information, converting...

4 unique trait combinations found.

1 2 NA 3
IlO & OII IIO & 1" I|1 & OH |l1 & 1|l
##

The potential number of trait combinations is 4, but only 3 were found.

##

State distribution in data:

States: 1 2 3

Counts: 29 10 21

Beginning thorough optimization search -- performing O random restarts
Finished. Inferring ancestral states using marginal reconstruction.

MK_3state_customSYM

##

Fit

-1nL AIC AICc Rate.cat ntax
-44.36714 92.73429 92.94482 1 60
##

Rates

(1,R1) (2,R1) (3,R1)

(1,R1) NA 0.02569184 NA

(2,R1) 0.02569184 NA 0.01969303

(3,R1) NA 0.01969303 NA

##

Arrived at a reliable solution

2.1.2: Any number of rate categories

From a technical standpoint, hidden Markov models have a hierarchical structure that can be broken down
into two components: a “state-dependent process” and an unobserved “parameter process” (Zucchini et al.
2017). In comparative biology, the standard “state-dependent process” model is a continuous-time Markov
chain. The observed states could be any discretized trait such as presence or absence of extrafloral nectaries
(Marazzi et al. 2012), woody or herbaceous growth habit (Beaulieu et al. 2013), or diet state across all
animals (Roman-Palacios et al. 2019). However, a simple Markov process alone that assumes homogeneity
through time and across taxa is often not adequate to capture the variation of real datasets (e.g. Beaulieu
et al. 2013). One option is to say that the observed data is the product of several processes occurring in
different parts of a phylogeny. The parameter process describes how several state-dependent processes relate
to one another. Thus, observations are generated by a given state-dependent process depending on the state
of the parameter process. It is initially unknown what the parameter process corresponds to biologically,
hence the moniker “hidden” state.

If you wanted to add hidden rate categories, you need to know: (1) the dynamics within each rate category
(state-dependent processes), and (2) transitions between the different rate classes (parameter process). We
begin by constructing two within rate category rate.mat objects (R1 and R2). In R1, we assume a drift-like
hypothesis where all transition rates are equal. In R2, we assume that the combination of estrus advertisement
and multimale mating systems are not lost once they evolve:

RateCatl <- getStateMat4Dat(data)$rate.mat # RI
RateCatl <- equateStateMatPars(RateCatl, c(1:4))
RateCatl

(1) 2 3
(1) 0 1 0
(2) 1 0 1
(3) 0 1 0

RateCat2 <- getStateMat4Dat(data)$rate.mat # R2
RateCat2 <- dropStateMatPars(RateCat2, 3)
RateCat?2

10

(1) 2 3
(1) 0 2 0
(2) 1 0 3
(3) 0 0 0

With respect to transitions among the different rate classes, we have implemented a separate matrix generator,
getRateCatMat (). By default, this function will assume that all transitions among the specified number of
rate classes occur independently. In our example, we will generate a matrix that specifies how transitions
between R1 and R2 occur. Note that R1 and R2 could represent a biologically-relevant, but unmeasured
factor, such as, say, temperate or tropical environments, island or mainland, presence or absence of a third
trait. Basically, it is everything and anything that can influence the evolution of your observed characters.

For illustrative purposes, we will specify that the transition rate from R1 to R2 is the same as the rate from
R2 to R1:

RateClassMat <- getRateCatMat(2) #
RateClassMat <- equateStateMatPars(RateClassMat, c(1, 2))
RateClassMat

R1 R2
R1 0 1
R2 1 O

We now group all of our rate classes together in a list. The first element of the list corresponds to R1, the
second to R2, etc.

StateMats <- list(RateCatl, RateCat2)
StateMats

[[11]

#it 1) @ 3
(1) 0 1 0
(2) 1 0 1
(3) 0 1 0

#it
[[2]]
#it 1) (2 3

(1) o 2 0
(20 1 0 3
(3) 0O o0 0

We now have all the components necessary to create the full model using the getFullMat () function. This
function requires that the first input be a list of the within rate class matrices and the second argument be
the among rate class matrices:

FullMat <- getFullMat(StateMats, RateClassMat)

FullMat

(1,R1) (2,R1) (3,R1) (1,R2) (2,R2) (3,R2)
(1,R1) 0 1 0 5 0 0
(2,R1) 1 0 1 0 5 0
(3,R1) 0 1 0 0 0 5
(1,R2) 5 0 0 0 3 0
(2,R2) 0 5 0 2 0 4
(3,R2) 0 0 5 0 0 0

Even though we created this larger index matrix from individuals components, we may not be sure it’s exactly
what we want. We can use plotMKmodel () to take a look at the model setup before running the analysis:

11

plotMKmodel (FullMat, rate.cat = 2, display = "row", text.scale = 0.7)

(3R1)

Rate Category 1 (R1) Rate Category 2 (R2) Rate Category Transitions
(LR1) (2.R1) (3R1) (2, (LR2) (2R2) (3.R2) R R1 R2
(1R1) - 1 - (LR2) - 3 -
YR1) R2) R1 == 5
(2,R1) 1 - 1 (2,R2) 2 - 4
@RY) - 1 - (3,R2) @R - - - 1 R2 5 ==

Since this is the model we intended on making, we can run corHMM() with our custom matrix:

HMM_3state_custom <- corHMM(phy = phy, data = data, rate.cat = 2, rate.mat = FullMat,

##
##
##
##
##
##
##
##
##
##
##
##
##

node.states = "none"

You specified 'fixed.nodes=FALSE' but included a phy object with node labels. These node labels have

Input data has more than a single column of trait information, converting...
4 unique trait combinations found.

1 2 NA 3
IIO & OII IIO & 1" II1 & Oll Il1 & 1Il

The potential number of trait combinations is 4, but only 3 were found.

State distribution in data:

States: 1 2 3

Counts: 29 10 21

Beginning thorough optimization search -- performing O random restarts

HMM_3state_custom

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Fit
-1nL AIC AICc Rate.cat ntax
-40.62204 91.24408 92.35519 2 60
Rates
(1,R1) (2,R1) (3,R1) (1,R2) (2,R2)
(1,R1) NA 0.02362049 NA 0.04132034 NA
(2,R1) 0.02362049 NA 0.02362049 NA 0.04132034
(3,R1) NA 0.02362049 NA NA NA
(1,R2) 0.04132034 NA NA NA 17.29499644
(2,R2) NA 0.04132034 NA 100.00000000 NA
(3,R2) NA NA 0.04132034 NA NA
(3,R2)
(1,R1) NA
(2,R1) NA
(3,R1) 0.04132034
(1,R2) NA
(2,R2) 0.03925606
(3,R2) NA
Arrived at a reliable solution

We may plot the resulting parameter estimates as before:

12

", text.scale

plotMKmodel (HMM_3state_custom, display = "row
Rate Category 2 (R2)

Rate Category 1 (R1)

2, (LR1) (2R1) (3R1) 2, (LR2) (2R2) (3.R2)
(LR) -- 002 - @WR2) - 1729 -
'R1) “R2)
(2,R1) 0.02 - 0.02 (2R2) 100 - 0.04
(3,R1) (BR1) -- 002 — (3,R2) @BR2) - - -

13

Rate Category Transitions

R1

R1

0.04

R2

	Introduction
	Section 1: Default use of corHMM
	1.1: No hidden rate categories

	Section 2: How to make and interpret custom models
	2.1: Creating and using custom rate matrices
	2.1.1: One rate category
	2.1.2: Any number of rate categories

