
Package ‘EpiModel’
October 11, 2024

Version 2.5.0

Date 2024-10-10

Title Mathematical Modeling of Infectious Disease Dynamics

Description Tools for simulating mathematical models of infectious disease dynamics.
Epidemic model classes include deterministic compartmental models, stochastic
individual-contact models, and stochastic network models. Network models use the
robust statistical methods of exponential-family random graph models (ERGMs)
from the Statnet suite of software packages in R. Standard templates for epidemic
modeling include SI, SIR, and SIS disease types. EpiModel features an API for
extending these templates to address novel scientific research aims. Full
methods for EpiModel are detailed in Jenness et al. (2018, <doi:10.18637/jss.v084.i08>).

Maintainer Samuel Jenness <samuel.m.jenness@emory.edu>

License GPL-3

URL https://www.epimodel.org/, https://epimodel.github.io/EpiModel/

BugReports https://github.com/EpiModel/EpiModel/issues/

Depends R (>= 4.1), deSolve (>= 1.21), networkDynamic (>= 0.11.3),
tergm (>= 4.2.1), statnet.common (>= 4.10.0)

Imports graphics, grDevices, stats, utils, collections, doParallel,
ergm (>= 4.7.1), foreach, network (>= 1.18.1), RColorBrewer,
ape, lazyeval, ggplot2, tibble, methods, rlang, dplyr, coda,
networkLite (>= 1.0.5)

Suggests ergm.ego (>= 1.1.0), egor, knitr, ndtv, rmarkdown, shiny,
testthat, progressr, tidyr

VignetteBuilder knitr

LinkingTo Rcpp, ergm

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation yes

Author Samuel Jenness [cre, aut],
Steven M. Goodreau [aut],

1

https://doi.org/10.18637/jss.v084.i08
https://www.epimodel.org/
https://epimodel.github.io/EpiModel/
https://github.com/EpiModel/EpiModel/issues/

2 Contents

Martina Morris [aut],
Adrien Le Guillou [aut],
Chad Klumb [aut],
Skye Bender-deMoll [ctb]

Repository CRAN

Date/Publication 2024-10-11 17:50:02 UTC

Contents
EpiModel-package . 4
add_vertices . 7
apportion_lr . 8
arrive_nodes . 9
as.data.frame.dcm . 10
as.data.frame.icm . 11
as.data.frame.netdx . 13
as.epi.data.frame . 14
as.network.transmat . 14
as.phylo.transmat . 15
as_cumulative_edgelist . 16
as_tibble_edgelist . 17
check_degdist_bal . 17
color_tea . 18
comp_plot . 20
control.dcm . 21
control.icm . 23
control.net . 24
create_dat_object . 29
create_scenario_list . 30
dcm . 31
dedup_cumulative_edgelist . 33
delete_edges . 33
delete_vertices . 34
depart_nodes . 35
dissolution_coefs . 36
edgelist_censor . 38
epiweb . 39
generate_random_params . 40
geom_bands . 43
get_adj_list . 44
get_attr_history . 44
get_connected_nodes . 45
get_cumulative_degree . 45
get_cumulative_edgelist . 46
get_cumulative_edgelists_df . 47
get_current_timestep . 48
get_degree . 48

Contents 3

get_edgelist . 49
get_edgelists_df . 50
get_formula_term_attr . 50
get_network . 51
get_network_attributes . 53
get_network_term_attr . 53
get_nwstats . 54
get_param_set . 55
get_partners . 56
get_sims . 58
get_subnet_adj_list . 59
get_vertex_attribute . 59
icm . 60
increment_timestep . 62
init.dcm . 62
init.icm . 63
init.net . 64
InitErgmTerm.absdiffby . 66
InitErgmTerm.absdiffnodemix . 66
InitErgmTerm.fuzzynodematch . 67
is.transmat . 68
is_active_posit_ids . 69
is_active_unique_ids . 69
merge.icm . 70
merge.netsim . 71
modules.icm . 73
modules.net . 74
multilayer . 76
mutate_epi . 76
net-accessor . 77
netdx . 80
netest . 83
netsim . 86
network_initialize . 89
nwupdate.net . 90
overwrite_attrs . 90
padded_vector . 91
param.dcm . 91
param.icm . 94
param.net . 97
param.net_from_table . 101
param.net_to_table . 102
param_random . 102
plot.dcm . 103
plot.epi.data.frame . 106
plot.icm . 108
plot.netdx . 111
plot.netsim . 114

