aov
)anova
)lm
)lmer
)rlmer
)nls
)glm
)glmer
)glmmTMB
)clm
)clmm
)aovlist
)lmRob
, glmRob
)felm
)gls
)rlm
)rq
)tbl_df
, tbl
, data.frame
)The function ggstatsplot::ggcoefstats
generates dot-and-whisker plots of regression models saved in tidy data frames (produced with the broom
package). By default, the plot displays 95%
confidence intervals for the regression coefficients. The function currently supports only those classes of object that are supported by the broom
package. For an exhaustive list, see- https://broom.tidyverse.org/articles/available-methods.html
In this vignette, we will see examples of how to use this function. We will try to cover as many classes of objects as possible. Unfortunately, there is no single dataset that will be helpful for carrying out all types of regression analyses and, therefore, we will use various datasets to explore data-specific hypotheses using regression models.
Note before: The following demo uses the pipe operator (%>%
), so in case you are not familiar with this operator, here is a good explanation: http://r4ds.had.co.nz/pipes.html
Although the statistical models displayed in the plot may differ based on the class of models being investigated, there are few aspects of the plot that will be invariant across models:
The dot-whisker plot contains a dot representing the estimate and their confidence intervals (95%
is the default). The estimate can either be effect sizes (for tests that depend on the F
statistic) or regression coefficients (for tests with t
and z
statistic), etc. The function will, by default, display a helpful x
-axis label that should clear up what estimates are being displayed. The confidence intervals can sometimes be asymmetric if bootstrapping was used.
The caption will always contain diagnostic information, if available, about models that can be useful for model selection: The smaller the Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values, the “better” the model is. Additionally, the higher the log-likelihood value the “better” is the model fit.
The output of this function will be a ggplot2
object and, thus, it can be further modified (e.g., change themes, etc.) with ggplot2
functions.
In the following examples, we will try out a number of regression models and, additionally, we will also see how we can change different aspects of the plot itself.
aov
)For this analysis, let’s use the movies_long
dataset, which provides information about IMDB ratings, budget, length, MPAA ratings (e.g., R-rated, NC-17, PG-13, etc.), and genre for a number of movies. Let’s say our hypothesis is that the IMDB ratings for a movie are predicted by a multiplicative effect of the genre and the MPAA rating it got. Let’s carry out an omnibus ANOVA to see if this is the case.
# loading needed libraries
library(ggstatsplot)
library(ggplot2)
# for reproducibility
set.seed(123)
# looking at the data
dplyr::glimpse(x = ggstatsplot::movies_long)
#> Observations: 2,433
#> Variables: 8
#> $ title <fct> "Shawshank Redemption, The", "Lord of the Rings: The Re...
#> $ year <int> 1994, 2003, 2001, 2002, 1994, 1993, 1977, 1980, 1968, 2...
#> $ length <int> 142, 251, 208, 223, 168, 195, 125, 129, 158, 135, 93, 1...
#> $ budget <dbl> 25.0, 94.0, 93.0, 94.0, 8.0, 25.0, 11.0, 18.0, 5.0, 3.3...
#> $ rating <dbl> 9.1, 9.0, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.7, 8.7, 8.7, ...
#> $ votes <int> 149494, 103631, 157608, 114797, 132745, 97667, 134640, ...
#> $ mpaa <fct> R, PG-13, PG-13, PG-13, R, R, PG, PG, PG-13, R, PG, R, ...
#> $ genre <fct> Drama, Action, Action, Action, Drama, Drama, Action, Ac...
# to speed up the calculation, let's use only 10% of the data
movies_10 <- dplyr::sample_frac(tbl = ggstatsplot::movies_long, size = 0.1)
# plot
ggstatsplot::ggcoefstats(
x = stats::aov(
formula = rating ~ mpaa * genre,
data = movies_10
),
effsize = "eta", # changing the effect size estimate being displayed
point.color = "red", # changing the point color
point.size = 4, # changing the point size
point.shape = 15, # changing the point shape
package = "dutchmasters", # package from which color paletter is to be taken
palette = "milkmaid", # color palette for labels
title = "omnibus ANOVA" # title for the plot
) +
# further modification with the ggplot2 commands
# note the order in which the labels are entered
ggplot2::scale_y_discrete(labels = c("MPAA", "Genre", "Interaction term")) +
ggplot2::labs(x = "effect size estimate (partial omega-squared)",
y = NULL)
As this plot shows, there is no interaction effect between these two factors.
