
trustOptim: a trust region nonlinear optimizer for
R

Michael Braun
MIT Sloan School of Management

September 27, 2012

Abstract

Trust region algorithms for nonlinear optimization are commonly believed
to be more stable than their line-search counterparts, especially for functions
that are non-concave, ill-conditioned, and/or exhibit regions that are close to
flat. Additionally, most freely-available optimization routines do not exploit
the sparsity of the Hessian when such sparsity exists, as in log posterior
densities of Bayesian hierarchical models. The trustOptim package for the
R programming language addresses both of these issues. It is intended to
be both robust, scalable and efficient for a large class optimization problems
that are commonly encountered in statistics, such as finding posterior modes.
Although users must supply the objective function and its gradient, the exact
Hessian is optional. If the Hessian is sparse, only the indices of the non-zero
elements needs to be known in advance. For models with massive number
of parameters, but for which most of the cross-partial derivatives are zero,
trustOptim offers dramatic performance improvements over existing options,
in terms of computational time and memory footprint.

Nonlinear optimization of continuous functions occurs frequently in statistics,
most notably in maximum likelihood and maximum a posteriori (MAP) estimation.
Among users of R (R Core Team 2012), the optim function in the base R package
is the most readily available tool for nonlinear optimization. The optim function
itself is a front-end for a variety of algorithms, such as conjugate gradient (CG),
quasi-Newton using BFGS updates (BFGS and L-BFGS-B), derivative-free heuristic
search (Nelder-Mead) and simulated annealing (SANN). Furthermore, there are

1

many other contributed R packages that implement additional methods, as well
as algorithms available outside of R. Having such a large number of alternatives
lets the practicing statistician choose the best available tool for the task at hand.

Unfortunately, these methods can be difficult to use when there is a large number
of variables over which the objective function is to be optimized. Search methods
like Nelder-Mead are inefficient with a massive number of parameters because
the search space is large, and they do not exploit information about slope and
curvature to speed up the time to convergence. Methods like CG and BFGS do
use gradient information, and both BFGS and L-BFGS-B approximate the Hes-
sian using successive gradients to trace out the curvature. However, the BFGS
method stores the entire Hessian, which is resource-intensive when the number
of parameters is large (the Hessian for a 50,000 parameter model requires 20GB
of RAM to store it as a standard, dense base R matrix). Although L-BFGS-B is a
limited-memory alternative to BFGS, neither is certain to offer a particularly ac-
curate approximation to the Hessian at any particular iteration, especially if the
objective function is not convex (BFGS updates are always positive definite). The
CG method does not store Hessian information at all, so it may the most feasi-
ble of the optim algorithms for large problems, although it still may not converge
quickly to an optimum.

The CG, BFGS and L-BFGS-B methods fall into the “line search” class of nonlinear
optimization algorithms. In short, line search methods choose a direction along
which to move from iterate xt to iterate xt+1, and then find the distance along
that direction that yields the greatest improvement in the objective function. A
simple example of a line search method is “steepest descent,” which follows the
direction of the gradient at xt, and searches for the “best” point along that line.
Steepest descent in known to be inefficient, which is why methods like CG and
BFGS are used to find a better direction in which to advance (Nocedal and Wright
2006). However, if the objective function is ill-conditioned, non-convex, or has
long ridges or plateaus, the optimizer may try to search far away from xt, only to
select an xt+1 that is close to xt, but offers only small improvement in the objective
function. At worst, the line search step will try to evaluate the objective function
so far away from xt that the objective function is not finite, and the algorithm will
fail.

2

The trustOptim package is an alternative nonlinear optimization tool that uses a
trust region approach. Trust region algorithms tend to be more robust and sta-
ble than line search algorithms, and may succeed for certain kinds of large-scale
problems that line search methods cannot solve. Like many other nonlinear op-
timizers, it is iterative, and uses gradient and Hessian estimates at each step to
decide where it should move next. Trust region methods work by first choos-
ing a maximum distance for the move from xt to xt+1, defining a “trust region”
around xt that has a radius of that maximum distance, and letting a candidate
for xt+1 be the minimum, within the trust region, of a quadratic approximation
of the objective function. We call this constrained quadratic program the “trust
region subproblem” or TRS. Because we do not consider points outside of the
trust region, the algorithm never runs too far, too fast, from the current iterate. If
we try to move to a point in the trust region that is worse than (or insufficiently
better than), the current point, we adaptively shrink the trust region (excluding
other points that are too far away from xt to be reasonable candidates for xt+1)
and solve the new TRS. If we accept a point close to the border of the trust region,
and that point gives as a large enough improvement in the objective function, we
can expand the trust region for the next iteration. By adaptively adjusting the size
of the trust region, we try to prevent the algorithm from jumping over the local
optimum, while allowing for steps that are large enough that the algorithm can
converge quickly.