4 EpiModel-package

plot.transmat . 119
print.netdx . 120
reachable-nodes . 121
record_attr_history . 123
record_raw_object . 124
set_current_timestep . 125
set_transmat . 126
set_vertex_attribute . 126
summary.dcm . 127
summary.icm . 128
summary.netsim . 129
trim_netest . 130
truncate_sim . 131
unique_id-tools . 132
update_cumulative_edgelist . 133
update_dissolution . 134
update_params . 135
use_scenario . 136

Index 137

EpiModel-package Mathematical Modeling of Infectious Disease Dynamics

Description

Package: EpiModel
Type: Package
Version: 2.5.0
Date: 2024-10-10
License: GPL-3
LazyLoad: yes

Details

The EpiModel software package provides tools for building, solving, and visualizing mathematical
models of infectious disease dynamics. These tools allow users to simulate epidemic models in
multiple frameworks for both pedagogical purposes ("base models") and novel research purposes
("extension models").

EpiModel-package 5

Model Classes and Infectious Disease Types

EpiModel provides functionality for three classes of epidemic models:

• Deterministic Compartmental Models: these continuous-time models are solved using or-
dinary differential equations. EpiModel allows for easy specification of sensitivity analyses to
compare multiple scenarios of the same model across different parameter values.

• Stochastic Individual Contact Models: a novel class of individual-based, microsimulation
models that were developed to add random variation in all components of the transmission
system, from infection to recovery to vital dynamics (arrivals and departures).

• Stochastic Network Models: with the underlying statistical framework of temporal expo-
nential random graph models (ERGMs) recently developed in the Statnet suite of software
in R, network models over epidemics simulate edge (e.g., partnership) formation and disso-
lution stochastically according to a specified statistical model, with disease spread across that
network.

EpiModel supports three infectious disease types to be run across all of the three classes.

• Susceptible-Infectious (SI): a two-state disease in which there is life-long infection without
recovery. HIV/AIDS is one example, although for this case it is common to model infection
stages as separate compartments.

• Susceptible-Infectious-Recovered (SIR): a three-stage disease in which one has life-long
recovery with immunity after infection. Measles is one example, but modern models for the
disease also require consideration of vaccination patterns in the population.

• Susceptible-Infectious-Susceptible (SIS): a two-stage disease in which one may transition
back and forth from the susceptible to infected states throughout life. Examples include bac-
terial sexually transmitted diseases like gonorrhea.

These basic disease types may be extended in any arbitrarily complex way to simulate specific
diseases for research questions.

Model Parameterization and Simulation

EpiModel uses three model setup functions for each model class to input the necessary parameters,
initial conditions, and control settings:

• param.dcm, param.icm, and param.net are used to input epidemic parameters for each of
the three model classes. Parameters include the rate of contacts or acts between actors, the
probability of transmission per contact, and recovery and demographic rates for models that
include those transitions.

• init.dcm, init.icm, and init.net are used to input the initial conditions for each class.
The main conditions are limited to the numbers or, if applicable, the specific agents in the
population who are infected or recovered at the simulation outset.

• control.dcm, control.icm, and control.net are used to specify the remaining control
settings for each simulation. The core controls for base model types include the disease type,
number of time steps, and number of simulations. Controls are also used to input new model
functions (for DCMs) and new model modules (for ICMs and network models) to allow the
user to simulate fully original epidemic models in EpiModel. See the documentation for the
specific control functions help pages.