Note that we can also use this function for model selection. You can try out different models with the code below and see how the AIC, BIC, and log-likelihood values change. Looking at the model diagnostics, you should be able to see that the model with only genre
as the predictor of ratings seems to perform almost equally well as more complicated additive and multiplicative models. Although there is certainly some improvement with additive and multiplicative models, it is by no means convincing enough for us to abandon a simpler model.
library(ggstatsplot)
# to speed up the calculation, let's use only 10% of the data
movies_10 <- dplyr::sample_frac(tbl = ggstatsplot::movies_long, size = 0.1)
# for reproducibility
set.seed(123)
# plot
ggstatsplot::combine_plots(
# model 1
ggstatsplot::ggcoefstats(
x = stats::aov(
formula = rating ~ mpaa,
data = movies_10
),
stats.label.color = "black",
title = "1. Only MPAA ratings"
),
ggstatsplot::ggcoefstats(
x = stats::aov(
formula = rating ~ genre,
data = movies_10
),
stats.label.color = "black",
title = "2. Only genre"
),
ggstatsplot::ggcoefstats(
x = stats::aov(
formula = rating ~ mpaa + genre,
data = movies_10
),
stats.label.color = "black",
title = "3. Additive effect of MPAA and genre"
),
ggstatsplot::ggcoefstats(
x = stats::aov(
formula = rating ~ mpaa * genre,
data = movies_10
),
stats.label.color = "black",
title = "4. Multiplicative effect of MPAA and genre"
),
title.text = "Model selection using ggcoefstats",
labels = c("(a)", "(b)", "(c)", "(d)")
)
anova
)You can also use car
package to run an omnibus ANOVA:
# dataset will be used from `car` package
library(car)
# creating a model
mod <- stats::lm(
formula = conformity ~ fcategory * partner.status,
data = Moore,
contrasts = list(fcategory = contr.sum, partner.status = contr.sum)
)
# plotting estimates
ggstatsplot::ggcoefstats(x = car::Anova(mod, type = "III"))
#> Note: No model diagnostics information available for the object of class anova .
lm
)Now that we have figured out that the movie genre
best explains a fair deal of variation in how good people rate the movie to be on IMDB. Let’s run a linear regression model to see how different types of genres compare with each other-
# let's check all the levels for the genre variable
levels(ggstatsplot::movies_long$genre)
#> [1] "Action" "Animation" "Comedy" "Documentary" "Drama"
#> [6] "Romance"
# to speed up the calculation, let's use only 10% of the data
movies_10 <- dplyr::sample_frac(tbl = ggstatsplot::movies_long, size = 0.1)
# plot
ggstatsplot::ggcoefstats(
x = stats::lm(
formula = rating ~ genre,
data = movies_10
),
conf.level = 0.99, # changing the confidence levels for confidence intervals
sort = "ascending", # sorting the terms of the model based on estimate values
label.direction = "both", # direction in which to adjust position of labels (both x and y)
ggtheme = ggplot2::theme_gray(), # changing the default theme
stats.label.color = c("#CC79A7", "darkgreen", "#0072B2", "black", "red"),
title = "Movie ratings by their genre",
subtitle = "Source: www.imdb.com"
) +
# further modification with the ggplot2 commands
# note the order in which the labels are entered
ggplot2::scale_y_discrete(labels = c("Comedy", "Romance", "Documentary", "Animation", "Drama")) +
ggplot2::labs(y = "genre (comparison level: Action)") +
ggplot2::theme(axis.title.y = ggplot2::element_text(size = 14, face = "bold"))
As can be seen from the regression coefficients, compared to the action movies, only romantic movies, animated movies, and dramas fare better with the audiences. Also, note that the coefficient for "Drama"
is statistically significant (*p* = 0.04
), but the confidence interval contains 0
. This is because we set the confidence interval to 0.99
.
