Correction of rounding, typing, and sign errors with
the deducorrect package

Mark van der Loo, Edwin de Jonge and Sander Scholtus

April 9, 2011

Abstract

This vignette is unfinished. Version 1.0 of the package will contain
a full vignette.

Since raw (survey) data usually has to be edited before statistical
analysis can take place, the availability of data cleaning algorithms
is important to many statisticians. In this paper the implementation
of three data correction methods in R. The methods of this package
can be used to correct numerical data under linear restrictions for
typing errors, rounding errors, sign errors and value interchanges. The
algorithms, based on earlier work of Scholtus, are described as well as
implementation details and coded examples. Although the algorithms
have originally been developed with financial balance accounts in mind
the algorithms are formulated genericly and should find a wider range
of application.

Contents

1 Introduction
1.1 Deductive correction

1.2 The deducorrect object and status values
1.3 Balance accounts and totally unimodular matrices

2 correctRounding
2.1 Area of application
2.2 How it works
2.3 Examples

3 correctTypos
3.1 Area of application
3.2 How it works
3.3 Examples

4 correctSigns
4.1 Area of application

4.2 Howitworks
4.3 Some simple examples
4.4 Sign errors in a profit-loss account .

5 Final remarks

A Some notes on the editrules package

List of Algorithms

Scapegoat algorithm
Generate solution candidates
Maximize number of resolved edits .
Record correction for correctSigns

=W N

o 0o N N

10
10
10
11

14
14
14
16
20

22

24

1 Introduction

Raw statistical data is often plagued with internal inconsistencies and er-
rors which inhibit reliable statistical analysis. Establishment survey data is
particularly prone to in-record inconsistencies, because the numerical vari-
ables contained in these data are usually interrelated by many mathematical
relationships. Before statistical analysis can take place, these relationships
have to be checked and violations should be resolved as much as possible.
While establishing that a record violates certain relationships is straightfor-
ward, deciding which fields in a record contain the actual errors can be a
daunting task. In the past, much attention has been paid to this decision
problem, often using Fellegi and Holt’s principle (Fellegi and Holt, 1976) as
the point of departure. This principle states that for non-systematic errors,
and with no information on the cause of errors, one should try to make a
record consistent by changing as few variables as possible.

This principle precludes using the data available in the (possibly erro-
neous) fields to detect and correct the error. In certain cases, naively apply-
ing Fellegi and Holt’s principle will yield consistent records with nevertheless
faulty data. As an example, consider a survey record with three variables x,
y and z, which have to obey the relationship x = y — 2. Such relationships
frequently occur in financial profit-loss accounts. If a record happens to
have values such that x = z — y, then Fellegi and Holt’s principle suggests
that either the numerical value of x, y or z should be adapted in such a way
that the relationship holds, while the values in the record suggest that the
values in fields y and z might have been interchanged. Swapping the values
of z and y therefore seems a reasonable solution although it formally means
changing two values.

1.1 Deductive correction

We use the term deductive correction to indicate methods wich use infor-
mation available in inconsistent records to deduce and solve the probable
cause of error. Recently, a number of algorithms for deductive correction
have been proposed by Scholtus (2008, 2009). These algorithms can solve
problems not uncommon in numerical survey data, namely

e Rounding errors.
e Simple typing errors.

e Sign swaps and/or value interchanges.

The algorithms focus on solving problems in records with linear relation-
ships, which can be written in any (combination of) the forms

Az = b (1)
Axr < b (2)
Az < b (3)
Axr > b (4)
Az > b (5)

Here, every A is a matrix, z a numerical data record and b a constant vector.
Every row of the combined matrix [A, b] represents one linear restriction. In
data-editing literature the restrictions imposed on records are often called
edit rules, or edits in short. If an edit describes a relationship between a
number of variables {x;}, we say that the edit contains the variables {z;}.
Conversely, when x; is part of a relationship defined by an edit we say that
x; occurs in the edit.

In this paper, we describe the deducorrect package for R (R Develop-
ment Core Team, 2011), which implements (slight) generalisations of the
algorithms proposed by Scholtus (2008, 2009). The purpose of this paper is
to provide details on the algorithms and to familiarize users with the syntax
of the package. The correction algorithms in the package report the results in
a uniform matter. Section 1.2 provides details on the deducorrect output
object which stores information on corrected records, applied corrections,
and more. Sections 2, 3 and 4, provide details on the classes of problems
that may be treated with the package, an exposition of the algorithms used
and coded examples with analysis of the results. It is also shown how the
examples from Scholtus (2008) and Scholtus (2009) can be treated with this
software. The package requires that linear relationships are defined with
the editrules package (de Jonge and van der Loo, 2011). Unless noted
otherwise, all R-code examples in this paper can be executed from the R
commandline after loading the deducorrect and editrules package.

