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1 Introduction

This document illustrates the use of the texmex package, [7] for performing ex-
treme value analysis of some clinical safety laboratory data in R, [5]. The full
analysis is described in [6]. This package vignette focusses on the fitting of the
generalized Pareto distribution (GPD) modelling of the marginal variables. A
separate vignette will examine the conditional multvariate extreme value mod-
elling, which appears in [8].

To cite this vignette, refer to Vignette name: texmex1d and use the package
citation:

To cite package 'texmex' in publications use:

Harry Southworth and Janet E. Heffernan (2012). texmex: Threshold

exceedences and multivariate extremes. R package version 1.3.

A BibTeX entry for LaTeX users is

@Manual{,

title = {texmex: Threshold exceedences and multivariate extremes},

author = {Harry Southworth and Janet E. Heffernan},

year = {2012},

note = {R package version 1.3},

}

ATTENTION: This citation information has been auto-generated from the

package DESCRIPTION file and may need manual editing, see

'help("citation")' .

Please note that this is not intended to be an R tutorial. For that, you will
have to look elsewhere.
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1.1 Preliminaries

Before doing anything else, you will need to install the texmex package. De-
pending on your installation of R, this can be done using the install.packages
command in R, or by downloading the package from CRAN and installing it
from a local archive.

Once you’ve got texmex installed, use the library command to make the
package available to the current session. This vignette also makes use of the
rlm function from the MASS package (see [9]) and trellis plots from the lattice

package.

> library(texmex)

> library(MASS)

> library(lattice)

> palette(c("black","purple","cyan","orange"))

> set.seed(20111011)

The final command sets the random seed so that the results in this vignette
may be reproduced exactly.

1.2 texmex

The texmex package for R was written by Harry Southworth and Janet E.
Heffernan. The work was funded by AstraZeneca.

Some considerable effort has been made to ensure that the package does
what it ought to, and to this end over 400 tests (at the current count) are built
into the package. The tests compare the output of functions in texmex with
published results and, where no published results were available, with output
from independently written code. There are also logical tests (e.g. of use of
informative prior distributions) and tests of the structures of objects.

To test the package functionality at any time, use the RUnit package [1].
With RUnit and texmex attached, you can perform all the tests, and view a
report describing the results, as follows.

> library(RUnit)

> pdf("texmexValidation.pdf")

> res <- validate.texmex()

> dev.off()

> printHTMLProtocol(res, "texmexValidation.html")

Many of the plots produced in the texmexValidation.pdf file reproduce figures
appearing in published material, and are intended for comparison against these
figures. The validation versions of such plots produced by texmex are labelled
with the target figure references.

Due to the large number of tests performed, including tests of bootstrap and
MCMC procedures, validate.texmex takes quite a while to run.
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1.3 Data

The dataset used in this example analysis is contained in the texmex package.
The dataset is called liver and we can look at the first few lines and a summary
as follows:

> head(liver)

ALP.B ALT.B AST.B TBL.B ALP.M ALT.M AST.M TBL.M dose

1 80 13 14 12.654 87 22 22 23.085 A

2 37 15 16 6.498 37 25 23 8.037 A

3 52 10 13 4.788 55 10 13 6.498 A

4 36 13 13 6.840 35 11 12 8.037 A

5 39 18 12 14.364 37 21 15 16.758 A

6 48 8 13 6.156 50 8 13 5.985 A

> summary(liver)

ALP.B ALT.B AST.B TBL.B

Min. : 15.00 Min. : 4.00 Min. : 5.00 Min. : 2.736

1st Qu.: 44.25 1st Qu.: 11.00 1st Qu.: 13.00 1st Qu.: 7.011

Median : 53.00 Median : 14.00 Median : 15.50 Median : 8.721

Mean : 55.21 Mean : 15.67 Mean : 16.25 Mean : 9.475

3rd Qu.: 64.00 3rd Qu.: 18.00 3rd Qu.: 18.00 3rd Qu.:10.944

Max. :129.00 Max. :198.00 Max. :104.00 Max. :27.531

ALP.M ALT.M AST.M TBL.M dose

Min. : 1.00 Min. : 2.00 Min. : 6.00 Min. : 3.249 A:152

1st Qu.: 48.00 1st Qu.: 13.00 1st Qu.: 15.00 1st Qu.: 7.695 B:148

Median : 58.00 Median : 17.00 Median : 18.00 Median : 9.576 C:148

Mean : 61.49 Mean : 20.83 Mean : 19.21 Mean :10.691 D:158

3rd Qu.: 70.75 3rd Qu.: 24.00 3rd Qu.: 21.00 3rd Qu.:12.825

Max. :341.00 Max. :324.00 Max. :250.00 Max. :42.750

The response variables are

ALT alanine aminotransferase

AST aspartate aminotransferase

ALP alkaline phosphatase

TBL total bilirubin

The variables suffixed by .B are data measured at baseline (prior to treatment);
an .M indicates post-baseline measurement (on treatment). In this study, there
was only one post-baseline visit. In general, in trials which have more than one
post-baseline visit it is natural to use the maximum post-baseline value for each
individual.