lmer
)Now let’s say we want to see how movie’s budget relates to how good the movie is rated to be on IMDB (e.g., more money, better ratings?). But we have reasons to believe that the relationship between these two variables might be different for different genres (e.g., budget might be a good predictor of how good the movie is rated to be for animations or actions movies as more money can help with better visual effects and animations, but this may not be true for dramas, so we don’t want to use stats::lm
. In this case, therefore, we will be running a linear mixed-effects model (using lme4::lmer
and p-values generated using the sjstats::p_values
function) with a random slope for the genre variable.
# set up
library(lme4)
library(ggstatsplot)
set.seed(123)
# to speed up the calculation, let's use only 10% of the data
movies_10 <- dplyr::sample_frac(tbl = ggstatsplot::movies_long, size = 0.1)
# combining the two different plots
ggstatsplot::combine_plots(
# model 1: simple linear model
ggstatsplot::ggcoefstats(
x = stats::lm(
formula = scale(rating) ~ scale(budget),
data = movies_10
),
title = "linear model",
stats.label.color = "black",
exclude.intercept = FALSE # show the intercept
) +
ggplot2::labs(x = parse(text = "'standardized regression coefficient' ~italic(beta)")),
# model 2: linear mixed-effects model
ggstatsplot::ggcoefstats(
x = lme4::lmer(
formula = scale(rating) ~ scale(budget) + (budget | genre),
data = movies_10,
control = lme4::lmerControl(calc.derivs = FALSE)
),
p.kr = FALSE,
title = "linear mixed-effects model",
stats.label.color = "black",
exclude.intercept = FALSE # show the intercept
) +
ggplot2::labs(x = parse(text = "'standardized regression coefficient' ~italic(beta)"),
y = "fixed effects"),
labels = c("(a)", "(b)"),
nrow = 2,
ncol = 1,
title.text = "Relationship between movie budget and its IMDB rating"
)
As can be seen from these plots, although there seems to be a really small correlation between budget and rating in a linear model, this effect is not significant once we take into account the hierarchical structure of the data.
Note that for mixed-effects models, only the fixed effects are shown because there are no confidence intervals for random effects terms. In case, you would like to see these terms, you can enter the same object you entered as x
argument to ggcoefstats
in broom::tidy
:
# to speed up the calculation, let's use only 10% of the data
movies_10 <- dplyr::sample_frac(tbl = ggstatsplot::movies_long, size = 0.1)
# tidy output
broom.mixed::tidy(
x = lme4::lmer(
formula = scale(rating) ~ scale(budget) + (budget | genre),
data = movies_10,
control = lme4::lmerControl(calc.derivs = FALSE)
),
conf.int = TRUE,
conf.level = 0.95
)
#> # A tibble: 6 x 8
#> effect group term estimate std.error statistic conf.low conf.high
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 fixed <NA> (Intercep~ 0.0484 0.207 0.234 -0.357 0.454
#> 2 fixed <NA> scale(bud~ 0.0978 0.0891 1.10 -0.0769 0.273
#> 3 ran_pa~ genre sd__(Inte~ 0.532 NA NA NA NA
#> 4 ran_pa~ genre sd__budget 0.00417 NA NA NA NA
#> 5 ran_pa~ genre cor__(Int~ -0.847 NA NA NA NA
#> 6 ran_pa~ Resid~ sd__Obser~ 0.941 NA NA NA NA
rlmer
)Robust version of lmer
(as implemented in robustlmm
package) is also supported-
set.seed(123)
library(robustlmm)
# model
roblmm.mod <- robustlmm::rlmer(
formula = scale(Reaction) ~ scale(Days) + (Days | Subject),
data = sleepstudy,
rho.sigma.e = psi2propII(smoothPsi, k = 2.28),
rho.sigma.b = chgDefaults(smoothPsi, k = 5.11, s = 10)
)
# plot
ggstatsplot::ggcoefstats(x = roblmm.mod,
title = "Robust Estimation of Linear Mixed-Effects Models")
#> Note: No model diagnostics information available for the object of class rlmerMod .