1.2 The deducorrect object and status values

Apart from the corrected records, every correct- function of the deducor-
rect package returns some logging information on the applied corrections.
Information on applied corrections, a status indicator per record, a times-
tamp and user information are included and stored uniformily in a deducor-
rect object. See Table 1 for an overview of the contents of a deducorrect
object. Because of the large amount of information in a deducorrect ob-
ject, the contents are summarized for printing to screen. In the example
below, we define one record of data, a linear restriction in the form of an
editmatrix, and apply the correctSigns correction method®.

lsometimes extra brackets are included to force R to print the result

Table 1: Contents of the deducorrect object. All slots can be accessed
or reassigned through the $ operator.

corrected The input data with records corrected where possible.

corrections A data.frame describing the corrections. Every
record contains a row number, labeling the row in
the input data, a variable name of the input data,
the old value and the new value.

status A data.frame with at least one column giving treat-
ment information of every record in the input data.
Depending on the correct function, some extra
columns may be added.

timestamp The date and time when the deducorrect object was
created.

generatedby The name of the function that called newdeducor-
rect to create the object.

user The name of the user running R, deduced from the
environment variables of the system using R.

> (d <- data.frame(x = 1, y =0, z = 1))

Xy z
1101

> require(editrules)

> E <- editmatrix("x==y-z")
> sol <- correctSigns(E, d)
> sol

deducorrect object generated by 'correctSigns' on Sat Apr 9 09:52:28 2011
slots: $corrected, $corrections, $status, $timestamp, $generatedby, $user

Record status:
invalid partial corrected valid Sum
0 0 1 0 1

Variables corrected:
X Sum
1 1

The individual components of sol can be retrieved with the dollar-
operator. The slot corrected is the same as the input data, but with
corrected records, where possible:

> sol$corrected
y
0

Xy z
1 -1 1

Table 2: The number of equalities n and inequalities m violated by an edit, before
and after treatment with one of the correct-functions of deducorrect. The label
N/A indicates that this exit status does not occur in the function.

Before After status
Eqgs Ineqs Eqgs Ineqs correctSigns correctRounding correctTypos

0 0 0 0 valid valid valid

0 m 0 m invalid invalid invalid

n 0 n 0 invalid invalid invalid

n 0 <n 0 N/A partial partial

n 0 0 0 corrected corrected corrected
n m m invalid invalid invalid

n m <n 0 N/A partial partial

n m <n <m NJ/A partial partial

n m 0 0 corrected corrected corrected

The applied corrections are stored in the corrections slot.

> sol$corrections

row variable old new
1 1 X 1 -1

Every row in corrections tells wich variable in which row of the input data
was changed, and what the old and new values are. The status slot gives
details on the status of the record.

> sol$status

status weight degeneracy nflip nswap
1 corrected 1 2 1 0

The first column is an indicator which can take five different values, indi-
cating whether validity could be established, and/or if the record could be
(partially) corrected by the method which created the deducorrect object.
See Table 2 for details. The rest of the columns depend on the function
which created the object and can provide more details on the chosen solu-
tions. These are described in the following sections.

1.3 Balance accounts and totally unimodular matrices

Most algorithms described here have been designed with financial balance ac-
counts in mind. The balance accounts encountered in establishment surveys
mostly involve integer records since financial amounts are usually reported
in currency (kilo-)units. Therefore, linear editrules of the form

Ax = b with A € {-1,0,1}""", 2 € Z", and b € Z™. (6)

are frequently encountered. In all the examples of financial balance accounts
encountered by the authors, the matrix A happened to be totally unimod-
ular. A (not necessarily square) matrix is called totally unimodular when
every square submatrix has determinant —1, 0, or 1. The scapegoat al-
gorithm (Scholtus, 2008), which is used in the correctRounding function,
requires A to be totally unimodular. See appendix B of Scholtus (2008)
for a further discussion of total unimodularity. The deducorrect package
offers the function isTotallyUnimodular which checks if a matrix is totally
unimodular. The algorithm follows a recursive procedure given below.

1: procedure ISTOTALLY UNIMODULAR(A)

2: A <~REDUCEMATRIX(A)

3: if A= @ then

4: return TRUE

5: else if Each column of A has exactly 2 nonzero elements then
6: return HELLERTOMPKINS(A)

T: else

8: B <~RAGHAVACHARI(A)

9: if Every B € B 1STOTALLYUNIMODOULAR(B) then
10: return TRUE

11: else

12: return FALSE

13: end if

14: end if

15: end procedure

Here, REDUCEMATRIX iteratively removes all rows and columns of A which
have a single nonzero element (an operation of O(n) in the number of
columns and rows). When possible, the criterium of Heller and Tompkins
(1956), which is O(2") in the number of columns is used to determine uni-
modularity. If this is not possible, a series of smaller matrices B is derived
with the method of Raghavachari (1976). Every matrix in B is subsequently
checked for total unimodularity by calling ISTOTALLY UNIMODULAR. In the
worst case, Rachavachari’s method must be called recursively and checking
for unimodularity is O(n!) in the number of columns. In practical applica-
tions A is often fairly sparse and only a small portion of A has to be treated
with the Rachavachari method.