The doses were equally spaced on a logarithmic scale (i.e. dose D is twice
dose C, dose C is twice dose B, and dose B is twice dose A). Later in the analysis,
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we will do some modelling with log(dose) appearing in the linear predictor, so
we take a copy of the dataset and create a new variable now:

> liver <- liver

> liver$ndose <- as.numeric(liver$dose)

> table(liver$ndose)

1 2 3 4

152 148 148 158

Before proceeding, first note that there are two small outliers in ALP.M :
two cases with ALP.M = 1. Discussion with the study physician led to the
conclusion that the lowest value of ALP in the dataset was impossible, and
since it is large values in which we are interested anyway, we can remove it
(leaving it in complicates plotting later in the analysis, but does not affect any
of the results).

> liver <- liver[liver$ALP.M > 1,]

The variables in the dataset all relate to the liver. Biologically, the under-
standing is that liver cells release ALT and AST as they die. If a sufficient
amount of the liver is destroyed that it can no longer function properly, then it
ceases to be able to clear bilirubin and so bilirubin (TBL) goes up. The situation
is complicated by the fact that ALT and AST can also arise from other sources
(e.g. muscle), and that ALP can rise in response to a blockage in the liver.

Given the biology, ALT and AST are likely to rise early on in any drug
induced liver damage and initial focus should be on those. ALT and AST are
closely correlated in this example and in what follows we focus mostly on ALT.

2 Elimination of baseline effect

Since the four lab variables were measured at baseline and at a later date in
the same patients, we might reasonably expect the two values to be related.
Figure 1 scatterplots (on the log scale) reveal this to be true.

We can eliminate the baseline effect (and therefore reduce the variance) using
a linear model. Since we have no reason to suppose the data to be normally
distributed, and since Figure 1 reveals outliers not consistent with a Gaussian
distribution, we will use a robust regression approach. (In general, lab safety
data should never be assumed to be normally distributed.)

Following Maronna et al [4] (page 144), we prefer an MM-estimated regres-
sion line with Gaussian efficiency set to 85% and bisquare weight functions.
This model can be estimated using the rlm function in the MASS package. By
default, rlm uses 95% Gaussian efficiency, and we can obtain the required 85%
by passing argument c = 3.44 (see [4], page 30) into the function.

> rmod <- rlm(log(ALT.M) ~ log(ALT.B) + ndose, data=liver, c=3.44, method="MM")

> summary(rmod)
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> print(

+ xyplot(ALT.M ~ ALT.B | dose, data=liver,

+ as.table = TRUE,

+ scales=list(log=2))

+ )
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Figure 1: Scatterplots of post-baseline versus baseline ALT.
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Call: rlm(formula = log(ALT.M) ~ log(ALT.B) + ndose, data = liver,

c = 3.44, method = "MM")

Residuals:

Min 1Q Median 3Q Max

-1.671456 -0.176330 0.002382 0.199886 2.777716

Coefficients:

Value Std. Error t value

(Intercept) 0.4078 0.0845 4.8241

log(ALT.B) 0.8602 0.0300 28.6478

ndose 0.0581 0.0109 5.3433

Residual standard error: 0.2848 on 601 degrees of freedom

> par(mfrow=c(2, 2))

> plot(fitted(rmod), resid(rmod), xlab="Fitted", ylab="Residuals")

> abline(h=0, col=2)

> qqnorm(resid(rmod))

> qqline(resid(rmod))

> plot(log(liver$ALT.M), fitted(rmod), xlab="Observed", ylab="Fitted")

> d <- density(resid(rmod))

> hist(resid(rmod), xlab="Residuals", prob=TRUE, ylim=range(d$y))

> lines(d)

> rug(resid(rmod))
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The residual plots do not give cause for concern and reveal several outliers,
justifying the use of a robust method of estimation.

In practice, it would be sensible to fit a few models, possibly using dose as
a factor and with alternative transformations of ALT. That part of the analysis
is left as an exercise and we proceed on the understanding that the fitted robust
linear model is adequate for eliminating the effects of baseline and dose on the
central tendency of the data.

We can now obtain the residuals to be used for the extreme value modelling
of ALT. We also plot scaled residuals to get a preliminary impression of any
dose effect.

> liver$r <- resid(rmod)

> plot(jitter(liver$ndose), liver$r / rmod$s, # Scaled residuals

+ xlab="Dose", ylab="Scaled residuals", axes=FALSE)

> box(); axis(2)

> axis(1, at=1:4, labels=LETTERS[1:4])

> abline(h=c(-2, 0, 2), lty=c(2, 1, 2), col=c(3,4,3))
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It can be seen that there are several large outliers, out of keeping with any
assumptions about normality, and that dose D appears to be associated with
more, and larger, outliers.

3 Generalized Pareto distribution models for ALT

We now proceed to fit, evaluate, choose between, and ultimately make predic-
tions from generalized Pareto distribution (GPD) models for the residuals of the
ALT data obtained in Section 2.

3.1 Extreme value modelling and asymptotic motivation
for the GPD

Extreme value statistical models are unusual among statistical models in that
they are often required for extrapolation beyond levels observed in the data. As
statisticians, we are told that extrapolation from statistical models is perilous:
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our models can only be trusted in regions where we have sufficient data to cali-
brate and check goodness of model fit. Extreme value modelling has responded
to a demand for extrapolation beyond this safe region. Since we can no longer
rely on data as a check on our model’s suitability, extreme value statisticians
turn to mathematical arguments to bolster their confidence in their extrapola-
tion. These arguments provide a justification for the use of a particular type of
model to describe tail behaviour of random variables.

