
Introduction to Hierarchical Continuous Time

Dynamic Modelling With ctsem

Charles C. Driver

Max Planck Institute for Human Development
Manuel C. Voelkle

Humboldt University Berlin
Max Planck Institute for Human Development

Abstract

ctsem allows for specification and fitting of a range of continuous and discrete time dy-
namic models with stochastic system noise. The models may include multiple indicators
(dynamic factor analysis), multiple, interrelated, potentially higher order processes, and
time dependent (varying within subject) and time independent (not varying within sub-
ject) covariates. Classic longitudinal models like latent growth curves and latent change
score models are also possible. Version 1 of ctsem provided structural equation model
based functionality by linking to the OpenMx software, allowing mixed effects models
(random means but fixed regression and variance parameters) for multiple subjects. For
version 2 of the R package ctsem, we include a Bayesian specification and fitting routine
that uses the Stan probabilistic programming language, via the rstan package in R. This
allows for all parameters of the dynamic model to individually vary, using an estimated
population mean and variance, and any time independent covariate effects, as a prior. Fre-
quentist approaches with ctsem are documented in a JSS publication (Driver, Oud, and
Voelkle 2017), and in R vignette form at https://cran.r-project.org/package=ctsem/
vignettes/ctsem.pdf. The Bayesian approach is discussed more fully and conceptually
in a preprint article (Driver and Voelkle 2016)available at https://www.researchgate.
net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling,
but here we provide more specifics on the software for getting started with the software
of the Bayesian approach.

Keywords: hierarchical time series, Bayesian, longitudinal, panel data, state space, structural
equation, continuous time, stochastic differential equation, dynamic models, Kalman filter, R.

1. Overview

1.1. Subject Level Latent Dynamic model

This section describes the fundamental subject level model, and where appropriate, the
name of the ctModel argument used to specify specific matrices. The description of the
full model, including subject level likelihood and population model, is provided in Driver
and Voelkle (2016), available at https://www.researchgate.net/publication/310747801_
Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling. Although we do not de-
scribe it explicitly, the corresponding discrete time autoregressive / moving average models
can be specified and use the same set of parameter matrices we describe, although the meaning

https://cran.r-project.org/package=ctsem/vignettes/ctsem.pdf
https://cran.r-project.org/package=ctsem/vignettes/ctsem.pdf
https://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
https://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
https://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
https://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling

2 Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem

is of course somewhat different.

1.2. Subject level latent dynamic model

The subject level dynamics are described by the following stochastic differential equation:

dη(t) =

(

Aη(t) + b+Mχ(t)

)

dt+GdW(t) (1)

Vector η(t) ∈ R
v represents the state of the latent processes at time t. The matrix A ∈ R

v×v

(DRIFT) represents the so-called drift matrix, with auto effects on the diagonal and cross
effects on the off-diagonals characterizing the temporal dynamics of the processes.

The continuous time intercept vector b ∈ R
v (CINT), in combination with A, determines the

long-term level at which the processes fluctuate around.

Time dependent predictors χ(t) represent inputs to the system that vary over time and are
independent of fluctuations in the system. Equation 1 shows a generalized form for time
dependent predictors, that could be treated a variety of ways dependent on the assumed time
course (or shape) of time dependent predictors. We use a simple impulse form shown in
Equation 2, in which the predictors are treated as impacting the processes only at the instant
of an observation occasion u. When necessary, the evolution over time can be modeled by
extending the state matrices, for examples and discussion see Driver and Voelkle (2017).

χ(t) =
∑

u∈U

xuδ(t− tu) (2)

Here, time dependent predictors xu ∈ R
l (tdpreds) are observed at measurement occasions

u ∈ U. The Dirac delta function δ(t − tu) is a generalized function that is ∞ at 0 and 0
elsewhere, yet has an integral of 1 (when 0 is in the range of integration). It is useful to model
an impulse to a system, and here is scaled by the vector of time dependent predictors xu.
The effect of these impulses on processes η(t) is then M ∈ R

v×l (TDPREDEFFECT).

W(t) ∈ R
v (DIFFUSION) represents independent Wiener processes, with a Wiener process

being a random-walk in continuous time. dW(t) is meaningful in the context of stochastic
differential equations, and represents the stochastic error term, an infinitesimally small incre-
ment of the Wiener process. Lower triangular matrix G ∈ R

v×v represents the effect of this
noise on the change in η(t). Q, where Q = GG⊤, represents the variance-covariance matrix
of the diffusion process in continuous time.

