
exactLoglinTest: A Program for Monte Carlo Conditional

Analysis of Log-linear Models

Brian S. Caffo

July 28, 2003

Nuisance parameters are parameters that are not of direct interest to the inferential question in
hand. In a frequentist or likelihood paradigm, a common tool for eliminating nuisance parameters is to
condition on their sufficient statistics. The same technique is useful (though rarely used) in a Bayesian
settings, as it eliminates the need to put priors on nuisance parameters.

For log-linear models, conditional analysis suffers from two main drawbacks.

1. The set of lattice points contained in the conditional distribution is difficult to manage, computa-
tionally or analytically.

2. The sufficient statistics for the nuisance parameters are not ancillary to the parameters of interest.

In this manuscript we address only the first drawback using exactLoglinTest.

1 The Problem

The observed data, y = (y1, . . . , yn), are modeled as Poisson counts with a means, µ = (µ1, . . . , µn),
satisfying

log µ = xβ

under the null hypothesis. Here x is a full rank n× p design matrix. It is easily shown that the sufficient
statistics for β under the null hypothesis are xty, where a superscript t denotes a transpose. Let h be a
test statistic of interest where larger values of h support the alternative hypothesis. Two examples are
the Pearson Chi-Squared statistic and the deviance. An exact test relative to h can be performed via
the conditional P-value

Prob{h(y) ≥ h(yobs)|xty = xtyobs} =
∑
{y∈Γ}

I{h(y) ≥ h(yobs)}
C

∏
yi!

where yobs is the observed table, C is a normalizing constant and Γ = {y|xty = xtyobs} (often referred
to as the reference set).

The term“exact” is used to refer to tests that guarantee the nominal type I error rate unconditionally.
Thus a test that never rejects the null hypothesis is technically exact in any situation. Therefore,
exactness is not in itself a sufficient condition for a test to be acceptable. Moreover, this example (never
rejecting) is particularly relevant in our setting because Γ may contain one or few elements. Hence the
conditional P-value will be exactly or near one regardless of the evidence in the data vis-a-vis the two
hypotheses. However, it is also the case that the conservative conditional tests can produce P-values that
are smaller than those calculated via Chi-squared approximations (see Subsection 3.2 for an example).

1

2 exactLoglinTest

The software exactLoglinTest is an implementation of the algorithms presented in [2] and [3]. At the
heart of both algorithms is a sequentially generated rounded normal approximation to the conditional
distribution. We refer the reader to those papers for a more complete description.

You can obtain a copy of exactLoglinTest at as well as a more detailed no-web [4] version of this
document at

http://www.biostat.jhsph.edu/~bcaffo/downloads.htm

You can install exactLoglinTest with R CMD INSTALL, on Unix and Linux, while the binaries are avail-
able for Windows. Assuming it is installed, one can load the program with.

R> library(exactLoglinTest)

R> set.seed(1)

Here, the optional argument lib.loc is necessary if the package has been installed into one of the paths
that R automatically checks. We also set the random number seed to a specific value which is a good
practice for Monte Carlo procedures.

3 Examples

3.1 Residency Data

Assuming exactLoglinTest has been properly installed, the residency data can be obtained by the
command

R> data(residence.dat)

This data is a 4×4 table of persons’ residence in 1985 by their residence in 1980. See Table 1 for the
complete data. The data frame, residence.dat, contains the counts stacked by the rows. The extra
term sym.pair is used to fit a quasi-symmetry model. For details on the quasi-symmetry model see [1].
To obtain a Monte Carlo goodness of fit test of quasi-symmetry versus a saturated model involves the
following command

R> resid.mcx <- mcexact(y ~ res.1985 + res.1980 + factor(sym.pair),

+ data = residence.dat, nosim = 10^2, maxiter = 10^4)

R> resid.mcx

deviance Pearson
observed.stat 2.9859623 2.9819870
pvalue 0.4103531 0.4103531
mcse 0.2077671 0.2077671

The default method is the importance sampling of [2]. Using this method, the number of desired
simulations nosim may not be met in maxiter iterations and no warning is issued if this occurs. The
returned value is a list storing the results of the Monte Carlo simulation and all of the relevant information
necessary to restart the simulation. More information can be obtained with summary

R> summary(resid.mcx)

Number of iterations = 100
T degrees of freedom = 3
Number of counts = 16
df = 3
Next update has nosim = 100