Like line search methods, trust region methods are guaranteed to converge to a
point where the norm of the gradient is nearly zero and the Hessian is positive def-
inite. The primary advantage of trust region methods is stability. If a point along
a line search path causes the objective function to be undefined or indeterminate,
most implementations of line search methods will fail (it is not immediately clear
how the search should proceed in that event). In contrast, the search for xt+1 in
a trust region algorithm is always a solution to the TRS, which should always be
finite, even when the Hessian is indefinite (more on that later). If the objective
function, at the solution to the TRS, is not finite (or just not much better than at
xt), we reject that proposal, shrink the trust region, and try again. Furthermore,
a line search requires repeated estimation of the objective function, while trust
region methods evaluate the objective function only after solving the TRS. Thus,
trust region methods can run a lot faster when the objective function is expen-

3

sive to compute. Although there is no guarantee that trust region algorithms will
always converge faster than other alternatives, they may work better for difficult
optimization problems that other algorithms cannot solve.

The trustOptim package has an added benefit (not general to all trust region im-
plementations) for being optimized for problems for which the Hessian is sparse.
Sparse Hessians occur when a large number of the cross-partial derivatives of
the objective function are zero. For example, suppose we want to find the mode
of a log posterior density for a Bayesian hierarchical model. If we assume that
individual-level parameters bi and b j vectors are conditionally independent, the
cross-partial derivatives between all elements of bi and b j are zero. If the model in-
cludes a very large number of heterogeneous units, and a relatively small number
of population-level parameters, the proportion of non-zero entries in the Hessian
will be small. Since we know up front which elements of the Hessian are non-
zero, we only need to compute, store, and operate on those non-zero elements. By
storing sparse Hessians in a compressed format, and using a library of numeri-
cal algorithms that are efficient for sparse matrices (we use the Eigen numerical
library (Guennebaud et al. 2012)), we can run the optimization algorithms faster,
with a smaller memory footprint, than the R optim algorithms.

In the next section, we discuss the specifics of the trust region implementation
in the trustOptim package. We then introduce the trust.optim function, and
describe how to use it.

1 Algorithmic details

Consider f (x), an objective function over x 2 Rp that we want to minimize. Let g
be the gradient, and let B be the Hessian. The goal is to find a local minimum of
f (x), with no constraints on x. This minimum will be a point where ||g||/

p
n < e

where e is a small precision parameter. We will assume that B is positive definite at
the local optimum, but not necessarily at other values of x. Iterations are indexed
by t (so, for example, Bt is the Hessian at iteration t).

4

1.1 Trust region methods for nonlinear optimization

The details of trust region methods are described in detail in both Nocedal and
Wright (2006) and Conn et al. (2000), and the following exposition borrows heav-
ily from both sources. At each iteration of a trust region algorithm, we construct
a quadratic approximation to the objective function at xt, and minimize that ap-
proximation, subject to a constraint that the solution falls within a trust region
with radius d. More formally, each iteration of the trust region algorithm involves
solving the “trust region subproblem,” or TRS.

min
s2Rk

f ⇤(s) = f (xt) + g0ts +
1
2

s0Bts s.t. kskM  dt (1)

st = arg min
s2Rk

f ⇤(s) (2)

The norm k · kM is a Mahanalobis norm with respect to some positive definite
matrix M.

Let st be the solution to the TRS for iteration t, and consider the ratio

rt =
f (xt)� f (xt + st)

f ⇤(xt)� f ⇤(xt + st)
(3)

This ratio is the improvement in the objective function that we would get from
a move from xt to xt+1, relative to the improvement that is predicted by the
quadratic approximation. Let h1 be the minimum value of rt for which we deem
it “worthwhile” to move from xt to xt+1, and let h2 be the maximum rt that would
trigger a shrinkage in the trust region. If rt < h2, or if f (xt + st) is not finite, we
shrink the trust region by reducing dt by some predetermined factor, and compute
a new st by solving the TRS again. If rt > h1, we move to xt+1 = xt + st. Also, if
we do accept the move, and st is on the border of the trust region, we expand the
trust region by increasing d, again by some predetermined factor. The idea is to
not move to a new x if f (xt+1) would be worse than f (xt). By expanding the trust
region, we can propose larger jumps, and potentially reach the optimum more
quickly. We want to propose only moves that are among those that we “trust” to
give reasonable values of f (x). If it turns out that a move leads to a large improve-
ment in the objective function, and that the proposed move was constrained by
the radius of the trust region, we want to expand the trust region so we can take

5

larger steps. If the proposed move is bad, we should then reduce the size of the
region we trust, and try to find another step that is closer to the current iterate.
Of course, there is no reason that the trust region needs to change at after at a
particular iteration, especially if the solution to the TRS is at an internal point.

There are a number of different ways to solve the TRS; Conn et al. (2000) is author-
itative and encyclopedic in this area. The trustOptim package uses the method
described in Steihaug (1983). The Steihaug algorithm is, essentially, a conjugate
gradient solver for a constrained quadratic program. If Bt is positive definite, the
Steihaug solution to the TRS will be exact, up to some level of numerical preci-
sion. However, if Bt is indefinite, the algorithm could try to move in a direction
of negative curvature. If the algorithm happens to stumble on such a direction, it
goes back to the last direction that it moved, runs in that direction to the border of
the trust region, and returns that point of intersection with the trust region border
as the “solution” to the TRS. This solution is not necessarily the true minimizer of
the TRS, but it still might provide sufficient improvement in the objective function
such that rt > h1. If not, we shrink the trust region and try again. As an alter-
native to the Steihaug algorithm for solving the TRS, (Conn et al. 2000) suggest
using the Lanczos algorithm instead. The Lanczos approach may be more likely
to find a better solution to the TRS when Bk is indefinite, but at some additional
computational cost. We include only the Steihaug algorithm for now, because it
still seems to work well, especially for sparse problems.