2 correctRounding

2.1 Area of application

This function can be used to correct records which violate linear equality
restrictions because of rounding errors in one or more variables. The linear

Algorithm 1 Scapegoat algorithm
Input: Equality restriction matrix A and constant vector b, record z, round-
ing tolerance €.
Remove rows from the system Az = b not satisfying |A;.x — b;| < €.
if A+# @ and ||Az —b|| > 0 then
Randomly permute columns of A. Permute x and b accordingly.
Use QR decomposition to partition A columnwise in a square invert-
ible matrix A; and remaining columns As. Partition x in z; and xo,
and b in by and by accordingly.
5 Tr1 < Afl(b — AQIQ)
6 Unpermute [z1, 23]
7: end if
8: Restore z by adding the previously removed elements.
Output: x

equality restrictions must be of the form
Az =bwith A € {-1,0,1}"", x € Z", and b € Z™.

where A is a totally unimodular matrix (see Section 1.3), which can be tested
with the function isTotallyUnimodular.

2.2 How it works

The correctRounding function uses the scapegoat algorithm described in
Scholtus (2008) to suggest corrections for linear equality violations. Linear
inequalities are ignored, except that corrections which cause new inequal-
ity violations are not accepted. The algorithms selects editrules violated
by rounding errors. Rounding errors cause small deviations from equality
and therefore deviations smaller than some ¢ (say, ¢ = 2) are assumed to
stem from rounding errors. Next, a number of variables —called scapegoat
variables— is selected randomly in such a way that rounding errors can be
solved exactly and uniquely. If the chosen solution happens to cause new
inequality violations, the solution is rejected and a new set of scapegoat
variables is drawn. This is repeated at most k£ times. See Algorithm 1 for a
consice description of the basic procedure (without checking for inequalities).

2.3 Examples

Here, we will reproduce the example of Scholtus (2009), Section 5.3.2. Con-
sider an integer-valued record with 11 variables, subject to the rules:

> E <- editmatrix(c("X1 + X2 == X3"
+ ,"X2 == X4"
+ ,"X5 + X6 + X7 == X8"

+ ,"X3 + X8 == X9"
+ ,"X9 - X10 == X11"))

Consider also the following inconsistent record:
> (dat <- data.frame(t(c(12, 4, 15, 4, 3, 1, 8, 11, 27, 41, -13))))

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
112 415 4 3 1 8 11 27 41 -13

> violatedEdits(E, dat)

el e2 e3 ed eb
[1,] TRUE FALSE TRUE TRUE TRUE

As reported by the violatedEdits function, this record violates editrules
1, 3, 4, and 5. Using R’s built-in matrix operations, we may check which
edits might be violated because of rounding errors:

> E }*} t(as.matrix(dat))

rules [,1]
el 1
e2 0
e3 1
el -1
eb -1

which, in this case is the same since all violations fall within the limit we
expect rounding errors. Repairing the record can be done with

> set.seed(1)
> sol <- correctRounding(E, dat)
> cbind(sol$corrected, sol$status)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 status attempts
112 416 4 3 1 8 12 28 41 -13 corrected 1

> sol$corrections

row variable old new

X3 1 X3 15 16
X8 1 X8 11 12
X9 1 X9 27 28

Here, we used set.seed to make results reproducible. The result is not
exactly the same as the solution found in the reference. Here, variables
r3, xg and xg have been adapted, while in the reference x3, xg and xzg
were adapted. Since corrections are very small, smearing out the effect of
adaptations over a number of variables is a reasonable option.

3 correctTypos

3.1 Area of application

This function can be used to correct typographical errors in an integer record
violating linear equality constraints as in Eq. (6):

Az =bwith A € {-1,0,1}"", x € Z", and b € Z™.

The algorithm was developed with sets of financial balance equations in
mind, where these type of problems are very common. As far as inequalities
are concerned, they are currently ignored by the algorithm, in the sense that
no attempt is made to repair inequality violations. However, the algorithm
does not allow solutions causing extra inequality violations.

Records which violate the equality restrictions are treated. There is an
option eps which allows for a tolerance in checking if records should be
treated. This way, records containing ony rounding errors can be ignored
but do note that they will retrieve the status valid.

3.2 How it works

In short, the algorithm first computes a list of suggestions which correct one
or more violated edits (Algorithm 2). The corrections not corresponding to
a typographical error are removed, after which the set of suggestions that
maximize the number of satisfied editrules is determined (Algorithm 3).
Suggestions are generated for the set of variables which only occur in
violated edits since altering these variables will have no effect on already
satisfied edits. For every variable x;, define the matrix AU who’s rows

(

represent edits containing x;. Suggestions i"ji) for every row i of AY) can be

generated by solving for z;:

NONENS' , G,
=5 bi— Y Ad)z; | (7)
ij J'#7

We keep only the unique suggestions, and reject solutions which are more
than a certain Damerau-Levenshtein distance removed from the original
value. The Damerau-Levenshtein distance dpr, between two strings s and ¢
is the minimum number of character insertions, deletions, substitutions and
transpositions necessary to change s into ¢ or vice versa (Damerau, 1964;
Levenshtein, 1966). The remaining set of suggestions {azy)} will in general
contain multiple suggestions for each violated edit ¢ and multiple sugges-
tions for each variable z;. Using a tree search algorithm, a subset of {xy)}
is selected which maximizes the number of resolved edits. The tree search
is sped up considerably by pruning branches which resolve the same edit
multiple times or use multiple suggestions for the same variable.

