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http://r-pbd.org/


Part I

Preliminaries



1
Introduction

1.1 What is pbd?

The “Programming with Big Data in R” project˜(Ostrouchov et˜al., 2012) (pbd or pbdR for
short) is a project that aims to elevate the statistical programming language R˜(R Core Team,
2012) to leadership-class computing platforms. The main goal is empower data scientists by
bringing flexibility and a big analytics toolbox to big data challenges, with an emphasis on
productivity, portability, and performance. We achieve this in part by mapping high-level pro-
gramming syntax to portable, high-performance, scalable, parallel libraries. In short, we make
R scalable.

Figure˜1.1 shows the current state of pbdR packages and how they utilize high-performance
libraries. More explicitly, the current pbdR packages are:

• pbdMPI — an efficient interface to MPI with a focus on Single Program/Multiple Data
(SPMD) parallel programming style.

• pbdSLAP — bundles scalable dense linear algebra libraries in double precision for R, based
on ScaLAPACK version 2.0.2˜(Blackford et˜al., 1997)..

• pbdNCDF4 — Interface to Parallel Unidata NetCDF4 format data files˜(NetCDF Group,
2008).

• pbdBASE — low-level ScaLAPACK codes and wrappers.

• pbdDMAT — distributed matrix classes and computational methods, with a focus on
linear algebra and statistics.

• pbdDEMO — set of package demonstrations and examples, and this unifying vignette.

In this vignette, we offer many examples using the above pbdR packages. Many of the examples
are high-level applications and may be commonly found in basic Statistics. The purpose is to
show how to reuse the pre-existing functions and utilities of pbdR to create minor extensions
which can quickly solve problems in an efficient way. The reader is encouraged to reuse and
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repurpose these functions.

The pbdDEMO package consists of two main parts. The first is a collection of roughly 20 package
demos. These offer example uses of the various pbdR packages. The second is this vignette,
which attempts to offer detailed explanations for the demos, as well as sometimes providing
some mathematical or statistical insight. A list of all of the package demos can be found in
Section˜1.4.1.

1.2 Why Parallelism? Why pbdR?

It is common, in a document such as this, to justify the need for parallelism. Generally this
process goes:

Blah blah blah Moore’s Law, blah blah Big Data, blah blah blah Concurrency.

How about this? Parallelism is cool. Any boring nerd can use one computer, but using 10,000
at once is another story. We don’t call them supercomputers for nothing.

But unfortunately, lots of people who would otherwise be thrilled to do all kinds of cool stuff with
massive behemoths of computation˜— computers with names like KRAKEN and TITAN˜—
are burdened by an unfortunate reality: it’s really, really hard. Enter pbdR. Through our
project, we put a shiny new set of clothes on high-powered compiled code, making massive-scale
computation accessible to a wider audience of data scientists than ever before. Analytics in
supercomputing shouldn’t just be for the elites.

1.3 Installation

One can download pbdDEMO from CRAN at http://cran.r-project.org, and the intallation
can be done with the following commands� �
tar zxvf pbdDEMO_0.1-0.tar.gz

R CMD INSTALL pbdDEMO� �
Since pbdEMO depends on other pbdR packages, please read the corresponding vignettes if
installation of any of them is unsuccessful.

1.4 Structure of pbdDEMO

The pbdDEMO package consists of several key components:

1. This vignette

2. A set of demos in the demo/ tree

3. A set of benchmark codes in the Benchmarks/ tree

http://cran.r-project.org


CHAPTER 1. INTRODUCTION 4 of 70

The following subsections elaborate on the contents of the latter two.

1.4.1 List of Demos

A full list of demos contained in the pbdDEMO package is provided below. We may or may not
describe all of the demos in this vignette.

List of Demos� �
### (Use Rscript.exe for windows systems)

# --------------------- #

# II Direct MPI Methods #

# --------------------- #

### Chapter 4

# Monte carlo simulation

mpiexec -np 4 Rscript -e "demo(monte_carlo , package='pbdDMAT ', ask=F,

echo=F)"

# Sample mean and variance

mpiexec -np 4 Rscript -e "demo(sample_stat , package='pbdDMAT ', ask=F,

echo=F)"

# Binning

mpiexec -np 4 Rscript -e "demo(binning , package='pbdDMAT ', ask=F,

echo=F)"

# Quantile

mpiexec -np 4 Rscript -e "demo(quantile , package='pbdDMAT ', ask=F,

echo=F)"

# OLS

mpiexec -np 4 Rscript -e "demo(ols , package='pbdDMAT ', ask=F, echo=F)"

# Distributed Logic

mpiexec -np 4 Rscript -e "demo(comparators , package='pbdDMAT ', ask=F,

echo=F)"

# ------------------------------ #

# III Distributed Matrix Methods #

# ------------------------------ #

### Chapter 5

# Random matrix generation

mpiexec -np 4 Rscript -e "demo(randmat_global , package='pbdDMAT ',
ask=F, echo=F)"

mpiexec -np 4 Rscript -e "demo(randmat_local , package='pbdDMAT ', ask=F,

echo=F)"

### Chapter 7

# Sample statistics revisited

mpiexec -np 4 Rscript -e "demo(sample_stat_dmat , package='pbdDMAT ',
ask=F, echo=F)"

# Verify solving Ax=b at scale

mpiexec -np 4 Rscript -e "demo(verify , package='pbdDMAT ', ask=F,

echo=F)"
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# PCA compression

mpiexec -np 4 Rscript -e "demo(pca , package='pbdDMAT ', ask=F, echo=F)"

# OLS and predictions

mpiexec -np 4 Rscript -e "demo(ols_dmat , package='pbdDMAT ', ask=F,

echo=F)"

# ---------------------------- #

# IV Reading and Managing Data #

# ---------------------------- #

### Chapter 8

# Reading csv

mpiexec -np 4 Rscript -e "demo(read_csv , package='pbdDMAT ', ask=F,

echo=F)"

# Reading sql

mpiexec -np 4 Rscript -e "demo(read_sql , package='pbdDMAT ', ask=F,

echo=F)"

### Chapter 9

# Reading and writing parallel NetCDF4

Rscript -e "demo(trefht , package="pbdDEMO", ask = F, echo = F)"

mpiexec -np 4 Rscript -e "demo(nc4_serial , package='pbdDEMO ', ask=F,

echo=F)"

mpiexec -np 4 Rscript -e "demo(nc4_parallel , package='pbdDEMO ', ask=F,

echo=F)"

mpiexec -np 4 Rscript -e "demo(nc4_dmat , package='pbdDEMO ', ask=F,

echo=F)"

mpiexec -np 4 Rscript -e "demo(nc4_spmdc , package='pbdDEMO ', ask=F,

echo=F)"

### Chapter 10

# Loand/unload balance

mpiexec -np 4 Rscript -e "demo(balance , package='pbdDMAT ', ask=F,

echo=F)"

# SPMD to DMAT

mpiexec -np 4 Rscript -e "demo(spmd_dmat , package='pbdDMAT ', ask=F,

echo=F)"

# Distributed matrix redistributions

mpiexec -np 4 Rscript -e "demo(reblock , package='pbdDMAT ', ask=F,

echo=F)"� �
1.4.2 List of Benchmarks

At the time of writing, there are benchmarks for computing covariance, linear models, and
principal components. The benchmarks come in two variants. The first is an ordinary set of
benchmark codes, which generate data of specified dimension(s) and time the indicated compu-
tation. This operation is replicated for a user-specified number of times (default 10), and then
the timing results are printed to the terminal.
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From the Benchmarks/ subtree, the user can run the first set of benchmarks with, for example,
4 processors by issuing any of the commands:� �
### (Use Rscript.exe for windows systems)

mpiexec -np 4 Rscript cov.r

mpiexec -np 4 Rscript lmfit.r

mpiexec -np 4 Rscript pca.r� �
The second set of benchmarks are those that try to find the “balancing” point where, for the
indicted computation with user specified number of cores, the computation is performed faster
using pbdR than using serial R. In general, throwing a bunch of cores at a problem may not be
the best course of action, because parallel algorithms (almost always) have inherent overhead
over their serial counterparts that can make their use ill-advised for small problems. But for
sufficiently big (which is usually not very big at all) problems, that overhead should quickly be
dwarfed by the increased scalability.

From the Benchmarks/ subtree, the user can run the second set of benchmarks with, for example,
4 processors by issuing any of the commands:� �
### (Use Rscript.exe for windows systems)

mpiexec -np 4 Rscript balance_cov.r

mpiexec -np 4 Rscript balance_lmfit.r

mpiexec -np 4 Rscript balance_pca.r� �
Now we must note that there are other costs than just statistical computation. There is of course
the cost of disk IO (when dealing with real data). However, a parallel file system should help
with this, and for large datasets should actually be faster anyway. The main cost not measured
here is the cost of starting all of the R processes and loading packages. Assuming R is not
compiled statically (and it almost certainly is not), then this cost is non-trivial and somewhat
unique to very large scale computing. For instance, it took us well over an hour to start 12,000
R sessions and load the required packages on the supercomputer Kraken1. This problem is not
unique to R, however. It affects any project that has a great deal of dynamic library loading
to do. This includes Python, although their community has made some impressive strides in
dealing with this problem.

1See https://en.wikipedia.org/wiki/Kraken_(supercomputer)

https://en.wikipedia.org/wiki/Kraken_(supercomputer)
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2
Background

2.1 SPMD Programming with R

Throughout this document, we will be using the “Single Program/Multiple Data”, or SPMD,
paradigm for distributed computing. Writing programs in the SPMD style is a very natural
way of doing computations in parallel, but can be somewhat difficult to properly describe. As
the name implies, only one program is written, but the different processors involved in the
computation all execute the code independently on different portions of the data. The process
is arguably the most natural extension of running serial codes in batch.

Unfortunately, executing jobs in batch is a somewhat unknown way of doing business to the
typical R user. While details and examples about this process will be provided in the chapters
to follow, the reader is encouraged to see the pbdMPI package’s vignette˜(Chen et˜al., 2012b)
first. Ideally, readers should run the demos of the pbdMPI package, going through the code step
by step.

2.2 Notation

Note that we tend to use suffix .spmd for an object when we wish to indicate that the object
is distributed. This is purely for pedagogical convenience, and has no semantic meaning. Since
the code is written in SPMD style, you can think of such objects as referring to either a large,
global object, or to a processor’s local piece of the whole (depending on context). This is less
confusing than it might first sound.

We will not use this suffix to denote a global object common to all processors. As a simple
example, you could imagine having a large matrix with (global) dimensions m × n with each
processor owning different collections of rows of the matrix. All processors might need to know
the values for m and n; however, m and n do not depend on the local process, and so these do
not receive the .spmd suffix. In many cases, it may be a good idea to invent an S4 class object
and a corresponding set of methods. Doing so can greatly improve the usability and readability
of your code, but is never strictly necessary. However, these constructions are the foundation of
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the pbdBASE˜(Schmidt et˜al., 2012a) and pbdDMAT˜(Schmidt et˜al., 2012b) packages.

On that note, depending on your requirements in distributed computing with R, it may be ben-
eficial to you to use higher pbdR toolchain. If you need to perform dense matrix operations,
or statistical analyses which depend heavily on matrix algebra (linear modeling, principal com-
ponents analysis, . . . ), then the pbdBASE and pbdDMAT packages are a natural choice. The
major hurdle to using these tools is getting the data into the appropriate ddmatrix format, al-
though we provide many tools to ease the pains of doing so. Learning how to use these packages
can greatly improve code performance, and take your statistical modeling in R to previously
unimaginable scales.