As with other conjugate gradient methods, one way to speed up the Steihaug algo-
rithm is to use a preconditioner to rescale the TRS. Note that the constraint in the
TRS is expressed as an M-norm, rather that a straight Euclidean norm. The posi-
tive definite matrix M should be close enough to the Hessian that M�1Bt ⇡ I, but
still cheap enough to compute that the cost of computing the preconditioner does
not exceed the benefits from using it. Of course, the ideal preconditioner would
be Bt itself, but Bt is not necessarily positive definite, and we may not be able to
estimate it fast enough to be worthwhile. In this case, one could use a modified
Cholesky decomposition, as described in Nocedal and Wright (2006); this option
is available in trustOptim. The package also has an option for a “diagonal” pre-
conditioner, which is just the diagonal elements of Bt. Other preconditioners may
be available in the future.

6

1.2 Computing Hessians

The trustOptim package provides four trust region “methods” that differ only in
how the Hessian matrix B is computed and stored. Two methods, Sparse and
SparseFD, are optimized for objective functions with sparse Hessians. Sparse
requires the user to supply a function that returns the Hessian in a sparse com-
pressed format (namely, the dgCMatrix class in the Matrix package, Bates and
Maechler 2012). The Sparse method may be preferred if an analytical expression
for the Hessian is readily available, or if the user can compute the Hessian using
algorithmic differentiation (AD) software (e.g., the CppAD library for C++, Bell
2012).

The SparseFD method requires only a list of the row and column indices of the
non-zero elements of the lower triangle of the Hessian, but not the values them-
selves. It then computes the Hessian using a finite differencing algorithm that
exploits the sparsity structure.. Naive, finite differenced estimates of a dense Hes-
sian require p + 1 evaluations of the gradient if using forward differences, and
2p estimates for central differences (and even more if more accuracy is needed).
However, for certain sparsity structures, we can estimate a Hessian using many
fewer gradient evaluations. The trick is to identify groups of variables for which
perturbing any subset of the variables in the group together has the same effect
on the gradient as perturbing any one of the elements in the group alone. Such
groups will exist in models for which the cross-partial derivatives across a large
number of pairs of variables are zero. Curtis et al. (1974) introduce the idea of
reducing the number of evaluations to estimate sparse Jacobians, and Powell and
Toint (1979) describe how to partition variables into appropriate groups, and how
to recover Hessian information through back-substitution. Coleman and Moré
(1983) show that the task of grouping the variables amounts to a classic graph-
coloring problem. Gebremedhin et al. (2005) summarize more recent advances in
this area.

As an example, suppose that we have, in a hierarchical model, N units, k het-
erogeneous parameters per unit, and r population-level parameters. Since the
cross-partial derivatives between an element in bi and an element in b j is zero,
any element of bi and b j can be in the same group, but since the cross partials for
elements with a single bi are not zero, these elements cannot be in the same group.

7

Furthermore, if we assume that any bi could be correlated with the r population-
level parameters, and that the r population-level parameters may be correlated
amongst themselves, we can estimate the Hessian (with forward differences) with
no more than k + r + 1 gradient evaluations. Note that this number does not grow
with N. Thus, computing the Hessian for a dataset with, say, 100 heterogeneous
units, is no more expensive than for a dataset with a million heterogeneous units,
and the amount of storage required for the sparse Hessian grows only linearly in
N. In fact, for large N and small k + r, finite differencing could even be faster than

direct computation. This would happen if we needed to compute
∂2 f

∂bik∂bil
for all

i = 1 . . . N.

There may be cases for which the Hessian is sparse, but the structure is such
that we cannot partition variables into a small number of groups. In that case,
trustOptim can still take advantage of sparsity if the user provides a function that
computes the exact sparse Hessian.

The trustOptim package also includes two quasi-Newton methods: BFGS and
SR1. The two methods do not require any information about the Hessian at all,
nor do they exploit any sparsity information. They both approximate the Hessian
by tracing the curvature of the objective function through repeated estimates of
the gradient, and differ only in the formula they use to update the Hessian; BFGS
updates are guaranteed to be positive definite, while SR1 updates are not (Nocedal
and Wright 2006). The quasi-Newton Hessians are stored as dense matrices, so
they are not appropriate for large problems. In our experience, neither of these
methods offers clear advantages of the BFGS or L-BFGS-B implementations in
optim, but we include them for convenience and completeness.

2 Using the package

To run the algorithms in trustOptim, the user will call the trust.optim function.
Its signature is:

trust.optim(x, fn, gr, hs=NULL, method=c("SR1","BFGS","Sparse","SparseFD"),

hess.struct=NULL, control=list(), ...)