1.3. Subject level measurement model

The latent process vector η(t) has measurement model:

y(t) = Λη(t) + τ + ǫ(t) where ǫ(t) ∼ N(0c,Θ) (3)

y(t) ∈ R
c is the vector of manifest variables, Λ ∈ R

c×v (LAMBDA) represents the factor
loadings, and τ ∈ R

c (MANIFESTMEANS) the manifest intercepts. The residual vector
ǫ ∈ R

c has covariance matrix Θ ∈ R
c×c (MANIFESTVAR).

Charles C. Driver, Manuel C. Voelkle 3

1.4. Overview of hierarchical model

Parameters for each subject are first drawn from a simultaneously estimated higher level
distribution over an unconstrained space, then a set of parameter specific transformations
are applied so that a) each parameter conforms to necessary bounds and b) is subject to the
desired prior, then a range of matrix transformations are applied to generate the continuous
time matrices described, as well as all relevant discrete time instantiations (More variability
in measurement time intervals thus means more computations). The higher level distribution
has a multivariate normal prior. A more comprehensive description is found at the end of
this document.

1.5. Install software and prepare data

Install ctsem software:

install.packages("ctsem")

Prepare data in long format, each row containing one time point of data for one subject. We
need a subject id column containing numbers from 1 to total subjects, rising incrementally
with each subject going down the data structure. This is to ensure coherence with the internal
structure of the Stan model. The column is named by default ”id”, though this can be changed
in the model specification. We also need a time column ”time”, containing numeric values
for time, columns for manifest variables (the names of which must be given in the next step
using ctModel), columns for time dependent predictors (these vary over time but have no
model estimated and are assumed to impact latent processes instantly), and columns for time
independent predictors (which predict the subject level parameters, that are themselves time
invariant – thus the values for a particular time independent predictor must be the same
across all observations of a particular subject).

id time Y1 Y2 TD1 TI1 TI2 TI3

[1,] 1 -0.05 -0.776 5.26 1.6153 -1.08039 -1.607 0.0324

[2,] 1 1.25 -0.310 4.91 0.4244 -1.08039 -1.607 0.0324

[3,] 1 2.10 -1.167 5.14 0.6623 -1.08039 -1.607 0.0324

[4,] 1 3.03 0.336 5.16 0.0561 -1.08039 -1.607 0.0324

[5,] 1 3.98 -0.134 4.97 2.3243 -1.08039 -1.607 0.0324

[6,] 2 36.06 -5.006 -5.79 0.9433 -0.00619 0.643 -0.5037

[7,] 2 36.88 -6.287 -4.41 -0.0220 -0.00619 0.643 -0.5037

[8,] 2 37.87 -7.257 -4.00 -0.4195 -0.00619 0.643 -0.5037

At present, missingness is fine on manifest indicators, but not allowed elsewhere.

1.6. Model specification

Specify model using ctModel(type="stanct",...). ”stanct” specifies a continuous time
model in Stan format, ”standt” specifies discrete time, while ”omx” is the classic ctsem be-
haviour and prepares an OpenMx model. Other arguments to ctModel proceed as normal,
although some matrices used for type ‘omx’ are not relevant for the Stan formats, either
because the between subject matrices have been removed, or because time dependent and
independent predictors are now treated as fixed regressors and only require effect (or design)
matrices. These differences are documented in the help for ctModel.

4 Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem

Argument Sign Default Meaning

n.manifest c Number of manifest indicators per individual at each
measurement occasion.

n.latent v Number of latent processes.
LAMBDA Λ n.manifest × n.latent loading matrix relating latent to

manifest variables.
manifestNames Y1, Y2, etc n.manifest length character vector of manifest names.
latentNames eta1, eta2, etc n.latent length character vector of latent names.
T0VAR Q∗

1 free lower tri n.latent × n.latent matrix of latent process ini-
tial covariance, specified with standard deviations on di-
agonal and (partial) correlations on lower triangle.

T0MEANS η1 free n.latent × 1 matrix of latent process means at first time
point, T0.

MANIFESTMEANS τ free n.manifest × 1 matrix of manifest means.
MANIFESTVAR Θ free diag lower triangular matrix of var / cov between manifests,

specified with standard deviations on diagonal and (par-
tial) correlations on lower triangle.

