micelast - Introduction
Maciej Nasinski
2018-03-18

Loading the package and setting a seed:

library(miceFast)
set.seed(1234)

Motivations

Missing data is a common problem. The easiest solution is to delete observations for which a certain variable
is missing. However this will sometimes deteriorate quality of a project. Another solution will be to use
methods such as multiple/regular imputations to fill the missing data. Non missing independent variables
could be used to approximate a missing observations for a dependent variable. R or Python language are
user-friendly for data manipulation but parallely brings slower computations. Languages such as C++4 gives
an opportunity to boost our applications or projects.

The presented miceFast package was built under Repp packages and the C++ library Armadillo. The
Repp package offers functionality of exporting full C++ capabilities to the R environment. More precisely
miceFast and corrData are offered. The first module offers capabilities of multiple imputations models with a
closed-form solution. Thus package is based on linear algebra operations. The main upgrade is possibility of
including a grouping and/or weighting (only for linear models) variable and functions enhancement by C++
capabilities. The second module was made for purpose of presenting the miceFast usage and performance.
It provides functionality of generating correlated data with a discrete, binomial or continuous dependent
variable and continuous independent variables.

Performance

Environment: MRO 3.4.1 Intel MKL - i7 6700HQ and 24GB DDR4 2133

MRO (Microsoft R Open) provide to R a sophisticated library for linear algebra operations so remember
about that when reading a performance comparision. The biggest improvement in time performance could
be achieved for a calculation where a grouping variable have to be used (around x50 depending on data
dimensions and number of groups and even more than x1000). Another performance boost could be achieved
for Linear Discriminant Analysis (x10).

If you are interested about the procedure of testing performance check performance_ validity.R file at extdata
folder.

system.file("extdata","performance_validity.R",package = "miceFast")

Additinal plots for simulations with certain parmaeters (but feel free to change them) are located:
system.file("extdata","images",package = "miceFast")

miceFast was compared with the mice package. For grouping option there was used a basic R looping and
the popular dplyr package.

Summing up, miceFast offer a relevant boost of calculations for LDA and all implemented models with a
grouping variable.

Modules

Genereting data with the corrData Module

Available constructors:

new(corrData,nr_cat,n_obs,means,cor_matrix)

new(corrData,n_obs,means,cor_matrix)

where:

nr_cat : number of categories for discrete dependent variable
n_obs : number of observations

means: center independent variables

cor_mat : positive defined correlation matrix

relevant class methods:

£ill1("type") : generating data

type:character - possible options (“contin”,“binom”,“discrete”)

Imputing data with the miceFast Module:

Available constructors:

new(miceFast)

relevant class methods:

set_data(x) - providing the data

get_data() - retrieving the data

set_g(g) - providing the grouping variable

get_g() - retrieving the grouping variable

set_w(w) - providing the weighting variable

get_w() - retrieving the weighting variable

get_index() - getting the index

impute("model" ,posit_y,posit_x) - impute data under characterstics form object like a optional
grouping or weighting variable

update_var(posit_y,imputations) - permanently update variable at the object and data. WARNING,
use it only if you are sure about model parameters.

get_models () - possible quantitative models for a certain type of dependent variable
get_model () - a recommended quantitative model for a certain type of dependent variable
which_updated() - which variables were modified by update_var at the object (and data)
sort_byg() - sort data by the grouping variable

is_sorted_byg() - is data sorted by the grouping variable x : numeric matrix - variables

g : vector of integers for grouping variable - you could build it form several discrete variables
w: numeric vector with positive values - weights for weighted linear regressions

model: character - posibble options (“lda”,“lm_ pred”,“lm_ bayes”,“lm_ noise”)

posit_y: integer - position of dependent variable

posit_x: integer vector - positions of independent variables

imputations : numeric vector - imputations

For a simple mean add intercept to data rep(1,nrow(data)) and use “lm_ pred”

Imputations

miceFast module usage:

#install.packages("mice")
data = cbind(as.matrix(mice: :nhanes),intercept=1,index=1:nrow(mice: :nhanes))

model = new(miceFast)
model$set_data(data) #providing data by a reference

model$update_var(2,model$impute("1lm_pred",2,5)$imputations)

#0OR not recommended
#data[,2] = model$impute("lm_pred",2,5)$imputations
#model$set_data(data) #Updating the object

model$update_var(3,model$impute("1lda",3,c(1,2))$imputations)
model$update_var(4,rowMeans (sapply(1:10,function(x)
model$impute("1lm_bayes",4,c(1,2,3))$imputations))
)

#When working with 'Big Data'’
#it is recommended to occasionally manually invoke a garbage collector “gc()’

Be careful with “update_var because of the permanent update at the object and data
That ©s why “update_var could be used only ones for a certain column

check which variables was updated - inside the object

model$which_updated()

[1] 2 3 4
head (model$get_data())

#it [,1] [,21 [,3] [,4] [,5] [,6]
[1,] 1 26.5625 1 144.8093 1 1
[2,] 2 22.7000 1 187.0000 1 2
[3,] 1 26.5625 1 187.0000 1 3
[4,] 3 26.5625 2 225.2138 1 4
[5,] 1 20.4000 1 113.0000 1 5
[6,] 3 26.5625 2 184.0000 1 6
rm(model)

IR
###Model with additional parameters
s s s s s s

data = cbind(as.matrix(airquality[,-5]),intercept=1,index=1:nrow(airquality))
weights = rgamma(nrow(data),3,3) # positive numeric values

#groups = airquality[,5] # vector of positive integers

groups = sample(l:4,nrow(data),replace=T) # wector of positive integers

model = new(miceFast)

model$set_data(data) # providing data by a reference
model$set_w(weights)

model$set_g(groups)

#if data is not sorted increasingly by g then it would be automatically done
#during a first imputation

#impute adapt to provided parmaters like w or g
#Simple mean - permanent imputation at the object and data
model$update_var(1l,model$impute("lm_pred",1,c(6))$imputations)

Warning in model$impute("lm_pred", 1, c(6)):
Data was sorted by the grouping variable - use “get_index()” to retrieve an order
model$update_var(2,rowMeans (sapply(1:10,function(x)
model$impute("1lm_bayes",2,c(1,3,4,5,6))$imputations))
)

head (cbind(model$get_data() ,model$get_g() ,model$get_w()) [order (model$get_index()),])

[,1] (,2] [,3]1 [,4] [,8] [,6] [,7]1 [,8] [,9]
[1,] 41.00000 1.900000e+02 7.4 67 1 1 1 3 0.8676524
[2,] 36.00000 1.180000e+02 8.0 72 2 1 2 4 1.4157502
[3,] 12.00000 1.490000e+02 12.6 74 3 1 3 4 0.7762213
[4,] 18.00000 3.130000e+02 11.5 62 4 1 4 1 0.8430150
[5,] 43.49289 2.612966e+02 14.3 56 5 1 5 3 1.2464766
[6,] 28.00000 1.913833e-314 14.9 66 6 1 6 4 0.5272105

rm(model)

	Motivations
	Performance
	Modules
	Genereting data with the corrData Module
	Imputing data with the miceFast Module:
	Imputations

