
Assessing the effect of an exposure on multiple outcomes
(with R code)

Brice Ozenne

August 13, 2018

Summary
We propose two strategies to assess the effect of an exposure (e.g. a disease, a genetic factor) on
several outcomes (e.g. psychological outcomes, the binding potential measured in several brain
regions) while accounting for possible risk factors and confounders:

• Multiple univariate regressions: we use a separate model to model the relationship between
an outcome and the exposure.

• Joint model: we model the relationship between the outcomes and the exposure in a single
latent variable model (Holst and Budtz-Jørgensen, 2013).

Once the model(s) has(have) been correctly fitted, a global test can be used to test whether there
is any effect of the exposure one the outcomes. After that, multiple tests are performed to test
outcome-specific effects of the exposure where the Dunnett adjustment is used to control the type 1
error (Pipper et al., 2012). An adjustment is used to improved the control of the type 1 error in small
sample sizes (e.g. n<100). This adjustment has been shown to beneficial in several settings (using
simulation studies) but does not always perfectly control the type 1 error rate. It is advised to check
that validity of the adjustment when using very small samples or models with many parameters.

The proposed strategies can be used with continuous outcomes, categorical outcomes, or a
mixture of the two. The number of outcomes should be smaller than the number of observations
(low-dimensional setting). By explicitly modeling the correlation between the outcomes, the joint
model strategy, when valid, will provide more powerful tests compared to the multiple univariate
regressions strategy. Another benefit of the joint model strategy is the use of latent variables that
may reflect unmeasured biological mechanisms and therefore help the interpretation of the results.
The drawbacks with this approach is that it relies on more assumptions and a more complex
statistical modeling.

This document we aim at giving a basic understanding of the two strategies1, how to implement
them, and their limitations. In particular, we don’t claim that the proposed strategies give valid
or optimal results in every application (they probably do not) and many other approaches exists
(e.g. MANOVA) but won’t be discussed here. The document is organized as follow: first section 1
present how to install and set up the R software. Then basic functions to import and process the
data are presented in section 2. The goals, a minima, of the descriptive analysis are presented in
section 3, as well as code to export figures and tables to Word documents. Section 4 recalls how to

1For now, only the "multiple univariate regressions" is presented in this document.

1

perform a univariate linear regression in R and present tools to assess the parametric assumptions
and section 5 presents the multiple univariate regressions strategy. Finally appendix A recalls some
statistical concepts about modeling and hypothesis testing.

2

1 Software
We advise to use the R software to implement these strategies. It can be downloaded at https:
//cloud.r-project.org/. R studio provide a convenient user interface that can be downloaded at
https://www.rstudio.com/products/rstudio/. The R code used to carry out the two strategies
will be display in boxes:

1+1 ## comment about the code

[1] 2

while the R output will be displayed in dark red below the box.

When starting a fresh R session, only the core functionalities of R are available. Additional func-
tionalities called packages can be downloaded from the CRAN using the command install.packages.
We will need the following packages:

install.packages(pkgs = c("lava","lavaSearch2","multcomp","qqtest","gof","reshape2"))

After having installed the packages, one needs to load them using the command library to use
them in the current R session:

library(lava) ## definition and estimation of latent variable models
library(lavaSearch2) ## small sample correction
library(multcomp) ## adjustment for multiple comparisons
library(qqtest) ## diagnostics: qqplots
library(gof) ## diagnostics: linearity assumption
library(reshape2) ## data management

I also recommend the following packages:

• data.table: for data management. See https://cran.r-project.org/web/packages/data.
table/vignettes/datatable-intro.html for an introduction and https://github.com/
Rdatatable/data.table/wiki for more documentation. A synthetic description of the func-
tionalities can be found at https://s3.amazonaws.com/assets.datacamp.com/img/blog/
data+table+cheat+sheet.pdf

• ggplot2 : for data visualization. See http://r4ds.had.co.nz/data-visualisation.html
for an introduction. A synthetic description of the functionalities can be found at https:
//www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

3

https://cloud.r-project.org/
https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://github.com/Rdatatable/data.table/wiki
https://github.com/Rdatatable/data.table/wiki
https://s3.amazonaws.com/assets.datacamp.com/img/blog/data+table+cheat+sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/img/blog/data+table+cheat+sheet.pdf
http://r4ds.had.co.nz/data-visualisation.html
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

2 Data management

2.1 Working directory
The working directory is where R, by default, look for files to import and export data or figures.
The current working directory can be accessed using:

getwd()

[1] "c:/Users/hpl802/AppData/Roaming/R"

It can be changed using the function setwd():

path <- "c:/Users/hpl802/Documents/GitHub/lavaSearch2/inst/vignettes/"
setwd(path)