DRIFT A free n.latent × n.latent matrix of continuous auto and cross
effects.

CINT b 0 n.latent × 1 matrix of continuous intercepts.
DIFFUSION Q free lower triangular n.latent × n.latent matrix containing

standard deviations of latent process on diagonal, and
(partial) correlations on lower off-diagonals.

n.TDpred l 0 Number of time dependent predictors in the dataset.
TDpredNames TD1, TD2, etc n.TDpred length character vector of time dependent pre-

dictor names.
TDPREDEFFECT M free n.latent × n.TDpred matrix of effects from time depen-

dent predictors to latent processes.
n.TIpred p 0 Number of time independent predictors.
TIpredNames TI1, TI2, etc n.TIpred length character vector of time independent

predictor names.

model<-ctModel(type=✬stanct✬,

n.latent=2, latentNames=c(✬eta1✬,✬eta2✬),

n.manifest=2, manifestNames=c(✬Y1✬,✬Y2✬),

n.TDpred=1, TDpredNames=✬TD1✬,

n.TIpred=3, TIpredNames=c(✬TI1✬,✬TI2✬,✬TI3✬),

LAMBDA=diag(2))

This generates a first order bivariate latent process model, with each process measured by a
single, potentially noisy, manifest variable. A single time dependent predictor is included in
the model, and three time independent predictors. Additional complexity or restrictions may
be added, the table below shows the basic arguments one may consider and their link to the
dynamic model parameters. For more details see the ctsem help files or papers. Note that
for the Stan implementation, ctModel requires variance covariance matrices (DIFFUSION,
T0VAR, MANIFESTVAR) to be specified with standard deviations on the diagonal, corre-
lations (partial, if > 2 latent processes) the lower off diagonal, and zeroes on the upper off
diagonal.

These matrices may all be specified using a combination of character strings to name free
parameters, or numeric values to represent fixed parameters.

The parameters subobject of the created model object shows the parameter specification that
will go into Stan, including both fixed and free parameters, whether the parameters vary

Charles C. Driver, Manuel C. Voelkle 5

across individuals, how the parameter is transformed from a standard normal distribution
(thus setting both priors and bounds), and whether that parameter is regressed on the time
independent predictors.

head(model$pars,8)

matrix row col param value transform indvarying sdscale

1 T0MEANS 1 1 T0mean_eta1 NA (param) * 10 TRUE 1

2 T0MEANS 2 1 T0mean_eta2 NA (param) * 10 TRUE 1

3 LAMBDA 1 1 <NA> 1 <NA> FALSE 1

4 LAMBDA 1 2 <NA> 0 <NA> FALSE 1

5 LAMBDA 2 1 <NA> 0 <NA> FALSE 1

6 LAMBDA 2 2 <NA> 1 <NA> FALSE 1

7 DRIFT 1 1 drift_eta1_eta1 NA -log(exp(-param*1.5)+1)-.00001 TRUE 1

8 DRIFT 1 2 drift_eta1_eta2 NA (param) TRUE 1

TI1_effect TI2_effect TI3_effect

1 TRUE TRUE TRUE

2 TRUE TRUE TRUE

3 FALSE FALSE FALSE

4 FALSE FALSE FALSE

5 FALSE FALSE FALSE

6 FALSE FALSE FALSE

7 TRUE TRUE TRUE

8 TRUE TRUE TRUE

One may modify the output model to either restrict between subject differences (set some
parameters to not vary over individuals), alter the transformation used to determine the prior
/ bounds, or restrict which effects of time independent predictors to estimate. Plotting the
original prior, making a change, and plotting the resulting prior, are shown here – in this case
we believe the stochastic latent process innovation for our first latent process, captured by
row 1 and column 1 of the DIFFUSION matrix, to be small, so scale our prior accordingly
to both speed and improve sampling. Rather than simply scaling by 0.2 as shown here, one
could also construct a new form of prior, so long as the resulting distribution was within the
bounds required for the specific parameter. Note that the resulting distribution is a result of
applying the specified transformation to a standard normal distribution, with mean of 0 and
standard deviation of 1. To change the underlying standard normal, one would need to edit
the resulting Stan code directly.

par(mfrow=c(1,2))

plot(model,rows=11,hypersd=1)

print(model$pars$transform[11])