#> Note: No p-values and/or statistic available for regression coefficients from rlmerMod object, so skipping labels.
nls
)So far we have been assuming a linear relationship between movie budget and rating. But what if we want to also explore the possibility of a non-linear relationship? In that case, we can run a non-linear least squares regression. Note that you need to choose some non-linear function, which will be based on prior exploratory data analysis (y ~ k/x + c
implemented here, but you can try out other non-linear functions, e.g. Y ~ k * exp(-b*c)
).
library(ggstatsplot)
# to speed up the calculation, let's use only 10% of the data
movies_10 <- dplyr::sample_frac(tbl = ggstatsplot::movies_long, size = 0.1)
# plot
ggstatsplot::ggcoefstats(
x = stats::nls(
formula = rating ~ k / budget + c, # try toying around with the form of non-linear function
data = movies_10,
start = list(k = 1, c = 0)
),
title = "Non-linear relationship between budget and rating",
subtitle = "Source: IMDB"
)
This analysis shows that there is indeed a possible non-linear association between rating and budget (non-linear regression term k
is significant), at least with the particular non-linear function we used.
glm
)In all the analyses carried out thus far, the outcome variable (y
in y ~ x
) has been continuous. In case the outcome variable is nominal/categorical/factor, we can use the generalized form of linear model that works even if the response is a numeric vector or a factor vector, etc.
To explore this model, we will use the Titanic dataset, which tabulates information on the fate of passengers on the fatal maiden voyage of the ocean liner Titanic, summarized according to economic status (class), sex, age, and survival. Let’s say we want to know what was the strongest predictor of whether someone survived the Titanic disaster-
library(ggstatsplot)
# having a look at the Titanic dataset
df <- as.data.frame(x = Titanic)
str(df)
#> 'data.frame': 32 obs. of 5 variables:
#> $ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 1 2 3 4 1 2 3 4 1 2 ...
#> $ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 2 2 2 2 1 1 ...
#> $ Age : Factor w/ 2 levels "Child","Adult": 1 1 1 1 1 1 1 1 2 2 ...
#> $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Freq : num 0 0 35 0 0 0 17 0 118 154 ...
# plot
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = Survived ~ Sex + Age,
data = df,
weights = df$Freq, # vector containing weights (no. of observations per row)
family = stats::binomial(link = "logit") # choosing the family
),
exponentiate = TRUE,
ggtheme = ggthemes::theme_economist_white(),
title = "general linear model (glm)",
vline.color = "red",
vline.linetype = "solid",
label.segment.color = "red",
stats.label.size = 3.5,
stats.label.color = c("orangered",
"dodgerblue")
)
As can be seen from the regression coefficients, all entered predictors were significant predictors of the outcome. More specifically, being a female was associated with higher likelihood of survival (compared to male). On other hand, being an adult was associated with decreased likelihood of survival (compared to child).
Note: Few things to keep in mind for glm
models,
The exact statistic will depend on the family used. Below we will see a host of different function calls to glm
with a variety of different families.
Some families will have a t
statistic associated with them, while others a z
statistic. The function will figure this out for you.
# creating dataframes to use for regression analyses
library(ggstatsplot)
# dataframe #1
(
df.counts <-
base::data.frame(
treatment = gl(n = 3, k = 3, length = 9),
outcome = gl(n = 3, k = 1, length = 9),
counts = c(18, 17, 15, 20, 10, 20, 25, 13, 12)
) %>%
tibble::as_data_frame(x = .)
)
#> # A tibble: 9 x 3
#> treatment outcome counts
#> <fct> <fct> <dbl>
#> 1 1 1 18
#> 2 1 2 17
#> 3 1 3 15
#> 4 2 1 20
#> 5 2 2 10
#> 6 2 3 20
#> 7 3 1 25
#> 8 3 2 13
#> 9 3 3 12
# dataframe #2
(df.clotting <- data.frame(
u = c(5, 10, 15, 20, 30, 40, 60, 80, 100),
lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18),
lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)
) %>%
tibble::as_data_frame(x = .))
