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1 Introduction

The weighting problem: a biased (e.g. convenience) sample needs to have its
respondent weight adjusted so that it is more representative of the population.

In the sense that the marginal distributions of some variables fit more closely
to those from a more precise source.

2 A simple illustration

The adjustment amounts to multiply the weight of each male respondent by
5/8, and multiply the weight of each female respondent by 5/2 (there is also a
final scaling so that total weights is equal to the population total).

3 General Requirements

• Want alignment of the marginal distributions for multiple categorical vari-
ables (or more general linear constraints on the weights).

• Want weight adjustment factors to be small in some sense.

We want to satisfy the above two types of constraints simultaneously.

Male Female
Population Distribution 50% 50%
Sample Distribution (before adjustment) 80% 20%
Sample Distribution (after adjustment) 50% 50%

Table 1: A simple example of post-stratification
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4 Literature Review

• Post-stratification: divide sample, then reweight using population fre-
quency.

• Raking (Iterative Proportional Fitting) [1]

• Adjustment with propensity score [5]: logistic regression to generate propen-
sity score as sampling frequency of subclass. Need a standard sample.

• Generalized raking [2]: constrained minimization that controls the size of
the weight ratios. Flexible constraints.

5 Motivation and background

• Try to find an alternative to IPF in order to better control weight range
and reduce computing time.

• Little research and not aware of other weighting methods at the time. :-(

• Start from brute force formulation and hope to solve it.

6 The basic idea

Set up a system of equations expressing the alignment constraints. Solve for
the weight adjustment factors via Tikhonov regularization (analogous to ridge
regression), which provides control of the size of the factors.

7 The weighting procedure

• Divide the sample into H post-strata. We shall adjust the weight of each
respondent in stratum h, by a multiplicative factor of fh = 1 + βh (βh ≥
−1). We desire βh to be close to zero.

• The sum of new weights should be equal to the sum of the original weights.
Let β be a vector of βh’s. That translates to:

u′β = 0 (1)

• Set up other linear constraints, such as the alignments to known marginal
counts. Each constraint translates to:

x′β = p− q = y (2)

where p is the expected count from the population and q is the observed
count from the sample.
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• Combining (1) and (2) gives us a linear system

Xβ = Y, (3)

which is typically under-determined (in contrast to regression). The row
dimension of X is the total number of linear constraints (let it be L). The
column dimension of X is H, the number of post-strata.

8 Estimation via Tikhonov regularization

• Since we want βh’s to be close to zero, we can penalize the least square
solution that gives a large norm of β by the so-called Tikhonov regulariza-
tion [3]. That is, we minimize

χ2 = ||Y −Xβ||2 + r2||β||2, (4)

where r (r > 0) is a regularization parameter.

• Using the Singular Value Decomposition (SVD):

X = UΣV ′,

the regularized estimate is

β̂r = (X ′X + r2I)−1X ′Y

=
L∑

i=1

φi
U ′

iY

σi
Vi,

where

φi =
σ2

i

σ2
i + r2

,

which filters out Vi’s for which the ratio of signal σ2
i to noise r2 is much

smaller than one.

• The final estimate is:
β̃r = max(β̂r,−1H).

In practice, we can set lower and upper bounds (say [0.5,2]) to further
restrict the range of weight ratios.

9 Computational resource

• Storage of V is H × L.

• Computation of the SVD is O(6HL2 + 20L3).

Acceptable if H is not too large.
E.g. If we have 8 categories, with 5 levels each, then L = 41,H = 58 =

390625. V takes 130MB (8 bytes real). The SVD takes about 40 seconds on a
PC with 1.6GHz CPU.
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Size (np) Tenure (ten) True Marginals
Owner (1) Renter (2)

1 Person (1) 1185571 707097 1687303
2 Person (2) 1955017 568304 2330104
3 Person (3) 695037 356139 977117
4 Person (4) 605659 211830 776458

5+ Person (5) 363346 167639 566947
True Marginals 4441799 1896130 6337929

Table 2: Household Counts by Tenure (ten) and Household Size (np) in Florida
(Source: ACS PUMS 2004, SF1 2000)

10 Choice of the regularization parameter r

Determined via Generalized Cross Validation (GCV) as the minimizer of the
GCV function [4]:

G =
||y −Xβ̃r||2

(H −
∑L

i=1 φi)2
.

We use a golden section search method to select the minimizer.

11 A Toy Example

• US census data (PUMS and SF1) from
http://dataferrett.census.gov.

• Two categories: Tenure (2 levels) and Household Size (5 levels)

• Task: adjust the PUMS household weight to fit to marginal counts.

12 A Large Example

• A survey with 7 categories and (5, 8, 6, 4, 4, 2, 5) levels. Only 1119
post-strata (other strata are empty) out of 38,400 possible ones.

• No original weights. Use raw counts.

13 Drawbacks

• No theoretical validation yet in terms of bias and variance.

• Unlike IPF, it cannot strictly maintain odds-ratios in the crosstab.

• It cannot fit to marginal counts closely for large problems unless the orig-
inal weights are “good” enough.
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Figure 1: Diagnostic Plots For New Weights
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Figure 2: Diagnostic Plots For New Weights
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• The range of weight ratios does not seem to be significantly narrower than
other methods.

14 Summary

• An experimental method for reweighting survey data.

• Non-iterative method. But SVD may be computational intensive for large
crosstabs.

• Can incorporate any linear constraints.

• R package reweight for download at:
http://www.r-project.org.

15 Reference

References

[1] W. E. Deming and F. F. Stephan. On a least squares adjustment of a sample
frequency table when the expected marginal totals are known. Annals of
Mathematical Statistics, 11:427–444, 1940.

[2] Jean-Claude Deville, Carl-Erik Sarndal, and Olivier Sautory. Generalized
raking procedures in survey sampling. JASA, 88(423), 1993.

[3] G. H. Golub, P. C. Hansen, and D. P. O’Leary. Tikhonov regularization and
total least squares. SIAM Journal on Matrix Analysis and Applications,
21:185–194, 2000.

[4] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a
method for choosing a good ridge parameter. Tchnometrics, 21(2):215–223,
1979.

[5] Paul R. Rosenbaum. Model-based direct adjustment. JASA, 82(398):387,
1987.

7