8

The user must supply a function fn that returns f (x), the value of the objective
function to be minimized, and a function gr that returns the gradient. For the
Sparse method, a function hs that returns the Hessian as a sparse matrix of class
dgCMatrix (this class is defined in the Matrix package, which is now a recom-
mended package in R and a dependency for trustOptim). The functions fn, gr,

and hs all take a parameter vector as the first argument. Additional named argu-
ments can be passed to fn, gr or hs through the . . . argument. The quasi-Newton
methods SR1 and BFGS do not require the user to provide any Hessian informa-
tion. For those methods, the hs and hess.struct should be (and will default to)
NULL.

The SparseFD method requires that the hess.struct argument be a list that con-
tains two integer vectors: iRow and jCol. These integer vectors contain the row
and column indices of the non-zero elements of the lower triangle of the Hes-
sian. The length of each of these vectors is equal to the number of non-zeros in
the lower triangle of the Hessian. Do not include any elements from the upper
triangle. Entries must be in order, first by column, and then by row within each
column. Indexing starts at 1. The Matrix.to.Coord function is a convenience
function that converts a matrix with the appropriate sparsity structure to a list
that can be used as the hess.struct argument.

For both methods, the user does need to supply a function that evaluates the gra-
dient. Although it is true that the CG and BFGS methods in optim do not require a
user-supplied gradient, those methods will otherwise estimate the gradient using
finite differencing. In general, we never recommend finite-differenced gradients
for any problem other than those with a very small number of variables, even
when using optim. Finite differencing takes a long time to run, and is subject
to numerical error, especially near the optimum when elements of the gradient
are close to zero. Using SparseFD with finite-differenced gradients means that
the Hessian is “doubly differenced,” and the resulting lack of numerical precision
renders those Hessians next to worthless.

Here is an example of how to supply the structure of a sparse Hessian to the
SparseFD method.

require(Matrix)

require(trustOptim)

9

M <- kronecker(Diagonal(4),Matrix(1,2,2))

print(M)

8 x 8 sparse Matrix of class "dgTMatrix"

[1,] 1 1

[2,] 1 1

[3,] . . 1 1

[4,] . . 1 1

[5,] 1 1 . .

[6,] 1 1 . .

[7,] 1 1

[8,] 1 1

H <- Matrix.to.Coord(M)

print(H)

$iRow

[1] 1 2 2 3 4 4 5 6 6 7 8 8

$jCol

[1] 1 1 2 3 3 4 5 5 6 7 7 8

Note that Matrix.to.Coord considers only the lower triangle of M.

To check that the indices do, in fact, represent the sparsity pattern of the lower
triangular Hessian, you can convert the hess.struct list back to a pattern Matrix

using the Coord.to.Matrix function.

M2 <- Coord.to.Pattern.Matrix(H, 8,8)

print(M2)

8 x 8 sparse Matrix of class "ngCMatrix"

[1,] |

[2,] | |

[3,] . . |

[4,] . . | |

[5,] | . . .

[6,] | | . .

[7,] | .

[8,] | |

Notice that M2 is only lower-triangular. Even though M was symmetric, H con-
tains only the indices of the non-zero elements in the lower triangle. To recover
the pattern of the symmetric matrix, do the following.

10

M3 <- Coord.to.Sym.Pattern.Matrix(H,8)

print(M3)

8 x 8 sparse Matrix of class "nsTMatrix"

[1,] | |

[2,] | |

[3,] . . | |

[4,] . . | |

[5,] | | . .

[6,] | | . .

[7,] | |

[8,] | |

2.1 Control parameters

The control argument takes a list of options, all of which are described in the
package manual. Most of these arguments are related to the internal workings of
the trust region algorithm (for example, how close does a step need to get to the
border of the trust region before the region expands). However, there are a few
arguments that deserve some special attention.

2.1.1 Stopping criteria

The trust.optim function will stop when kgk/pp < e for a sufficiently small
e (where g is the gradient and p is the number of parameters, and the norm is
Euclidean). The parameter e is the prec parameter in the control list. It defaults
to

p
.Machine$double.eps, which is the square root of the computer’s floating

point precision. However, sometimes the algorithm just can’t get the gradient to
be that flat. What will then happen is that the trust region will start to shrink,
until its radius is less than the value of the cg.tol parameter. The algorithm
will then stop with the message “Cannot reach tolerance in gradient.” This is
not necessarily a problem if the norm of the gradient is still small enough that
the gradient is flat for all practical purposes. For example, suppose we set prec
to be 10�7. Then, suppose that for numerical reasons, the norm of the gradient
simply cannot get below 10�6. If the norm of the gradient were the only stopping
criterion, the algorithm would continue to run, even though it has probably hit

11

the local optimum. With the alternative stopping criterion, the algorithm will also
stop when it is clear that the algorithm can no longer take a step that leads to an
improvement in the objective function.