#> # A tibble: 9 x 3
#> u lot1 lot2
#> <dbl> <dbl> <dbl>
#> 1 5 118 69
#> 2 10 58 35
#> 3 15 42 26
#> 4 20 35 21
#> 5 30 27 18
#> 6 40 25 16
#> 7 60 21 13
#> 8 80 19 12
#> 9 100 18 12
# dataframe #3
x1 <- stats::rnorm(50)
y1 <- stats::rpois(n = 50, lambda = exp(1 + x1))
(df.3 <- data.frame(x = x1, y = y1) %>%
tibble::as_data_frame(x = .))
#> # A tibble: 50 x 2
#> x y
#> <dbl> <int>
#> 1 1.56 12
#> 2 0.0705 5
#> 3 0.129 3
#> 4 1.72 14
#> 5 0.461 8
#> 6 -1.27 0
#> 7 -0.687 0
#> 8 -0.446 4
#> 9 1.22 11
#> 10 0.360 2
#> # ... with 40 more rows
# dataframe #4
x2 <- stats::rnorm(50)
y2 <- rbinom(n = 50,
size = 1,
prob = stats::plogis(x2))
(df.4 <- data.frame(x = x2, y = y2) %>%
tibble::as_data_frame(x = .))
#> # A tibble: 50 x 2
#> x y
#> <dbl> <int>
#> 1 -0.779 1
#> 2 -0.375 1
#> 3 -0.319 1
#> 4 0.0845 0
#> 5 -0.768 1
#> 6 -0.626 0
#> 7 -0.901 0
#> 8 0.664 1
#> 9 0.300 1
#> 10 0.0749 1
#> # ... with 40 more rows
# combining all plots in a single plot
ggstatsplot::combine_plots(
# Family: Poisson
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = counts ~ outcome + treatment,
data = df.counts,
family = stats::poisson(link = "log")
),
title = "Family: Poisson",
stats.label.color = "black"
),
# Family: Gamma
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = lot1 ~ log(u),
data = df.clotting,
family = stats::Gamma(link = "inverse")
),
title = "Family: Gamma",
stats.label.color = "black"
),
# Family: Quasi
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = y ~ x,
family = quasi(variance = "mu", link = "log"),
data = df.3
),
title = "Family: Quasi",
stats.label.color = "black"
),
# Family: Quasibinomial
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = y ~ x,
family = stats::quasibinomial(link = "logit"),
data = df.4
),
title = "Family: Quasibinomial",
stats.label.color = "black"
),
# Family: Quasipoisson
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = y ~ x,
family = stats::quasipoisson(link = "log"),
data = df.4
),
title = "Family: Quasipoisson",
stats.label.color = "black"
),
# Family: Gaussian
ggstatsplot::ggcoefstats(
x = stats::glm(
formula = Sepal.Length ~ Species,
family = stats::gaussian(link = "identity"),
data = iris
),
title = "Family: Gaussian",
stats.label.color = "black"
),
labels = c("(a)", "(b)", "(c)", "(d)", "(e)", "(f)"),
ncol = 2,
title.text = "Exploring models with different `glm` families",
title.color = "blue"
)
glmer
)In the previous example, we saw how being a female and being a child was predictive of surviving the Titanic disaster. But in that analysis, we didn’t take into account one important factor: the passenger class in which people were traveling. Naively, we have reasons to believe that the effects of sex and age might be dependent on the class (maybe rescuing passengers in the first class were given priority?). To take into account this hierarchical structure of the data, we can run generalized linear mixed effects model with a random slope for class.