6 EpiModel-package

With the models parameterized, the functions for simulating epidemic models are:

• dcm for deterministic compartmental models.

• icm for individual contact models.

• Network models are simulated in a three-step process:

1. netest estimates the statistical model for the network structure itself (i.e., how partner-
ships form and dissolve over time given the parameterization of those processes). This
function is a wrapper around the ergm and tergm functions in the ergm and tergm pack-
ages. The current statistical framework for model simulation is called "egocentric infer-
ence": target statistics summarizing these formation and dissolution processes collected
from an egocentric sample of the population.

2. netdx runs diagnostics on the dynamic model fit by simulating the base network over
time to ensure the model fits the targets for formation and dissolution.

3. netsim simulates the stochastic network epidemic models, with a given network model
fit in netest. Here the function requires this model fit object along with the parameters,
initial conditions, and control settings as defined above.

Author(s)

Maintainer: Samuel Jenness <samuel.m.jenness@emory.edu>

Authors:

• Steven M. Goodreau <goodreau@uw.edu>

• Martina Morris <morrism@uw.edu>

• Adrien Le Guillou <contact@aleguillou.org>

• Chad Klumb <cklumb@gmail.com>

Other contributors:

• Skye Bender-deMoll <skyebend@uw.edu> [contributor]

References

The EpiModel website is at https://www.epimodel.org/, and the source code is at https://
github.com/EpiModel/EpiModel. Bug reports and feature requests are welcome.

Our primary methods paper on EpiModel is published in the Journal of Statistical Software. If
you use EpiModel for any research or teaching purposes, please cite this reference:

Jenness SM, Goodreau SM, and Morris M. EpiModel: An R Package for Mathematical Modeling of
Infectious Disease over Networks. Journal of Statistical Software. 2018; 84(8): 1-47. doi:10.18637/
jss.v084.i08.

We have also developed two extension packages for modeling specific disease dynamics. For HIV
and bacterial sexually transmitted infections, we have developed EpiModelHIV, which is available
on Github at https://github.com/EpiModel/EpiModelHIV. For COVID-19, we have developed
EpiModelCOVID, which is available at https://github.com/EpiModel/EpiModelCOVID.

https://www.epimodel.org/
https://github.com/EpiModel/EpiModel
https://github.com/EpiModel/EpiModel
https://doi.org/10.18637/jss.v084.i08
https://doi.org/10.18637/jss.v084.i08
https://github.com/EpiModel/EpiModelHIV
https://github.com/EpiModel/EpiModelCOVID

add_vertices 7

See Also

Useful links:

• https://www.epimodel.org/

• https://epimodel.github.io/EpiModel/

• Report bugs at https://github.com/EpiModel/EpiModel/issues/

add_vertices Fast Version of network::add.vertices for Edgelist-formatted Network

Description

This function performs a simple operation of updating the edgelist attribute n that tracks the total
network size implicit in an edgelist representation of the network.

Usage

add_vertices(el, nv)

Arguments

el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.

nv A integer equal to the number of nodes to add to the network size at the given
time step.

Details

This function is used in EpiModel modules to add vertices (nodes) to the edgelist object to account
for entries into the population (e.g., births and in-migration).

Value

Returns the matrix of current edges, el, with the population size attribute updated based on the
number of new vertices specified in nv.

Examples

Not run:
library("EpiModel")
nw <- network_initialize(100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3)

https://www.epimodel.org/
https://epimodel.github.io/EpiModel/
https://github.com/EpiModel/EpiModel/issues/

8 apportion_lr

init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5,

tergmLite = TRUE)

networkLite representation after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Check current network size
attributes(dat$el[[1]])$n

Add 10 vertices
dat$el[[1]] <- add_vertices(dat$el[[1]], 10)

Check new network size
attributes(dat$el[[1]])$n

End(Not run)

apportion_lr Apportion Using the Largest Remainder Method

Description

Apportions a vector of values given a specified frequency distribution of those values such that the
length of the output is robust to rounding and other instabilities.