There is, of course, a third stopping criterion. The maxit is the maximum number
of iterations the algorithm should run before stopping. However, keep in mind
that if the algorithm stops at maxit, it is almost certainly not at a local optimum.
Always check the gradient to be sure.

Note that many other nonlinear optimizers, including optim, do not use the norm
of the gradient as a stopping criterion. Instead, optim stops when the absolute
or relative changes in the objective function are less that abstol or reltol, re-
spectively. This often causes optim to stop prematurely, when the estimates of
the gradient and/or Hessian are not precise, or if there are some regions of the
domain where the objective function is nearly flat. In theory, this should never
happen, but in reality, it happens all the time. For an unconstrained optimization
problem, there is simply no reason why the norm of the gradient should not be
zero (within numerical precision) before the algorithm stops.

The cg.tol parameter specifies the desired accuracy for each solution of the trust
region subproblem. If it is set too high, there is a loss of accuracy at each step,
but if set too low, the algorithm may take too long at each trust region iteration.
In general, we do not need each TRS solution to be particularly precise. Similarly,
the trust.iter parameter controls the maximum number of conjugate gradient
iterations for each attempted solution of the trust region subproblem. Set this
number high if you don’t want to lose accuracy by stopping the conjugate gradient
step prematurely.

2.1.2 Preconditioners

Currently, the package offers three preconditioners. The identity preconditioner
(no preconditioning), a diagonal preconditioner (just the diagonal of the Hessian)
and a modified Cholesky preconditioner. The identity and diagonal precondition-
ers are available for all of the methods. For the Sparse and SparseFD methods, the
modified Cholesky preconditioner will use a positive definite matrix that is clos-
est to the potentially indefinite Hessian (trust.optim does not require that the

12

objective function be positive definite). For BFGS, the Cholesky preconditioner
is available because BFGS updates are always positive definite. At this time, if
you select a Cholesky preconditioner for the SR1 method, the algorithm will use
a diagonal preconditioner instead.

There is no general rule for selecting preconditioners. There will be a tradeoff
between the number of iterations needs to solve the problem and the time it takes
to compute any particular preconditioner. In some cases, the identity precondi-
tioner may even solve the problem in fewer iterations than a modified Cholesky
preconditioner.

3 Example: Hierarchical Binary Choice

Suppose we have a dataset of N households, each with T opportunities to pur-
chase a particular product. Let yi be the number of times household i purchases
the product, out of the T purchase opportunities. Furthermore, let pi be the prob-
ability of purchase; pi is the same for all T opportunities, so we can treat yi as a
binomial random variable. The purchase probability pi is heterogeneous, and de-
pends on both k continuous covariates xi, and a heterogeneous coefficient vector
bi, such that

pi =
exp(x0i bi)

1 + exp(x0i bi)
, i = 1 . . . N (4)

The coefficients can be thought of as sensitivities to the covariates, and they are
distributed across the population of households following a multivariate normal
distribution with mean µ and covariance S. We assume that we know S, but we
do not know µ. Instead, we place a multivariate normal prior on µ, with mean
0 and covariance W0, which is determined in advance. Thus, each bi, and µ are
k�dimensional vectors, and the total number of unknown variables in the model
is (N + 1)k.

13

The log posterior density, ignoring any normalization constants, is

log p(b1:N , µ|Y, X, S0, W0) =
N

Â
i=1

pyi
i (1 � pi)

T�yi (bi � µ)0 S�1 (bi � µ) + µ0W�1
0 µ

(5)

Since the bi are drawn iid from a multivariate normal,
∂2 log p

∂bib j
= 0 for all i 6= j.

We also know that all of the bi are correlated with µ. Therefore, the Hessian will
be sparse with a “block-arrow” structure. For example, if N = 6 and k = 2, then
p = 14 and the Hessian will have the pattern as illustrated in Figure 1.

[1,] | | | |

[2,] | | | |

[3,] . . | | | |

[4,] . . | | | |

[5,] | | | |

[6,] | | | |

[7,] | | | |

[8,] | | | |

[9,] | | . . | |

[10,] | | . . | |

[11,] | | | |

[12,] | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

Figure 1: Sparsity pattern for hierarchical binary choice example.

There are 196 elements in this symmetric matrix, but only 169 are non-zero, and
only 76 values are unique. Although the reduction in RAM from using a sparse
matrix structure for the Hessian may be modest, consider what would happen if
N = 1000 instead. In that case, there are 2,002 variables in the problem, and more
than 4 million elements in the Hessian. However, only 12,004 of those elements
are non-zero. If we work with only the lower triangle of the Hessian (e.g., through
a Cholesky decomposition), we only need to work with only 7,003 values.

The R code for this example is contained in two files: examples/ex1.R and examples/ex funcs.R.
What follows is a discussion of the ex1.R file.