# plot
ggstatsplot::ggcoefstats(
x = lme4::glmer(
formula = Survived ~ Sex + Age + (Sex + Age | Class),
# select 20% of the sample to reduce the time of execution
data = dplyr::sample_frac(tbl = ggstatsplot::Titanic_full, size = 0.2),
family = stats::binomial(link = "logit"),
control = lme4::glmerControl(
optimizer = "Nelder_Mead",
calc.derivs = FALSE,
boundary.tol = 1e-7
)
),
exponentiate = TRUE,
stats.label.color = "black"
)
As we had expected, once we take into account the differential relationship that might exist between survival and predictors across different passenger classes, only the sex factor remain a significant predictor. In other words, being a female was the strongest predictor of whether someone survived the tragedy that befell the Titanic.
glmmTMB
)glmmTMB
package allows for flexibly fitting generalized linear mixed models (GLMMs) and extensions. Model objects from this package are also supported.
# set up
library(glmmTMB)
library(lme4)
set.seed(123)
# model
mod <-
glmmTMB::glmmTMB(
formula = Reaction ~ Days + (Days |
Subject),
data = sleepstudy,
family = glmmTMB::truncated_poisson()
)
# plotting the model
ggstatsplot::ggcoefstats(x = mod,
conf.method = "uniroot")
clm
)clm and clmm examples are too time-consuming; thus not evaluated in vignette
So far we have dealt either with continuous or nominal/factor responses (or output variables), but sometimes we will encounter ordinal data (e.g., Likert scale measurement in behavioral sciences). In these cases, ordinal regression models are more suitable. To study these models, we will use intent_morality
dataset included in the ggstatsplot
package. This dataset contains moral judgments (“how wrong was this behavior?”, “how much punishment does the agent deserve?”; on a Likert scale of 1-7) by participants about third-party actors who harmed someone. There are four different conditions formed out of belief (neutral, negative) and outcome (neutral, negative) for four different vignettes, each featuring a different type of harm. The question we are interested in is what explains variation in participants’ rating: information about intentionality, consequences, or their interaction?
# for reproducibility
set.seed(123)
# to speed up calculations, we will use just 10% of the dataset
ggstatsplot::ggcoefstats(
x = ordinal::clm(
formula = as.factor(rating) ~ belief * outcome,
link = "logit",
data = dplyr::sample_frac(tbl = ggstatsplot::intent_morality, size = 0.10),
control = ordinal::clm.control(maxIter = 50,
convergence = "silent"),
),
stats.label.color = "black",
title = "Cumulative Link Model (clm)",
subtitle = "(Using `ordinal` package)",
caption.summary = FALSE # suppress model diagnostics
) +
ggplot2::labs(x = "logit regression coefficient",
y = NULL)
As can be seen from this plot, both factors (intentionality and consequences) were significant, and so was their interaction.
clmm
)In the previous analysis, we carried out a single ordinal regression models to see the effects intent and outcome information on moral judgments. But what if we also want to account for item level differences (since different items had different types of harm)? For this, we can use ordinal mixed-effects regression model (with random effects for type of harm) to see how intent and outcome contribute towards variation in moral judgment ratings-
# for reproducibility
set.seed(123)
# to speed up calculations, we will use just 10% of the dataset
ggstatsplot::ggcoefstats(
x = ordinal::clmm(
formula = as.factor(rating) ~ belief * outcome + (belief + outcome |
harm),
data = dplyr::sample_frac(tbl = ggstatsplot::intent_morality, size = 0.10),
control = ordinal::clmm.control(
method = "nlminb",
maxIter = 50,
gradTol = 1e-4,
innerCtrl = "noWarn"
)
),
title = "Cumulative Link Mixed Model (clmm)",
subtitle = "(Using `ordinal` package)"
) +
ggplot2::labs(x = "coefficient from ordinal mixed-effects regression",
y = "fixed effects")
Mixed effects regression didn’t reveal any interaction effect. That is, most of the variance was accounted for by the information about whether there was harmful intent and whether there was harm, at least this is the effect we found with these four types of (minor) harms.
Note that, by default, beta
parameters are shown for clm
and clmm
models, but you can also plot either just alpha
or both
using ggcoefstats
.