Again for the sake of understanding, we will at times append the suffix .dmat to objects of class
ddmatrix to differentiate them from the more general .spmd object. As with .spmd, this carries
no semantic meaning, and is merely used to improve the readability of example code (especially
when managing both “.spmd” and ddmatrix objects).
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3
MPI for the R User

Cicero once said that “If you have a garden and a library, you have everything you need.” So
in that spirit, for the next two chapters we will use the MPI library to get our hands dirty and
root around in the dirt of low-level MPI programming.

3.1 MPI Basics

In a sense, Cicero (in the above tortured metaphor) was quite right. MPI is all that we need in
the same way that I might only need bread and cheese, but really what I want is a pizza. MPI
is somewhat low-level and can be quite fiddly, but mastering it adds a very powerful tool to the
repertoire of the parallel R programmer, and is essential for anyone who wants to do large scale
development of parallel codes.

“MPI” stands for “Message Passing Interface”. How it really works goes well beyond the scope
of this document. But at a basic level, the idea is that the user is running a code on different
compute nodes that (usually) can not directly modify objects in each others’ memory. In order
to have all of the nodes working together on a common problem, data and computation directives
are passed around over the network (often over a specialized link called infiniband).

At its core, MPI is a standard interface for managing communications (data and instructions)
between different nodes or computers. There are several major implementations of this standard,
and the one you should use may depend on the machine you are using. But this is a compiling
issue, so user programs are unaffected beyond this minor hurdle. Some of the most well-known
implementations are OpenMPI, MPICH2, and Cray MPT.

At the core of using MPI is the communicator. At a technical level, a communicator is a pretty
complicated data structure, but these deep technical details are not necessary for proceeding.
We will instead think of it somewhat like the post office. When we wish to send a letter
(communication) to someone else (another processor), we merely drop the letter off at a post
office mailbox (communicator) and trust that the post office (MPI) will handle things accordingly
(sort of).



CHAPTER 3. MPI FOR THE R USER 12 of 70

The general process for directly — or indirectly — utilizing MPI in SPMD programs goes
something like this:

1. Initialize communicator(s).

2. Have each process read in its portion of the data.

3. Perform computations.

4. Communicate results.

5. Shut down the communicator(s).

Some of the above steps may be swept away under a layer of abstraction for the user, but the
need may arise where directly interfacing with MPI is not only beneficial, but necessary.

More details and numerous examples using MPI with R are available in the sections to follow,
as well as in the pbdMPI vignette.

3.2 pbdMPI vs Rmpi

There is another package on the CRAN which the R programmer may use to interface with
MPI, namely Rmpi (Yu, 2012). There are several issues one must consider when choosing which
package to use if one were to only use one of them.

1. (+) pbdMPI is easier to install than Rmpi

2. (+) pbdMPI is easier to use than Rmpi

3. (+) pbdMPI can often outperform Rmpi

4. (+) pbdMPI integrates with the rest of pbd

5. (−) Rmpi can be used with foreach (Analytics, 2012) via doMPI (Weston, 2010)

6. (−) Rmpi can be used in the master/worker paradigm

We do not believe that the above can be reduced to a zero-sum game with unambiguous winner
and loser. Ultimately the needs of the user (or developer) are paramount. We believe that pbd
makes a very good case for itself, especially in the SPMD style, but it can not satisfy everyone.
However, for the remainder of this section, we will present the case for several of the, as yet,
unsubstantiated pluses above.

In the case of ease of use, Rmpi uses bindings very close to the level as they are used in C’s MPI
API. Specifically, whenever performing, for example, a reduction such as allreduce, you must
specify the type of your data. For example, using Rmpi’s API

� �
1 mpi.allreduce(x, type = 1)� �

would perform the sum allreduce if the object x consists of integer data, while
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� �
1 mpi.allreduce(x, type = 2)� �

would be used if x consists of doubles. However, with pbdMPI

� �
1 allreduce(x)� �

is used for both by making use of R’s S4 system of object oriented programming. This is not
mere code golfing1 that we are engaging in. The concept of what “type” your data is in R is
fairly foreign to most R users, and misusing the type argument in Rmpi is a very easy way to
crash your program. Even if you are more comfortable with statically typed languages and have
no problem with this concept, consider the following example:

Types in R� �
1 > is.integer (1)

2 [1] FALSE

3 > is.integer (2)

4 [1] FALSE

5 > is.integer (1:2)

6 [1] TRUE� �
There are good reasons for R Core to have made this choice; that is not the point. The point
is that because objects in R are dynamically typed, having to know the type of your data when
utilizing Rmpi is a needless burden. Instead, pbdMPI takes the approach of adding a small
abstraction layer on top (which we intend to show does not negatively impact performance) so
that the user need not worry about such fiddly details.

In terms of performance, pbdMPI can greatly outperform Rmpi. We present here the results of a
benchmark we performed comparing the allgather operation between the two packages (Schmidt
et˜al., 2012e). The benchmark consisted of calling the respective allgather function from each
package on a randomly generated 10, 000× 10, 000 distributed matrix with entries coming from
the standard normal distribution, using different numbers of processors. Table˜3.1 shows the

Table 3.1: Benchmark Comparing Rmpi and pbdMPI. Run time in seconds is listed for each
operation. The speedup is relative to Rmpi.

Cores Rmpi pbdMPI Speedup

32 24.6 6.7 3.67
64 25.2 7.1 3.55

128 22.3 7.2 3.10
256 22.4 7.1 3.15

results for this test, and in each case, pbdMPI is the clear victor.

1See https://en.wikipedia.org/wiki/Code_golf

https://en.wikipedia.org/wiki/Code_golf
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Whichever package you choose, whichever your favorite, for the remainder of this document we
will be using (either implicitly or explicitly) pbdMPI.

3.3 Common MPI Operations

Fully explaining the process of MPI programming is a daunting task. Thankfully, we can punt
and merely highlight some key MPI operations and how one should use them with pbdMPI.

3.3.1 Basic Communicator Wrangling

First things first, we must examine basic communicator issues, like construction, destruction,
and each processor’s position within a communicator.

• Managing a Communicator: Create and destroy communicators.
init() — initialize communicator
finalize() — shut down communicator(s)

• Rank query: Determine the processor’s position in the communicator.
comm.rank() — “who am I?”
comm.size() — “how many of us are there?”

• Barrier: No processor can proceed until all processors can proceed.
barrier() — “computation wall” that only all processors together can tear down

One quick word before proceeding. If a processor queries comm.size(), this will return the total
number of processors in the communicators. However, communicator indexing is like indexing
in the programming language C. That is, the first element is numbered 0 rather than 1. So when
the first processor queries comm.rank(), it will return 0, and when the last processor queries
comm.rank(), it will return comm.size() - 1.

We are finally ready to write our first MPI program:

Simple pbdMPI Example 1� �
1 library(pbdMPI , quiet = TRUE)

2 init()

3

4 myRank <- comm.rank() + 1 # comm index starts at 0, not 1

5 print(myRank)

6

7 finalize ()� �
Unfortunately, it is not very exciting, but you have to crawl before you can drag race. Remember
that all of our programs are written in SPMD style. So this one single program is written, and
each processor will execute the same program, but with different results, whence the name
“Single Program/Multiple Data”.
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So what does it do? First we initialize the MPI communicator with the call to init(). Next,
we have each processor query its rank via comm.rank(). Since indexing of MPI communicators
starts at 0, we add 1 because that is what we felt like doing. Finally we call R’s print() function
to print the result. This printing is not particularly clever, and each processor will be clamoring
to dump its result to the output file/terminal. We will discuss more sophisticated means of
printing later. Finally, we shut down the MPI communicator with finalize().

If you were to save this program in the file mpiex1.r and you wished to run it with 2 processors,
you would issue the command:

Shell Command� �
### (Use Rscript.exe for windows system)

mpiexec -np 2 Rscript mpiex1.r� �
To use more processors, you modify the -np argument (“number processors”). So if you want to
use 4, you pass -np 4.

The above program technically, though not in spirit, bucks the trend of officially opening with
a “Hello World” program. So as not to incur the wrath of the programming gods, we offer a
simple such example by slightly modifying the above program:

Simple pbdMPI Example 1.5� �
1 library(pbdMPI , quiet = TRUE)

2 init()

3

4 myRank <- comm.rank()

5

6 if (myRank == 0){

7 print("Hello , world.")

8 }

9

10 finalize ()� �
One word of general warning we offer now is that we are taking very simple approaches here for
the sake of understanding, heavily relying on function argument defaults. However, there are all
kinds of crazy, needlessly complicated things you can do with these functions. See the pbdMPI
reference manual for full details about how one may utilize these (and other) pbdMPI functions.

3.3.2 Reduce, Broadcast, and Gather

Once managing a communicator is under control, you presumably want to do things with all of
your processors. The typical way you will have the processors interact is given below:

• Reduction: Say each processor has a number x.spmd. Add all of them up, find the
largest, find the smallest, . . . .
reduce(x.spmd, op=’sum’) — only one processor gets result (default is 0)
allreduce(x.spmd, op=’sum’) — every processor gets result
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• Gather: Say each processor has a number. Create a new object on some processor(s)
containing all of those numbers.
gather(x.spmd) — only one processor gets result
allgather(x.spmd) — every processor gets result

• Broadcast: One processor has a number x.spmd that every other processor should also
have.
bcast(x.spmd)

Here perhaps explanations are inferior to examples; so without wasting any more time, we
proceed to the next example:

Simple pbdMPI Example 2� �
1 library(pbdMPI , quiet = TRUE)

2 init()

3

4 n.spmd <- sample (1:10, size =1)

5

6 sm <- allreduce(n.spmd) # default op is 'sum '
7 print(sm)

8

9 gt <- allgather(n.spmd)

10 print(gt)

11

12 finalize ()� �
So what does it do? First each processor samples a number from 1 to 10; it is probably true
that each processor will be using a different seed for this sampling, though you should not rely
on this alone to ensure good parallel seeds. More on this particular problem in Section˜3.3.3
below.

Next, we perform an allreduce() on n.spmd. Conceivably, the processors could have different
values for n.spmd. So the value of n is local to each processor. So perhaps we want to add up
all these numbers (with as many numbers as there are processors) and store them in the global
value sm (for “sum”). Each processor will agree as to the value of sm, even if they disagree about
the value of n.spmd.

Finally, we do the same but with an allgather() operation.

Try experimenting with this by running the program several times. You should get different
results each time. To make sure we have not been lying to you about what is happening, you
can even print the values of n.spmd before the reduce and gather operations.

3.3.3 Printing and RNG Seeds

In addition to the above common MPI operations, which will make up the bulk of the MPI
programmer’s toolbox, we offer a few extra utility functions:
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• Print: printing with control over which processor prints.
comm.print(x, ...)

comm.cat(x, ...)

• Random Seeds:
comm.set.seed(seed, diff=FALSE): every processor uses the seed seed comm.set.seed(diff=TRUE):
every processor uses an independent seed (via rlecuyer)

The comm.print() and comm.cat() functions are especially handy, because they are much more
sophisticated than their R counterparts when using multiple processes. These functions which
processes do the printing, and if you choose to have all processes print their result, then the
printing occurs in an orderly fashion, with processor 0 getting the first line, processor 1 getting
the second, and so on.

For example, revisiting our “Hello, world” example, we can somewhat simplify the code with a
slight modification:

Simple pbdMPI Example 3� �
1 library(pbdMPI , quiet = TRUE)

2 init()

3

4 myRank <- comm.rank()

5

6 comm.print("Hello , world.")

7

8 finalize ()� �
If we want to see what each processor has to say, we can pass the optional argument all,rank=TRUE
to comm.print(). By default, each process will print its rank, then what you told it to print.
You can suppress the printing of communicator rank via the optional argument quiet=TRUE to
comm.print().

These functions are quite handy. . .