10

Algorithm 2 Generate solution candidates
Input: Record z, a set of linear equality restrictions and a list of variables
to fixate. A maximum Damerau-Levenshtein distance maxdist.
L+—o
Determine Jy = {j : 2; occurs only in violated edits and not in fixate}
for j € Jydo

Determine the matrix A of violated edits containing xj and asso-
ciated constant vector bU)

W o=

5: for every row i of AY) do
. ~(4) (4) @), (4)
7 L+ Luil?
8: end for
9: end for

10: Remove ﬁ;i) from L for which dDL(gY:g-i),xj) > maxdist

Output: List L of m unique solution suggestions for record x.

This algorithm generalizes the algorithms of Scholtus (2009) in the fol-
lowing two ways: first, the imposed linear restrictions are generalised from
Ax = 0 to Az = b. Secondly, the original algorithm allowed for a single
digit insertion, deletion, transposition or substitution. The more general
Damerau-Levenshtein distance used here treats the digits as characters, al-
lowing for sign changing, which is forbidden if only digit changes are allowed.
Also, by applying a standard Damerau-Levenshtein algorithm it is easy to
allow for corrections spanning larger values dpr,. That is, one could allow for
multiple typos in a single field. Moreover, the Damerau-Levenstein distance
as implemented in the deducorrect package allows one to define different
weights to the four types of operations involved, adding some extra flexibility
to the method.

3.3 Examples

In this section we show the most important options of the correctTypos
function. After a simple, worked-out example we reproduce the results in
Chapter 4 of Scholtus (2009).

First, define a simple one-record dataset with an associated edit rule.

> dat <- data.frame(x = 123, y = 192, z = 252)
> (E <- editmatrix("z == x + y"))

Edit matrix:
x y z CONSTANT

el -1 -1 1 0
Edit rules:
el : z==x+y

11

Algorithm 3 Maximize number of resolved edits
Input: Record z, a list of linear equality restrictions and a list of solution

suggestions L = { Ly, = 505-7;) 0=1,2,....,m}
1: k<0
2: s < NULL
3: procedure TREE(z, L)
4: if L # @ then

5: TREE(x, L\ L1) > Left branche: don’t use suggestion
6: Ty < L > Right branche: use suggestion
7 L+ L\{ajg-zé) €L:jy=7jior 555'22) resolves the same edit as L}
8: TREE(z, L)

9: else

10: if Number of edits n resolved by x larger then k£ then

11: k<+n

12: ST

13: end if

14: end if
15: end procedure
Output: (partial) solution s, resolving maximum number of edits.

Obviously, the edit in E is not satisfied since 123+ 192 = 315. As can be seen
from the output of editmatrix, we have b = 0, so the correction candidates
here are:

—1-192+1- 252

i = 00— 9_{ °2 _ 60 (8)
~1-123+1- 252

gV = 0- _Jlr =129 (9)
~1-123 —1-192

W = o0-— 31 92 _ 315 (10)

The Damerau-Levenshtein distances between the candidates and their orig-
inals are given by:

dpL(2V,2) = 3 (two substitutions and an insertion) (11)
dpL(5",y) = 1 (one transposition) (12)
dpL(3M,2) = 3 (three substitutions) (13)

In this case, there is just one candidate with dpr, = 1, solving the inconsis-
tency with just one digit transposition. Running the record through cor-
rectTypos indeed finds the digit transposition:

> correctTypos (E, dat)$corrected

X y z
1 123 129 252

12

Scholtus (2009) (Chapter 4) treats a series of examples which we will repro-
duce here. We consider a dataset with 11 variables, subject to the following
edit rules.

> E <- editmatrix(c("x1 + x2 == x3"

+ ,"x2 == x4"

+ ,"x5 + x6 + x7 == x8"
+ ,"x3 + x8 == x9"

+ ,"x9 - x10 == x11"))

The following dataframe contains the correct record (example 4.0) as well
as the manipulated erroneous records.

> dat

x1 x2 x3 x4 xb x6 x7 x8 x9 x10 x11
example 4.0 1452 116 1568 116 323 76 12 411 1979 1842 137
example 4.1 1452 116 15668 161 323 76 12 411 1979 1842 137
example 4.2 1452 116 1568 161 323 76 12 411 19979 1842 137
example 4.3 1452 116 1568 161 0 O 0 411 19979 1842 137
example 4.4 1452 116 1568 161 323 76 12 0 19979 1842 137

This data.frame can be read into R by copying the code from the correct-
Typos help page. As can be seen, example 4.1 has a single digit transposition
in x4, example 4.2 has the same error, and an extra 1 prefixed to zg, ex-
ample 4.3 contains multiple extra errors (in x5, ¢ and z7 which cannot be
explained bby simple typing errors. Finally, example 4.4 also has multiple
errors which cannot all be explained by simple typing errors. This example
has multiple solutions which solve an equal amount of errors.
The violated edit rules may be listed with the function

> violatedEdits(E, dat)

el e2 e3 ed eb
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE TRUE FALSE FALSE FALSE
[3,] FALSE TRUE FALSE TRUE TRUE
[4,] FALSE TRUE TRUE TRUE TRUE
[6,] FALSE TRUE TRUE TRUE TRUE