[1] "exp(param*2)"

model$pars$transform[11]<- "(exp(param*2) +.0001)*.2"

plot(model, rows=11, hypersd=1)

6 Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

diffusion_eta1_eta1

N = 993507 Bandwidth = 0.3189

P
ar

 V
al

ue

pop mean prior
−1sd mean
+1sd mean

0 5 10 15

0
1

2
3

4

diffusion_eta1_eta1

N = 993458 Bandwidth = 0.0638

P
ar

 V
al

ue

pop mean prior
−1sd mean
+1sd mean

The plots show the prior distribution for the population mean of DIFFUSION[1,1] in black,
as well as two possible priors for the subject level parameters, conditional on our specified
population (hyper) standard deviation of 1. The blue prior results from assuming the pop-
ulation mean is one standard deviation lower than the mean of the prior, and the red one
standard deviation higher. This latter prior can be scaled using the sdscale column of the
parameters subobject.

Restrict between subject effects as desired. Unnecessary between subject effects will slow
sampling and hinder appropriate regularization, but be aware of the many parameter de-
pendencies in these models – restricting one parameter may lead to genuine variation in the
restricted parameter expressing itself elsewhere. The prior scale for between subject variance
may need to be restricted when limited data (in either the number of time points or number
of subjects) is available, to ensure adequate regularisation. Here we restrict MANIFESTVAR
effects between subjects, and set all prior scales for the standard deviation of the population
distribution to 0.2, from the default of 1.0. A rough interpretation of this change in sdscale
is simply that we expect lower values for the population standard deviation, but to better
interpret the effect of this latter change, see the section on standard deviation transformations.

model$pars[c(15,18),]$indvarying<-FALSE

model$pars$sdscale[1:28] <- .5

Also restrict which parameters to include time independent predictor effects for in a similar
way, for similar reasons. In this case, the only adverse effects of restriction are that the
relationship between the predictor and variables will not be estimated, but the subject level

Charles C. Driver, Manuel C. Voelkle 7

parameters themselves should not be very different, as they are still freely estimated. Note
that such effects are only estimated for individually varying parameters anyway – so after the
above change there is no need to set the tipredeffect to FALSE for the T0VAR variables, it is
assumed. Instead, we restrict the tipredeffects on all parameters, and free them only for the
manifest intercept parameters.

model$pars[,c(✬TI1_effect✬,✬TI2_effect✬,✬TI3_effect✬)]<-FALSE

model$pars[c(19,20),c(✬TI1_effect✬,✬TI2_effect✬,✬TI3_effect✬)]<-TRUE

1.7. Model fitting

Once model specification is complete, the model is fit to the data using the ctStanFit function
as follows – depending on the data, model, and number of iterations requested, this can take
anywhere from a few minutes to days. Current experience suggests 300 iterations is often
enough to get an idea of what is going on, but more may be necessary for robust inference.
This will of course vary massively depending on model and data. For the sake of speed for
this example we only sample for 200 iterations with a lowered max treedepth - this latter
parameter controls the maximum number of steps the Hamiltonian sampler is allowed to take
per iteration, with each increase of 1 doubling the maximum. With these settings the fit
should take only a few minutes (but will not be adequate for inference!). Those that wish to
try out the functions without waiting, can simply use the already existing ctstantestfit object
instead of creating the fit object (and adjust the code in following sections as needed!).

fit<-ctStanFit(datalong = ctstantestdat, ctstanmodel = model, iter=200,

chains=2, plot=FALSE, control=list(max_treedepth = 6))

The plot argument allows for plotting of sampling chains in real time, which is useful for
slow models to ensure that sampling is proceeding in a functional manner. Models with
many parameters (e.g., many subjects and all parameters varying over subject) may be too
taxing for the function to handle smoothly - we have had succcess with up to around 4000
parameters.

1.8. Summary

After fitting, the summary function may be used on the fit object, which returns details
regarding the population mean parameters, population standard deviation parameters, pop-
ulation correlations, and the effect parameters of time independent predictors. Additionally,
summary outputs a range of matrices regarding correlations betweeen subject level param-
eters. hypercorr means reports the posterior mean of the correlation between raw (not yet
transformed from the standard normal scale) parameters. hypercorr sd reports the standard
deviation of these parameters. hypercovcor transformedmean reports the correlation between
transformed parameters on the lower triangle, the variance of these parameters on the diago-
nal, and the covariance on the upper triangle. To view the posterior median of the continuous
time parameter matrices, the ctStanContinuousPars function can be used.