This is not a tutorial in Extreme Value Theory, for which we refer the reader
to [2], which describes a range of methods for modelling the statistical properties
of sample maxima, threshold excesses, extremes of dependent series and other
aspects of tail behaviour.

The texmex package focusses on the use of threshold exceedances. Specifi-
cally, we fit the generalised Pareto Distribution, GPD(σ, ξ) [3] to data points in
excess of suitably chosen thresholds. The GPD has distribution function

F>u(x) = 1−
{

1 + ξ

(
x− u
σ

)}−1/ξ

for x > u, (1)

where u is the threshold for fitting and σ > 0 and ξ ∈ IR are the scale and shape
parameters respectively. This is the conditional distributon of observations given
that the observations exceed the fitting threshold u. The range of possible
values taken by realisations from the GPD depends on the parameter values,
with the distribution having a finite upper end point (short tailed) if the shape
parameter is negative (u < x ≤ u− σ/ξ if ξ < 0) and an infinite tail otherwise
u < x < ∞ if ξ ≥ 0. When ξ = 0, the GPD corresponds exactly to the
Exponential distribution.

Extreme value theory tells us that under appropriate normalisation of the
threshold excesses, as the threshold u tends to the distributional upper endpoint,
the limiting distribution of the excesses must fall in the generalised Pareto family
of distributions (given certain conditions concerning non-degeneracy of the limit
distribution and smoothness of the distribution of the original variable). So
whatever the original distribution of the measurements, provided we choose an
appropriately high threshold, the distribution of values exceeding that threshold
should be well approximated by a GPD. Diagnostic tools to aid the choice of
suitable threshold are standard, and are described shortly – see also [2].

3.2 Parameterization

The usual parameterization of the GPD (as in Equation (1)) is in terms of its
scale paramter σ and shape parameter ξ. There are, however, good reasons for
reparameterizing in terms of φ = log σ:

• Experience has demonstrated that the numerical algorithms used for op-
timizing the log-likelihood tend to converge more reliably when working
with φ;
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• When including covariates in the model we are faced with the constraint
that σ > 0 and working with a linear predictor specified in terms of φ =
log σ guarantees this constraint;

• When placing prior distributions on parameters, it is convenient to work
with Gaussian distributions and φ is more likely to be close to Gaussian
than is σ.

As such, some of the functions in texmex work with φ, not σ. In the case when
inference is required for σ rather than φ, the point estimates can simply be
exponentiated if maximum likelihood estimation is used. If a prior distribution is
used, the point estimates are not invariant to transformation, so any transformed
values should only be considered to be approximate.

3.3 Threshold selection

GPD modelling proceeds by selecting a threshold above which the data appear
to be well modelled. Standard tools for threshold selection that appear in the
literature (see for example [2]) include the mean residual life plot, and plots of
parameters estimated using a range of thresholds, threshold stability plots.

For a suitably chosen threshold, the mean residual life plot should be linear
and the parameter estimates in threshold stability plots constant beyond the
threshold (both of these requirements are assessed by taking account of sam-
pling variability). The sign of the gradient in the linear part of the MRL plot
corresponds to the sign of the shape parameter and hence indicates the shape
of the tail – negative slope shows a short tailed distribution, a horizontal line
(zero gradient) shows an exponential type tail and a positive slope suggests a
heavy tailed distribution.

> par(mfrow=c(2, 2))

> gpdRangeFit(liver$r)

> mrlPlot(liver$r, main="MRL plot")
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For our example, when fitting the GPD to the residuals from our robust
regression, a threshold slightly above 0 appears to be sensible. However, we will
need to do some additional diagnostics to check this. We proceed by selecting
the 70th percentile of the residuals as being the candidate threshold.

> quantile(liver$r,0.7)

70%

0.150163

In many examples, we have found that the 70th or quite often the 50th

percentile is a suitable threshold. The theory underpinning the GPD tells us
that (if the underlying distribution satisfies our conditions) there has to be a
threshold above which the GPD fits the data, but the theory does not specify
that the threshold necessarily must be high. In our case, we are modelling
residuals, and so the complete distribution will be near-symmetric and the GPD
will only fit one tail. So it is unreasonable to examine thresholds lower than
about the 50th percentile.
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3.4 Maximum penalized likelihood estimation

With small sample sizes, the GPD log-likelihood function often becomes flat
and the optimiser can fail to converge. One way to overcome this is to penalize
the likelihood by some function of the parameters. Experience suggests that the
main problems are overcome by putting fairly modest penalties on ξ.

Thus, rather than maximize the log-likelihood l(φ, ξ|X) we maximize

l(φ, ξ)− λξ2 (2)

for some λ.

3.4.1 Choice of λ

If we exponentiate (2), the result can be written as

L(φ, ξ|X)e−ξ
2/2θ2 (3)

in which θ =
√

1
2λ . The rightmost term in (3) is proportional to a Gaussian

distribution centred at 0. Thus, maximum penalized likelihood estimation has
a Bayesian interpretation and corresponds to maximum a posteriori estimation.