We can check that the working directory has indeed changed calling again getwd():

getwd()

[1] "c:/Users/hpl802/Documents/GitHub/lavaSearch2/inst/vignettes"

2.2 Importing the data
It is a good idea to start by checking that the working directory contains the data we want to
import. For instance the file data.csv is storing the data, we can use:

file.exists("data.csv")

[1] TRUE

We can also list all files in the current directory with a .csv extension using:

list.files(pattern = ".csv")

[1] "data.csv"

We can also display the first lines of the file using:

readLines("data.csv")[1:3]

[1] "\"Id\",\"Gender\",\"age\",\"BMI\",\"MDI\",\"Y1\",\"Y2\",\"Y3\",\"Y4\",\"Y5\""
[2] "\"Subj1\",\"female\",30.57,21.76,25.82,7.64,8.73,7.72,10.42,8.44"
[3] "\"Subj2\",\"female\",41.36,25.55,12.38,7.11,8.79,6.99,8.45,8.26"

We can see that the columns are separated with , and that the . indicates the decimal values.
Moreover the words such as the columns names or the subject identities are surrounded by \"
(e.g. \"Id\" stand for Id). Finally in this example there is no missing values but if there was it is
important to know how they are encoded. The command to import the data depends on the type
of file. Here for a .csv file we use read.csv. Luckily the default arguments sep, dec, quote are
correctly specified:

args(read.csv)

4

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",
fill = TRUE, comment.char = "", ...)

NULL

The argument header set to TRUE indicates that the first line of the dataset contains the column
names (and not the actual data). The ... indicates there are additional arguments that are not
shown here (see the documentation using help(read.csv)). For instance, in presence of missing
values, one would need to specify the argument na.string. Here it is sufficient to do:

dfW <- read.csv("data.csv")

Other functions exists to import other types of data, e.g. read.table for .txt files, read.xlsx
from the xlsx package for .xlsx file, or read.spss from the foreign package for spss data files. One
should always inspect if R has correctly imported the data, e.g. using:

str(dfW)

’data.frame’: 50 obs. of 10 variables:
$ Id : Factor w/ 50 levels "Subj1","Subj10",..: 1 12 23 34 45 47 48 49 50 2 ...
$ Gender: Factor w/ 2 levels "female","male": 1 1 2 1 1 1 2 1 2 2 ...
$ age : num 30.6 41.4 27 40.6 45.8 ...
$ BMI : num 21.8 25.6 28.6 23.2 19.8 ...
$ MDI : num 25.82 12.38 7.41 16.46 18.56 ...
$ Y1 : num 7.64 7.11 7.88 8.99 7.6 6.99 3.76 6.94 6.57 6.89 ...
$ Y2 : num 8.73 8.79 9.89 14.38 8.77 ...
$ Y3 : num 7.72 6.99 13.51 13.82 8.38 ...
$ Y4 : num 10.42 8.45 10.79 11.44 7.94 ...
$ Y5 : num 8.44 8.26 7.9 9.75 6.17 8.78 2.41 5.38 5.04 5.22 ...

In this example, the two columns contain character strings (Factor is a type of character strings
in R) and the rest contains numerical values.

2.3 Data processing
Often the raw data needs to be transformed before being analyzed:

• A typical example is when one need to deal with the variable:

gender <- c(1,0,1,0,1) ## what is 1? what is 0?

This is already better:

female <- c(1,0,1,0,1) ## we can guess that 1: female and 0: male

but it is a good practice in such situation to rename the actual values into something understand-
able:

factor(gender, levels = 0:1, labels = c("Female","Male"))

[1] Male Female Male Female Male
Levels: Female Male

5

• With repeated measurements per individual, one often needs to reshape his dataset from the
wide format (one line per individual) to the long format (one line per measurement). This
can be done using the melt method:

dfL <- melt(dfW,
id.vars = c("Id","Gender","age","BMI","MDI"),
value.name = "score",
variable.name = "outcome")

head(dfL)

Id Gender age BMI MDI outcome score
1 Subj1 female 30.57 21.76 25.82 Y1 7.64
2 Subj2 female 41.36 25.55 12.38 Y1 7.11
3 Subj3 male 26.97 28.56 7.41 Y1 7.88
4 Subj4 female 40.61 23.22 16.46 Y1 8.99
5 Subj5 female 45.79 19.78 18.56 Y1 7.60
6 Subj6 female 37.14 16.13 17.82 Y1 6.99

The opposite operation can be performed using dcast.