8 Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem

summary(fit,timeinterval = 1)

In the summary output, the free population mean parameters under $popmeans are likely
one of the main points of interest. They are returned in the same form that they are input
to ctModel - that is, covariance matrix related parameters are in the form of either standard
deviations or a transformed correlation parameter. Because the latter is difficult to interpret,
various parameter matrices are also returned in the $parmatrices section of the summary.
The discrete time matrices reported here (prefixed by ‘dt’) are by default from a time interval
of 1, but this can be changed.

1.9. Plotting

The plot function outputs a sequence of plots, all generated by specific functions. The name
of the specific function appears in a message in the R console, checking the help for each
specific function and running them separately will allow more customization. Some of the
plots, such as the trace, density, and interval, are generated by the relevant rstan function
and hopefully self explanatory. The plots specific to the heirarchical continuous time dynamic
model are as follows:

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Regression coefficients

Time interval

V
al

ue

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Regression coefficients

Time interval

V
al

ue

eta1_eta1
eta2_eta1
eta1_eta2
eta2_eta2

The above plot shows the dynamic regression coefficients (between latent states at differ-
ent time points) that are implied by the model for particular time intervals, as well as the
uncertainty of these coefficients.

The relation between posteriors and priors for variables of interest can also be plotted as

Charles C. Driver, Manuel C. Voelkle 9

follows:

ctStanPlotPost(obj = fit, rows=11)

0.46 0.48 0.50 0.52 0.54 0.56

0
5

10
15

20

Pop. mean manifestvar_Y2_Y2

Value

D
en

si
ty

Pop. mean posterior
Pop. mean prior

Shown are approximate density plots based on the post-warmup samples drawn. For each
parameter four plots are shown – the first displays the posterior distribution of subject level
parameters, the subject level prior (generated from repeated sampling of the hyper parame-
ters), and the prior for the population mean.

1.10. Stationarity

When it is reasonable to assume that the prior for long term expectation and variance of the
latent states is the same as (or very similar to) the prior for initial expectations and variances,
setting some form of stationarity in advance may be beneficial. Three approaches to this
are possible. The first approach is to name free parameters of the T0VAR or T0MEANS
matrix ✬stationary✬, which can be useful if for instance only the initial variance should
be stationary, or just one of the initial variances. Another approach is to set the argument
stationary=TRUE to ctStanFit. Specifying this argument then ignores any T0VAR and
T0MEANS matrices in the input, instead replacing them with asymptotic expectations based
on the DRIFT, DIFFUSION, and CINT matrices. Alternatively, a prior can be placed on the
stationarity of the dynamic models, calculated as the difference between the T0MEANS and
the long run asymptotes of the expected value of the process, as well as the difference between
the diagonals of the T0VAR covariance matrix and the long run asymptotes of the covariance
of the processes. Such a prior encourages a minimisation of these differences, and can help
to ensure that sensible, non-explosive models are estimated, and also help the sampler get
past difficult regions of relative flatness in the parameter space due to colinearities between
the within and between subject parameters. However if such a prior is too strong it can also
induce difficult dependencies in model parameters, and there are a range of models where one
may not wish to have such a prior. To place such a prior, the model$stationarymeanprior and
model$stationaryvarprior slots can be changed from the default of NA to a numeric vector,
representing the normal standard deviation of the deviations from stationarity. The number
of elements in the vector correspond to the number of latent processes.

1.11. Individual level analyses

Individual level results can also be considered, as ctsem includes functionality to output prior

10 Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem

(based on all prior observations), updated (based on all prior and current observations), and
smoothed (based on all observations) expectations and covariances from the Kalman filter,
based on specific subjects models. For ease of comparison, expected manifest indicator scores
conditional on prior, updated and smoothed states are also included. This approach allows
for: predictions regarding individuals states at any point in time, given any values on the
time dependent predictors (external inputs such as interventions or events); residual analysis
to check for unmodeled dependencies in the data; or simply as a means of visualization,
for comprehension and model sanity checking purposes. An example of such is depicted
below, where we see observed and estimated scores for a selected subject from our sample.
If we wanted to predict unobserved states in the future, we would need only to specify the
appropriate timerange (Prediction into earlier times is possible but makes little sense unless
the model is restricted to stationarity).