For the GPD, ξ = −1 corresponds to the distribution being uniform, ξ = 0
corresponds to it being exponential, and ξ = 1 corresponds to it being so heavy-
tailed that its expectation is infinite. For the kinds of data we have, ξ = −1
and ξ = 1 are implausible, and we would expect values of ξ to be fairly close
to 0. This implies a prior distribution that is Gaussian with standard deviation
θ = 1

2 .
Since convergence issues are generally associated with ξ, we can choose a

diffuse prior for φ, φ ∼ N(0, 104), say.
In general, we will attempt to use MLE or penalized MLE with diffuse priors

for both φ and ξ. Prior distribution ξ ∼ N(0, 14 ) independently of a diffuse prior
on φ can be used when convergence issues arise. Such a model can be fit using

> pp <- list(c(0, 0), diag(c(10^4, .25)))

> pmod <- gpd(x, qu=.7, priorParameters = pp, prior="gaussian")

in which priorParameters is a list containing the mean (0, 0)T and covari-
ance matrix of the prior Gaussian distribution.

3.5 Model selection

We can fit GPD models with covariates in φ, in ξ, in neither, or in both. We will
first fit a simple model with no covariates and examine some diagnostic plots to
see if there are any obvious problems suggesting that a higher threshold needs
to be used.

> mod <- gpd(r, data=liver, qu=.7, penalty="none")

> mod
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Call: gpd.default(y = r, data = liver, qu = 0.7, penalty = "none")

Model fit by maximum likelihood.

Convergence: TRUE

Threshold: 0.1502

Rate of excess: 0.2997

Log-lik. AIC

53.87512 -103.8

Coefficients:

Value SE

phi -1.48482 0.10916

xi 0.18722 0.08115

> par(mfrow=c(2, 2))

> plot(mod)
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The shaded regions in the P-P and Q-Q plots indicate pointwise 95% tol-
erance intervals, based on 1000 simulated datasets. The shaded region in the
return level plot shows 95% pointwise confidence intervals. The plots show no
systematic departure of the data from the model at this choice of threshold, so
we proceed to fit various models with covariates and compare them using AIC.

> mod1 <- gpd(r, data=liver, qu=.7, penalty="none", phi= ~dose, xi= ~dose)

> mod2 <- gpd(r, data=liver, qu=.7, penalty="none", phi= ~ndose, xi= ~ndose)

> AIC(mod1)

[1] -106.9167

> AIC(mod2)

[1] -114.4491

AIC is lower for mod2 which treats dose as numeric variable rather than as a
factor at 4 levels. So we prefer mod2. We proceed to try simplifications of this
model:
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> mod3 <- gpd(r, data=liver, qu=.7, penalty="none", phi= ~ndose)

> mod4 <- gpd(r, data=liver, qu=.7, penalty="none", xi= ~ndose)

> AIC(mod3); AIC(mod4); AIC(mod)

[1] -111.232

[1] -115.5584

[1] -103.7502

Since mod4 has the lowest AIC we prefer that model. This is the model with
φ constant and ξ linear in dose (on the log scale). In practice, a few more models
might have been tried. Again, that part of the analysis is left as an exercise.

We now take a closer look at mod4.

> par(mfrow=c(2, 2), pty="s")

> plot(mod4)

> plot(predict(mod4,type="lp",ci.fit=TRUE),main="Fitted shape parameter")

> summary(mod4)

Call: gpd.default(y = r, data = liver, qu = 0.7, xi = ~ndose, penalty = "none")

Model fit by maximum likelihood.

Convergence: TRUE

Threshold: 0.15

Rate of excess: 0.3

Log-lik. AIC

60.77922 -116

Coefficients:

Value SE t

phi: -1.4269 0.1088 -13.1162

xi: (Intercept) -0.4548 0.1121 -4.0574

xi: ndose 0.1992 0.0459 4.3349

1000 simulated data sets compared against observed data QQ-plot.

Quantile of the observed MSE: 0.02

0 observations (0%) outside the 95% simulated envelope.
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Since there is a covariate in the model the probability and quantile plots are
constructed using the model residuals, which are exponential under the fitted
model. We also have a plot of the residuals against the fitted parameters for any
parameter that is modelled using a covariate (in this case the shape parameter
ξ). A well fitting model should have homogeneity of residuals across different
values of the fitted parameter. These diagnostic plots give no cause for concern.

From the estimated parameters, we see that as dose increases, so does the
estimate of ξ, starting out negative for dose A (suggesting a fairly short-tailed
distribution), but moving to positive at the higher doses (suggesting a heavy-
tailed distribution).

3.6 Predicted return levels

The general definition of an m-observation return level for the GPD is:

xm = u+
σ

ξ
{(mp)ξ − 1}. (4)
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Here p is the probability of exceeding the GPD fitting threshold u and m is a
large value, so that xm is termed the m-observation return level and represents
the maximum value of x expected to be seen in m observations at a give dose.

The effect of the variable ndose on the GPD fitted to the residuals from our
robust regression model is seen clearly when we look at return level plots for
the 4 doses represented by our data:

> par(mfrow=c(2, 2)); plot(predict(mod4,M=10:100,ci.fit=TRUE))
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In this plot, Return period is in units of numbers of observations and Return
level is in the same units as the residuals to which the GPD model has been
fit. For our application to the liver dataset, prediction of m-observation (m-
patient) return levels is complicated by the relationship between baseline and
post-treatment response which must be accounted for. In order to do this, we
must specify a value of baseline and then the value of u in Equation (4) is
calculated as the expected post-treatment value given that baseline value, plus
the threshold used for fitting the GPD model to the residuals. The resulting
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value of xm is then interpreted as the m-patient return level for patients with
that given baseline value.