• It is often a good idea to restrict the dataset to the relevant variables (e.g. remove genetic
data if they are not of interest). It is easier to work with and to display in the next steps.
This can for instance be done by defining the variables of interest:

keep.var <- c("Id","BMI","MDI","Y1","Y2","Y3","Y4","Y5")

and subsetting the initial dataset:

dfW.red <- dfW[,keep.var]
head(dfW.red)

Id BMI MDI Y1 Y2 Y3 Y4 Y5
1 Subj1 21.76 25.82 7.64 8.73 7.72 10.42 8.44
2 Subj2 25.55 12.38 7.11 8.79 6.99 8.45 8.26
3 Subj3 28.56 7.41 7.88 9.89 13.51 10.79 7.90
4 Subj4 23.22 16.46 8.99 14.38 13.82 11.44 9.75
5 Subj5 19.78 18.56 7.60 8.77 8.38 7.94 6.17
6 Subj6 16.13 17.82 6.99 9.97 6.74 8.29 8.78

Many of the other data processing steps are specific to each study and we won’t discuss them
in this document.

6

3 Descriptive statistics
Before doing any analysis, it is a good practice to describe the data that are to be analyzed. The
has several aims:

• check that that database contains the population of interest, i.e. individuals in the
database are indeed those the we want to study and we have all of them.

• check that the collected values are plausible, e.g. if the inclusion criteria include that
the age range is between 18 and 99 years, then one should check that this is indeed the case.

• check that the collected values are coded as expected, e.g. age is usually coded in
years (and not in months).

• check that the collected values are distributed as expected, e.g. is there missing
values? Are the values uniformly spread? Bimodal? Concentrated at low or high values?

Note: one should checks that for all the variables of interest. This can appear time-consuming
but can really save you time at latter stages.

• produce your table 1 i.e. a descriptive table of your cohort that is almost always included in
an article. You can for instance use the function univariateTable from the Publish package:

library(Publish)
myTable1 <- univariateTable(Gender ∼ age + BMI + MDI + Y1 + Y2 + Y3 + Y4 + Y5,

data = dfW)
myTable1

Variable Level female (n=30) male (n=20) Total (n=50) p-value
1 age mean (sd) 36.2 (5.8) 34.6 (5.0) 35.6 (5.5) 0.31204
2 BMI mean (sd) 21.5 (3.3) 23.1 (3.2) 22.2 (3.4) 0.09325
3 MDI mean (sd) 19.2 (5.8) 19.2 (5.7) 19.2 (5.7) 0.97596
4 Y1 mean (sd) 7.2 (1.6) 7.2 (2.0) 7.2 (1.8) 0.93155
5 Y2 mean (sd) 9.6 (2.9) 9.5 (2.1) 9.6 (2.6) 0.82411
6 Y3 mean (sd) 8.5 (3.4) 8.4 (3.2) 8.4 (3.3) 0.91260
7 Y4 mean (sd) 8.8 (2.1) 9.3 (1.7) 9.0 (1.9) 0.39083
8 Y5 mean (sd) 7.4 (2.9) 7.0 (2.9) 7.2 (2.9) 0.65171

You can also export this table in a word document with the package officer:

library(officer)
myTable1.doc <- body_add_table(x = read_docx(),

value = summary(myTable1))
print(myTable1.doc, target = "./Table1.docx")

To keep the code simple, we only present here a very basic application of these tools. More
complex tables with a nicer display in word can be obtain with a bit of coding.

• make synthetic representations of your data using graphs or images. This can be useful
to visualize your data and help your collaborators to understand what you have collected or
what you are trying to show.

7

library(ggplot2)
gg <- ggplot(dfL, aes(x = MDI, y = score, color = Gender, group = Gender))
gg <- gg + geom_point()
gg <- gg + facet_wrap(∼outcome, labeller = label_both)
gg <- gg + geom_smooth(method = "lm", se = FALSE)
gg

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

outcome: Y4 outcome: Y5

outcome: Y1 outcome: Y2 outcome: Y3

10 15 20 25 30 10 15 20 25 30

10 15 20 25 30

4

8

12

16

4

8

12

16

MDI

sc
or

e

Gender

●

●

female

male

You can then export the figure using:

pdf("./figures/descriptive.pdf")
gg
dev.off()

8

4 Univariate analysis using a univariate linear regression
Imagine we want to assess the effect of MDI on Y1 adjusting for age and BMI using a univariate
linear regression. Mathematically the model can be written:

Y1 = α+ βageage+ βBMIBMI + βMDIMDI + ε (1)

where ε are the residuals. that are assumed to be:

• A0: independent and identically distributed (iid)

• A1: normally distributed.

Note that for equation (1) to be valid we assume:

• A2: linear effect of the covariates (e.g. no interaction)

(A0-A2) are modeling assumptions and only (A1-A2) can be tested in practice. Univariate linear
regression are also not recommended in presence of extreme values (A3) or very correlated covariates
(A4).

