
revengc: An R package to reverse engineer summarized data

Samantha Duchscherer, Robert Stewart, and Marie Urban
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831

Abstract

Decoupled (e.g. separate averages) and censored (e.g. > 100 species) variables are continually re-
ported by many well-established organizations (e.g. World Health Organization (WHO), Centers for
Disease Control and Prevention (CDC), World Bank, and various national censuses). The challenge
therefore is to infer what the original data could have been given summarized information. We present
an R package that reverse engineers censored and/or decoupled count data with two main functions.
The cnbinom.pars() function estimates the average and dispersion parameter of a censored univariate
frequency table. The rec() function reverse engineers summarized data into an uncensored bivariate table
of probabilities.

1 Introduction

The revengc R package was originally developed to help model building occupancy [1]. Household size and
area of residential structures are typically found in any given national census. If a census revealed the raw
data or provided a full uncensored contingency table (household size ∗ area), computing interior density as
people per area would be straightforward. However, household size and area are often reported as decoupled
variables (separate univariate frequency tables, average values, or a combination of the two). Furthermore,
if a contingency table is provided, it typically left (<, ≤), right (>, ≥, +), and interval (-) censored. This
summarized information is problematic for numerous reasons. How can a people per area ratio be calculated
when no affiliation between the variables exist? If a census reports a household size average of 5.3, then how
many houses are there with 1 person, 2 people,..., 10 people? If a census reports that there are 100 houses
in an area of 26-50 square meters, then how many houses are in 26, 27,..., 50 square meters?

A tool that approximates negative binomial parameters from a censored univariate frequency table as
well as estimates interior cells of a contingency table governed by negative binomial and/or Poisson marginals
can also be useful for other areas ranging from demographic and epidemiological data to ecological inference
problems. For example, population and community ecologist could unpack censored organism counts (e.g.
< 20 species). Modeling life expectancy and mortality, which are two variables that are notorious for being
summarized in an average and/or censored frequency table form, could also benefit from revengc. Other
summarized examples include the average number of births, the number of new disease cases (censored
table), the number of mutations in a gene (censored table) or average mutation rate, etc. We attempt to
accommodate for various application of count data by offering five scenarios that can be reverse engineered:

1. cnbinom.pars() - An univariate frequency table estimates an average and dispersion parameter

2. rec() - Decoupled averages estimates an uncensored contingency table of probabilities

3. rec() - Decoupled frequency tables estimates an uncensored contingency table of probabilities

4. rec() - An average and frequency table estimates an uncensored contingency table of probabilities

5. rec() - A censored contingency table estimates an uncensored contingency table of probabilities

This paper proceeds with our reverse engineering methodology for the two main function: cnbinom.pars()
and rec(). We provide an in-depth analysis of how we implemented both the negative binomial and Poisson
distribution as well as the truncdist and mipfp R package [2, 3]. Since the revengc package has specific
input requirements, we continue with an explanation of how to implement cnbinom.pars() and rec() with
correctly formatted table(s). We then provide coded examples that implements revengc on national census
data (household size and area) and end with concluding remarks.

1

2 The Methodology: cnbinom.pars()

The methodology for the cnbinom.pars() function is relatively straightforward. To estimate an average µ
and dispersion r parameter, a censored frequency table is fit to a negative binomial distribution using a
maximum log-likelihood function customized to handle left (<, ≤), right (>, ≥, +), and interval (-) censored
data. To show an example, first recall the negative binomial distribution P (X = x|µ, r) parameterized as
a distribution of the number of failures X before the rth success in independent trials (1). With success
probability p in each trail, r ≥ 0 and 0 ≤ p ≤ 1 [4].

P (X = x|r, p) =

(
x+ r − 1

x

)
pr(1− p)y ≡ P (X = x|r, µ)

(
x+ r − 1

x

)(
r

µ+ r

)r (
µ

µ+ r

)y
E(X) =

r(1− p)
p

= µ

V (X) =
r(1− p)
p2

= µ+
µ2

r

(1)

Now consider an arbitrary censored frequency table x that has a combination of left censored (x < c), interval
censored (a ≤ x ≤ b), and right censored (x > d) data (i.e. a, b, c, and d represent the censoring limits).
The optimal µ and r parameter for x maximizes its custom log-likelihood function (2).