So for our fitted model mod4, for a given baseline, u in equation (4) is cal-
culated as the expected post-treatment value given that baseline plus the 70th

percentile of the residuals (this was the threshold used for fitting the GPD).
The m-patient return level depends on dose via the threshold (since the ex-
pected values from the regression depend on dose) and through ξ which is also
a function of dose.

The estimated robust regression and GPD models are combined in R to
obtain return level estimates as follows:

> calcRetLevel <- function(gpdModel,MMmodel, m,base){

+

+ newdata <- data.frame(ALT.B=rep(base,4),ndose=1:4)

+

+ ElogResponse <-predict(MMmodel,newdata)

+ logRL <- ElogResponse + predict(mod4,m,newdata)[[1]][,1]

+ ElogThresh <- ElogResponse + gpdModel$threshold

+

+ names(logRL) <- names(ElogThresh) <- LETTERS[1:4]

+

+ list(u = exp(ElogThresh), RL = exp(logRL))

+ }

> PlotMpatientRetLevel <- function(Baseline,ylim,Legend=TRUE){

+

+ m <- exp(seq(log(10),log(1000),length=20))

+ RL <- t(sapply(m,function(x,gpd,rmod,base){

+ calcRetLevel(gpd,rmod,x,base)$RL},

+ gpd=mod4,rmod=rmod,base=Baseline))

+ u <- calcRetLevel(mod4,rmod,m[1], Baseline)$u

+

+ plot(rep(c(10,m),4),rbind(u,RL),type="n",xlab="m",

+ ylab="m-patient return level",log="x",

+ main=paste("ALT: Baseline =",signif(Baseline,3)),ylim=ylim)

+ for(i in 1:4){

+ lines(m,RL[,i],col=i)

+ abline(h=u[i],col=i,lty=2)

+ }

+ if(Legend){

+ legend(min(m),ylim[2],

+ legend=c(paste(LETTERS[1:4],",

+ xi =",signif(predict(mod4,type="lp")[,"xi"],3)),

+ paste("U,",LETTERS[1:4])),

+ col=rep(1:4,2),lty=rep(1:2,each=4))

+ }

+ }
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An illustration of this calculation is given in Figures 2 and 3. Figure 2
shows estimated m-patient return levels for a patient with baseline equal to the
mean observed value of baseline. For such patients, differences in the values
of the thresholds U are due to the difference in expected post-treatment ALT
estimated by the MM regression model, whose coefficients depend on treatment
(dose).

For small values of m, estimated m-patient return levels in Figure 2 show
little additional difference between treaments above that already due to the dif-
fences in mean post-treatment ALT captured by the robust regression model.
However, as m increases and we extrapolate further into the tail of the the
distribution, differences in shape parameter ξ between the different doses have
greater influence on the estimated return levels. Those treatments with heav-
ier tails (treatments C and D – the higher doses) have return level estimates
that grow much faster than those corresponding to treatments with short tails
(treatments A and B – the lower doses).

Figure 3 shows correponding return level estimates for patients with baseline
equal to the lower and upper quartiles of the observed baseline. The absolute
value ofm-patient return level depends on the baseline, but the ordering between
the four treatments due to the fitted GPD shape parameters is the same in each
case.
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> PlotMpatientRetLevel(mean(liver$ALT.B),ylim=c(0,200))
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Figure 2: Point estimates of m-patient return levels under each treatment, for
patients with baseline equal to the mean observed baseline.
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> par(mfrow=c(1,2),pty="s")

> PlotMpatientRetLevel(quantile(liver$ALT.B,0.25),ylim=c(0,200),Legend=FALSE)

> PlotMpatientRetLevel(quantile(liver$ALT.B,0.75),ylim=c(0,200),Legend=FALSE)
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Figure 3: Point estimates of m-patient return levels under each treatment, for
patients with baseline equal to the lower (left hand plot) and upper quartiles of
observed baseline values. For plot legend, refer to Figure 2.
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3.7 GPD parameter uncertainty

We examine briefly here Information Matrix summaries and Bootstrap estimates
of GPD parameter uncertainty, before going on to use a Bayesian simulation
based approach to estimation of our GPD model parameters and associated
uncertainty.

3.7.1 Information matrix based approaches

When the GPD model is fit by using the default (penalized) maximum like-
lihood estimation, an estimate of the covariance matrix of model parameters
is returned. The default procedure for estimating this covariance matrix is
cov="observed" in which case the observed information matrix is used, as given
in Appendix A of Davison and Smith [3]. The only other option is cov = "nu-

meric" in which case a numerical approximation of the Hessian is used (see the
help for optim). In some cases, particularly with small samples, the numeri-
cal approximation can be quite different from the closed form (cov=”observed”)
result, and the value derived from the observed information should be preferred.