4.1 Fitting a univariate linear regression in R
We can use:

e.lm <- lm(Y1 ∼ age + BMI + MDI, data = dfW)

We can extract the value of the model coefficients using coef:

coef(e.lm)

(Intercept) age BMI MDI
-1.413215636 0.006305252 0.247124506 0.151044284

4.2 Interpretation of the regression coefficients
If the assumptions (A0-A2) hold we can interpret βMDI as a correlation coefficient. This means
that for fixed age and BMI, if we observe an individual A with value of MDI higher by one unit
compared to individuals B then we would also expect that its value for Y1 differ by βMDI compared
the other individual. If we in addition make causal assumptions (mainly no unobserved confounder)
then we can interpret βMDI as the effect of MDI on the outcome. This means that if we could
change the MDI of an individual by one unit then its variation in outcome should be βMDI .

4.3 Diagnostics tools for univariate linear regression in R
R provides a graphical display that giving an overview of the model fit:

par(mfrow = c(2,2))
plot(e.lm)

9

4 5 6 7 8 9

−
3

−
2

−
1

0
1

2

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

Residuals vs Fitted

22

50

9

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

22

50

9

4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

Scale−Location
22

50 9

0.00 0.05 0.10 0.15 0.20 0.25

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

Cook's distance 0.5

0.5
Residuals vs Leverage

16

22

15

The top left plot is useful to detect a misspecification of the linear predictor (e.g. a U shape
would indicate a missing quadratic effect). The top right plot enable to check the normality of
the residuals, we will describe a more informative qqplot below. The bottom left can be used to
detect heteroschedasticity (e.g. a trumpet shape) and the bottom right plot can be used to identify
observation that have a huge influence on the fitted values.

4.3.1 Testing (A1)

The qqtest package provides a more readable qqplot. To use it, we first need to extract the residuals.
This can be achieved using the residuals method:

dfW$resid.lm <- residuals(e.lm, type = "response")

The type argument indicates the type of residuals we want to extract. Raw residuals are
ε̂ = Y − Ŷ , i.e. the observed minus the fitted values. In models more complex than a univariate
linear regression, the raw residuals may not be iid. This makes it difficult to assess the validity of
the assumptions. In such cases we display instead diagnostics for normalized residuals that, if the
assumptions of the model are correct, should follow a standard normal distribution.

Having extracted the residuals, we can then obtain the qqplot using the qqtest function:

10

qqtest(dfW$resid.lm)

qqtest

Gaussian quantiles

S
am

pl
e

qu
an

til
es

−2 −1 0 1 2

−
4

−
2

0
2

4
6

Simulated ranges n = 1000

Range
99% central range
95% central range
90% central range

●

● ●
● ● ● ●

●
●

●
●●●●●●●●●●●●●

●●●●●●●●●
●●

●●●●
●●●● ● ● ●

● ●
●

● ●

The shaded area indicates where, if the normality assumption was correct, we would expect to
observe the points. Alternatively, an histogram of the residuals can be used to assess the normality
of the residuals:

hist(dfW$resid.lm, prob=TRUE, ylim = c(0,0.4))
curve(dnorm(x, mean=0, sd=1), add=TRUE, col = "red")

11

Histogram of dfW$resid.lm

dfW$resid.lm

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Statistical tests can also be used to assess deviation from normality:

shapiro.test(dfW$resid.lm)

Shapiro-Wilk normality test

data: dfW$resid.lm
W = 0.98104, p-value = 0.5967

Here the null hypothesis is that the residuals follow a normal distribution.

4.3.2 Testing (A2)

A statistical test can also be used to assess whether there is evidence for a more complex functional
form for the linear predictor:

cumres(e.lm)

12

Kolmogorov-Smirnov-test: p-value=0.195
Cramer von Mises-test: p-value=0.06
Based on 1000 realizations. Cumulated residuals ordered by predicted-variable.

Kolmogorov-Smirnov-test: p-value=0.016
Cramer von Mises-test: p-value=0.021
Based on 1000 realizations. Cumulated residuals ordered by age-variable.

Kolmogorov-Smirnov-test: p-value=0.151
Cramer von Mises-test: p-value=0.29
Based on 1000 realizations. Cumulated residuals ordered by BMI-variable.

Kolmogorov-Smirnov-test: p-value=0.708
Cramer von Mises-test: p-value=0.833
Based on 1000 realizations. Cumulated residuals ordered by MDI-variable.