L (µ, r|x)log =

+
∑
x<c

log (P (x < c|µ, r))

+
∑
a≤x≤b

log (P (a ≤ x ≤ b|µ, r))

+
∑
x>d

log (P (x > d|µ, r))

(2)

3 The Methodology: rec()

3.1 Overview

rec() is a statistical approach that estimates the probabilities of a ’true’ contingency table given summarized
information: two averages, two univariate frequency tables, a combination of an average and univariate
frequency table, and a censored contingency table. Figure 1 presents a methodology workflow.

3.2 Negative Binomial and Poisson Distribution

When only an average is provided, we assume the average and variance are equal and rely on a Poisson
distribution (i.e. the probability of observing x events in a given interval is given by Equation 3). We
understand that there are many cases where data has more variation than what is indicated by the Poisson
distribution (i.e. overdispersion). However, with limited data, the Poisson distribution is implemented due
to its convenient property of having only one parameter, λ = average. For the cases with more data (i.e.
univariate frequency table(s) or censored contingency table), we account for dispersion by relying on the more
flexible negative binomial distribution (1). Hence, in these cases, the cnbinom.pars() function estimates the
optimal average µ and dispersion r parameters.

P (X = x) = e−λ
λx

x!
E(X) = λ

V (X) = λ

(3)

2

Workflow of rec() function.

3

3.3 truncdist R package

With the negative binomial (µ and r) and/or Poisson (λ) parameters, rec() calculates truncated distribu-
tions to represent uncensored row (Xlowerbound:Xupperbound) and column (Ylowerbound:Yupperbound)
margins. Calculations use the truncdist R package [2], and to provide a reference, Equation 4 gives the
probability density function of a truncated X distribution over the interval (a,b] (i.e. the negative binomial
and/or Poisson probability density function is represented by g(·) and their corresponding cumulative distri-
bution function is denoted by G(·)). Note, truncated distributions are very practical in this context because
the distributions (margins) are restricted to a desired row and column marginal length.

fX(x) =

{
g(x)

G(b)−G(a) , if a < x ≤ b
0, otherwise

(4)

The (a,b] interval needed for both X (row of contingency table) and Y (column of contingency table) can
be selected intuitively or with a brute force method. If rec() outputs a final contingency table with higher
probabilities near the edge(s) of the table, then it would make sense to increase the range of the bound(s).
For both variables, this would just involve making the lower bound less, making the upper bound more, or
doing a combination of the two. The opposite holds true as well. If the final contingency table in rec() has
very low probabilities near the edge(s) of the table, the range of the particular bound(s) should be decreased.

3.4 mipfp R package

rec() utilizing the mipfp R package to create cross tabulation probability estimates. As mentioned above,
the row and column marginals are the uncensored truncated distributions. However, an opportunity for
sensitivity analysis is presented by allowing an arbitrary seed estimation method and seed matrix. Focusing
on the seed estimation methods first, mipfp provides four algorithms (Table 1). Essentially, all methods
adjust cell proportions pxy in a X ∗ Y contingency table to known marginal probabilities πx+ and π+y (i.e.
all interior cell estimates π̂xy are subject to marginal constraints (5)). For a better understanding, please
refer the papers by [5] and [6]. ∑

y

π̂x+ (x = 1, ..., X)

∑
x

π̂+y (y = 1, ..., Y)
(5)

Method Abbreviation Calculate π̂xy by

Iterative proportional

fitting procedure
ipfp

Minimizing∑
x

∑
y π̂xyln(π̂xy/pxy)

Maximum likelihood method ml
Maximizing∑
x

∑
y pxyln(π̂xy)

Minimum chi-squared chi2
Minimizing∑

x

∑
j(π̂xy − pxy)2/π̂xy

Weighted least squares lsq
Minimizing∑

x

∑
y(pxy − π̂xy)2/pxy

mipfp methods to generate estimated cross tabulations [3].

Now considering the arbitrary seed matrix, rec() provides reasonable defaults. For the decoupled cases
(two averages, two tables, or a combination of a table and average), the absence of additional information
makes it difficult to say much about the joint distribution. Therefore, rec() assumes independence between

4

the variables, which is equivalent in making the X ∗ Y seed a matrix of ones (i.e. probability of this
seed.matrix is 1 / sum(seed.matrix)). When a censored contingency table is provided, independence does
not have to be assumed and the interior cells can be weighted. rec() creates the default seed matrix by first
repeating probability cells, which corresponding to the censored contingency table, for the newly created
and compatible uncensored cross tabulations. Each cell value j of this new seed.matrix is then changed to
a probability seed.matrix[j]/sum(seed.matrix). To see the seed for this case, refer to the Example section
(Indonesia).