ctKalman(fit, subjects=2, timerange=c(0,60), kalmanvec=c(✬y✬, ✬ysmooth✬),

timestep=.1, plot=TRUE)

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 10 20 30 40 50 60

−
8

−
7

−
6

−
5

−
4

−
3

Time

V
al

ue

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 10 20 30 40 50 60

−
8

−
7

−
6

−
5

−
4

−
3

Time

V
al

ue

● y: Y1
y: Y2
ysmooth: Y1
ysmooth: Y2

1.12. Accessing Stan model code

For diagnosing problems or modifying the model in ways not achievable via the ctsem model
specification, one can use ctsem to generate the Stan code and then work directly with that,
simply by specifying the argument fit=FALSE to the ctStanFit function. Any altered code can
be passed back into ctStanFit by using the stanmodeltext argument, which can be convenient
for setting up the data in particular.

1.13. Using Rstan functions

The standard rstan output functions such as summary and extract are also available, and the

Charles C. Driver, Manuel C. Voelkle 11

shinystan package provides an excellent browser based interface. The stan fit object is stored
under the $stanfit subobject from the ctStanFit output. The parameters which are likely
to be of most interest in the output are prefixed by ”hmean ” for hyper (population) mean,
”hsd ” for hyper standard deviation, and ”tipred ” for time independent predictor. Any hmean
parameters are returned in the form used for input - so correlations and standard deviations
for any of the covariance related parameters. Subject specific parameters are denoted by the
matrix they are from, then the first index represents the subject id, followed by standard
matrix notation. For example, the 2nd row and 1st column of the DRIFT matrix for subject
8 is ”DRIFT [8, 2, 1]”. Parameters in such matrices are returned in the form used for internal
calculations – that is, variance covariance matrices are returned as such, rather than the lower-
triangular standard deviation and correlation matrices required for input. The exception to
this are the time independent predictor effects, prefixed with ”tipred ”, for which a linear
effect of a change of 1 on the predictor is approximated. So although ”tipred TI1” is only
truly linear with respect to internal parameterisations, we approximate the linear effect by
averaging the effect of a score of +1 or -1 on the predictor, on the population mean. For
any subject that substantially differs from the mean, or simply when precise absolute values
of the effects are required (as opposed to general directions), they will need to be calculated
manually.

1.14. Oscillating, single subject example - sunspots data

In the following example we fit the sunspots data available within R, which has previously
been fit by various authors including Tómasson (2013). We have used the same CARMA(2,1)
model and obtained similar estimates – some differences are due to the contrast between Bayes
and maximum likelihood, though if desired one could adjust the code to fit using maximum
likelihood, as here we have only one subject.

#get data

sunspots<-sunspot.year

sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]

id <- 1

time <- 1749:1924

datalong <- cbind(id, time, sunspots)

#setup model

model <- ctModel(type=✬stanct✬, n.latent=2, n.manifest=1,

manifestNames=✬sunspots✬,

latentNames=c(✬ss_level✬, ✬ss_velocity✬),

LAMBDA=matrix(c(1, ✬ma1✬), nrow=1, ncol=2),

DRIFT=matrix(c(0, ✬a21✬, 1, ✬a22✬), nrow=2, ncol=2),

MANIFESTMEANS=matrix(c(✬m1✬), nrow=1, ncol=1),

CINT=matrix(c(0, 0), nrow=2, ncol=1),

T0VAR=matrix(c(0,0,0,1), nrow=2, ncol=2), #Because single subject

DIFFUSION=matrix(c(0, 0, 0, "diffusion"), ncol=2, nrow=2))

model$pars$indvarying<-FALSE #Because single subject

model$pars$transform[14]<- ✬(param)*5+44 ✬ #Because not mean centered

model$pars$transform[4]<-✬log(exp(-param*1.5)+1)✬ #To avoid multi modality

#fit

12 Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem

fit <- ctStanFit(datalong, model, iter=300, chains=2)