2

Next update has maxiter = 10000
Proportion of valid tables = 1

deviance Pearson
observed.stat 2.9859623 2.9819870
pvalue 0.4103531 0.4103531
mcse 0.2077671 0.2077671

The t degrees of freedom refers to degrees of freedom used as a tuning parameter within the algorithm
while the df refers to the model degrees of freedom. In this case, the Monte Carlo standard error, mcse,
seems too large. As mentioned previously, mcexact , stores the relevant information for restarting the
simulation

R> resid.mcx <- update(resid.mcx, nosim = 10^4, maxiter = 10^6)

R> resid.mcx

deviance Pearson
observed.stat 2.98596233 2.98198696
pvalue 0.39875302 0.39820666
mcse 0.01994486 0.01993785

It is important to note that update only resumes the simulation with changes to some simulation-
specific parameters. It will not allow users to change the model formulation; one must rerun mcexact
independently to do that.

This example illustrates the point that the underlying algorithms are very efficient when the cell
counts are large. Of course, when this is the case, the large sample approximations are nearly identical
to the conditional results

R> pchisq(c(2.986, 2.982), 3, lower.tail = FALSE)

[1] 0.3937887 0.3944088

3.2 Pathologists’ Tumor Ratings

The following example is interesting in that the large sample results differ drastically from the conditional
results. Moreover, the conditional results are less conservative. The data, given in Table 2 can be obtained
via

R> data(pathologist.dat)

A uniform association model accounts for the ordinal nature of the ratings by associating ordinal scores
with the pathologist’s ratings [see 1]. Specifically, we can test a uniform association model against the
saturated model with

R> path.mcx <- mcexact(y ~ factor(A) + factor(B) + I(A * B), data = pathologist.dat,

+ nosim = 10^5, maxiter = 10^6)

R> summary(path.mcx)

Number of iterations = 1e+05
T degrees of freedom = 3
Number of counts = 25
df = 15
Next update has nosim = 1e+05
Next update has maxiter = 1e+06
Proportion of valid tables = 1

3

deviance Pearson
observed.stat 16.214350396 14.729165468
pvalue 0.044960499 0.134389180
mcse 0.001848729 0.002837652

The previous code chunk takes about 1 minute on my laptop. It is worth comparing these results to the
asymptotic Chi-squared results

R> pchisq(c(16.214, 14.729), 15, lower.tail = FALSE)

[1] 0.3679734 0.4711083

3.3 Alligator Food Choice Data Using MCMC

In this example we illustrate the algorithm from[3] using the data and Poisson log-linear model from
Table 3. The alligator data is a good choice for MCMC as the percent of valid tables generated using
method = "bab" is very small, less than 1% of the tables simulated. It is often the case that the MCMC
algorithm will be preferable when the table is large and/or sparse. Of course, using MCMC introduces
further complications in reliably running and using the output of the algorithm.

The algorithm from [3] uses local moves to reduce the number of tables with negative entries that
the chain produces. You can specify this method by using method = "cab". The parameter p represents
the average proportion of table entries left fixed. So a chain with p=.9 will leave most of the table
entries fixed from one iteration to the next. A high value of p will result in a high proportion of valid
(non-negative) simulated tables. Too large of a value of p causes the chain to mix slowly because the
tables will be very similar from one iteration to the next. However, it is sometimes the case that a small
value of p will produce too many tables with negative entries. Hence the Metropolis/Hastings/Green
algorithm will stay at the current table for long periods and again result in a slowly mixing chain. It is
also worth mentioning that for large values of p the algorithm is theoretically irreducible, but may not
be practically irreducible. Therefore, it is advisable to both tinker with the chain some and make final
runs using multiple values of p.

The program allows for the option to save the chain goodness of fit statistics, so that some initial
tinkering can be performed. This is specified with the savechain = TRUE option. If using impartance
sampling, method = "bab", then savechain saves both the statistic values and the importance weights
on the log scale.

R> data(alligator.dat)

R> alligator.mcx <- mcexact(y ~ (lake + gender + size) * food +

+ lake * gender * size, data = alligator.dat, nosim = 10^4,

+ method = "cab", savechain = TRUE, batchsize = 100, p = 0.4)

R> summary(alligator.mcx)

Number of iterations = 10000
T degrees of freedom = 3
Number of counts = 80
df = 40
Number of batches = 100
Batchsize = 100
Next update has nosim = 10000
Proportion of valid tables = 0.0492

deviance Pearson
observed.stat 50.26355592 52.56691167
pvalue 0.22370000 0.12310000
mcse 0.03334866 0.02793482

4

The chain of goodness of fit statistics are saved in alligator.mcx$chain. The saved chain is discarded
if the simulations are resumed with update, even if savechain = T when the simulation is resumed.