##### HOWEVER #####
these functions are potentially dangerous, and so some degree of care should be exercised. Indeed,
it is possible to lock up all of the active R sessions by incorrectly using them. Worse, achieving
this behavior is fairly easy to do. The way this occurs is by issuing a comm.print() on an
expression which requires communication. For example, suppose we have a distributed object
with local piece x.spmd and a function myFunction() which requires communication between
the processors. Then calling

A Cautionary Tale of Printing in Parallel (1 of 3)� �
1 print(myFunction(x.spmd))� �

is just fine, but will not have the nice orderly, behaved printing style of comm.print(). However,
if we issue
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A Cautionary Tale of Printing in Parallel (2 of 3)� �
1 comm.print(myFunction(x.spmd))� �

then we have just locked up all of the R processes. Indeed, behind the scenes, a call somewhat
akin to

� �
1 for (rank in 0:comm.size()){

2 if (comm.rank() == rank){

3 # do things

4 }

5 barrier ()

6 }� �
has been ordered. The problem arises in the“do things”part. Since (in our hypothetical example)
the function myFunction() requires communication between the processors, it will simply wait
forever for the others to respond until the job is killed. This is because the other processors
skipped over the “do things” part and are waiting at the barrier. So lonely little processor 0 has
been stood up, unable to communicate with the remaining processors.

To avoid this problem, make it a personal habit to only print on results, not computations. We
can quickly rectify the above example by doing the following:

A Cautionary Tale of Printing in Parallel (3 of 3)� �
1 myResult <- myFunction(x.spmd)

2 comm.print(myResult)� �
In short, printing stored objects is safe. Printing a yet-to-be-evaluated expression is not safe.

3.3.4 Apply, Lapply, and Sapply

But the pbdMPI sugar extends to more than just printing. We also have a family of “*ply”
functions, in the same vein as R’s apply(), lapply(), and sapply():

• Apply: *ply-like functions.
pbdApply(X, MARGIN, FUN, ...) — analogue of apply()
pbdLapply(X, FUN, ...) — analogue of lapply()
pbdSapply(X, FUN, ...) — analogue of sapply()

Here is a simple example utilizing pbdLapply():

Example 4� �
1 library(pbdMPI , quiet = TRUE)

2 init()

3
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4 n <- 100

5 x <- split ((1:n) + n * comm.rank(), rep(1:10 , each = 10))

6 sm <- pbdLapply(x, sum)

7 comm.print(unlist(sm))

8

9 finalize ()� �
So what does it do? Why don’t you tell us? We’re busy people, after all, and we’re not going to
be around forever. Try guessing what it will do, then run the program to see if you are correct.
As you evaluate this and every parallel code, ask yourself which pieces involve communication
and which pieces are local computations.

3.4 Timing MPI Tasks

Measuring run time is a fundamental performance measure in computing. However, in parallel
computing, not all “parallel components” (e.g. threads, or MPI processes) will take the same
amount of time to complete a task, even when all tasks are given completely identical jobs. So
measuring “total run time” begs the question, run time of what?

To help, we offer a timing function demo.timer() which can wrap segments of code much in the
same way that system.time() does. However, the three numbers reported by demo.timer()

are: (1) the minimum elapsed time measured across all processes, (2) the average elapsed time
measured across all processes, and (3) the maximum elapsed time across all processes. The code
for this function is listed below:

Timer Function� �
1 demo.timer <- function(timed)

2 {

3 ltime <- system.time(timed)[3]

4

5 mintime <- allreduce(ltime , op='min')
6 maxtime <- allreduce(ltime , op='max')
7

8 meantime <- allreduce(ltime , op='sum') / comm.size()

9

10 return( c(min=mintime , mean=meantime , max=maxtime) )

11 }� �



4
Basic Statistics Examples

This section introduces a few simple examples and explains a little about computing with dis-
tributed data directly over MPI. These implemented examples/functions are partly selected from
the Cookbook of HPSC website˜(Chen and Ostrouchov, 2011) at http://thirteen-01.stat.

iastate.edu/snoweye/hpsc/?item=cookbook.

4.1 Monte Carlo Simulation

Example: Compute a numerical approximation for π.

The demo command is� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(monte_carlo ,'pbdDEMO ',ask=F,echo=F)"� �
This is a simple Monte Carlo simulation example for numerically estimating π. Suppose we
sample N uniform observations (xi, yi) inside (or perhaps on the border of) the unit square
[0, 1]× [0, 1], where i = 1, 2, . . . , N . Then

π ≈ 4 L
N

(4.1)

where 0 ≤ L ≤ N is the number of observations sampled satisfying

x2
i + y2

i ≤ 1 (4.2)

The intuitive explanation for this is strategy which is sometimes given belies a misunderstanding
of infinite cardinalities, and infinite processes in general. We are not directly approximating an
area through this sampling scheme, because to do so with a finite-point sampling scheme would
be madness requiring a transfinite process. Indeed, let SN be the collection of elements satisfying
inequality˜(4.2). Then note that for each N ∈ N that the area of SN is precisely 0. Whence,

lim
N→∞

Area(SN ) = 0

http://thirteen-01.stat.iastate.edu/snoweye/hpsc/?item=cookbook
http://thirteen-01.stat.iastate.edu/snoweye/hpsc/?item=cookbook
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This bears repeating. Finite sampling of an uncountable space requires uncountably many
such sampling operations to “fill” the infinite space. For a proper treatment of set theoretic
constructions, including infinite cardinals, see (Kunen, 1980).

One could argue that we are evaluating a ratio of integrals with each using the counting measure,
which satisfies technical correctness but is far from clear. Now indeed, certain facts of area are
vital here, but some care should be taken in the discussion as to what exactly justifies our claim
in (4.1).

In reality, we are evaluating the probability that someone throwing a 0-dimensional “dart” at
the unit square will have that “dart” also land below the arc of the unit circle contained within
the unit square. Formally, let U1 and U2 be random uniform variables, each from the closed unit
interval [0, 1]. Define the random variable

X :=
{

1, U2
1 + U2

2 ≤ 1
0, otherwise

Let Vi = U2
i for i = 1, 2. Then the expected value

E[X] = P (V1 + V2 ≤ 1)

=
∫ 1

0

∫ 1−V1

0
p(V1, V2)dV2dV1

=
∫ 1

0

∫ 1−V1

0

( 1
2
√
V1

)( 1
2
√
V2

)
dV2dV1

= 1
2

∫ 1

0

(1− V1
V1

)1/2
dV1

= 1
2

V1

(1− V1
V1

)1/2
− 1

2 arctan


(

1−V1
V1

)1/2
(2V1 − 1)

2(V1 − 1)




V1→1

V1→0

= 1
2

[
π

4 + π

4

]
and by sampling observations Xi for i = 1, . . . , N , by the Strong Law of Large Numbers

X̄N −→a.s. π

4 as N →∞

In other words,

P

(
lim

N→∞
X̄N = π

4

)
= 1

Whence,

L

N
−→a.s. π

4 as N →∞

But because no one is going to read that, and if they do they’ll just call the author a grumpy
old man, the misleading picture you desire can be found in Figure˜4.1. And to everyone who
found this looking for a homework solution, you’re welcome.

The key step of the demo code is in the following block:
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Figure 4.1: Approximating π by Monte Carlo methods

R Code� �
1 N.spmd <- 1000

2 X.spmd <- matrix(runif(N.spmd * 2), ncol = 2)

3 r.spmd <- sum(rowSums(X.spmd ^2) <= 1)

4 ret <- allreduce(c(N.spmd , r.spmd), op = "sum")

5 PI <- 4 * ret[2] / ret[1]

6 comm.print(PI)� �
In line 1, we specify sample size in N.spmd for each processor, and N = D × N.spmd if D
processors are executed. In line 2, we generate samples in X.spmd for every processor. In line
3, we compute how many of the “radii” are less than or equal to 1 for each processors. In line
4, we call allreduce() to obtain total numbers across all processors. In line 5, we use the
Equation˜(4.1). Since SPMD, ret is common on all processors, and so is PI.

4.2 Sample Mean and Sample Variance

Example: Compute sample mean/variance for distributed data.

The demo command is� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(sample_stat ,'pbdDEMO ',ask=F,echo=F)"� �
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Suppose x = {x1, x2, . . . , xN} are observed samples, and N is potentially very large. We can
distribute x in 4 processors, and each processor receives a proportional amount of data. One
simple way to compute sample mean x̄ and sample variance sx is based on the formulas:

x̄ = 1
N

N∑
n=1

xn

=
N∑

n=1

xn

N
(4.3)

and

sx = 1
N − 1

N∑
n=1

(xn − x̄)2

= 1
N − 1

N∑
n=1

x2
n −

2x̄
N − 1

N∑
n=1

xn + 1
N − 1

N∑
n=1

x̄2

=
N∑

n=1

(
x2

n

N − 1

)
− Nx̄2

N − 1 (4.4)

where expressions (4.3) and (4.4) are one-pass algorithms, which are potentially faster than the
first expressions, especially for large N . However, this method of computing the variance in one
pass can suffer from round-off errors, and so in general is not numerically stable. We provide
this here for demonstration purposes only. Additionally, only the first and second moments
are implemented, while the extension of one-pass algorithms to higher order moments is also
possible.

The demo generates random data on 4 processors, then utilizes the mpi.stat() function:

R Code� �
1 mpi.stat <- function(x.spmd){

2 ### For mean(x).

3 N <- allreduce(length(x.spmd), op = "sum")

4 bar.x.spmd <- sum(x.spmd / N)

5 bar.x <- allreduce(bar.x.spmd , op = "sum")

6

7 ### For var(x).

8 s.x.spmd <- sum(x.spmd^2 / (N - 1))

9 s.x <- allreduce(s.x.spmd , op = "sum") - bar.x^2 * (N / (N - 1))

10

11 list(mean = bar.x, s = s.x)

12 } # End of mpi.stat().� �
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where allreduce() in pbdMPI˜(Chen et˜al., 2012a) can be utilized in this examples to aggre-
gate local information across all processors.

4.3 Binning

Example: Find binning counts for distributed data.

The demo command is� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(binning ,'pbdDEMO ',ask=F,echo=F)"� �
Binning is a classical problem in statistics which helps to quickly summarize the data structure
by setting some “breaks” between the minimum and maximum values. This is a particularly
useful tool for constructing histograms, as well as categorical data analysis.

The demo generates random data on 4 processors, then utilizes the mpi.bin() function:

R Code� �
1 mpi.bin <- function(x.spmd , breaks = pi / 3 * (-3:3)){

2 bin.spmd <- table(cut(x.spmd , breaks = breaks))

3 bin <- as.array(allreduce(bin.spmd , op = "sum"))

4 dimnames(bin) <- dimnames(bin.spmd)

5 class(bin) <- class(bin.spmd)

6 bin

7 } # End of mpi.bin().� �
This simple implementation utilizes R’s own table() function to obtain local counts, then calls
allreduce() to obtain global counts on all processors.

4.4 Quantile

Example: Compute sample quantile order statistics for distributed data.

The demo command is� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(quantile ,'pbdDEMO ',ask=F,echo=F)"� �
Another fundamental tool in the statistician’s toolbox is finding quantiles. Quantiles are points
taken from the cumulative distribution function. Formally, a q-quantile (or q-tile) with q˜ ∈
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˜[0, 1] of a random variable X is any value θq such that1

P (X ≤ θq) ≥ q and

P (X ≥ θq) ≤ 1− q

Note that by this definition, a quantile neither need exist or be unique. Indeed, for the former,
consider the standard normal distribution with q = 1, and for the latter consider the probability
0 values of a uniform distribution. Perhaps to narrow the scope of these problems, another
common definition is

θq = inf{x | P (X ≤ x) ≥ q}

In this example, we will be estimating quantiles from a sample. Doing so requires sub-dividing
the data into q (almost) evenly sized subsets, giving rise to the language k’th q-tile, for integers
0 < k < 1

q .