#output

summary(fit)$popmeans

1.15. Population standard deviations - understanding the transforms

Internally, we sample parameters that we will refer to here as the ‘raw’ parameters – these
parameters have no bounds and are drawn from normal distributions. Both population mean
(internally: hypermeans) and subject level (internally: indparamsbase) raw parameters are
drawn from a normal(0, 1) distribution. Depending on the specific parameter, various trans-
formations may be applied to set appropriate bounds and priors. The population standard
deviation (hypersd) for these raw parameters is sampled (by default) from a normal(0, 1)
distribution called rawhypersd, which is by default transformed via an exponential function –
ensuring standard deviation parameters are positive and have a prior distribution that could
be considered a regularised independence Jeffreys prior. This distribution can be scaled on
a per parameter basis by the sdscale multiplier in the model specification, which defaults
to 1. The following script shows a didactic sequence of sampling and transformation for a
model with a single parameter, the auto effect of the drift matrix, and 50 subjects. Although
we sample the priors here, this is merely to reflect the prior and enable understanding and
plotting.

#population mean and subject level deviations (pre-transformation)

hypermeans_prior <- rnorm(99999, 0, 1)

hypermeans_post <- -2 #hypothetical sample

indparamsbase_prior <- rnorm(99999, 0, 1)

indparamsbase_post <- rnorm(50, 0, 1) #hypothetical sample

#population standard deviation prior

rawhypersd_prior <- rnorm(99999, 0, 1)

hypersd_prior <- exp(rawhypersd_prior * 2)

#population standard deviation posterior

hypersd_post <- .4 #hypothetical

#square root of population correlation matrix

hypercorrchol_post <- 1 #because only 1 parameter here...

#population cholesky covariance matrix

#here based on mean of hypersd_post, for convenience...

#in reality would have multiple samples.

hypercovchol <- diag(hypercorrchol_post,1) %*%

diag(hypersd_post,1) %*% diag(hypercorrchol_post,1)

#subject level parameters

#first compute pre transformation parameters

#then transform appropriately (here according to drift auto effect)

Charles C. Driver, Manuel C. Voelkle 13

indparams <- hypercovchol %*% indparamsbase_post + hypermeans_post

indparams <- -log(exp(-1.5 * indparams) + 1)

#post transformation population standard deviation

hsd_ourparameter <- abs(#via delta approximation

(-log(exp(-1.5 * (hypermeans_post + hypersd_post)) + 1) -

-log(exp(-1.5 * (hypermeans_post - hypersd_post)) + 1)) / 2)

2. The model

For a comprehensive description of the statistical model, see http://www.researchgate.net/
publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling.

References

Driver CC, Oud JHL, Voelkle MC (2017). “Continuous Time Structural Equation Modeling
with R Package Ctsem.” Journal of Statistical Software, 77(5). ISSN 1548-7660. doi:

10.18637/jss.v077.i05.

Driver CC, Voelkle MC (2016). “Hierarchical Bayesian Continuous Time Dynamic Modeling.”
Manuscript submitted for publication.

Driver CC, Voelkle MC (2017). “Understanding the Time Course of Interventions with Con-
tinuous Time Dynamic Models.” Manuscript submitted for publication.

Tómasson H (2013). “Some Computational Aspects of Gaussian CARMA Modelling.”
Statistics and Computing, 25(2), 375–387. ISSN 0960-3174, 1573-1375. doi:10.1007/

s11222-013-9438-9.

Affiliation:

Charles Driver
Center for Lifespan Psychology
Max Planck Institute for Human Development
Lentzeallee 94, 14195 Berlin
Telephone: +49 30 82406-367 E-mail: driver@mpib-berlin.mpg.de
URL: http://www.mpib-berlin.mpg.de/en/staff/charles-driver

http://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
http://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
http://dx.doi.org/10.18637/jss.v077.i05
http://dx.doi.org/10.18637/jss.v077.i05
http://dx.doi.org/10.1007/s11222-013-9438-9
http://dx.doi.org/10.1007/s11222-013-9438-9
mailto:driver@mpib-berlin.mpg.de
http://www.mpib-berlin.mpg.de/en/staff/charles-driver

	Overview
	Subject Level Latent Dynamic model
	Subject level latent dynamic model
	Subject level measurement model
	Overview of hierarchical model
	Install software and prepare data
	Model specification
	Model fitting
	Summary
	Plotting
	Stationarity
	Individual level analyses
	Accessing Stan model code
	Using Rstan functions
	Oscillating, single subject example - sunspots data
	Population standard deviations - understanding the transforms

	The model