For our fitted model, we compare the two approaches and find that the
alternative methods give almost identical estimates of the Information matrix:

> mod4$cov

[,1] [,2] [,3]

[1,] 0.0118358625 -0.005612302 -0.0002002251

[2,] -0.0056123019 0.012566400 -0.0038710280

[3,] -0.0002002251 -0.003871028 0.0021105547

> update(mod4,cov="numeric")$cov

[,1] [,2] [,3]

[1,] 0.0118353071 -0.005611724 -0.0002000668

[2,] -0.0056117236 0.012563128 -0.0038696383

[3,] -0.0002000668 -0.003869638 0.0021096777

For small samples, the underlying log-likelihood may be far from quadratic, and
the resulting estimates of standard errors derived using either of these methods
are liable to approximate poorly the true standard errors.

3.7.2 Parametric Bootstrap approach

An alternative approach to uncertainty estimation is to use a parametric boot-
strap – which does capture the asymmetry of the log-likelihood surface around
the maximum likelihood estimates. This is carried out for our fitted model in
texmex as follows:

> boot4 <- bootgpd(mod4)
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Replicate 10

Replicate 20

Replicate 30

Replicate 40

Replicate 50

Replicate 60

Replicate 70

Replicate 80

Replicate 90

Replicate 100

> summary(boot4)

bootgpd(x = mod4)

phi: xi: (Intercept) xi: ndose

Original -1.42694281 -0.45483439 0.19915057

Bootstrap mean -1.40542619 -0.53474312 0.22272841

Bias 0.02151662 -0.07990874 0.02357784

SD 0.11837451 0.16503184 0.06239460

Bootstrap median -1.40657385 -0.53044590 0.21883244

Correlation:

phi: xi: (Intercept) xi: ndose

phi: 1.0000000 -0.4755323 0.1184277

xi: (Intercept) -0.4755323 1.0000000 -0.8394755

xi: ndose 0.1184277 -0.8394755 1.0000000

We can compare these reported standard deviations with the correponding esti-
mates derived from the Observed Information matrix estimate – these are close
although not identical, with the largest disagreement occurring for the shape
parameter. This is typical behaviour of the GPD model.

> sqrt(diag(mod4$cov))

[1] 0.10879275 0.11209996 0.04594077

We can also compare the bootstrap based estimate of the parameter correlation
matrix with that derived from the Observed Information matrix:

> cov2cor(mod4$cov)

[,1] [,2] [,3]

[1,] 1.00000000 -0.4601884 -0.04006087

[2,] -0.46018836 1.0000000 -0.75166194

[3,] -0.04006087 -0.7516619 1.00000000

Estimates of this correlation matrix are similar although not identical, as an-
ticipated. Focussing on the covariance matrix of the parameter estimates is
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misleading and does not let us explore the asymmetric nature of the uncer-
tainty about the parameter estimates. This can be better seen in the bootstrap
based confidence intervals for the model parameters, and also particularly for
return level estimates, both shown in the following plots:

> par(mfrow=c(1,2))

> plot(predict(boot4,type="lp",ci.fit=TRUE),main="Bootstrap")

> plot(predict(mod4,type="lp",ci.fit=TRUE),main="Obs Info")
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> par(mfrow=c(2,4))

> plot(predict(boot4,M=5:100,ci.fit=TRUE),main="Bootstrap")

> plot(predict(mod4,M=5:100,ci.fit=TRUE),main="Obs Info")
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3.8 Bayesian estimation

A further alternative approach to uncertainty estimation which accurately re-
flects the asymmetric nature of the uncertainty is offered by Bayesian simulation
based methods. In texmex we can simulate from the posterior distributions of
the parameters by using the gpd function again, this time using method = "sim-

ulate" to tell the function to simulate from the joint posterior distribution of
the parameters.

> bmod <- gpd(r, data=liver, qu=.7, xi= ~ndose, method="simulate")

Equivalently, the Bayesian estimation based on MCMC can also be instigated
by the use of the function update on the previously chosen model. The method
of estimation is changed from "optimize" – under which estimation is carried
out using (penalized) maximum likelihood – to "simulate" – under which a
Metropolis algorithm is used to simulate from the joint posterior distribution of
the parameters. For our preferred model, mod4, this is implemented as follows:
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> bmod <- update(mod4,method="simulate",trace=40000,penalty="gaussian")

40000 steps taken

Acceptance rate: 0.32

> par(mfrow=c(3, 3))

> plot(bmod)

> summary(bmod)

Posterior mean SD

phi: -1.4448147 0.1107031

xi: (Intercept) -0.3982904 0.1278481

xi: ndose 0.1944474 0.0506894
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The plots of the Markov chains ought to look like “fat hairy caterpillars” if
the algorithm has converged on its target distribution. Also, the cumulative
means of the chains should converge, the acceptance rate should not be too
high or too low, and the autocorrelation functions should rapidly decay to zero.
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We conclude from the plots that there is no evidence against convergence of our
Markov chains, although we should probably thin our output further to obtain a
chain that is closer to independent (the default is to thin to every 4 observations).
Here we retain the burn-in value of 500 but now discard all but every 20th
observation, resulting in an autocorrelation function which decays more rapidly
to zero. This restults in the retention of 2000 values after discarding the burn-
in and applying the thinning. (Note that the observations are not discarded
destructively and we can use the thinAndBurn function repeatedly to examine
the impact of using different values of burn and thin.)