4 Usage

4.1 cnbinom.pars()

The cnbinom.pars() function has the following format with a description of the argument directly below.
The output is a list consisting of an estimated average (mu) and dispersion (r) parameter.

cnbinom.pars(censoredtable)

censoredtable: A frequency table (censored and/or uncensored). A data.frame and matrix are acceptable
classes. See Data entry section for formatting.

4.2 rec()

The rec() function has the following format with a description of each argument directly below. The
output is a list containing an uncensored contingency table of probabilities (rows range from Xlower-
bound:Xupperbound and the columns range from Ylowerbound:Yupperbound) as well as the row and column
parameters used in making the margins for the mipfp R package.

rec(X, Y, Xlowerbound, Xupperbound, Ylowerbound, Yupperbound,

seed.matrix, seed.estimation.method)

X : Argument can be an average, a univariate frequency table, or a censored contingency table. The average
value should be a numeric class while a data.frame or matrix are acceptable table classes. Y defaults to
NULL if X argument is a censored contingency table. See Data entry section for formatting.

Y : Same description as X but this argument is for the Y variable. X defaults to NULL if Y argument
is a censored contingency table.

Xlowerbound : A numeric class value to represent the left bound for X (row in contingency table). The
value must strictly be a non-negative integer and cannot be greater than the lowest category/average value
provided for X (e.g. the lower bound cannot be 6 if a table has ’≥ 5’ as a X or row category).

Xupperbound : A numeric class value to represent the right bound for X (row in contingency table). The
value must strictly be a non-negative integer and cannot be less than the highest category/average value
provided for X (e.g. the upper bound cannot be 90 if a table has ’> 100’ as a X or row category).

Ylowerbound : Same description as Xlowerbound but this argument is for Y (column in contingency ta-
ble).

Yupperbound : Same description as Xupperbound but this argument is for Y (column in contingency ta-
ble).

seed.matrix : An intial probability matrix to be updated. If decoupled variables is provided the default is a

5

Xlowerbound:Xupperbound by Ylowerbound:Yupperbound seed.matrix with interior cells of 1 / sum(seed.matrix).
If a censored contingency table is provided the default is the seedmatrix()$Probabilities output.

seed.estimation.method : A character string indicating which method is used for updating the seed.matrix.
The choices are: ”ipfp”, ”ml”, ”chi2”, or ”lsq”. Default is ”ipfp”.

5 Data entry

The input tables are formatted to accommodate most open source data. The univariate frequency table
used in cnbinom.pars() and/or rec() needs to be a data.frame or matrix class with two columns and n rows.
The categories must be in the first column with the frequencies or probabilities in the second column. Row
names should never be placed in this table (the default row names should always be 1:n). Column names
can be any character string. The only symbols accepted for censored data are listed below. Note, less than
or equal to (≤ and LE) is not equivalent to less than (< and L) and greater than or equal to (≥, +, and
GE) is not equivalent to greater than (> and G). Also, revengc uses closed intervals.

� Left censored symbols: <, ≤, L, and LE

� Interval censored symbols: − and I (symbol has to be placed in the middle of the two category
values)

� Right censored symbols: >, ≥, +, G, and GE

� Uncensored symbol: no symbol (only provide category value)

To provide examples, the three tables below use different censored symbols yet give the same cnbi-
nom.pars() output 2.

Category Frequency
≤ 6 11800
7-12 57100
13-19 14800
20+ 3900

Category Frequency
LE 6 11800
7 I 12 57100
13 I 19 14800
GE 20 3900

Category Frequency
< 7 11800
7 I 12 57100
13-19 14800
≥ 20 3900

Examples of correctly formatted univariate tables.