14

First, we load libraries that are necessary to simulate the data and run the algo-
rithm, and set the parameters of the simulation study.

library(plyr)

library(Matrix)

library(mvtnorm)

library(trustOptim)

source("ex_funcs.R") ## fn, gr and hs functions

set.seed(123)

N <- 200

k <- 5

T <- 10

Next, we choose the trust.optim method we want to test, and initialize the con-
trol parameters. Definitions of these parameters are described in detail in the
package documentation. The control parameters to which a user might want to
pay the most attention are those related to convergence of the main algorithm
(stop.trust.radius, prec and maxit), verbosity of the reporting of the status of
the algoritm (report.freq, report.level and report.freq), the function scale
factor (which must be positive if minimizing and negative if maximizing), and the
selection of the preconditioner (0 for no preconditioner, 1 for a diagonal precon-
ditioner, and 2 for a modified Cholesky preconditioner).

method <- "SparseFD"

control.list <- list(start.trust.radius=5,

stop.trust.radius = 1e-5,

prec=1e-7,

report.freq=1L,

report.level=4L,

report.precision=3L,

maxit=1000L,

function.scale.factor = as.numeric(-1),

preconditioner=1L

)

In the next section, we simulate data, set priors and choose a starting value for the
optimizer. The laply function is part of the plyr package.

15

x.mean <- rep(0,k)

x.cov <- diag(k)

mu <- rnorm(k,0,10)

Omega <- diag(k)

inv.Sigma <- rWishart(1,k+5,diag(k))[,,1]

inv.Omega <- solve(Omega)

X <- t(rmvnorm(N, mean=x.mean, sigma=x.cov))

B <- t(rmvnorm(N, mean=mu, sigma=Omega))

XB <- colSums(X * B)

log.p <- XB - log1p(exp(XB))

Y <- laply(log.p, function(q) return(rbinom(1,T,exp(q))))

nvars <- N*k + k

start <- rnorm(nvars) ## random starting values

The hess.struct function returns a list of the row and column indices of the non-
zero elements of the lower triangle of the Hessian. This function is defined in the
ex funcs.R file.

hess.struct <- get.hess.struct(N, k) ## for SparseFD method only

We now run the algorithm, recording the time it takes to converge.

cat("running ",method, "\n")

t1 <- Sys.time()

opt <- trust.optim(start, fn=log.f,

gr = get.grad,

hs = get.hess, ## used only for Sparse method

hess.struct = hess.struct, ## used only for SparseFD method

method = method,

control = control.list,

Y=Y, X=X, inv.Omega=inv.Omega, inv.Sigma=inv.Sigma

)

t2 <- Sys.time()

td <- difftime(t2,t1)

print(td,units="secs")

running SparseFD

Beginning optimization

iter f nrm_gr status rad CG iter CG result

1 12888.0 6114.2 Continuing - TR expand 15.0 1 Intersect TR bound

2 10011.2 4774.7 Continuing - TR expand 45.0 1 Intersect TR bound

16

3 4491.7 1422.1 Continuing - TR expand 135.0 1 Intersect TR bound

4 822.6 133.1 Continuing - TR expand 405.0 7 Intersect TR bound

5 393.1 17.2 Continuing 405.0 55 Reached tolerance

6 304.2 7.1 Continuing 405.0 61 Reached tolerance

7 260.2 3.2 Continuing 405.0 58 Reached tolerance

8 248.6 1.1 Continuing 405.0 62 Reached tolerance

9 247.6 0.1 Continuing 405.0 63 Reached tolerance

10 247.6 0.0 Continuing 405.0 65 Reached tolerance

11 247.6 0.0 Continuing 405.0 63 Reached tolerance

Iteration has terminated

11 247.58 0.00 Success

Time difference of 0.3053319 secs

The output of the algorithm supplies the iteration number, the value of the ob-
jective function and norm of the gradient, whether the trust region is expanding
or contracting (or neither) and the current radius of the trust region. It will also
report the number of iterations it took for the Steihaug algorithm to solve the trust
region subproblem, and the reason the Steihaug algorithm stopped. In this exam-
ple, for the first four iterations, the solution to the TRS was reached after only one
conjugate gradient step, and this solution was at the boundary of the trust region.
Since the improvement in the objective function was substantial, we expand the
trust region and try again. By the fifth iteration, the trust region is sufficiently
large that the TRS solution is found in the interior through subsequent conjugate
gradient steps. Once the interior solution of the TRS is found, the trust region
algorithm moves to the TRS solution, recomputes the gradient and Hessian of
the objective function, and repeats until the first-order conditions of the objective
function are met.

Note that this problem has 1,005 parameters, and converged in less than one third
of a second.

The return value of the trust.optim function returns all of the important values,
such as the solution to the problem, the value, gradient and Hessian (in sparse
compressed format) of the objective function, the number of iterations, the final
trust radius, the number of non-zeros in the Hessian, and the method used.

If we use the Sparse method instead of SparseFD, the trust region iterations are

17

exactly the same, except that the algorithm takes almost 10 seconds to run. The
additional run time is because it takes longer to construct a block diagonal Hes-
sian with N = 200 blocks than it does to compute a sparse Hessian using finite
differencing and 10 partitions. This may not always be the case if there are a large
number of population-level parameters.