Now, to apply as many typo-corrections as possible:

> sol <- correctTypos(E, dat)
> cbind(sol$corrected, sol$status)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 status

example 4.0 1452 116 1568 116 323 76 12 411 1979 1842 137 valid
example 4.1 1452 116 1568 116 323 76 12 411 1979 1842 137 corrected
example 4.2 1452 116 15668 116 323 76 12 411 1979 1842 137 corrected
example 4.3 1452 116 1568 116 0 O O 411 1979 1842 137 partial
example 4.4 1452 116 1568 116 323 76 12 0 19979 1842 137 partial

13

Our implementation finds the exact same solutions as in the original paper
of Scholtus (2009). Also see this reference for a through analysis of the
outcomes.

4 correctSigns

4.1 Area of application

This function can be used to solve sign errors and value swaps which cause
linear equalities (Eq. 1) to fail. Possible presence of linear inequalities [Eq.
(2)-(5)] are taken into account when resolving errors, but they are not part
of the error detection process.

4.2 How it works

The function correctSigns tries to change the sign of (combinations of)
variables and/or swap the order of variables to repair inconsistent records.
Sign flips and value swaps are closely related since

—(z—y)=y—ux, (14)

These simple linear relations frequently occur in profit-loss accounts for ex-
ample. Basically, correctSigns first tries to correct a record by changing
one sign. If that doesn’t yield any solution, it tries changing two, and so
on. If the user allows value swaps as well, it starts by trying to correct the
record with a single sign flip or variable swap. If no solution is found, a com-
bination is tried, and so on. The algorithm only treats the variables which
have nonzero coefficients in one of the violated rows of Eq. (1). Since the
number of combinations grows exponentially with the number of variables
to treat, the user is given some control over the volume of the search space
to cover in a number of ways. First of all, the variables which are allowed
to flip signs or variable pairs which may be interchanged simultaneously can
be determined by the user. Knowledge of the origin of the data will usually
give a good idea on which variables are prone to sign errors. For example, in
surveys on profit-loss accounts, respondents sometimes erroneously submit
the cost as a negative number. Secondly, the user may limit the maximum
number of simultaneous sign flips and or value swaps that may be tested.
This is controled by the maxActions parameter in Algorithm 4. The third
option limiting the search space is to break when the number of combina-
tions, given a number of actions to try becomes too large. This is controlled
by the maxCombinations parameter in Algorithm 4.

To account for sign errors and variable swap errors which are masked by
rounding errors, the user can provide a nonegative tolerance ¢, so the set of
equality constraints are checked as

|Az — | < g, (15)

14

Algorithm 4 Record correction for correctSigns

Input: A numeric record z, a tolerance . A set of equality and inequality
constraints of the form
Axr—b = 0
Bx—c > 0,
A list flip of variables whos signs may be fliped, a list swap of vari-
able pairs whos values may be interchanged, an integer maxActions, an
integer maxCombinations and a weight vector.
1: Create a list actions, of length n containing those elements of f1ip and
swap that affect variables that occur in violated rows of A.
Create an empty list .S.
k<0
while S = @ and k < min(maxActions,n) do
if not (}) > maxCombinations then
k+—k+1
Generate all (Z) combinations of k actions.
Loop over those combinations, applying them to x. Add solutions
obeying |Ax —b| < ¢ and Az —c>0to S.
9: end if
10: end while
11: if not S = & then
12: Compute solution weights and choose solution with minimum weight.
Choose the first solution in the case of degeneracy.
13: end if

where | - | indicates the elementwise absolute value. The default value of ¢ is
the square root of machine accuracy which amounts to approximately 10~8
on a 32-bit architecture.

The purpose of this algorithm is to find and apply the minimal number
of actions (sign flips and/or variable swaps) necessary to repair the record.
It is not guaranteed that a solution exists, nor that the solution is unique.
If multiple solutions are found, the solution which minimizes a weight is
chosen. The user has the option to assign weights to every variable, or to
every action. The total weight of a solution is the sum over the weights of
the altered variables or the sum over the weight of the actions performed.
Actions with heigher weight are therefore less likely to be performed and
variables with higher weight are less likely to be altered.

This algorithm is a generalization of the original algorithms in Scholtus
(2008) in two ways. First, the original algorithm was designed with a specific
type of profit-loss account in mind, while the algorithm of deducorrect can
handle any set of linear equalities. Second, the original algorithm was not
designed to take account of inequality restrictions, which is a feature of the

15

algorithm in this work. In Section 4.4 it is shown how the results of the
original example can be reproduced.
4.3 Some simple examples

In this section we walk through most of the options of the correctSigns
function. We will work with the following six records as example.

> (dat <- data.frame(

+ x =c(3, 14, 15, 1, 17, 12.3),

+ y =c(13, -4, 5, 2, 7, -2.1),

+ z = c¢(10, 10,-10, NA, 10, 10)))
X y z

1 3.0 13.0 10

2 14.0 -4.0 10

3 15.0 5.0 -10

4 1.0 2.0 NA

517.0 7.0 10

6 12.3 -2.1 10

We subject this data to the rule
z=x—y. (16)
With the editrules package, this rule can be parsed to an editmatrix.