Before proceeding, we wish to make very clear the distinction between a theoretical quantile and
quantile estimation, as many web pages confuse these two topics. A quantile’s estimation from
a sample requires ordering and can take many forms; in fact, there are nine possible such forms
in R’s own quantile() function (see help(quantile) in R). The definitions of Kendall and
Cramer may be the source of all the confusion (Benson, 1949). Kendall’s definition, conflating
the term “quantile” with the act of quantile estimation, seems to have entered most dictionaries
(and Wikipedia), whereas mathematical statistics favors the more general and simple definition
of Cramer.

This example can be extended to construct Q-Q plots, compute cumulative density function
estimates and nonparametric statistics, as well as solve maximum likelihood estimators. This
is perhaps an inefficient implementation to approximate a quantile and is not equivalent to the
original quantile() function in R. But in some sense, it should work well at a large scale. The
demo generates random data on 4 processors, then utilizes the mpi.quantile():

R Code� �
1 mpi.quantile <- function(x.spmd , prob = 0.5){

2 if(sum(prob < 0 | prob > 1) > 0){

3 stop("prob should be in (0, 1)")

4 }

5

6 N <- allreduce(length(x.spmd), op = "sum")

7 x.max <- allreduce(max(x.spmd), op = "max")

8 x.min <- allreduce(min(x.spmd), op = "min")

9

10 f.quantile <- function(x, prob = 0.5){

11 allreduce(sum(x.spmd <= x), op = "sum") / N - prob

12 }

13

14 uniroot(f.quantile , c(x.min , x.max), prob = prob [1])$root

15 } # End of mpi.quantile ().� �
1This definition is due to the mathematical statistician Herman Rubin: http://mathforum.org/kb/message.

jspa?messageID=406278

http://mathforum.org/kb/message.jspa?messageID=406278
http://mathforum.org/kb/message.jspa?messageID=406278
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Here, a numerical function is solved by using uniroot() to find out the appropriate value where
the cumulative probability is less than or equal to the specified quantile. Specifically, it finds the
zero, or root, of the monotone f.quantile() function. This simple example shows that with
just a little effort, direct MPI methods are greatly applicable on large scale data analysis and
likelihood computing.

Note that in the way that the uniroot() call is used above, we are legitimately operating in
parallel and on distributed data. Other optimization functions such as optim() and nlm() can
be utilized in the same way.

4.5 Ordinary Least Squares

Example: Compute ordinary least square solutions for SPMD distributed data.

The demo command is� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(ols ,'pbdDEMO ',ask=F,echo=F)"� �
Ordinary least squares (OLS) is perhaps the fundamental tool of the statistician. The goal is to
find a solution β such that

||Xβ − y||22 (4.5)

is minimized. In statistics, we tend to prefer to think of the problem as being of the form

y = Xβ + ε (4.6)

where y is N ×1 observed vector, X is N ×p (possibly designed) matrix which is often assumed
to have full rank (more on that later), and N >> p, β is the unknown parameter to be estimated,
and ε is errors and to be minimized in norm.

Note that above, we do indeed mean (in fact, stress) a solution to the linear least squares
problem. For many applications a statistician will face, expression (4.5) will actually have a
unique solution. But this is not always the case, and trouble often arises when the model matrix
is rank-deficient. Indeed, in this case it may occur that there is an infinite family of solutions. So
typically we go further and demand that a solution β be such that ||β||2 is at least as small as the
corresponding norm of any other solution (although even this may not guarantee uniqueness).

A properly thorough treatment of the problems involved here go beyond the scope of this doc-
ument, and require the reader have in-depth familiarity with linear algebra. For our purposes,
the concise explanation above will suffice.

In the full rank case, we can provide an analytical, “closed-form” solution to the problem. In
this case, the classical Maximum Likelihood solution is given by:

β̂ = (XTX)−1XTy (4.7)
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This example can be also generalized to weighted least square (WLS), and linear mixed effect
models (LME).

The implementation is straight forward:

R Code� �
1 if(length(y.spmd) != nrow(X.spmd)){

2 stop("length(y.spmd) != nrow(X.spmd)")

3 }

4

5 t.X.spmd <- t(X.spmd)

6 A <- allreduce(t.X.spmd %*% X.spmd , op = "sum")

7 B <- allreduce(t.X.spmd %*% y.spmd , op = "sum")

8

9 solve(matrix(A, ncol = ncol(X.spmd))) %*% B� �
While this is a fine demonstration of the power of “getting your hands dirty”, this approach
is only efficient for small N and small p. This is, in large part, because the operation is not
“fully parallel”, in that the solution is serial and replicated on all processors. Worse, directly
computing (

XTX
)−1

has numerical stability issues. Instead, it is generally better (although much slower) to take an
orthogonal factorization of the data matrix. See Appendix˜A for details.

Finally, all of the above assumes that the model matrix X is full rank. However, we have im-
plemented an efficient method of solving linear least squares problems in pbdDMAT’s lm.fit()
method for distributed matrices. This method uses a fully parallel rank-revealing QR decom-
position to find the least squares solution. So for larger problems, and especially those where
numerical accuracy is important or rank-degeneracy is a possibility, it is much better to simply
convert y.spmd and X.spmd into the block-cyclic format as in Part˜III and utilize pbdBASE and
pbdDMAT for all matrix computations.

4.6 Distributed Logic

Example: Manage comparisons across all MPI processes.

The demo command is� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(comparators ,'pbdDEMO ',ask=F,echo=F)"� �
This final MPI example is not statistical in nature, but is very useful all the same, and so we
include it here. The case frequently arises where the MPI programmer will need to do logical
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comparisons across all processes. The idea is to extend the very handy all() and any() base
R functions to operate similarly on distributed logicals.

You could do this directly. Say you want to see if any processes have TRUE stored in the variable
localLogical. This amounts to something on the order of:

R Code� �
1 globalLogical <- as.logical(allreduce(localLogical , op='max')� �

Or you can use the function comm.any() from pbdMPI:

R Code� �
1 globalLogical <- comm.any(localLogical)� �

which essentially does the same thing, but is more concise. Likewise, there is a comm.all()

function, which in the equivalent “long-form” above would use op=’min’.

The demo for these functions consists of two parts. For the first, we do a simple demonstration
of how these functions behave:

R Code� �
1 rank <- comm.rank()

2

3 comm.cat("\ntest value:\n", quiet=T)

4 test <- (rank > 0)

5 comm.print(test , all.rank=T, quiet=T)

6

7 comm.cat("\ncomm.all:\n", quiet=T)

8 test.all <- comm.all(test)

9 comm.print(test.all , all.rank=T, quiet=T)

10

11 comm.cat("\ncomm.any:\n", quiet=T)

12 test.any <- comm.any(test)

13 comm.print(test.any , all.rank=T, quiet=T)� �
which should have the output:� �
test value:

[1] FALSE

[1] TRUE

[1] TRUE

[1] TRUE

comm.all:

[1] FALSE

[1] FALSE

[1] FALSE

[1] FALSE
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comm.any:

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE� �
The demo also has another use case which could be very useful to a developer. You may be
interested in trying something on only one processor and then shutting down all MPI processes if
problems are encountered. To do this in SPMD style, you can create a variable on all processes to
track whether a problem has been encountered. Then after critical code sections, use comm.any()
to update and act appropriately. A very simple example is provided below.

R Code� �
1 need2stop <- FALSE

2

3 if (rank ==0){

4 need2stop <- TRUE

5 }

6

7 need2stop <- comm.any(need2stop)

8

9 if (need2stop)

10 stop("Problem :[")� �



Part III

Distributed Matrix Methods



5
Constructing Distributed Matrices

The pbdBASE and pbdDMAT packages offer a distributed matrix class, ddmatrix, as well as a
collection of high-level methods for performing common matrix operations. For example, if you
want to compute the mean of an R matrix x, you would call

� �
1 mean(x)� �

That’s exactly the same command you would issue if x is no longer an ordinary R matrix, but
a distributed matrix. These methods range from simple, embarrassingly parallel operations like
sums and means, to tightly coupled linear algebra operations like matrix-matrix multiply and
singular value decomposition.

Unfortunately, these higher methods come with a different cost: getting the data into the right
format, namely the distributed matrix class. This can be especially frustrating because we
assume that the any object of class ddmatrix is block cyclically distributed. This concept is
discussed at length in the pbdBASE˜(Schmidt et˜al., 2012c) and pbdDMAT˜(Schmidt et˜al.,
2012d) vignettes, and we do not intend to discuss the concept of a block cyclic data distribution
at length herein. However, we will demonstrate several examples of getting data into and out of
the distributed block cyclic matrix format.

Once the hurdle of getting the data into the “right format” is out of the way, these methods
offer very simple syntax (designed to mimic R as closely as possible) with the ability to scale
computations on very large distributed machines. So the process of getting the data into the
correct format must be addressed. We begin dealing with this issue in the simplest way possible.
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5.1 Fixed Global Dimension

5.1.1 Constructing Simple Distributed Matrices

It is possible to construct fairly simple distributed matrices much in the same way that one can
construct simple matrices in R. We can do this using the functions ddmatrix() and as.ddmatrix().
The former essentially behaves identically to R’s own matrix() function. This function takes a
global input vector/matrix data=, as well as the global number of rows nrow= and the global
number of columns ncol=. Additionally, the user may specify the blocking factor bldim= and
the BLACS context CTXT, and the return is a distributed matrix. For instance, we can specify

ddmatrix()� �
1 dx <- ddmatrix(data=0, nrow=10, ncol =10)� �

to get a distributed matrix with global dimension 10 × 10 consisting of zeros. We can also do
cute things like

ddmatrix()� �
1 dx <- ddmatrix(data =1:3, nrow=5, ncol =5)� �

which will create the distributed analogue of

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 2 1 3

[2,] 2 1 3 2 1

[3,] 3 2 1 3 2

[4,] 1 3 2 1 3

[5,] 2 1 3 2 1

How exactly that “distributed analogue” will look (locally) depends on the processor grid shape
(whence too, the number of processors) as well as the blocking factor. This operation performs
no communication.

While this can be useful, it is far from the only way to construct distributed matrices. One can
also convert a global (non-distributed) matrix into a distributed matrix. There are some caveats;
this matrix must either be owned in total by all processors (which is very useful in testing, but
should not be used at scale), or the matrix is owned in total by one processor, with all others
owning NULL for that object.

For example, we can create identical return to the above via

as.ddmatrix()� �
1 x <- matrix(data =1:3, nrow=5, ncol =5)

2 dx <- as.ddmatrix(x)� �
or
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as.ddmatrix()� �
1 if (comm.rank()==0){

2 x <- matrix(data =1:3, nrow=5, ncol =5)

3 } else {

4 x <- NULL

5 }

6

7 dx <- as.ddmatrix(x)� �
Each of these operations performs communication.

Other, more general combinations are possible through other means, but they are much more
cumbersome.

5.1.2 Diagonal Distributed Matrices

Example: construct diagonal distributed matrices of specificed global dimension.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e

"demo(randmat_diag_global ,'pbdDEMO ',ask=F,echo=F)"� �
In R, the diag() function serves two purposes; namely, it is both a reduction operation and
a reverse-reduction operation, depending on the input. More specifically, if given a matrix,
it produces a vector containing the diagonal entries of that matrix; but if given a vector, it
constructs a diagonal matrix whose diagonal is that vector. And so for example, the zero and
identity matrices of any dimension can quickly be constructed via:

Diagonal Matrices in R� �
1 diag(x=0, nrow=10, ncol =10) # zero matrix

2 diag(x=1, nrow=10, ncol =10) # identity matrix� �
Both of the above functionalities of diag() are available for distributed matrices; however we
will only focus on the latter.