3.1 Comparison to alternatives

Next, we compare the performance of trust.optim to some alternative nonlin-
ear optimizers in R. The methods are summarized in Table 1. The trust package
(Geyer. 2009) is another stable and robust implementation of a trust region opti-
mizer, and we found that it works well for modestly-sized problems (no more than
a few hundred parameters). Unlike trustOptim, it requires the user to provide a
complete Hessian as a dense matrix, so it cannot exploit sparsity when that spar-
sity exists. It also uses eigenvalue decompositions to solve the TRS, as opposed
to the Steihaug conjugate gradient approach. Finally, stopping criterion in for the
algorithm in trust is based on the change in the value of the objective function,
and not the norm of the gradient.

Package method Type Requires Requires
gradient Hessian

optim CG Line search No, but preferred No
optim BFGS Line search No, but preferred No
trust trust region Yes Yes
trustOptim Sparse trust region Yes Yes
trustOptim SparseFD trust region Yes structure only

Table 1: Summary of some popular nonlinear optimization algorithms for R.

Naturally, there are many other optimization tools available for R users. These are
described in the R Task View on Optimization and Mathematical Programming.

We compare the algorithms by simulating datasets from the hierarchical binary
choice model, and using the optimization algorithms to find the mode of the log
posterior density. There are six conditions, determined by crossing the number of
heterogeneous units (N 2 (25, 200, 100)) and number of parameters per unit (k 2
(2, 10)). Within each condition, we simulated eight datasets, ran the optimizers,

18

and averaged the performance statistics of interest: total clock time, the number
of iterations of the algorithm, and both the Euclidean and maximum norms for
the gradient at the local optimum. These results are in Table 2.

k=2 k=10
N secs kgk2 kgk• iters secs kgk2 kgk• iters

SparseFD 25 0.1 4e-6 1e-6 7 0.3 7e-6 4e-6 8
Sparse 25 1.1 4e-6 1e-6 7 1.4 7e-6 4e-6 8
optim.BFGS 25 0.1 7e-3 4e-3 31 0.2 0.03 0.01 110
optim.CG 25 0.6 8e-6 5e-6 386 3.5 2e-5 1e-5 2255
trust 25 1.6 2e-9 2e-9 7 6.0 6e-9 4e-9 8
SparseFD 200 0.1 2e-5 6e-6 9 1.7 6e-5 1e-5 11
Sparse 200 8.9 2e-5 6e-6 9 15.8 6e-5 1e-5 11
optim.BFGS 200 0.1 0.07 0.05 35 10.1 0.113 0.06 140
optim.CG 200 2.9 2e-5 1e-5 944 61.6 6e-5 3e-5 15603
trust 200 12.9 2e-8 5e-9 9 102.7 8e-10 2e-10 11
SparseFD 1000 0.6 5e-5 1e-5 9 42.6 1e-4 1e-5 12
Sparse 1000 46.2 5e-5 1e-5 9 169.9 1e-4 1e-5 12
optim.BFGS 1000 2.4 0.13 0.05 35 760.3 0.77 0.41 143
optim.CG 1000 20.0 5e-5 3e-5 1970 2350.1 1e-4 7e-5 51181
trust 1000 146.6 1e-7 1e-8 11 9752.9 7e-8 6e-9 13

Table 2: Convergence times and gradient norms for hierarchical binary choice
example.

We see that for very small datasets, there is no clear reason to prefer trustOptim
over the other packages. However, when the datasets get large, SparseFD is the
clear winner, with Sparse coming in second. It may seem strange that a finite
differencing algorithm is faster than one that uses the exact Hessian. This is be-
cause the get.hess function computes the Hessian for each of the N units first,
and then assembles it into a structured sparse matrix. Thus, the time to compute
the Hessian explicitly grows with N, while the computational cost of SparseFD
will grow with k. The fact that SparseFD outperforms Sparse here should not be
considered to be a general result. For example, computing a sparse Hessian using
algorithmic differentiation code (Bell 2012) should be about as fast as SparseFD,
as long as the AD routines are designed to exploit that sparsity. Also, one reason
optim.BFGS appears to run quickly is that it is prone to stopping before the gradi-
ent is sufficiently flat. the trustOptim package is more stringent with its stopping
criteria, and yet it still runs quickly. The N = 1000, k = 10 case has more than
10,000 parameters, yet the SparseFD method converges in only 43 seconds.

19

4 Implementation details

The trustOptim package was written primarily in C++, using the Eigen Nu-
merical Library (Guennebaud et al. 2012). The trustOptim package links to the
RcppEigen R package (Bates et al. 2012), so the user does not need to install Eigen
separately in order to compile trustOptim. The user will call the trust.optim

function from R (defined in the callTrust.R file), which will in turn pass the ar-
guments to the compiled code using functions in the Rcpp package (Eddelbuettel
and François 2011). The trust.optim function then gathers results and returns
them to the user in R.