> require(editrules)
> E <- editmatrix(c("z == x-y"))

Obviously, not all records in dat obey this rule. This can be checked with a
function from the editrules package:

> cbind(dat, violatedEdits(E, dat))

X y oz el
1 3.0 13.0 10 TRUE
2 14.0 -4.0 10 TRUE
3 15.0 5.0 -10 TRUE
4 1.0 2.0 NA NA
5 17.0 7.0 10 FALSE
6 12.3 -2.1 10 TRUE

Records 1, 2, 3 and 6 violate the editrule, record 5 is valid and for record 4
validity cannot be established since it has no value for z. If correctSigns
is called without any options, all variables x, y and z can be sign-flipped:

> sol <- correctSigns(E, dat)
> cbind(sol$corrected, sol$status)

16

X y z status weight degeneracy nflip nswap
1 3.0 13.0 -10 corrected 1 1 1 0
2 14.0 4.0 10 corrected 1 1 1 0
3 15.0 5.0 10 corrected 1 1 1 0
4 1.0 2.0 NA <NA> 0 0 0 0
517.0 7.0 10 valid 0 0 0 0
6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections

row variable old new

11 z 10 -10
2 2 y -4 4
3 3 z -10 10

So, the first three records have been correcte by flipping the sign of z, y and
z respectively. Since no weight parameter was given, the weight is just the
number of variables whose have been sign-flipped. Record 4 is not treated,
since validity could not be established, record 5 was valid to begin with and
record 6 could not be repaired with sign flips. However, record 6 seems to
have a rounding error. We can try to accomodate for that by allowing a
tolerance when checking equalities.

> sol <- correctSigns(E, dat, eps = 2)
> cbind(sol$corrected, sol$status)

X y z status weight degeneracy nflip nswap
1 3.0 13.0 -10 corrected 1 1 1 0
2 14.0 4.0 10 corrected 1 1 1 0
3 15.0 5.0 10 corrected 1 1 1 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new

11 z 10.0 -10.0
2 2 y -4.0 4.0
3 3 z -10.0 10.0
4 6 y -2.1 2.1

Indeed, changing the sign of y in the last record brings the record within
the allowed tolerance. Suppose that we have so much faith in the value of z,
that we do not wish to change it’s sign. This can be done with the fixate
option:

> sol <- correctSigns(E, dat, eps = 2, fixate = "z")
> cbind(sol$corrected, sol$status)

17

X y z status weight degeneracy nflip nswap
1 -3.0 -13.0 10 corrected 2 1 2 0
2 14.0 4.0 10 corrected 1 1 1 0
3 -15.0 -5.0 -10 corrected 2 1 2 0
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new

11 x 3.0 -3.0
2 1 y 13.0 -13.0
3 2 y 4.0 4.0
4 3 x 15.0 -15.0
5 3 y 5.0 -5.0
6 6 y 2.1 2.1

Indeed, we now find solutions whitout changing z, but at the price of more
sign flips. By the way, the same result could have been obtained by

> correctSigns(E, dat, flip = c("x", "y"))

The sign flips in record 1 and three have the same effect of a variable swap.
Allowing for swaps can be done as follows.

> sol <- correctSigns(E, dat, swap=list(c("x","y")),
+ eps=2, fixate="z")
> cbind(sol$corrected, sol$status)

X y oz status weight degeneracy nflip nswap
1 13.0 3.0 10 corrected 1 1 0 1
2 14.0 4.0 10 corrected 1 1 1 0
3 5.0 15.0 -10 corrected 1 1 0 1
4 1.0 2.0 NA <NA> 0 0 0 0
5 17.0 7.0 10 valid 0 0 0 0
6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new

11 x 3.0 13.0
2 1 y 13.0 3.0
3 2 y -4.0 4.0
4 3 x 15.0 5.0
5 3 y 5.0 15.0
6 6 y -2.1 2.1

Notice that apart from swapping, the algorithm still tries to correct records
by flipping signs. What happened here is that the algorithm first tries to flip

18

the sign of x, then of y, and then it tries to swap z and y. Each is counted
as a single action. If no solution is found, it starts trying combinations. In
this relatively simple example the result turned out well. In cases with more
elaborate systems of equalities and inequalities, the result of the algorithm
becomes harder to predict for users. It is therefore in general advisable to

e Use as much knowledge about the data as possible to decide which
variables to flip sign and which variable pairs to swap. The problem
treated in section 4.4 is a good example of this.

e Keep flip and swap disjunct. It is better to run the data a few times
times through correctSigns with different settings.

Not allowing any sign flips can be done with the option £1ip=c().