We would want to look at the autocorrelation function of the goodness of fit statistics.

R> library(ts)

R> par(mfrow = c(2, 1))

R> acf(alligator.mcx$chain[, 1])

R> acf(alligator.mcx$chain[, 2])

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

Series alligator.mcx$chain[, 1]

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

Series alligator.mcx$chain[, 2]

We would also want to look at the chain of P-values.

R> dev.p <- cumsum(alligator.mcx$chain[, 1] >= alligator.mcx$dobs[1])/(1:alligator.mcx$nosim)

R> pearson.p <- cumsum(alligator.mcx$chain[, 1] >= alligator.mcx$dobs[1])/(1:alligator.mcx$nosim)

R> par(mfrow = c(2, 1))

R> plot(dev.p, type = "l", ylab = "P-value", xlab = "iteration")

R> title("Deviance P-value by iteration")

R> plot(pearson.p, type = "l", ylab = "P-value", xlab = "iteration")

R> title("Pearson P-value by iteration")

5

0 2000 4000 6000 8000 10000

0.
2

0.
6

1.
0

iteration

P
−

va
lu

e
Deviance P−value by iteration

0 2000 4000 6000 8000 10000

0.
2

0.
6

1.
0

iteration

P
−

va
lu

e

Pearson P−value by iteration

Though the P-values have apparently stabilized and are clearly larger than most normal type I error
rates, there is an extremely slow decay in the autocorrelations of the chain of goodness of fit statistics.
Therefore, we should execute a longer run using large batch sizes. While on the subject of batch sizes,
note that mcexact does not require the total number of simulations to be a multiple of the batch size. If
the algorithm terminates in the middle of completing a batch, it is not used in the P-value calculations.
However, the simulations are not wasted if the algorithm is resumed with update.

One large final run of this data could be performed using update again. The option, flush = TRUE,
tells update to throw out all of the data used in the initial tinkering, except that it starts the new chain
from the final table from the initial runs. This is a harmless way to burn the chain in while you are
tinkering with it. Of course, the chain can be restarted at the default starting value, the observed data,
by simply rerunning mcexact .

References

[1] Alan Agresti. Categorical Data Analysis. Wiley, New York, 1990.

[2] J.G. Booth and R.W. Butler. An importance sampling algorithm for exact conditional test in log-
linear models. Biometrika, 86:321–332, 1999.

[3] Brian S. Caffo and James G. Booth. A markov chain monte carlo algorithm for approximating exact
conditional probabilities. the Journal of Compuatational and Graphical Statistics, 10:730–745, 2001.

6

Residence Residence in 1985
in 1980 Northeast Midwest South West
Northeast 11,607 100 366 124
Midwest 87 13,677 515 302
South 172 225 17,819 270
West 63 176 286 10,192

Table 1: Residency Data
Source [1]

Pathologist B
Pathologist A 1 2 3 4 5

1 22 2 2 0 0
2 5 7 14 0 0
3 0 2 36 0 0
4 0 1 14 7 0
5 0 0 3 0 3

Table 2: Pathologist Agreement Data
Source [1]

[4] Friedrich Leisch. Sweave User Manual.

A Tables

7

Primary Food Choice
Lake Gender Size Fish Invert Reptile Bird Other
1 Male Small 7 1 0 0 5

Male Large 4 0 0 1 2
Female Small 16 3 2 2 3
Female Large 3 0 1 2 3

2 Male Small 2 2 0 0 1
Male Large 13 7 6 0 0
Female Small 3 9 1 0 2
Female Large 0 1 0 1 0

3 Male Small 3 7 1 0 1
Male Large 8 6 6 3 5
Female Small 2 4 1 1 4
Female Large 0 1 0 0 0

4 Male Small 13 10 0 2 2
Male Large 9 0 0 1 2
Female Small 3 9 1 0 1
Female Large 8 1 0 0 1

Table 3: Alligator Data
Source [1]
Model (FG, FL, FS, LGS) where F=food choice, L=lake, S=size, G=gender.

8