The src/Rinterface.cpp defines the C++ functions that collect data from R, pass
them to the optimization routines, and return the results. There is a separate func-
tion for each method. Each function constructs an optimizer object of the class
that is appropriate for that method. The class Trust CG Optimizer, for the quasi-
Newton methods BFGS and SR1, defined in the file inst/include/CG-quasi.h.
The class Trust CG Sparse, for the sparse methods Sparse and SparseFD, are de-
fined in the fileinst/CG-sparse.h. Both of these classes inherit from the Trust CG Base

class, which is defined in inst/CG-base.h. All of the optimization is done by
member functions in Trust CG Base; Trust CG Optimizer and Trust CG Sparse

differ only in how they handle the Hessian and the preconditioners. This is be-
cause Eigen uses different methods to decompose dense and sparse matrices.

The Rfunc and RfuncHess classes (defined in the files inst/Rfunc.h and inst/RfuncHess.h),
are responsible for returning the value of the objective function, the gradient, and
the Hessian. Rfunc is used for all methods except Sparse, for which RfuncHess

is used. Both classes contain references to Rcpp::Function objects that , in turn,
are references to the R functions that compute the objective function and gradient.
Thus, a call to the get f() function will return the result of a call to the corre-
sponding R function. The RfuncHess class returns the Hessian, as an Eigen sparse
matrix, in a similar way.

The Rfunc class also contains the functions that call the sparse Hessian routines for
the Sparse method. The finite differencing algorithm for SparseFD is described in
Coleman et al. (1985a). The actual Fortran code was published by Coleman et al.
(1985b) as Algorithm 636 in the ACM Transactions on Mathematical Software. I

20

then converted this code to C, using f2c (this is to avoid having to call a Fortran
compiler, or link to Fortran libraries, when installing the package). The result is C
code, in file src/FDHS-DSSM.c, that implements this algorithm. 1

5 Discussion

The motivation behind trustOptim was immense frustration about not being able
to find modes of posterior densities of hierarchical models. Existing tools in R

were either too cumbersome to use when there are a large number of parameters,
too imprecise when encountering ridges, plateaus or saddle points in the objective
function, or too lenient in determining when the optimization algorithm should
stop. The product of the effort behind addressing these problems is a package that
is more robust, efficient and precise that existing options. This is not to say that
trustOptim will outperform other nonlinear optimizers in all cases. But at least
for hierarchical models, or other models with sparse Hessians, this may prove to
be a useful tool in the statisticians toolbox.

In the future, more features will be added to trustOptim. Here is a list of some
possibilities, in no particular order:

1. additional preconditioners to accelerate convergence to solutions of the trust
region subproblem;

2. implementation of the Lanczos algorithm for solving the trust region sub-
problem (Conn et al. 2000, ch. 5.2);

3. the ability to handle constrained optimization problems; and

4. an interface with an algorithmic differentiation package, once one is avail-
able for R.

1I offer special thanks to Tom Coleman, and the ACM, for giving me permission to include his
code in the package. The copyright for the code in FDHS-DSSM.c is held by the Association for
Computing Machinery (ACM). Details are in the LICENSE file that is included with the package.

21

References

Douglas Bates and Martin Maechler. Matrix: Sparse and Dense Matrix Classes
and Methods. R package version 1.0-6, 2012.

Douglas Bates, Romain Francois, and Dirk Eddelbuettel. RcppEigen: Rcpp
integration for the Eigen templated linear algebra library., 2012. URL
http://CRAN.R-project.org/package=RcppEigen. R package version 0.3.1.

B.M. Bell. CppAD: a package for C++ algorithmic differentiation. Computational In-
frastructure for Operations Research, 2012. URL http://www.coin-or.org/CppAD.

Thomas F Coleman and Jorge J Moré. Estimation of Sparse Jacobian Matrices and
Graph Coloring Problems. SIAM Journal on Numerical Analysis, 20(1):187–209,
February 1983.

Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Software for Estimating
Sparse Hessian Matrices. ACM Transaction on Mathematical Software, 11(4):363–
377, December 1985a.

Thomas F Coleman, Burton S Garbow, and Jorge J Moré. Algorithm 636: FOR-
TRAN Subroutines for Estimating Sparse Hessian Matrices. ACM Transactions
on Mathematical Software, 11(4):378, 1985b.

Andrew R Conn, Nicholas I M Gould, and Philippe L Toint. Trust-Region Methods.
SIAM-MPS, Philadelphia, 2000.

A R Curtis, M J D Powell, and J K Reid. On the Estimation of Sparse Jacobian
Matrices. Journal of the Institute of Mathematics and its Applications, 13:117–119,
1974.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++
integration. Journal of Statistical Software, 40(8):1–18, 2011. URL
http://www.jstatsoft.org/v40/i08/.

Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What Color is
your Jacobian? Graph Coloring for Computing Derivatives. SIAM Review, 47(4):
629–705, 2005.

Charles J. Geyer. trust: Trust Region Optimization, 2009. URL
http://www.stat.umn.edu/geyer/trust/. R package version 0.1-2.

Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2012.

Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, second
edition edition, 2006.

22

M J D Powell and Ph. L. Toint. On the Estimation of Sparse Hessian Matrices.
SIAM Journal on Numerical Analysis, 16(6):1060–1074, December 1979.

R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2012. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

Trond Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale
Optimization. SIAM Journal on Numerical Analysis, 20(3):626–637, June 1983.

23