> bmod <- thinAndBurn(bmod, burn=500, thin = 20)

> nsim <- dim(bmod$param)[1]

> summary(bmod)

Posterior mean SD

phi: -1.4438427 0.11058736

xi: (Intercept) -0.4012245 0.12440685

xi: ndose 0.1954398 0.04995256

> nsim

[1] 2000

Since φ does not vary by dose, we can use the simulated values of φ to obtain
predictions for any dose. However, ξ varies by dose, so we need to make sure
we use the correct value for each treatment. We can use the predict method
to obtain the linear predictors for the model parameters and for return level
estimates.

> predict(bmod,type="lp")

Linear predictors:

phi xi ndose

1 -1.44 -0.2058 1

154 -1.44 -0.0103 2

302 -1.44 0.1851 3

450 -1.44 0.3805 4

> predict(bmod,M=1000)

M = 1000 predicted return level:

res ndose

1 0.967 1

154 1.493 2

302 2.683 3

450 5.772 4

Setting the argument all = TRUE returns the linear predictors for all of the
simulated parameter values in the (thinned) chains.
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> bmodParams <- predict(bmod, type="lp", all=TRUE)

The returned object is a list with one item for each unique value of the covari-
ate(s). The following shows the first five simulated values of (φ, ξ) for covariate
ndose = 1:

> bmodParams[[1]][1:5,]

phi xi ndose

[1,] -1.526821 -0.06125516 1

[2,] -1.302622 -0.34874068 1

[3,] -1.305566 -0.21044040 1

[4,] -1.426107 -0.20035377 1

[5,] -1.090514 -0.41759541 1

Uncertainty in the GPD model parameters is combined with the other sources
of uncertainty as follows.

3.9 Other sources of uncertainty

Our estimates of patient return levels on the original scale are derived by com-
bining regression and extreme value models, and also need to reflect variation
in baseline. Figure 3 illustrates how predictions can depend on patient baseline,
which is inherently variable, so we also need to account for this and other sources
of uncertainty. This is achieved by adopting a simulation based approach. GPD
model parameters are simulated according to the Bayesian methodlogy outlined
in Section 3.8. The methods of simulation used to represent further sources of
uncertainy are described now.

3.9.1 Uncertainty due to variation in baseline

We simulate baseline values simply by resampling from the observed values. The
regression model was fit to the logs of the data, so we resample the logs. We
simulate nsim independent values for each of the four treatment levels (corre-
sponding to the size of sample retained from our simulation from the posterior
distribution of GPD model parameters):

> base <- sample(log(liver$ALT.B), size=4*nsim, replace=TRUE)

3.9.2 Robust regression model parameter uncertainty

We now need to simulate from the sampling distribution of our robust regression
model coefficients. MM-estimates are asymptotically Gaussian distributed, so
we simulate from their joint Gaussian distribution. First we need to construct
the covariance of the regression parameters from the values returned by the rlm

summary function.

> mycov <- summary(rmod)$cov.unscaled * summary(rmod)$stddev^2

> myloc <- coef(rmod)

> mycoefs <- rmvnorm(4*nsim, mean=myloc, sigma=mycov)
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3.10 Return level estimation uncertainty

We now combine all the simulations from the different components of our model
to obtain an estimate of uncertainty about our point estimates of m-patient
return levels. Whereas before (Section 3.6) we had to fix a value of baseline, we
can now average over baseline values within our sample.

Simulated expected post-treatment log ALT are obtained by combining the
simulated baseline values with the simulated robust regression coefficients.

> ElogALT <- mycoefs[,1] + mycoefs[,2]*base + rep(1:4,each=nsim)*mycoefs[,3]

> ElogALT <- matrix(ElogALT,ncol=4)

Note that the variability in the estimated regression parameters will be
dwarfed by the variability due to extrapolation from the GPD model and by
that due to variability in baseline values. As an exercise, try fixing the robust
regression coefficients at their point estimates and see how much difference it
makes to the final predictions.

The expected post-treatment values of log ALT are combined with the sim-
ulated GPD parameters to obtain simulated values of m-patient return levels
(Equation 4) on the log scale:

> rl <- predict(bmod,M=1000,all=TRUE)[[1]]

> colnames(rl) <- LETTERS[1:4]

> rl[1:5,]

A B C D

[1,] 1.1957044 1.973071 3.639904 7.405224

[2,] 0.8229141 1.299642 2.428625 5.384815

[3,] 1.0501603 1.448361 2.134888 3.365261

[4,] 0.9667396 1.552460 2.855663 5.967568

[5,] 0.8805025 1.204856 1.803268 2.981786

> logRL <- rl + ElogALT

Finally, we exponentiate to get back to the scale of the raw data. Point
estimates and approximate 90% credible intervals are estimated respectively by
the empirical medians and 5 and 95% quantiles of our simulated return levels.

> srl <- exp(apply(logRL,2,quantile,probs=c(0.05,0.5,0.95)))

> par(mfrow=c(1,1))

> plot(srl[2, ], 1:4, xlim=range(srl), type="n", log="x",

+ axes=FALSE, xlab="1000-patient return level\n(90% interval)",

+ ylab="Dose")

> points(srl[2, ], 1:4, pch=16, cex=1.25)

> segments(x0=srl[1, ], x1=srl[3, ], y0=1:4)

> box()

> axis(1)

> axis(2, at=1:4, labels=LETTERS[1:4])
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From the resulting figure, there is some evidence that dose D is associated
with very large values of ALT, suggesting a potential safety issue.