# for reproducibility
set.seed(123)
# to speed up calculations, we will use just 10% of the dataset
ggstatsplot::ggcoefstats(
x = ordinal::clmm(
formula = as.factor(rating) ~ belief * outcome + (belief + outcome |
harm),
link = "logit",
data = dplyr::sample_frac(tbl = ggstatsplot::intent_morality, size = 0.10),
control = ordinal::clmm.control(
maxIter = 50,
gradTol = 1e-4,
innerCtrl = "noWarn"
)
),
coefficient.type = "alpha"
) +
ggplot2::labs(x = "logit regression coefficients",
y = "threshold parameters")
aovlist
)Let’s now consider an example of a repeated measures design where we want to run omnibus ANOVA with a specific error structure. To carry out this analysis, we will first have to convert the iris dataset from wide to long format such that there is one column corresponding to attribute
(which part of the calyx of a flower is being measured: sepal
or petal
?) and one column corresponding to measure
used (length
or width
?). Note that this is within-subjects design since the same flower has both measures for both attributes. The question we are interested in is how much of the variance in measurements is explained by both of these factors and their interaction.
# for reproducibility
set.seed(123)
# having a look at iris before converting to long format
dplyr::glimpse(ggstatsplot::iris_long)
#> Observations: 600
#> Variables: 5
#> $ id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1...
#> $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, seto...
#> $ attribute <fct> Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sepal, Sep...
#> $ measure <fct> Length, Length, Length, Length, Length, Length, Leng...
#> $ value <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5....
# let's use 20% of the sample to speed up the analysis
iris_long_20 <- dplyr::sample_frac(tbl = ggstatsplot::iris_long, size = 0.20)
# specifying the model (note the error structure)
ggstatsplot::ggcoefstats(
x = stats::aov(formula = value ~ attribute * measure + Error(id / (attribute * measure)),
data = iris_long_20),
effsize = "eta",
partial = FALSE,
nboot = 50,
ggtheme = ggthemes::theme_fivethirtyeight(),
ggstatsplot.layer = FALSE,
stats.label.color = c("#0072B2", "#D55E00", "darkgreen"),
title = "Variation in measurements for Iris species",
subtitle = "Source: Iris data set (by Fisher or Anderson)"
) +
ggplot2::labs(caption = "Results from 2 by 2 RM ANOVA") +
ggplot2::theme(plot.subtitle = ggplot2::element_text(size = 11, face = "plain"))
#> Note: No model diagnostics information available for the object of class aovlist .
As revealed by this analysis, all effects of this model are significant. But most of the variance is explained by the attribute
, with the next important explanatory factor being the measure
used. A very little amount of variation in measurement is accounted for by the interaction between these two factors.
lmRob
, glmRob
)The robust regression models, as implemented in robust package are also supported. But since no 95% CI are available in this case, only the dots for estimates will be shown.
ggstatsplot::combine_plots(
# plot 1: glmRob
ggstatsplot::ggcoefstats(
x = robust::glmRob(
formula = Survived ~ Sex,
data = dplyr::sample_frac(tbl = ggstatsplot::Titanic_full, size = 0.20),
family = stats::binomial(link = "logit")
),
title = "generalized robust linear model",
package = "dichromat",
palette = "BrowntoBlue.10",
ggtheme = ggthemes::theme_fivethirtyeight(),
ggstatsplot.layer = FALSE
),
# plot 2: lmRob
ggstatsplot::ggcoefstats(
x = robust::lmRob(formula = Sepal.Length ~ Sepal.Width * Species,
data = iris),
title = "robust linear model",
package = "awtools",
palette = "a_palette",
ggtheme = ggthemes::theme_tufte(),
ggstatsplot.layer = FALSE
),
# arguments relevant for `combine_plots` function
labels = c("(a)", "(b)"),
title.text = "Robust variants of lm and glm",
nrow = 2,
ncol = 1
)
#> Note: No confidence intervals available for regression coefficients from glmRob object, so skipping whiskers in the plot.