4.3.3 Testing (A3)

The influence method can be used to output what is the impact of each observation on each
estimated parameter:

head(influence(e.lm)$coefficient)

(Intercept) age BMI MDI
1 -0.06431419 0.0021223892 0.0011037299 -0.0023268582
2 -0.02333311 0.0005276379 0.0007260234 -0.0005075087
3 0.02225432 -0.0037807751 0.0134437130 -0.0084481492
4 -0.31091908 0.0087011324 0.0065717767 -0.0053971745
5 -0.16703438 0.0080674308 -0.0026717037 -0.0019605965
6 0.43406252 0.0002100576 -0.0176591598 -0.0008988258

Large values (positive or negative) indicate influential observations.

4.3.4 Testing (A4)

The correlation among the explanatory variables can be assessed using the VIF (variance inflation
factor):

car::vif(e.lm)

age BMI MDI
1.076066 1.034264 1.051645

Values higher than 5 are considered as high (the threshold of 5 is arbitrary).

4.4 Hypothesis testing
We want to formally test whether there is an effect of MDI on the outcome. This is equivalent to
test the null hypothesis:

(H0) βMDI,0 = 0

13

Since the parameters are estimated by ML and assuming that the model is correctly specified, we
know that the asymptotic distribution of the parameter is Gaussian. This means that for large
sample size, the fluctuation of the estimated values follows a normal distribution. For instance:

β̂ ∼
n→∞

N
(
β, σ2

β

)
where σ2

β is the variance of the MLE, i.e. the uncertainty surrounding our estimation of the
association. It follows that:

tβ = β̂ − β0

σ2
β

∼
n→∞

N (0, 1) (2)

So under the null hypothesis of no association between the outcome and the exposure the statistic
tβ should follow a standard normal distribution. Very low or very large values are unlikely to be
observed and would indicate that the null hypothesis does not hold. This is called a (univariate)
Wald test. The result of this tests can be obtained using the summary method 2:

summary(e.lm)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.413215636 1.95732599 -0.7220134 4.739407e-01
age 0.006305252 0.03613264 0.1745030 8.622360e-01
BMI 0.247124506 0.05790521 4.2677422 9.756957e-05
MDI 0.151044284 0.03441289 4.3891775 6.598863e-05

95% confidence intervals for the model parameters can then be obtained using the confint
method:

confint(e.lm)

2.5 % 97.5 %
(Intercept) -5.35310851 2.52667723
age -0.06642598 0.07903648
BMI 0.13056736 0.36368165
MDI 0.08177473 0.22031384

2In reality R is automatically performing a correction that improves the control of the type 1 error. Indeed we
usually don’t know σ2

β and plugging-in its estimate in equation (2) modifies the distribution of tβ in small samples.
The correction uses a Student’s t distribution instead of a Gaussian distribution.

14

5 Multivariate analysis using multiple univariate linear re-
gressions

We now want to simultaneously test the effect of MDI on all the five outcomes. To achieve it, we
fit separately for each outcome a univariate linear regression. Mathematically the model can be
written: 

Y1 = αY1 + βY1,ageage+ βY1,BMIBMI + βY1,MDIMDI + εY1

Y2 = αY2 + βY2,ageage+ βY2,BMIBMI + βY2,MDIMDI + εY2

Y3 = αY3 + βY3,ageage+ βY3,BMIBMI + βY3,MDIMDI + εY3

Y4 = αY4 + βY4,ageage+ βY4,BMIBMI + βY4,MDIMDI + εY4

Y5 = αY5 + βY5,ageage+ βY5,BMIBMI + βY5,MDIMDI + εY5


where ε1, ε2, ε3, ε4, ε5 are the residual errors. The outcomes are assumed to have zero mean and
finite variance, respectively, σ2

1 , σ
2
2 , σ

2
3 , σ

2
4 , σ

2
5 . Here we make no assumption on the correlation

structure between the residuals.

5.1 Fitting multiple linear regression in R
We can estimate all the 5 models and store them into a list:

ls.lm <- list(Y1 = lm(Y1 ∼ age + BMI + MDI, data = dfW),
Y2 = lm(Y2 ∼ age + BMI + MDI, data = dfW),
Y3 = lm(Y3 ∼ age + BMI + MDI, data = dfW),
Y4 = lm(Y4 ∼ age + BMI + MDI, data = dfW),
Y5 = lm(Y5 ∼ age + BMI + MDI, data = dfW)
)

5.2 Interpretation of the regression coefficients
Same as in the univariate case (see section 4.2).

5.3 Diagnostics tools for univariate linear regression in R
Same as in the univariate case (see section 4.3). This model checking needs to be done for each
outcome.