3.11 Probability estimation uncertainty

We can also predict quantities such as P (ALT > 3× ULN) by rearranging (4)
on page 16:

1

m
= p

[
(xm − u)

ξ

σ
+ 1

]−1/ξ

.

(Note, p is the probability of exceeding the threshold for fitting the GPD.) Again,
things are made complicated by the need to add the baseline effect back into the
predictions. Here, we need also to account for the fact that for some fairly low
values of interest (e.g. ULN, the Upper Limit of Normal), it is possible for the
expected value of ALT given baseline to be greater than the specified value (in
cases where baseline ALT is elevated). If the expected value of ALT is greater
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than ULN, we need to consider the full distribution function F (r) = P (R ≤ r)
of the residuals. The model for this distribution has two components: above the
threshold for fitting, the excesses of the residuals over the threshold are modelled
by the fitted GPD; below the threshold we use the empirical distribution F̃ (r)
of the residuals:

F̂ (r) =

{
1− p{1 + ξ(r − u)/σ}−1/ξ r > u

F̃ (r) r ≤ u.

This consideration is irrelevant for higher values of interest above which the
expected value of ALT will never fall (e.g. interest is more usually in values
3× ULN and almost always 10× ULN or higher).

Noting that in the liver dataset, the ULN for ALT was 36 U/L, the code
below does the necessary exceedance probability computations.

> rp <- function(xm, u, phi, xi, p, r) {

+ res <- p * (1 + xi/exp(phi) * (xm - u))^(-1/xi)

+ if (any(u > xm)){

+ res[u > xm] <- sapply(u[u>xm],

+ function(x,r,m,p) mean((r + x - quantile(r,1-p)) > m),

+ r=r,m=xm,p=p)

+ }

+ res[xi < 0 & xm > u - exp(phi)/xi] <- 0

+ res

+ }

> getProbs <- function(u, phi, xi, p, r, ULN, m = c(1, 3, 10, 20)) {

+ m <- log(ULN * m)

+ res <- t(sapply(m, rp, u = u, phi = phi, xi = xi, p = p, r=r))

+ res <- apply(res, 1, function(x){ c(quantile(x, c(.05, .95)),

+ Mean=mean(x))[c(1,3,2)] })

+ round(res, 4)

+ }

> DoCalc <- function(ElogALT, xi){

+ cnames <- paste("P(ALT > ", c("", "3x", "10x", "20x"), "ULN)",sep = "")

+ out <- getProbs(u = ElogALT+bmod$threshold,

+ phi = bmodParams[[1]][,1], xi = xi,

+ r=liver$r, p = 1-0.7,ULN = 36)

+ colnames(out) <- cnames

+ out

+ }

> rpA <- DoCalc(ElogALT = ElogALT[,1], xi = bmodParams[[1]][,2])

> rpB <- DoCalc(ElogALT = ElogALT[,2], xi = bmodParams[[2]][,2])

> rpC <- DoCalc(ElogALT = ElogALT[,3], xi = bmodParams[[3]][,2])

> rpD <- DoCalc(ElogALT = ElogALT[,4], xi = bmodParams[[4]][,2])

> rpA

P(ALT > ULN) P(ALT > 3xULN) P(ALT > 10xULN) P(ALT > 20xULN)

5% 0.0000 0e+00 0 0
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Mean 0.0399 9e-04 0 0

95% 0.2180 1e-04 0 0

> rpB

P(ALT > ULN) P(ALT > 3xULN) P(ALT > 10xULN) P(ALT > 20xULN)

5% 0.0014 0.0000 0e+00 0

Mean 0.0609 0.0022 1e-04 0

95% 0.3030 0.0032 2e-04 0

> rpC

P(ALT > ULN) P(ALT > 3xULN) P(ALT > 10xULN) P(ALT > 20xULN)

5% 0.0101 0.0006 0.0000 0.0000

Mean 0.0847 0.0065 0.0009 0.0004

95% 0.3449 0.0134 0.0028 0.0016

> rpD

P(ALT > ULN) P(ALT > 3xULN) P(ALT > 10xULN) P(ALT > 20xULN)

5% 0.0204 0.0033 0.0006 0.0003

Mean 0.1097 0.0127 0.0039 0.0025

95% 0.4489 0.0272 0.0093 0.0065

The above tables contain summary statistics from posterior predictive distri-
butions. When computing the return levels, we used the median as an estimate
of the centre of the posterior distribution. The reason for this is that experience
has shown that for some distributions with extremely heavy tails, the mean can
be unduly influenced by very large values and can even be outside the 90 or
95% credible interval (as estimated by the sample quantiles). The distribution
is often skewed, so the mean and median can differ substantially; in an ideal
world we might display the entire posterior rather than simple summaries. For
the estimation of probailities, the range of values is bounded by [0, 1] and so
here we report sample means instead of medians.

The tables suggest that under dose D (the highest dose), approximately 0.2%
of patients (about 1 in 500) will get an ALT greater than 20 × ULN , a level
described by CTC as life threatening.
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