> sol <- correctSigns(E, dat, flip = c(), swap = list(c("x", "y")))
> cbind(sol$corrected, sol$status)

X y z status weight degeneracy nflip nswap
1 13.0 3.0 10 corrected 1 1 0 1
2 14.0 -4.0 10 invalid 0 0 0 0
3 .0 15.0 -10 corrected 1 1 0 1
4 1.0 2.0 NA <NA> 0 0 0 0
517.0 7.0 10 valid 0 0 0 0
6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections

row variable old new

11 x 3 13
2 1 y 13 3
3 3 x 156 5
4 3 y 5 15

This yields less corrected records. However running the data through

> correctSigns (E, sol$corrected, eps = 2)$status

status weight degeneracy nflip nswap

1 valid 0 0 0 0
2 corrected 1 1 1 0
3 valid 0 0 0 0
4 <NA> 0 0 0 0
5 valid 0 0 0 0
6 corrected 1 1 1 0

will fix the remaining edit violations, and yields code which is a lot easyer
to interpret.

19

4.4 Sign errors in a profit-loss account

Here, we will work through the example of chapter 3 of Scholtus (2008).
This example considers 4 records, labeled case a, b, ¢, and d, which can be
defined in R as

> dat <- data.frame(

+ case = c("a","b","c","d"),

+ x0r = ¢(2100,5100,3250,5726),
+ x0c = ¢(1950,4650,3550,5449),
+ x0 = c(150, 450, 300, 276),
+ xlr = c(0, 0, 110, 17),
+ xlc = ¢(10, 130, 10, 26),
+ x1 =c¢(10, 130, 100, 10),
+ x2r = ¢(20, 20, 50, 0),
+ x2c = c(5, 0, 90, 46),
+ x2 =c(15, 20, 40, 46),
+ x3r = ¢(50, 15, 30, 0),
+ x3c = c(10, 25, 10, 0),
+ x3 = c(40, 10, 20, 0),
+ x4 = c(195, 610,-140, 221))

A record consists of 4 balance accounts wose results have to add up to a
total. Each z;, denotes some kind of return, x;. some kind of cost and
x; the difference x;, — x;.. There are operating, financial, provisions and
exeptional incomes and expenditures. The differences xq, 1, 2 and x3 have
to add up to a given total x4. These linear restrictions can be defined with
the use of the editrules package.

> require(editrules)
> E <-editmatrix(c(

+ "x0 == x0r - x0c",

+ "x1 == x1r - xl1c",

+ "x2 == x2r - x2c",

+ "x3 == x3r - x3c",

+ "x4 == x0 + x1 + x2 + x3"))
> E

Edit matrix:
x0 x0c x0r x1 xlc xlr x2 x2c¢ x2r x3 x3c x3r x4 CONSTANT

el 1 1 -1 0 0 0 0 0 0 O 0 0 O 0
e2 0 0 0 1 1 -1 0 0 0 O 0 0 O 0
e3 0 0 0 O 0 0 1 1 -1 0 0 0 O 0
ed O 0 0 O 0 0 O 0 0 1 1 -1 0 0
eb -1 0 0 -1 0 0 -1 0 0 -1 0 0 1 0
Edit rules:

el : x0 == x0Or - x0c

e2 : x1 == xlr - xlc

e3 : x2 == x2r - x2c

20

ed : x3 == x3r - x3c
eb : x4 == x0 + x1 + x2 + x3

Checking which records violate what edit rules can be done with the vio-
latedEdits function of editrules.

> violatedEdits(E, dat)

el e2 e3 ed eb
[1,] FALSE TRUE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE TRUE FALSE
[3,] TRUE FALSE TRUE FALSE TRUE
[4,] TRUE TRUE TRUE FALSE TRUE

So record 1 (case a) for example, violates the restrictions eq: 1 = z1, — 21,
and es, r1 + x2 + sx3 = x4. We can try to solve the inconsistencies by
allowing the following flips and swaps:

> swap <- list(

+ c(”xlr”, "XlC"),
+ C(“XQI‘”, "X2c"),
+ C("X3I'", HX3CH))

> flip <_ C(HXOH "Xi” IIX2II ”X3" ”X4”)

Trying to correct the records by just flipping and swapping variables indi-
cated above corresponds to trying to solve the system of equations

TosSo = o, — L0,

z1s1 = (T1, — 1)t

xesy = (w2, —T2c)to (17)
x3s3 = (x3, —T3.)t3

T4S4 = TS0+ T181 + T282 + T3S3

(80, S1, 82,83, 84,11, 12, t3) S {—1, 1}8 s

where every s; corresponds to a sign flip and ¢; corresponds to a value swap,
see also Eqn. (3.4) in Scholtus (2008). Using the correctSigns function,
we get the following.

> cor <- correctSigns(E, dat, flip = flip, swap = swap)
> cor$status

status weight degeneracy nflip nswap

1 corrected 1 1 1 0
2 corrected 2 1 0 2
3 corrected 2 1 1 1
4 invalid 0 0 0 0

As expected from the example in the reference, the last record could not be
corrected because the solution is masked by a rounding errors. This can be
solved by allowing a tolerance of two measurements units.