5.4 Hypothesis testing
We now want to test:

(H0) βY1,MDI,0 = 0 or βY2,MDI,0 = 0 or βY3,MDI,0 = 0 or βY4,MDI,0 = 0 or βY5,MDI,0 = 0

The p-values returned by summary are no more valid since we are performing multiple tests (here
5 tests). A basic solution would be to collect the p-values:

vec.p.value <- unlist(lapply(ls.lm, function(x){
summary(x)$coef["MDI","Pr(>|t|)"]

}))

and adjust them for multiple comparisons using Bonferroni:

15

p.adjust(vec.p.value, method = "bonferroni")

Y1 Y2 Y3 Y4 Y5
3.299432e-04 4.218369e-02 3.552579e-01 2.276690e-07 8.565878e-01

While easy to use this approach tends to be too conservative (i.e. give to large p-values) when
the test statistics are correlated. This is usually the case when the outcomes are correlated. We
will therefore use a more efficient correction called the Dunnett approach. First we need to define
the null hypothesis that we want to test via a contrast matrix. For simple null hypotheses like the
one we are considering in this example, we can use the function createContrast that will create
the matrix for us:

resC <- createContrast(ls.lm, var.test = "MDI", add.variance = TRUE)

This function defines for each model the appropriate contrast matrix:

resC$mlf

$Y1
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y2
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y3
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y4
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y5
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

attr(,"class")
[1] "mlf"

and right hand side of the null hypothesis:

resC$null

Y1: MDI Y2: MDI Y3: MDI Y4: MDI Y5: MDI
0 0 0 0 0

We will now call glht2 to perform the adjustment for multiple comparisons but first we need
to convert the list into a mmm object:

class(ls.lm) <- "mmm"
e.glht_lm <- glht2(ls.lm, linfct = resC$contrast, rhs = resC$null)
e.glht_lm

16

General Linear Hypotheses

Linear Hypotheses:
Estimate

Y1: MDI == 0 0.15104
Y2: MDI == 0 0.16770
Y3: MDI == 0 0.14907
Y4: MDI == 0 0.19860
Y5: MDI == 0 0.09806

We can now correct for multiple comparisons using the (single-step) Dunnett approach:

summary(e.glht_lm, test = adjusted("single-step"))

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Y1: MDI == 0 0.15104 0.03441 4.389 <0.001 ***
Y2: MDI == 0 0.16770 0.06093 2.752 0.0286 *
Y3: MDI == 0 0.14907 0.08067 1.848 0.1996
Y4: MDI == 0 0.19860 0.03039 6.535 <0.001 ***
Y5: MDI == 0 0.09806 0.07057 1.390 0.4208

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- single-step method)

Note that the p-value for the global test equals to the smallest p-value. This means that we
reject the global null hypothesis whenever we reject the null hypothesis for any of the outcome
(after adjustment for multiple comparisons!).

For comparison one can change the argument in adjust to apply the Bonferroni adjustment:

summary(e.glht_lm, test = adjusted("bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Y1: MDI == 0 0.15104 0.03441 4.389 0.00033 ***
Y2: MDI == 0 0.16770 0.06093 2.752 0.04218 *
Y3: MDI == 0 0.14907 0.08067 1.848 0.35526
Y4: MDI == 0 0.19860 0.03039 6.535 2.28e-07 ***
Y5: MDI == 0 0.09806 0.07057 1.390 0.85659

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- bonferroni method)

Finally, confidence intervals can be obtained using the confint function:

confint(e.glht_lm)

Simultaneous Confidence Intervals

17

Fit: NULL

Quantile = 2.5215
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

Y1: MDI == 0 0.15104 0.06427 0.23782
Y2: MDI == 0 0.16770 0.01407 0.32133
Y3: MDI == 0 0.14907 -0.05434 0.35248
Y4: MDI == 0 0.19860 0.12197 0.27524
Y5: MDI == 0 0.09806 -0.07987 0.27599

Note that by default the confint function output confidence intervals using the (single-step) Dun-
nett approach.

18

6 References
Holst, K. K. and Budtz-Jørgensen, E. (2013). Linear latent variable models: the lava-package.

Computational Statistics, 28(4):1385–1452.

Pipper, C. B., Ritz, C., and Bisgaard, H. (2012). A versatile method for confirmatory evaluation
of the effects of a covariate in multiple models. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 61(2):315–326.

19

A Statistics: definitions and notations

A.1 Variables
We can differentiate several types of random variables: outcomes, exposure, risk factors, con-
founders, and mediators. To explicit the difference between these types of variables we consider a
set of random variables (Y,E,X1, X2,M) whose relationships are displayed on Figure 1:

• outcome (Y): random variables that are observed with noise. It can be for instance the
5HT-4 binding in a specific brain region. When considering several outcomes we will denote
in bold variable that stands for a vector of random variables: Y = (Y1, Y2, . . . , Ym). This
happens for instance when studying the binding in several brain regions. In such a case we
expect the outcomes to be correlated.