When you wish to construct a diagonal distributed matrix, you can easily do so by using the
additional type= argument to our diag() method. By default, type="matrix", though the user
may specify type="ddmatrix". If so, then as one might expect, the optional bldim= and ICTXT=

arguments are available. So with just a little bit of tweaking, the above example becomes:

Diagonal Matrices in pbdR� �
1 diag(x=0, nrow=10, ncol=10, type="ddmatrix") # zero (distributed)

matrix
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2 diag(x=1, nrow=10, ncol=10, type="ddmatrix") # identity

(distributed) matrix� �
In fact, the type= argument employs partial matching, so if we really want to be lazy, then we
could simply do the following:

Diagonal Matrices in pbdR� �
1 diag(x=0, nrow=10, ncol=10, type="d") # zero (distributed) matrix

2 diag(x=1, nrow=10, ncol=10, type="d") # identity (distributed)

matrix� �
Beyond the above brief explanation, the demo for this functionality is mostly self-contained,
although we do employ the redistribute() function to fully show off local data storage. This
function is explained in detail in Chapter˜10.

5.1.3 Random Matrices

Example: randomly generate distributed matrices with random normal data of specificed global
dimension.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(randmat_global ,'pbdDEMO ',ask=F,echo=F)"� �
This demo shows 3 separate ways that one can generate a random normal matrix with speci-
fied global dimension. The first two generate the matrix in full on at least one processor and
distribute(s) the data, while the last method generates locally only what is needed. As such,
the first two can be considered demonstrations with what to do when you have data read in on
one processor and need to distribute it out to the remaining processors, but for the purposes of
building a randomly generated distributed matrix, they are not particularly efficient strategies.

As described in the previous section, if we have a matrix x stored on processor 0 and NULL

on the others, then we can distribute it out as an object of class ddmatrix via the command
as.ddmatrix(). For example

� �
1 if (comm.rank()==0){

2 x <- matrix(rnorm (100), nrow=10, ncol =10)

3 } else {

4 x <- NULL

5 }

6

7 dx <- as.ddmatrix(x)� �
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will distribute the required data to the remaining processors. We note for clarity that this is
not equivalent to sending the full matrix to all processors and then throwing away all but what
is needed. Only the required data is communicated to the processors.

That said, having all of the data on all processors can be convenient while testing, if only for
being more minimalistic in the amount of code/thinking required. To do this, one need only do
the following:

� �
1 x <- matrix(rnorm (100) , nrow=10, ncol =10)

2

3 dx <- as.ddmatrix(x)� �
Here, each processor generates the full, global matrix, then throws away what is not needed.
Again, this is not efficient, but the code is concise, so it is extremely useful in testing. Now,
this assumes you are using the same seed on each processor. This can be managed using the
pbdMPI function comm.set.seed(), as in the demo script. For more information, see that
package’s documentation.

Finally, you can generate locally only what you need. The demo script does this via the pb-
dDMAT package’s ddmatrix() function. This is “new” behavior for this syntax (if you view
ddmatrix() as an extension of matrix()). Ordinarily you would merely execute something like

Creating a random normal matrix in serial R� �
1 x <- rnorm(n*p)

2 x <- matrix(x, nrow=n, ncol=p) # this creates a copy

3

4 y <- rnorm(n*p)

5 dim(y) <- c(n, p) # this does not� �
However, things are slightly more complicated with ddmatrix objects, and the user may not eas-
ily know ahead of time what the size of the local piece is just from knowing the global dimension.
Because this requires a much stronger working knowledge of the underlying data structure than
most will be comfortable with, we provide this simple functionality as an extension. However,
we note that the disciplined reader is more than capable of figuring out how it functions by
examining the source code and checking with the reference manual.

5.2 Fixed Local Dimension

Example: randomly generate distributed matrices with random normal data of specificed local
dimension.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by
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### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(randmat_local ,'pbdDEMO ',ask=F,echo=F)"� �
This is similar to the above, but with a critical difference. Instead of specifying a fixed global
dimension and then go determine what the local storage space is, instead we specify a fixed local
dimension and then go figure out what the global dimension should be. This can be useful for
testing weak scaling of an algorithm, where different numbers of cores are used with the same
local problem size.

To this end, the demo script utilizes the ddmatrix.local() function, which has the user specify
a local dimension size that all the processors should use, as well as a blocking factor and BLACS
context. Now here things get somewhat tricky, because in order for this matrix to exist at
all, each margin of the blocking factor must divide (as an integer) the corresponding margin of
the global dimension. To better understand why this is so, the reader is suggested to read the
pbdDMAT vignette. But if you already understand or are merely willing to take it on faith,
then you surely grant that this is a problem.

So here, we assume that the local dimension is chosen appropriately by the user, but it is possible
that a bad blocking factor is supplied by the user. Rather than halt with a stop error, we attempt
to find the next best blocking factor possible. To do this, we must find the smallest integer above
the specified blocking factor that will divide the number of local rows or columns.



6
Basic Examples

There is a deep part of the author that does not want to begin with these examples. There is a
real danger for the cursory observer to see these and hastily conclude that our work, or R as a
whole, is merely a “Matlab Clone.” Nothing could be further from reality.

Matlab is an amazing product. It costs quite a lot of money; it had better damn well be.
However, for statistics, machine learning, data mining — data science — we believe that R is
“better.” Is R faster? Emphatically, no. But we argue that R wins in other ways.

It is true that everything R can do, so too can Matlab; of course, the converse is also true —
that everything Matlab can do, R can do as well. Each is a turing complete language. But being
turing complete is not sufficient; LATEX is turing complete, and yet we do not perform scientific
computation in it (although of course it is unparalleled in typesetting). But we could.

The fact that we do not is an extension of the fact that math journals do not publish articles
written in C or Fortran. Those programming languages are the wrong mediums of abstraction
for expressing highly complicated ideas to domain experts. Only a madman would attempt to
express deep mathematical abstraction in these languages for publication (implementation being
an entirely separate issue). Likewise, we do not perform our statistical analyses in LATEX (don’t
be a pedant; we are not talking about sweave and you know it). People overwhelmingly choose
R for the analysis of data because it is the closest brain˜→˜computer translation available for
such problems.

Of course, this goes both ways. If your life is matrix algebra, then R is a much worse fit for
you than is Matlab. Much of statistics is applied matrix algebra, but not all matrix algebra is
statistics.

So we reluctantly press on with several basic examples utilizing distributed matrices. For meatier
examples, see Chapter˜7.
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6.1 Reductions and Transformations

6.1.1 Reductions

In Section˜5.1.2, we discussed the way that the diag() method may be utilized as a reduction
operator. We have numerous other reductions available, such as sum(), prod(), min(), and
max(). These operate exactly as their serial counterparts:

Reductions� �
1 library(pbdDMAT , quiet = TRUE)

2 init.grid()

3

4 dx <- ddmatrix(data =0:1, nrow=10, ncol =10)

5

6 sm <- sum(dx)

7 comm.print(sm)

8

9 pd <- prod(dx)

10 comm.print(pd)

11

12 mn <- min(dx)

13 comm.print(mn)

14

15 mx <- max(dx)

16 comm.print(mx)

17

18 finalize ()� �
We also offer some “super reductions”. It is possible to change a distributed matrix into a non-
distributed matrix or vector using the methods as.matrix() or as.vector(). For example:

Super Reductions� �
1 library(pbdDMAT , quiet = TRUE)

2 init.grid()

3

4 dx <- ddmatrix(data =0:1, nrow=10, ncol =10)

5 print(dx)

6

7 x <- as.matrix(dx)

8 comm.print(x)

9

10 finalize ()� �
These can be very useful in testing, but should be used sparingly at scale.
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6.1.2 Transformations

We also offer numerous in-place transformations, such as the various log() functions, abs(),
sqrt(), ceiling(), floor(), and round(). For example:

Transformations� �
1 library(pbdDMAT , quiet = TRUE)

2 init.grid()

3

4 comm.set.seed(diff = TRUE)

5

6 dx <- ddmatrix(data=-3:3, nrow=10, ncol =10)

7

8 dx <- ceiling(sqrt(abs(dx)))

9

10 x <- as.matrix(dx)

11 comm.print(x)

12

13 finalize ()� �
6.2 Matrix Arithmetic

We also offer a complete set of methods for distributed matrix arithmetic. With identical syntax
to R, we can do some reasonably complicated things, such as:

Transformations� �
1 library(pbdDMAT , quiet = TRUE)

2 init.grid()

3

4 dx <- ddmatrix(data=-3:3, nrow=10, ncol =10)

5 vec <- 1:2

6

7 dy <- (dx - vec) %*% dx

8

9 y <- as.matrix(dy)

10 comm.print(y)

11

12 finalize ()� �
For a full list of methods, see the pbdDMAT documentation.

One item worth noting is that, as with regular R, if the user wishes to compute XTX or XXT ,
then it is usually much faster to use the methods crossprod() and tcrossprod(), respectively.
However, for this operation, things are somewhat more complicated in the distributed sphere
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Figure 6.1: Covariance Benchmark Showing Effect of Parameter Calibration

than in serial. Figure˜6.1 shows the results of a benchmark of the cov() method for computing
variance-covariance matrices (which is just a small amount of extra work on top of crossprod()).
Here, each run consists of 25 replicates of calling cov() (which calls crossprod()) and then
reporting the average run time. The changes in parameters are subtle, but the effects are
enormous. Sometimes is may be (much) more beneficial to use t(x) %*% x. Others it may not.
Proper calibration of these parameters to achieve optimal performance for a given task is still
somewhat of an open question to the HPC community.

6.3 Matrix Factorizations

In addition to all of the above, we also provide several of the more important matrix factoriza-
tions for distributed matrices. Namely, the singular value decomposition svd()/La.svd(), QR
factorization qr(), Cholesky factorization chol(), and LU factorization lu(). So for example:

Matrix Factorizations� �
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1 library(pbdDEMO , quiet = TRUE)

2 init.grid()

3

4 comm.set.seed(diff = TRUE)

5

6 dx <- ddmatrix("rnorm", nrow=10, ncol=10, bldim =2)

7

8 out <- chol(crossprod(dx))

9 print(out)

10

11 finalize ()� �
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Advanced Statistics Examples

The pbdDMAT package contains many useful methods for doing computations with distributed
matrices. For comprehensive (but shallow) demonstrations of the distributed matrix methods
available, see the pbdDMAT package’s vignette and demos.

Here we showcase a few more advanced things that can be done by chaining together R and
pbdR code seamlessly.

7.1 Sample Mean and Variance Revisited

Example: Get summary statistics from a distributed matrix.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(sample_stat_dmat ,'pbdDEMO ',ask=F,echo=F)"� �
Returning to the sample statistics problem from Section˜4.2, we can solve these same problems˜—
and then some˜— using distributed matrices. For the remainder, suppose we have a distributed
matrix dx.

Computing a mean is simple enough. We need only call

Summary Statistics� �
1 mean(dx)� �

We also have access to the other summary statistics methods for matrices, however, such as
rowSums(), rowMeans(), etc. Furthermore, we can calculate variances for distributed matrices.
Constructing the variance-covariance matrix is as simple as calling
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Summary Statistics� �
1 cov(dx)� �

Or we could generate standard deviations column-wise, using the method R suggests for ordinary
matrices using apply()

Summary Statistics� �
1 apply(dx, MARGIN=2, FUN=sd)� �

or we could simply call

Summary Statistics� �
1 sd(dx)� �

In R, calling sd() on a matrix issues a warning, telling the user to instead use apply(). Either
of these approaches works with a distributed matrix (with the code as above), but for us, using
sd() is preferred. This is because, as outlined in Section˜10.2, our apply() method carries an
implicit data redistribution with it, while the sd() method is fast, ad-hoc code which requires
no redistribution of the data.