The censored contingency table for rec() has a similar format. The censored symbols should follow the
requirements listed above. The table’s class can be a data.frame or a matrix. The column names should be
the Y category values. The first column should be the X category values and the row names can be arbitrary.
The inside of the table are X ∗ Y frequencies, which are either non-negative frequencies or probabilities if
seed.estimation.method is ”ipfp” or strictly positive when method is ”ml”, ”lsq” or ”chi2”. The row and
column marginal totals corresponding to their X and Y category values need to be placed in this table. The
top left, top right, and bottom left corners of the table should be NA or blank. The bottom right corner can
be a total cross tabulation sum value, NA, or blank. Table 3 is a formatted example.

5.1 Formatting tables in R

The code below shows how to format these tables properly in R.

6

NA <20 20-30 >30 NA
<5 18 19 8 45
5-9 13 8 12 33
≥10 7 5 10 21
NA 38 32 31 NA

Example of a correctly formatted bivariate table.

read in csv file

univariatetable.csv is a preloaded example

univariatetable.csv<-read.csv("filename.csv", row.names = NULL,

header= FALSE, check.names=FALSE)

create univariate table

univariatetable<-cbind(as.character(c("1-2", "3-4", "5-6", "7-8", ">=9")),

c(16.2, 41.7, 29.0, 9.0, 4.1))

create contingency table

contingencytable.csv is a preloaded example that provides the same table

contingencytable<-matrix(c(6185,9797,16809,11126,6156,3637,908,147,69,4,

5408,12748,26506,21486,14018,9165,2658,567,196,78,

7403,20444,44370,36285,23576,15750,4715,994,364,136,

4793,17376,44065,40751,28900,20404,6557,1296,555,228,

2354,11143,32837,33910,26203,19301,6835,1438,618,245,

1060,6038,19256,21298,17774,13864,4656,1039,430,178,

273,2521,9110,11188,9626,7433,2608,578,196,112,

119,1130,4183,5566,5053,3938,1367,318,119,66,

33,388,1707,2367,2328,1972,719,171,68,37,

38,178,1047,1672,1740,1666,757,193,158,164),

nrow=10,ncol=10, byrow=TRUE)

rowmarginal<-apply(contingencytable,1,sum)

contingencytable<-cbind(contingencytable, rowmarginal)

colmarginal<-apply(contingencytable,2,sum)

contingencytable<-rbind(contingencytable, colmarginal)

row.names(contingencytable)[row.names(contingencytable)=="colmarginal"]<-""

contingencytable<-data.frame(c("1","2","3","4","5","6", "7", "8","9","10+", NA),

contingencytable)

colnames(contingencytable)<-c(NA,"<20","20-29","30-39","40-49","50-69","70-99",

"100-149","150-199","200-299","300+", NA)

6 Worked examples

6.1 Nepal

A Nepal Living Standards Survey [7] provides both a censored table and average for urban household size.
We use the censored table to show that the cnbinom.pars() function calculates a close approximation to the
provided average household size (4.4 people). Note, there is overdispersion in the data.

revengc has the Nepal household table preloaded as univariatetable.csv

cnbinom.pars(censoredtable = univariatetable.csv)

7

6.2 Indonesia

In 2010, the Population Census Data - Statistics Indonesia provided over 60 censored contingency tables
containing Floor Area of Dwelling Unit (square meter) by Household Member Size. The tables are separated
by province, urban, and rural. Here we use the household size by area contingency table for Indonesia’s rural
Aceh Province to show the multiple coding steps and functions implemented inside rec(). This allows the
user to see a methodology workflow in code form. The final uncensored household size by area estimated
probability table, which implemented the ‘ipfp‘ seed estimation method and default seed matrix, has rows
ranging from 1 (Xlowerbound) to 15 (Xupperbound) people and columns ranging from 10 (Ylowerbound) to
310 (Yupperbound) square meters.

data = Indonesia ’s rural Aceh Province censored contingency table

preloaded as ’contingencytable.csv’

contingencytable.csv

provided upper and lower bound values for table

X=row and Y=column

Xlowerbound=1

Xupperbound=15

Ylowerbound=10

Yupperbound=310

table of row marginals provides average and dispersion for x

row.marginal.table<-row.marginal(contingencytable.csv)

x<-cnbinom.pars(row.marginal.table)

table of column marginals provides average and dispersion for y

column.marginal.table<-column.marginal(contingencytable.csv)

y<-cnbinom.pars(column.marginal.table)