• exposure (E): a variable that may affect the outcome or be associated with the outcome
and we are interested in studying this effect/association. It can for instance be a genetic
factor that is hypothesized to increase the 5HT-4 binding, or a disease like depression that is
associated with a change in binding (we don’t know whether one causes the other or whether
they have a common cause, e.g. a genetic variant).

• risk factor/confounder (X1, X2): a variable that may affect the outcome or be associated
with the outcomes but we are not interested in studying their effect/association. Risk factors
(denoted by X1) are only associated with the outcomes and confounders that are both asso-
ciated with the outcome and the exposure. We usually need to account for confounders the
statistical model in order to obtain unbiased estimates while accounting for risk factors only
enables to obtain more precise estimates (at least in linear models).

• mediator (M): a variable that modulate the effect of the exposure, i.e. stands on the causal
pathway between the exposure and the outcome. For instance, the permeability of the blood-
brain barrier may modulate the response to drugs and can act as a mediator. It is important
to keep in mind that when we are interested in the (total) effect of E on Y , we should not
adjust the analysis on M3. Doing so we would remove the effect of E mediated by M and
therefore bias the estimate of the total effect (we would only get the direct effect).

In the following we will assume that we do not measure any mediator variable and therefore
ignore this type of variable. Also we will call covariates the variables E,X1, X2.

3This may not be true in specific types of confounding but we will ignore that.

20

Y

E

X1

X2

M

Y

E

X1

X2

M

Figure 1: Path diagram relating the variables Y, E, M, X1 and X2

21

A.2 Assumptions
We can distinguish two types of assumptions:

• causal assumptions: saying which variables are related and in which direction. This can
be done by drawing a path diagram similar to Figure 1. In simple univariate models it may
seems unnecessary to draw the path diagram since the system of variables is very simple to
visualize. In multivariate model, it is often very useful to draw it. Some of these assumptions
are untestable, e.g. often we cannot decide whether it is E that impacts Y or whether it is Y
that impacts E just based on the data.

• modeling assumptions: specifying the type of relationship between variables (e.g. linear)
and the marginal or joint distribution (e.g. Gaussian). Often these assumptions can be
tested and relaxed using a more flexible model. While appealing, there are some drawbacks
with using a very flexible model: more data are needed to get precise estimates and the
interpretation of the results is more complex.

A.3 Statistical model
A statistical model M is set of possible probability distributions. For instance when we fit a
Gaussian linear model for Y1 with just an interceptM =

{
N
(
µ, σ2) ;µ ∈ R, σ2 ∈ R+}: M is the

set containing all possible univariate normal distributions.

A.4 Model parameters
The model parameters are the (non random) variables that enable the statistical model to "adapt"
to different settings. They will be denoted Θ. They are the one that are estimated when we fit the
statistical model using the data or that we specify when we simulate data. In the previous example,
we could simulate data corresponding to a Gaussian linear model using the rnorm function in R:

rnorm

function (n, mean = 0, sd = 1)
.Call(C_rnorm, n, mean, sd)
<bytecode: 0x000000001d7eb938>
<environment: namespace:stats>

We would need to specify:

• n the sample size

• Θ = (µ, σ2) the model parameters, here µ corresponds to mean and σ to sd.

The true model parameters are the model parameters that have generated the observed data.
They will be denoted Θ0. For instance if in reality the binding potential is normally distributed
with mean 5 and variance 22 = 4, then Θ0 = (µ0, σ

2
0) = (5, 4). Then doing our experiment we

observed data such as:

set.seed(10)
Y_1.XP1 <- rnorm(10, mean = 5, sd = 2)
Y_1.XP1

22

[1] 5.037492 4.631495 2.257339 3.801665 5.589090 5.779589 2.583848 4.272648 1.746655 4.487043

If we were to re-do the experiment we would observe new data but Θ0 would not change:

Y_1.XP2 <- rnorm(10, mean = 5, sd = 2)
Y_1.XP2

[1] 7.203559 6.511563 4.523533 6.974889 6.482780 5.178695 3.090112 4.609699 6.851043 5.965957

The estimated parameters are the parameters that we estimate when we fit the statistical model.
They will be denoted Θ̂. We usually try to find parameters whose value maximize the chance of
simulating the observed data under the estimated model (maximum likelihood estimation, MLE).
For instance in the first experiment all values are positive so we would not estimate a negative mean
value. In our example, µ̂ the MLE of µ reduces to the empirical average and σ̂2 the MLE of σ2 to
the empirical variance:

Theta_hat.XP1 <- c(mu_hat = mean(Y_1.XP1),
sigma2_hat = var(Y_1.XP1))