7.2 Verification of Distributed System Solving

Example: Solve a system of equations and verify that the solution is correct.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(verify ,'pbdDEMO ',ask=F,echo=F)"� �
The pbdDEMO contains a set of verification routines, designed to test for validity of the numer-
ical methods at any scale. Herein we will discuss the verification method for solving systems of
linear equations, verify.solve().

The process is simple. The goal is to solve the equation (in matrix notation)

Ax = b

for n× n matrix A and n× 1 matrix b. However, here we start with A and x and use these to
produce b. We then forget we ever knew what x was and solve the system. Finally, we remember
what x really should be and compare that with our numerical solution.

More specifically, we take the matrix A to be random normal generated data and the true
solution x to be a constant vector. We then calculate

b := Ax
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and finally the system is solve for a now (pretend) unknown x, so that we can compare the nu-
merically determined x to the true constant x. All processes are timed, and both success/failure
and timing results are printed for the user at the completion of the routine. This effectively
amounts to calling:

Verifying Distributed System Solving� �
1 # generating data

2 timer({

3 x <- ddmatrix("rnorm", nrow=nrows , ncol=ncols)

4 truesol <- ddmatrix (0.0, nrow=nrows , ncol =1)

5 })

6

7 timer({

8 rhs <- x %*% truesol

9 })

10

11 # solving

12 timer({

13 sol <- solve(x, rhs)

14 })

15

16 # verifying

17 timer({

18 iseq <- all.equal(sol , truesol)

19 iseq <- as.logical(allreduce(iseq , op='min'))
20 })� �

with some added window dressing.

7.3 Compression with Principal Components Analysis

Example: Take PCA and retain only a subset of the rotated data.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(pca ,'pbdDEMO ',ask=F,echo=F)"� �
Suppose we wish to perform a principal components analysis and retain only some subset of
the columns of the rotated data. One of the ways this is often done is by using the singular
values — the standard deviations of the components — as a measure of variation retained by
a component. However, the first step is to get the principal components data. Luckily this is
trivial. If our data is stored in the distributed matrix object dx, then all we need to is issue the
command:
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� �
1 pca <- prcomp(x=dx, retx=TRUE , scale=TRUE)� �

Now that we have our PCA object (which has the same structure as that which comes from
calling prcomp() on an ordinary R matrix), we need only decide how best to throw away what
we do not want. We might want to retain at least as many columns as would be needed to retain
90% of the variation of the original data:

� �
1 prop_var <- cumsum(pca$sdev)/sum(pca$sdev)

2 i <- min(which(prop_var > 0.9))

3

4 new_dx <- pca$x[, 1:i]� �
Or we might want one fewer column than the number that would give us 90%:

� �
1 prop_var <- cumsum(pca$sdev)/sum(pca$sdev)

2 i <- max(min(which(prop_var > 0.9)) - 1, 1)

3

4 new_dx <- pca$x[, 1:i]� �
7.4 Predictions with Linear Regression

Example: Fit a linear regression model and use it to make a prediction on new data.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(ols_dmat ,'pbdDEMO ',ask=F,echo=F)"� �
Suppose we have some predictor variables stored in the distributed n × p matrix dx and a
response variable stored in the n × 1 distributed matrix dy, and we wish to use the ordinary
least squares model from (4.6) to make a prediction about some new data, say dy.new. Then
this really amounts to just a few simple commands, namely:

� �
1 mdl <- lm.fit(dx, dy)

2

3 pred <- dx.new %*% mdl$coefficients

4

5 comm.print(submatrix(pred), quiet=T)� �
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8
Reading CSV and SQL Files

As we mentioned at the beginning of the discussion on distributed matrix methods, most of the
hard work in using these tools is getting the data into the right format. Once this hurdle has
been overcome, the syntax will magically begin to look like native R syntax. Some insights into
this difficulty can be seen in the previous section, but now we tackle the problem head on: how
do you get real data into the distributed matrix format?

8.1 CSV Files

Example: Read data from a csv directly into a distributed matrix.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(read_csv ,'pbdDEMO ',ask=F,echo=F)"� �
It is simple enough to read in a csv file serially and then distribute the data out to the other
processors. This process is essentially identical to one of the random generation methods in
Section˜5.1.3. For the sake of completeness, we present a simple example here:

� �
1 if (comm.rank()==0){ # only read on process 0

2 x <- read.csv("myfile.csv")

3 } else {

4 x <- NULL

5 }

6

7 dx <- as.ddmatrix(x)� �
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However, this is inefficient, especially if the user has access to a parallel file system. In this case,
several processes should be used to read parts of the file, and then distribute that data out to the
larger process grid. Although really, the user should not be using csv to store large amounts of
data because it always requires a sort of inherent“serialness”. Regardless, a demonstration of how
this is done is useful. We can do so via the pbdDEMO package’s function read.csv.ddmatrix

on an included dataset:

Reading a CSV with Multiple Readers� �
1 dx <- read.csv.ddmatrix("../extra/data/x.csv",

2 sep=",", nrows=10, ncols=10,

3 header=TRUE , bldim=4,

4 num.rdrs=2, ICTXT =0)

5

6 print(dx)� �
The code powering the function itself is quite complicated, going well beyond the scope of this
document. To understand it, the reader should see the advanced sections of the pbdDMAT
vignette.

8.2 SQL Databases

Example: Read data from a sql database directly into a distributed matrix.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(read_sql ,'pbdDEMO ',ask=F,echo=F)"� �
Just as above, we can use a SQL database to read in our data, powered by the sqldf package
(Grothendieck, 2012). Here it is assumed that the data is stored in the database in a structure
that is much the same as a csv is stored on disk. Internally, the query performed is:

� �
1 sqldf(paste("SELECT * FROM ", table , " WHERE rowid = 1"),

dbname=dbname)� �
To use a more complicated query for a database with differing structure, it should be possible
(no promises) to substitute this line of the read.sql.ddmatrix() function for the desired query.
However, as before, much of the rest of the tasks performed by this function go beyond the scope
of this document. However, they are described in the pbdBASE package vignette.
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8.3 Exercises

8-1 In Section˜8.1, we have seen an CSV reading example, however, this is not an efficient way
for large CSV files by calling read.csv. The R functions con <- file(...) can open
a connection to the CSV files and readLines(con, n = 100000) can access a chunk of
data (100, 000 lines) from disk more efficiently. Implement a simple function as read.csv
and compare performance.

8-2 As Exercise˜8-1, implement a simple function by utilizing writeLines() for writing large
CSV file and compare performance to the write.csv.
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Parallel NetCDF4 Files

9.1 Introduction

Network Common Data Form version 4 (NetCDF4) is a self-describing, machine-independent
data formats and mainly support array-oriented scientific data. The NetCDF4 library is available
on the website at http://www.unidata.ucar.edu/software/netcdf. The NetCDF4 is built on
top of HDF5 data model for extremely large and complex data collections. i.e. The NetCDF4 is
a subset of HDF5 but with enhanced features. The HDF5 library is available on the website at
http://www.htfgroup.org/HDF5/. The both libraries provide high-performance functionalities
to create, access, read, write, and modify NetCDF4 files. The R package ncdf4˜(Pierce, 2012)
mainly provides interface for NetCDF4 libraries and a short summary of major functions is given
in the Table˜9.1

In high-performance computing, NetCDF4 and HDF5 do provide capability for multiple pro-
cessors collectively accessing to the same file. To enable this mechanism, HDF5 and NetCDF4
are required to be compiled and linked against MPI libraries. Along with parallel HDF5 and
NetCDF4 libraries, the R package pbdNCDF4˜(Patel et˜al., 2013a) is a parallel version of ncdf4
and provides functions for collectively accessing to the same NetCDF4 file for multiple processors.
Users are encouraged to read the vignette˜(Patel et˜al., 2013b) of pbdNCDF4 which including
installation infromation of parallel HDF5 and NetCDF4 and demonstration of parallel-enable
functions. The Table˜9.1 also lists the the major functions of pbdNCDF4.

The pbdDEMO has an example dataset TREFHT from a Community Atmosphere Model (CAM)
version 5 simulation output. The CAM is a series of global atmosphere models originally de-
veloped at the National Center for Atmospheric Research (NCAR) and currently guided by
Atmosphere Model Working Group (AMWG) of the Community Earth System Model (CESM)
project. CAM version 5 (CAM5) is the latest standalone model modified substantially with a
range of enhancements and improvement in the representation of physical processes since version
4˜(Eaton, 2011; Vertenstein et˜al., 2011).

The data TREFHT as shown in the Figure˜9.1 is taken from monthly averaged temperature at ref-
erence height of January 2004. This dataset is about three megabytes and is a tiny part of ultra-
large simulations conducted by Mr Prabhat and Michael Wehner of Lawrence Berkeley National

http://www.unidata.ucar.edu/software/netcdf
http://www.htfgroup.org/HDF5/
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Table 9.1: Functions from pbdNCDF4 and ncdf4 for accessing NetCDF4 files

Package Function Purpose

pbdNCDF4
nc_create_par Create a NetCDF4 file in parallel
nc_open_par Open a NetCDF4 file in parallel
nc_var_par_access Specify parallel variable

ncdf4
nc_create Create a NetCDF4 file
nc_open Open a NetCDF4 file

ncdim_def Define data dimension
pbdNCDF4 ncvar_def Define a variable

& ncvar_put Write data to a NetCDF4 file
ncdf4 ncvar_get Read data from a NetCDF4 file

nc_close Close a NetCDF4 file

Laboratory. The simulations run from 1987 to 2005 over 1152 longitudes (lon), 768 latitudes
(lat), and 30 altitudes (lev). The total amount of simulation outputs is over 200 Terabytes which
are summarized and averaged including monthly-averaged, daily-averaged, and three-hours-
averaged data. More datasets are available on ESGF (http://www.earthsystemgrid.org/)
through the C20C project (on the NERSC portal).

The TREFHT$def contains all definitions regarding to this variable in class ncvar4 includ-
ing locations, dimensions, units, variable size, data storage, missing values, ... etc. The
TREFHT$def$size gives the data dimensions which are (lon, lat, time) = (1152, 768, 1). Since
this data is monthly averaged of Jan. 2004, it is stored as an one-time step output which is an
averaged slice among 20 years. The TREFHT$data contins the values of each location and is a
matrix with dimension 1152×768. Note that the column (lon) is in x-axis direction and the row
(lat) is in y-axis direction.

Example: Temperature at reference height (TREFHT).

In an R session (interactive mode), run the demo by

R Code� �
R> demo(trefht , 'pbdDEMO ', ask = F, echo = F)� �
This will show a plot as the Figure˜9.1 providing a visualization about this variable and how
temperatures are vary across locations, particularly decreasing in latitudes. Moreover, the South
hemisphere is hoter than the North hemisphere since the seasonal effect.

9.2 Parallel Write and Read

Example: Dump a ddmatrix to a NetCDF4 file and load them from disk.

The demo command is

Shell Command� �

http://www.earthsystemgrid.org/
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Figure 9.1: Monthly averaged temperature at reference height (TREFHT) in Kelvin (K) for the
January 2004. Water freezes at 273.15K and boils at 373.15K.

### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(nc4_dmat ,'pbdDEMO ',ask=F,echo=F)"� �
Main part of the demo is given in the next:

nc4 dmat� �
1 ### divide data into ddmatrix

2 x <- TREFHT$data

3 dx <- as.ddmatrix(x)

4

5 # define dimension and variable

6 lon <- ncdim_def("lon", "degree_east", vals =

TREFHT$def$dim [[1]]$vals)

7 lat <- ncdim_def("lat", "degree_north", vals =

TREFHT$def$dim [[2]]$vals)

8 var.def <- ncvar_def("TREFHT", "K", list(lon = lon , lat = lat),

NULL)

9
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10 ### parallel write

11 file.name <- "nc4_dmat.nc"

12 nc <- nc_create_par(file.name , var.def)

13 ncvar_put_dmat(nc, "TREFHT", dx)

14 nc_close(nc)

15 if(comm.rank() == 0){

16 ncdump(file.name)

17 }

18

19 ### parallel read (everyone owns a portion)

20 nc <- nc_open_par(file.name)

21 if(comm.rank() == 0){

22 print(nc)

23 }

24 new.dx <- ncvar_get_dmat(nc , "TREFHT", bldim = bldim(dx), ICTXT =

ctxt(dx))

25 nc_close(nc)� �
Line 2 and 3 convert TREFHT$data into a ddmatrix distributed across 4 processors. Line 6 and
7 define the dimensions lon and lat for longitudes and latitudes, and line 8 defines var.def as
the dumping variable for “TREFHT” according to the dimensions. Line 12, 13, and 14 create a
parallel NetCDF4 file nc4_dmat.nc, write the data into the variable on the disk, and close the
file. Line 20, 24, and 25 open the file again and read the data from the variable from the data
and convert them to a ddmatrix.

Note that ncvar_put_dmat() and ncvar_get_dmat() are implemented for 2D variable only.
Please use pbdNCDF4/ncdf4 primitive functions ncvar_put() and ncvar_get() via arguments
start and count for more complicated cases. For example, we may write the TREFHT into a
slice of a hypercube according to it’s time step (Jan. 2004).

9.3 Exercises

9-1 The demo code demo/nc4_serial.r of pbdDEMO has a serial version of writing and
reading TREHFT as using ncdf4 on a single NetCDF4 file nc4_serial.nc. It is in the sense
of single processor programming and has low cost if file is not too big. It is tedious but
possible for multiple processors to write a single file with carefully manual barrier and
synchronization. Modify demo/nc4_serial.r for writing with multiple processors.

9-2 It is also possible to read whole chunk of data from a single processor and distribute data
later manually. Modify the demo code demo/nc4_parallel.r to accomplish this goal and
make performance comparisons.

9-3 Implement functions or add arguments to ncvar_put_dmat() and ncvar_get_dmat() to
enable writing and reading high dimension data, for example, (lon, lat, time) is 2D in time
(3D cube) or (lon, lat, lev, time) is 3D in time (4D hypercube). Dump TREFHT to a slice of
3D cube and load them back to a ddmatrix.
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9-4 In the Sections˜10.3 and ˜10.4, we introduce simple matrix distributed formats spmdr and
spmdc similar to the BLACS contexts ICTXT 2 and 1 with very large block size. The demo
code demo/nc4_spmdc.r implements similar functionality as for ddmatrix, but for spmdc

format only. Modify the demo code for spmdr format. Hint: See the Exercise˜10-4.
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Redistribution Methods

One final challenge similar to, but distinct from reading in data is managing data which has
already been read into the R processes. Throughout this chapter, we will be making reference to
several particulars to the block-cyclic data type used for objects of class ddmatrix. In particular,
a working knowledge of the block-cyclic data structure and their relationship with BLACS
contexts is most useful for the content to follow. As such, the reader is strongly encouraged to
be familiar with the content of the pbdDMAT vignette before proceeding.

10.1 Distributed Matrix Redistributions

Example: Convert between different distributed matrix distributions.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(reblock ,'pbdDEMO ',ask=F,echo=F)"� �
The distributed matrix class ddmatrix has two components which can be specified, and modified,
by the user to drastically affect the composition of the distributed matrix. In particular, these
are the object’s block-cyclic blocking factor bldim, and the BLACS communicator number CTXT
which sets the 2-dimensional processor grid.

Thankfully, redistributing is a fairly simple process; though we would emphasize that this is
not free of cost. Reshaping data, especially at scale, can be much more expensive in total
than even computation time. That said, sometimes data must move. It is better to get the
job done slowly than to “take your ball and go home” with no results. But we caution that if
redistribution can be avoided, then it should, at all costs.

The demo relies on a utility from the pbdBASE package, namely redistribute(). As the
name implies, this method is for “reshaping” a block-cyclically distributed matrix of one kind to
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another. Specifically, this takes an object of class ddmatrix as both an input and an output; i.e.,
and to emphasize the title of the chapter, this is not a method of distribution but redistribution.

For example, if I have a distributed matrix dx and I wish to reshape the distributed matrix so
that it now has blocking dimension newbldim and is distributed across BLACS context newCTXT,
then I need merely call:

� �
1 dy <- redistribute(dx, bldim=newbldim , ICTXT=newCTXT)� �

Assuming the data is block cyclic of any kind, including degenerate cases, we can convert it to
a block cyclic format of any other kind we wish via this redistribute() function. The only
requirement is that the two different distributions have at least 1 processor in common, and so
using the default BLACS contexts (0, 1, and 2) is always acceptable.

10.2 Implicit Redistributions

There are several useful functions which apply to distributed matrices, but require a data re-
distribution as in Section˜10, whether the user realizes it or not. These functions are listed in

Function Example Package Effect

‘[‘ dx[, -1] pbdBASE Row/Column extraction and subsetting
na.exclude() na.exclude(dx) pbdBASE Drop rows with NA’s
apply() apply(dx, 2, sd) pbdDMAT Applies function to margin

Table 10.1: Distributed Matrix Methods with Implicit Data Redistributions

Table˜10.1. By default, these functions will re-distribute back to the original data distribution
after having performed the initial (necessary) redistribution and performed the requested op-
erations. That is, by default, the problem of managing different data distributions is hidden
from the user and entirely implicit. However, there are advantages to becoming familiar with
managing these data distributions, because each of these functions has the option to have redis-
tribution directly managed. Now, a data redistribution must occur to use these functions, but
understanding which and why can help minimize the number of redistributions performed.

Many of the full details, such as why the redistributions need occur in the first place, are outlined
in the pbdDMAT vignette, but we provide a simple example here. Suppose we have a distributed
matrix dx distributed on the default grid (i.e., BLACS context 0) and we wish to drop the first
column and then use the apply() function to extract the p-values, column-wise, of the result
of running the Shapiro-Wilk normality test independently on the columns. No one is claiming
that this is a wise thing to do, but it is useful for the purpose of demonstration.

To achieve this, we could execute the following:

Implicit Redistributions� �
1 dx <- dx[-1, ]
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2

3 result <- apply(dx, MARGIN=2, FUN=function(col)

shapiro.test(col)$p, reduce=TRUE)� �
In reality, underneath this is actually performing the following sequence of operations:

Implicit Redistributions� �
1 dx <- redistribute(dx, ICTXT =2)

2 dx <- dx[, -1]

3 dx <- redistribute(dx, ICTXT =0)

4

5 dx <- redistribute(dx, ICTXT =2)

6 result <- apply(dx, MARGIN=2, FUN=function(col)

shapiro.test(col)$p, reduce=TRUE)� �
Or suppose we wanted instead to drop the first column; then this is equivalent to

Implicit Redistributions� �
1 dx <- redistribute(dx, ICTXT =1)

2 dx <- dx[, -1]

3 dx <- redistribute(dx, ICTXT =0)

4

5 dx <- redistribute(dx, ICTXT =2)

6 result <- apply(dx, MARGIN=2, FUN=function(col)

shapiro.test(col)$p, reduce=TRUE)� �
The problem should be obvious. However, thoroughly understanding the problem, we can easily
manage the data redistributions using the ICTXT= option in these function. So for example, we
can minimize the redistributions to only the minimal necessary amount with the following:

Implicit Redistributions� �
1 dx <- dx[, -1, ICTXT =2]

2

3 result <- apply(dx, MARGIN=2, FUN=function(col)

shapiro.test(col)$p, reduce=TRUE)� �
This is equvalent to explicitly calling:

Implicit Redistributions� �
1 dx <- redistribute(dx, ICTXT =2)

2 dx <- dx[, -1, ICTXT =2]

3

4 result <- apply(dx, MARGIN=2, FUN=function(col)

shapiro.test(col)$p, reduce=TRUE)� �
This is clearly preferred. For more details, see the relevant function documentation.
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10.3 Load Balance and Unload Balance

Example: Load balancing (and unbalancing) distributed data.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(balance ,'pbdDEMO ',ask=F,echo=F)"� �
Suppose we have an unbalanced, distributed input matrix X.spmd. We can call balance.info()
on this object to store some information about how to balance the data load across all processors.
This can be useful for tracking data movement, as well as for“unbalancing” later, if we so choose.
Next, we call load.balance() to obtain a load-balanced object new.X.spmd. We can also now
undo this entire process and get back to X.spmd by calling unload.balance() on new.X.spmd.

All together, the code looks something like:

R Code� �
bal.info <- balance.info(X.spmd)

new.X.spmd <- load.balance(X.spmd , bal.info)

org.X.spmd <- unload.balance(new.X.spmd , bal.info)� �
The details of this exchange are depicted in the example in Figure˜10.1. Here, X.spmd is unbal-
anced, and new.X.spmd is a balanced version of X.spmd.

X.spmd(org.X.spmd) new.X.spmd

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3
x5,1 x5,2 x5,3
x6,1 x6,2 x6,3
x7,1 x7,2 x7,3
x8,1 x8,2 x8,3
x9,1 x9,2 x9,3
x10,1 x10,2 x10,3



load.balance()

−→

←−
unload.balance()



x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3
x5,1 x5,2 x5,3
x6,1 x6,2 x6,3
x7,1 x7,2 x7,3
x8,1 x8,2 x8,3
x9,1 x9,2 x9,3
x10,1 x10,2 x10,3


Figure 10.1: Load Balancing/Unbalancing Data: X is distributed in X.spmd(org.X.spmd) and
new.X.spmd. Both are distributed row-wise in 4 processors. The colors represent processors 0,
1, 2, and 3, respectively.

The function balance.info() is extremely useful, because it will return the information used
to load balance the given data X.spmd. The return of balance.info() is a list consisting of two
dataframes, send and recv, as well as two vectors, N.allspmd and new.N.allspmd.

Here, send records the original processor rank and the destination processor rank of the unbal-
anced data (that which is to be transmitted by that processor). The load.balance() function
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uses this table to move the data via pbdMPI’s isend() function. If any “destination rank”
is not the “original rank”, then the corresponding data row will be moved to the appropriate
processor. On the other hand, recv records the original processor rank and the destination rank
of balanced data (that which is received by that processor).

The N.allspmd and new.N.allspmd objects both have length equal to the communicator con-
taining all numbers of rows of X.spmd before and after the balancing, respectively. This is for
double checking and avoiding a 0-row matrix issue.

For unload.balance, the process amounts to reversing bal.info and passing it to load.balance.

Finally, note that the “balanced” data is chosen to be balanced in a very particular way; it is
arguably not “balanced”, since 3 processors own 3 rows while 1 owns 1 row, and it is perhaps
more balanced to have 2 processors own 3 rows and 2 own 2. However, we make this choice
for the reason that our “balanced” data will always be a certain kind of degenerate block-cyclic
structure. We will discuss this at length in the following section.

10.4 Convert Between SPMD and DMAT

Example: Convert between SPMD and DMAT formats.

The demo command is

Shell Command� �
### At the shell prompt , run the demo with 4 processors by

### (Use Rscript.exe for windows system)

mpiexec -np 4 Rscript -e "demo(spmd_dmat ,'pbdDEMO ',ask=F,echo=F)"� �
The final redistribution challenge we will present is taking an object in SPMD format and putting
it in the DMAT format. More precisely, we assume the input object X.spmd is in SPMD and
convert the object into an object of class ddmatrix which we will call X.dmat.

The Figure˜10.2 illustates an example X.spmd and X.dmat conversion. For full details about the
block-cyclic data format used for class ddmatrix, see the pbdDMAT vignette.