21

> cor <- correctSigns(E, dat, flip = flip, swap = swap, eps = 2)
> cor$status

status weight degeneracy nflip nswap

1 corrected 1 1 1 0
2 corrected 2 1 0 2
3 corrected 2 1 1 1
4 corrected 2 1 2 0

> cor$corrected

case x0r xOc x0 x1r xlc x1 x2r x2c x2 x3r x3c x3 x4
a 2100 1950 150 0 10 -10 20 5 15 50 10 40 195
b 5100 4650 450 130 0 130 20 0 20 25 15 10 610
c 3250 3550 -300 110 10 100 90 50 40 30 10 20 -140
d 5726 5449 276 17 26 -10 0 46 -46 0 0 0 221

W N -

The latter table corresponds exactly to Table 2 of Scholtus (2008).

5 Final remarks

This paper demonstrates our implementation of three data correction meth-
ods, initially devised by one of us (Scholtus (2008, 2009)). With the de-
ducorrect R package, users can correct numerical data records which violate
linear equality restrictions for rounding errors, typographical errors and sign
errors and/or value transpositions. Since both the algorithms correcting for
typographical and sign errors can take rounding errors into account, a typ-
ical data-cleaning sequence would be to start with correcting for sign- and
typographical errors, ignoring rounding errors and subsequently treating the
rounding errors. We note that data cleaning can be sped up significantly
if independent blocks of editrules are treated separately. Two sets of ed-
itrules A and B are independent when variables occuring in rules of A do
not occur in rules of B. The editrules package offers functionality to split
editmatrices into blocks (with the findblocks function).

References

Damerau, F. (1964). A technique for computer detection and correction of
spelling errors. Communications of the ACM 7, 171-176.

de Jonge, E. and M. van der Loo (2011). editrules: R package for parsing
and manipulating edit rules. R package version 0.4-1.

Fellegi, P. and D. Holt (1976). A systematic approach to automatic edit and
imputation. Journal of the Americal Statistical Association 71, 353.

22

Heller, I. and C. Tompkins (1956). An extension of a theorem of dantzig’s.
In H. Kuhn and A. Tucker (Eds.), Linear inequalities and related systems,
pp. 247-254. Princeton University Press.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 10, 707-710.

R Development Core Team (2011). R: A Language and Environment for Sta-
tistical Computing. Vienna, Austria: R Foundation for Statistical Com-
puting. ISBN 3-900051-07-0.

Raghavachari, M. (1976). A constructive method to recognize the total
unimodularity of a matrix. Zeitschrift fiir operations research 20, 59-61.

Scholtus, S. (2008). Algorithms for correcting obvious inconsistencies and
rounding errors in business data. Technical Report 08015, Statistics
Netherlands, Den Haag. Accepted for publication in the Journal of Of-
ficial Statistics. The papers are available in the inst/doc directory of the
R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical
data with balance edits. Technical Report 09046, Statistics Netherlands,
Den Haag. Accepted for publication in the Journal of Official Statistics.
The papers are available in the inst/doc directory of the R package or via
the website of Statistics Netherlands.

23

A Some notes on the editrules package

The editrules package (de Jonge and van der Loo, 2011) is a package for
reading, parsing and manipulating numerical and categorical editrules. It
offers functionality to conveniently construct edit matrices from verbose edit
rules, stated as R statements. As an example consider the following set of
edits on records with profit p, loss [, and turnover ¢.

t >0

I >0

t — p+1 (18)
p < 0.6t

The first two rules indicate that turnover and loss must be positive numbers,
the third that the profit-loss account must balance, and the last rule indicates
that profit cannot be more thatn 60% of the turnover. Denoting a record as
a vector (p,l,t), these rules can be denoted as matrix equations:

00 1][?] 1
1] > (19)
el = 1)
Fo
(11 1]l]| =0 (20)
t
Fo
[1 0 —06]|1] <O (21)
t

In the editrules package, these linear rules are all stored in a single object,
called an editmatrix. It can be constructed as follows:

> (E <- editmatrix(c(
ng >= qn,

"] >= Q"

"t == p + l",
"D < 0.6%t")))

+ + + +

Edit matrix:

t 1 p CONSTANT
el 1
e2
e3

ed -

O = O =
o O O O
O = O
» =, O O

0
0
0

Edit rules:

el : t >=1

e2 : ' 1>=0

e3 :t=p+1
ed : p < 0.6%t

24

An editmatrix object stores a stacked matrix representation of linear edit
resrictions. There are more storage modes in editrules which we will not
detail here. Users can extract (in)equalities through the getOps function
which returns a vector of comparison operators for every row. For example:

> E[getDps (E)==">="]

Edit matrix:
t 1 p CONSTANT

el 100 1
e2 010 0
Edit rules:
el : t >=1
e2 : 1 >0

Alternatively, an the comparison operators of an editmatrix may be normal-
ized:

> editmatrix(editrules(E), normalize = TRUE)

Edit matrix:
t 1 p CONSTANT

el -1.0 0 O 1
e2 0.0-1 O 0
e3 1.0 -1 -1 0
e4d -0.6 0 1 0
Edit rules:

el : -1 <=1t

e2 : 0 <=1

e3 :t=1+p
ed : p < 0.6%t

The editrules package offers functionality to check data against any set
of editrules. The function violatedEdits, for example returns a boolean
matrix indicating which record violates what editrules. editrules also offers
editrule manipulation functionality, for example to split editmatrices into
independent blocks. For further functionality of the editrules package,
refer to the package documentation.

25