#> Note: No confidence intervals available for regression coefficients from lmRob object, so skipping whiskers in the plot.
felm
)Models of class felm
from lfe
package are also supported. This method is used to fit linear models with multiple group fixed effects, similarly to lm
. It uses the Method of Alternating projections to sweep out multiple group effects from the normal equations before estimating the remaining coefficients with OLS.
library(lfe)
# create covariates
x <- rnorm(1000)
x2 <- rnorm(length(x))
# individual and firm
id <- factor(sample(20, length(x), replace = TRUE))
firm <- factor(sample(13, length(x), replace = TRUE))
# effects for them
id.eff <- rnorm(nlevels(id))
firm.eff <- rnorm(nlevels(firm))
# left hand side
u <- rnorm(length(x))
y <- x + 0.5 * x2 + id.eff[id] + firm.eff[firm] + u
# estimate and print result
est <- lfe::felm(formula = y ~ x + x2 | id + firm)
# plot
ggstatsplot::ggcoefstats(x = est)
gls
)The nlme
package provides a function to fit a linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances. We have already seen an example in the README
document: https://github.com/IndrajeetPatil/ggstatsplot/blob/master/README.md
rlm
)We have already seen an example of MASS::rlm()
in the README
document: https://github.com/IndrajeetPatil/ggstatsplot/blob/master/README.md
rq
)We have already seen an example of quantile regression (quantreg::rq()
) in the README
document: https://github.com/IndrajeetPatil/ggstatsplot/blob/master/README.md
tbl_df
, tbl
, data.frame
)Sometimes you don’t have a model object but a custom dataframe that you want display using this function. If a data frame is to be plotted, it must contain columns named term
(names of predictors), and estimate
(corresponding estimates of coefficients or other quantities of interest). Other optional columns are conf.low
and conf.high
(for confidence intervals), and p.value
. You will also have to specify the type of statistic relevant for regression models ("t"
, "z"
, "f"
) in case you want to display statistical labels.
# set up
set.seed(123)
library(ggstatsplot)
library(gapminder)
# data for running regression models
df <-
dplyr::filter(.data = gapminder::gapminder, continent != "Oceania")
# saving results from regression
df_results <- purrr::pmap(
.l = list(
data = list(df),
formula = list(scale(lifeExp) ~ scale(gdpPercap) + (gdpPercap |
country)),
grouping.vars = alist(continent),
output = list("tidy", "glance")
),
.f = groupedstats::grouped_lmer
) %>%
dplyr::full_join(x = .[[1]], y = .[[2]], by = "continent")
# modifying the results so to be compatible with the `ggcoefstats` requirement
(df_results %<>%
dplyr::filter(.data = ., term != "(Intercept)") %>%
dplyr::select(.data = .,
-effect,
-term,
term = continent,
statistic = t.value))
#> # A tibble: 4 x 14
#> term estimate std.error statistic conf.low conf.high p.value
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Asia 7.35 1.27 5.79 4.86 9.84 7.00e- 9
#> 2 Euro~ 1.52 0.238 6.36 1.05 1.98 2.02e-10
#> 3 Afri~ 1.54 0.348 4.43 0.860 2.22 9.49e- 6
#> 4 Amer~ 1.88 0.233 8.06 1.42 2.34 7.64e-16
#> # ... with 7 more variables: significance <chr>, sigma <dbl>,
#> # logLik <dbl>, AIC <dbl>, BIC <dbl>, REMLcrit <dbl>, df.residual <int>
# plot
ggstatsplot::ggcoefstats(
x = df_results,
statistic = "t",
sort = "ascending",
title = "Relationship between life expectancy and GDP",
subtitle = "Source: Gapminder foundation",
caption = "Data from Oceania continent not included"
)
#> Note: No model diagnostics information available for the object of class tbl_df .
This vignette was supposed to give just a taste for only some of the regression models supported by ggcoefstats
. The full list of supported models will keep expanding as additional tidiers are added to the broom
(and its extension broom.mixed
) package: https://broom.tidyverse.org/articles/available-methods.html
Note that not all models supported by broom
will be supported by ggcoefstats
. In particular, classes of objects for which there is no estimates present (e.g., kmeans
, optim
, etc.) are not supported.
If you find any bugs or have any suggestions/remarks, please file an issue on GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues
For details, see- https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/session_info.html