To perform such a redistribution, one simply needs to call:

R Code� �
X.dmat <- spmd2dmat(X.spmd)� �
or

R Code� �
X.spmd <- dmat2spmd(X.dmat)� �
Here, the spmd2dmat function does the following:

1. Check number of columns of X.spmd. All processors should be the same.
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X.spmd X.dmat

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3
x5,1 x5,2 x5,3
x6,1 x6,2 x6,3
x7,1 x7,2 x7,3
x8,1 x8,2 x8,3
x9,1 x9,2 x9,3
x10,1 x10,2 x10,3



spmd2dmat

−→

←−
dmat2spmd



x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3
x5,1 x5,2 x5,3
x6,1 x6,2 x6,3
x7,1 x7,2 x7,3
x8,1 x8,2 x8,3
x9,1 x9,2 x9,3
x10,1 x10,2 x10,3


Figure 10.2: Converting Between SPMD and DMAT: X is distributed in X.spmd and X.dmat.
Both are distributed in 4 processors where colors represents processor 0, 1, 2, and 3. Note that
X.dmat is in block-cyclic format of 2× 2 grid with 2× 2 block dimension.

2. Row balance the SPMD matrix as necessary via load.balance() as in Section˜10.3.

3. Call construct a new ddmatrix object (via the new() constructor) on the balanced matrix,
say X.dmat, in BLACS context 2 (ICTXT = 2).

4. Redistribute X.dmat to another BLACS context as needed (default ICTXT = 0) via the
base.reblock() function as in Section˜10.1.

Note that the load.balance() function, as used above, is legitimately necessary here. Indeed,
this function takes a collection of distributed data and converts it into a degenerate block cyclic
distribution; namely, this places the data in block “1-cycle” format, distributed across an n× 1
processor grid. In the context of Figure˜10.2 (where the aforementioned process is implicit),
this is akin to first moving the data into a distributed matrix format with bldim=c(3,3) and
CTXT=2. Finally, we can take this degenerate block-cyclic distribution and again to Figure˜10.2
as our motivating example, we convert the data balanced data so that it has bldim=c(2,2) and
CTXT=0.

10.5 Exercises

10-1 In the Sections˜10.3 and 10.4, we have seen the load balance of SPMD matrix and the
conversion between SPMD and DMAT where SPMD matrices X.spmd are presumed in row-
major as shown in the Firgures˜10.1 and 10.2. Create new functions spmdr2spmdc() and
spmdc2spmdr() converting between row-major and column-major by utilizing functions
spmd2dmat() and dmat2spmd() and changing their option spmd.major.

10-2 The demo code demo/spmd_dmat.r of pbdDEMO has a SPMD row-major matrix X.spmd.
Utilize the functions developed in the Exercise˜10-1. Convert X.spmd to a column-major
matrix new.X.spmdc by calling spmdr2spmdc(), then convert new.X.spmdc back to a row-
major matrix new.X.spmdr by calling spmdc2spmdr(). Check if new.X.spmdr were the
same as X.spmd.
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10-3 In pbdDEMO, there are some internal functions demo.spmdr2dmat(), demo.spmdc2dmat(),
demo.dmat2spmdr(), and demo.dmat2spmdc() which have similar implementations as the
functions spmdr2spmdc() and spmdc2spmdr() of the Exercise˜10-1. Utilize these func-
tions as templates. Create a function spmd2spmd() with an argument new.major (1, 2)
for designated row- or column-majors. Return warnings or errors if the input matrix is
not convertible.

10-4 The demo code demo/nc4_spmdc.r of pbdDEMO is an example utilizing SPMD column-
major matrix X.spmdc and dumps the matrix into a NetCDF4 file. Adjust the code.
Create a SPMD row-major matrix X.spmdr and dump the matrix to a new NetCDF4 file
nc4_spmdr.nc by utilizing the function ncvar_put_spmd() with option spmd.major = 1.
Verify that all TREFHT values of both nc4_spmdc.nc and nc4_spmdr.nc are identical. Hint:
The local matrix of a SPMD row- or column-major matrix is still row-major as the default
of R.

10-5 The load.balance() and unload.balance() have a potential bug when data size is small
and can not fit into the desired block size of a block-cyclic matrix. For instance, four
processes in a SPMD row-major format with a matrix 5× 1. The two functions will (un-)
balance the data in 2 × 1 in process 0, and 1 × 1 in others. If the desired block size is 2,
then the data should be 2× 1 in processes 0 and 1, 1× 1 in process 2, and no element for
processor 3. Does any way to fix these two functions?



A
Numerical Linear Algebra and Linear Least Squares Problems

For the remainder, assume that all matrices are real-valued.

Let us revisit the problem of solving linear least squares problems, introduced in Section˜4.5.
Recall that we wish to find a solution β such that

||Xβ − y||22
In the case that X is full rank (which is often assumed, whether reasonable or not), this has
analytical solution

β̂ = (XTX)−1XTy (A.1)

However, even with this nice closed form, implementing this efficiently on a computer is not
entirely straightforward. Herein we discuss several of the issues in implementing the linear least
squares solution efficiently. For simplicity, we will assume that X is full rank, although this
is not necessary — although rank degeneracy does complicate things. For more details on the
rank degeneracy problem, and linear least squares problems in general, see the classic Matrix
Computations (Golub and Van˜Loan, 1996).

A.1 Forming the Normal Equations

If we wish to implement this numerically, then rather than directly computing the inverse of
XTX directly, we would instead compute the Cholesky factorization

XTX = LLT

where L is lower triangular. Then turning to the so-called “normal equations”(
XTX

)
β = XTy (A.2)

by simple substitution and grouping, we have

L
(
LTβ

)
= XTy
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Now, since L is triangular, these two triangular systems (one forward and one backward sub-
stitution found by careful grouping of terms above) can be solved in a numerically stable way
(Higham, 2002). However, forming the Cholesky factorization itself suffers from the effects of
roundoff error in having to form the product XTX. We elaborate on this to a degree in the
following section.

A.2 Using the QR Factorization

Directly computing the normal equations is ill advised, because it is often impossible to do so
with adequate numerical precision. To fully appreciate this problem, we must entertain a brief
discussion about condition numbers.

By definition, if a matrix has finite condition number, then it must have been invertible. However,
for numerical methods, a condition number which is “big enough” is essentially infinite (loosely
speaking). And observe that forming the product XTX squares the condition number of X:

κ
(
XTX

)
=
∣∣∣∣∣∣XTX

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣(XTX
)−1

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣XTX

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣X−1
(
XT

)−1
∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣XT

∣∣∣∣∣∣ ||X|| ∣∣∣∣∣∣X−1
∣∣∣∣∣∣ ∣∣∣∣∣∣X−T

∣∣∣∣∣∣
= ||X|| ||X||

∣∣∣∣∣∣X−1
∣∣∣∣∣∣ ∣∣∣∣∣∣X−1

∣∣∣∣∣∣
= ||X||2

∣∣∣∣∣∣X−1
∣∣∣∣∣∣2

= κ(X)2

So if κ (X) is “large”, then forming this product can lead to large numerical errors when at-
tempting to numerically invert or factor a matrix, or solve a system of equations.

To avoid this problem, the orthogonal QR-decomposition is typically used. Here we take

X = QR

where Q is orthogonal and R is upper trapezoidal (n the overdetermined case, R is triangular).
This is beneficial, because orthogonal matrices are norm-preserving, i.e. Q is an isometry, and
whence

||Xβ − y||2 = ||QRβ − y||2
=
∣∣∣∣∣∣QTQRβ −QTy

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣Rβ −QTy

∣∣∣∣∣∣
2

This amounts to solving the triangular system

Rβ = QTy
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As noted in Section˜A.1, solving this system can be done in a numerically stable fashion (and
the high performance libraries employed by both R and pbdR use stable implementations). The
key difference here is that the QR factorization is of X, not XTX, and so we need only worry
about the conditioning of X (as opposed to its squared condition number).

While this method is much less prone to the numerical issues discussed above, it is much slower
computationally. Additionally, we note that unlike the method in forming the normal equations,
this method can be extended to the rank degenerate case.

A.3 Using the Singular Value Decomposition

There is another, arguably much more well-known matrix factorization which we can use to
develop yet another analytically equivalent solution to the least squares problem, namely the
Singular Value Decomposition (SVD). Using this factorization leads to a very elegant solution,
as is so often the case with the SVD.

Note that in (A.1), the quantity

(XTX)−1XT

is the Moore-Penrose inverse of X. So if we take

X = UΣV T

to be the SVD of X, then we have

X+ =
(
XTX

)−1
XT

=
((
UΣV T

)T (
UΣV T

))−1
UΣV T

=
(
V ΣT ΣV T

)−1
V ΣTUT

= V

((
ΣT Σ

)−1
ΣT
)
UT

= V Σ+UT

Whence,

β = V Σ+UTy

Conceptually, this is arguably the most elegant method of solving the linear least squares prob-
lem. Additionally, as with the QR method above, with slight modification the above argument
can extend to the rank degenerate case; however, we suspect that the SVD is much more well
known to mathematicians and statisticians than is the QR decomposition. This abstraction
comes at a great cost, though, as this approach is handily the most computationally intensive
of the three presented here.



B
Linear Regression and Rank Degeneracy in R

In the case thatX is rank deficient, thenX (and whenceXTX) is not invertible, so the problem
can not be solved by the method of Section˜A.1. Both R and pbdR use a QR factorization as
in Section˜A.2, although the two systems use a slightly different approach. While most of the
linear algebra in R is handled by LAPACK (Anderson et˜al., 1999), arguably the most important
numerical function in all of R, namely lm.fit() used by lm() to fit linear regression models,
uses LINPACK (Dongarra et˜al., 1979). By comparison to LAPACK, LINPACK is much less
sophisticated. However, pbdR uses level 3 PBLAS and ScaLAPACK (the distributed equivalent
of using level 3 BLAS and LAPACK) to fit linear regression models.

The LINPACK routines used by R are DQRLS, which calls a modified DQRDC2 to compute a rank-
revealing QR factorization with a “limited pivoting strategy” (more on this later). Finally, DQRSL
is called to apply the output of the QR factorization to compute the least squares soluations.
By contrast, pbdR uses a modified PDGELS routine, which uses a version of PDGEQPF modified to
use R’s “limited pivoting strategy”, and then calls PDORMQR to fit the least squares solution.

Neither approach assumes that the model matrix is full rank. Instead, the methods are rank-
revealing, in that they attempt to discover the numerical rank while computing the orthogonal
factorization. However, both R and (for the sake of consistency) pbdR use a “limited pivoting
strategy” (with language, we believe, due to Ross Ihaka) in determining numerical rank. Gen-
erally when computing a QR with pivoting, for the sake of numerical stability one chooses the
column with largest partial norm while forming the Householder reflections. However, in doing
so it is possible to permute the columns in such a way that a desired statistical interpretation
(such as in an ANOVA) is destroyed. The solution employed by R is to merely iterate over the
columns and choose the current column as the pivot each time. When a column is detected to
have “small” partial norm, it is pushed to the back. The author of these modification writes:

a limited column pivoting strategy based on the 2-norms of the reduced columns
moves columns with near-zero norm to the right-hand edge of the x matrix. this
strategy means that sequential one degree-of-freedom effects can be computed in a
natural way.

i am very nervous about modifying linpack code in this way. if you are a computa-
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tional linear algebra guru and you really understand how to solve this problem please
feel free to suggest improvements to this code.

So in this way, if a model matrix is full rank, then the estimates coming from R should be
considered at least as trustworthy as probably every other statistical software package of note.
If it is not, then this method presents a possible numerical stability issue; although to what
degree, if any at all, this is actually a problem, the authors at present have no real knowledge. If
numerical precision is absolutely paramount, consider using the SVD to solve the least squares
problem; though do be aware that this is hands down the slowest possible approach.

We again note that the limited pivoting strategy of R is employed by pbdR in the lm.fit()

method for class ddmatrix.
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