Theta_hat.XP1

mu_hat sigma2_hat
4.018686 1.959404

Clearly the estimated coefficients vary across experiments:

Theta_hat.XP2 <- c(mu_hat = mean(Y_1.XP2),
sigma2_hat = var(Y_1.XP2))

Theta_hat.XP2

mu_hat sigma2_hat
5.739183 1.799311

A.5 Parameter of interest
The statistical model may contain many parameters, most of them are often not of interest but are
needed to obtain valid estimates (e.g. account for confounders). In most settings, the parameter of
interest is one (or several) model parameter(s) - or simple transformation of them. For instance if
we are interested in the average binding potential in the population our parameter of interest is µ.

Often, the aim of a study is to obtain the best estimate of the parameter of interest µ. Best
means:

• unbiased: if we were able to replicate the study many times, i.e. get several estimates
µ̂1, µ̂2, . . . , µ̂K , the average estimate < µ̂ >= µ̂1+µ̂2+...+µ̂K

K would coincide with the true one
µ0.

• minimal variance: if we were able to replicate the study many times, the variance of the
estimates (µ̂1−<µ̂>)2+...+(µ̂K−<µ̂>)2

K−1 should be as low as possible.

There will often be a trade-off between these two objectives. A very flexible method is more
likely to give an unbiased estimate (e.g. being able to model non-linear relationship) at the price
of greater uncertainty about the estimates. Often we favor unbiasedness over minimal variance.
Indeed, if several studies are published with the same parameter of interest, one can pool the
results to obtain an estimate with lower variance. Note that we have no guarantee that it will
reduce the bias.

23

A.6 Contrast matrix
When dealing with many parameters it is convenient to define the null hypothesis via a contrast
matrix. An example of null hypothesis is:

(H0) βMDI,0 = 0

If we consider Θ = (α, βage, βBMI , βMDI), this null hypothesis can be equivalently written:

c = [0 0 0 1]

such that:

(H0) cΘᵀ
0 = 0

Indeed

cΘᵀ
0 = 0 ∗ α0 + 0 ∗ βage,0 + 0 ∗ βBMI,0 + 1 ∗ βMDI,0 = βMDI,0

An example where the contrast matrix is useful is

• when one wish to test linear combination of parameters, e.g. consider the null hypothesis:

(H0) βMDI,0 = βBMI,0

Here the contrast matrix would be:

c = [0 0 − 1 1]

• when one wish to test several hypotheses simultaneously, e.g. consider the null hypothesis:

(H0) βBMI,0 = 0 or βMDI,0 = 0

Here the contrast matrix would be:

C =
[
0 0 1 0
0 0 0 1

]
In R, the method createContrast helps to define the contrast matrix:

Clin <- createContrast(e.lm, par = c("MDI - BMI = 0"),
add.variance = FALSE, rowname.rhs = FALSE)

Clin$contrast

(Intercept) age BMI MDI
- BMI + MDI 0 0 -1 1

Csim <- createContrast(e.lm, par = c("BMI = 0","MDI = 0"),
add.variance = FALSE, rowname.rhs = FALSE)

Csim$contrast

24

(Intercept) age BMI MDI
BMI 0 0 1 0
MDI 0 0 0 1

Then the contrast matrix can be send to glht to obtain p-values and confidence intervals:

elin.glht <- glht(e.lm, linfct = Clin$contrast)
summary(elin.glht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Y1 ~ age + BMI + MDI, data = dfW)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

- BMI + MDI == 0 -0.09608 0.06993 -1.374 0.176
(Adjusted p values reported -- single-step method)

esim.glht <- glht(e.lm, linfct = Csim$contrast)
summary(esim.glht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Y1 ~ age + BMI + MDI, data = dfW)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

BMI == 0 0.24712 0.05791 4.268 0.000195 ***
MDI == 0 0.15104 0.03441 4.389 0.000132 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- single-step method)

25

	Software
	Data management
	Working directory
	Importing the data
	Data processing

	Descriptive statistics
	Univariate analysis using a univariate linear regression
	Fitting a univariate linear regression in R
	Interpretation of the regression coefficients
	Diagnostics tools for univariate linear regression in R
	Testing (A1)
	Testing (A2)
	Testing (A3)
	Testing (A4)

	Hypothesis testing

	Multivariate analysis using multiple univariate linear regressions
	Fitting multiple linear regression in R
	Interpretation of the regression coefficients
	Diagnostics tools for univariate linear regression in R
	Hypothesis testing

	References
	Statistics: definitions and notations
	Variables
	Assumptions
	Statistical model
	Model parameters
	Parameter of interest
	Contrast matrix