create uncensored row and column ranges

rowrange<-Xlowerbound:Xupperbound

colrange<-Ylowerbound:Yupperbound

new uncensored row marginal table = truncated negative binomial distribution

uncensored.row.margin<-dtrunc(rowrange, mu=x$Average, size = x$Dispersion,

a = Xlowerbound-1, b = Xupperbound, spec = "nbinom")

new uncensored column margin table = truncated negative binomial distribution

uncensored.column.margin<-dtrunc(colrange, mu=y$Average, size = y$Dispersion,

a = Ylowerbound-1, b = Yupperbound, spec = "nbinom")

sum of truncated distributions equal 1

margins need to be equal for mipfp

sum(uncensored.row.margin)

sum(uncensored.column.margin)

create seed of probabilities (rec() default)

seed.output<-seedmatrix(contingencytable.csv, Xlowerbound,

Xupperbound, Ylowerbound, Yupperbound)$Probabilities

run mipfp

store the new margins in a list

tgt.data<-list(uncensored.row.margin, uncensored.column.margin)

list of dimensions of each marginal constrain

tgt.list<-list(1,2)

calling the estimated function

8

seed has to be in array format for mipfp package

ipfp is the selected seed.estimation.method

final1<-Estimate(array(seed.output,dim=c(length(Xlowerbound:Xupperbound),

length(Ylowerbound:Yupperbound))), tgt.list, tgt.data, method="ipfp")$x.hat

filling in names of updated seed

final1<-data.frame(final1)

row.names(final1)<-Xlowerbound:Xupperbound

names(final1)<-Ylowerbound:Yupperbound

reweight estimates to known censored interior cells

final1<-reweight.contingencytable(observed.table = contingencytable.csv,

estimated.table = final1)

final results are probabilities

sum(final1)

rec() function outputs the same table

default of rec() seed.estimation.method is ipfp

default of rec() seed.matrix is the output of seedmatrix()$Probabilities

final2<-rec(X= contingencytable.csv,

Xlowerbound = 1,

Xupperbound = 15,

Ylowerbound = 10,

Yupperbound = 310)

check that both data.frame results have same values

all(final1 == final2$Probability.Estimates)

7 Conclusion

revengc was designed to reverse engineer summarized and decoupled variables with two main functions:
cnbinom.pars() and rec(). Relying on a negative binomial distribution, cnbinom.pars() approximates the
average and dispersion parameter of a censored univariate frequency table. rec() fills in missing interior
cell values from observed aggregated data (i.e. decouples average(s) and/or censored frequency table(s) or
a censored contingency table). There are some required assumptions in rec(). For instance, rec() relies on
a Poisson distribution when only an average is provided, which is assuming the variance and average are
equal. More descriptive input variables, such as univariate tables or contingency tables, can account for
dispersion found in data. However, independence between decoupled variables still has to be assumed when
there is no external information about the joint distribution. For these reasons, rec() provides two options
for sensitivity analysis: the seed matrix and the method used in updating the seed matrix are both arbitrary
inputs.

9

References

[1] R. Stewart, M. Urban, S. Duchscherer, J. Kaufman, A. Morton, G. Thakur, J. Piburn, and J. Moehl,
“A bayesian machine learning model for estimating building occupancy from open source data,” Natural
Hazards, vol. 81, no. 3, pp. 1929–1956, 2016.

[2] F. Novomestky and S. Nadarajah, truncdist: Truncated Random Variables, 2016. R package version
1.0-2.

[3] Johan Barthélemy, Thomas Suesse, Mohammad Namazi-Rad, Multidimensional Iterative Proportional
Fitting and Alternative Models. R Foundation for Statistical Computing, 2018.

[4] A. Lindén and S. Mäntyniemi, “Using the negative binomial distribution to model overdispersion in
ecological count data,” Ecology, vol. 92, no. 7, pp. 1414–1421, 2011.

[5] R. J. Little and M.-M. Wu, “Models for contingency tables with known margins when target and sampled
populations differ,” Journal of the American Statistical Association, vol. 86, no. 413, pp. 87–95, 1991.

[6] T. Suesse, M.-R. Namazi-Rad, P. Mokhtarian, and J. Barthélemy, “Estimating cross-classified population
counts of multidimensional tables: an application to regional australia to obtain pseudo-census counts,”
vol. 33, no. 4, 2017.

[7] N. P. C. S. Government of Nepal, “Nepal living standards survey,” tech. rep., Central Bureau of Statistics,
11 2011.

10