Usage

apportion_lr(vector.length, values, proportions, shuffled = FALSE)

Arguments

vector.length Length for the output vector.

values Values for the output vector.

proportions Proportion distribution with one number for each value. This must sum to 1.

shuffled If TRUE, randomly shuffle the order of the vector.

Value

A vector of length vector.length containing the apportioned values from values.

arrive_nodes 9

Examples

Not run:
Example 1: Without rounding
apportioned_vec_1 <- apportion_lr(4, c(1, 2, 3, 4, 5),

c(0.25, 0, 0.25, 0.25, 0.25))

Example 2: With rounding
apportioned_vec_2 <- apportion_lr(5, c(1, 2, 3, 4, 5),

c(0.21, 0, 0.29, 0.25, 0.25))

End(Not run)

arrive_nodes Arrive New Nodes to the netsim_dat Object

Description

Arrive New Nodes to the netsim_dat Object

Usage

arrive_nodes(dat, nArrivals)

Arguments

dat the netsim_dat object

nArrivals number of new nodes to arrive

Details

nArrivals new nodes are added to the network data stored on the netsim_dat object. If tergmLite
is FALSE, these nodes are activated from the current timestep onward. Attributes for the new nodes
must be set separately.

Note that this function only supports arriving new nodes; returning to an active state nodes that were
previously active in the network is not supported.

Value

the updated netsim_dat object with nArrivals new nodes added

10 as.data.frame.dcm

as.data.frame.dcm Extract Model Data for Deterministic Compartmental Models

Description

This function extracts a model run from an object of class dcm into a data frame using the generic
as.data.frame function.

Usage

S3 method for class 'dcm'
as.data.frame(x, row.names = NULL, optional = FALSE, run, ...)

Arguments

x An EpiModel object of class dcm.

row.names See as.data.frame.default.

optional See as.data.frame.default.

run Run number for model; used for multiple-run sensitivity models. If not speci-
fied, will output data from all runs in a stacked data frame.

... See as.data.frame.default.

Details

Model output from dcm simulations are available as a data frame with this helper function. The out-
put data frame will include columns for time, the size of each compartment, the overall population
size (the sum of compartment sizes), and the size of each flow.

For models with multiple runs (i.e., varying parameters - see example below), the default with the
run parameter not specified will output all runs in a single stacked data frame.

Value

A data frame containing the data from x.

Examples

Example 1: One-group SIS model with varying act.rate
param <- param.dcm(inf.prob = 0.2, act.rate = seq(0.05, 0.5, 0.05),

rec.rate = 1/50)
init <- init.dcm(s.num = 500, i.num = 1)
control <- control.dcm(type = "SIS", nsteps = 10)
mod1 <- dcm(param, init, control)
as.data.frame(mod1)
as.data.frame(mod1, run = 1)
as.data.frame(mod1, run = 10)

Example 2: Two-group SIR model with vital dynamics

as.data.frame.icm 11

param <- param.dcm(inf.prob = 0.2, inf.prob.g2 = 0.1,
act.rate = 3, balance = "g1",
rec.rate = 1/50, rec.rate.g2 = 1/50,
a.rate = 1/100, a.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/90, di.rate.g2 = 1/90,
dr.rate = 1/100, dr.rate.g2 = 1/100)

init <- init.dcm(s.num = 500, i.num = 1, r.num = 0,
s.num.g2 = 500, i.num.g2 = 1, r.num.g2 = 0)

control <- control.dcm(type = "SIR", nsteps = 10)
mod2 <- dcm(param, init, control)
as.data.frame(mod2)

as.data.frame.icm Extract Model Data for Stochastic Models

Description

This function extracts model simulations for objects of classes icm and netsim into a data frame
using the generic as.data.frame function.

Usage

S3 method for class 'icm'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
out = "vals",
sim = NULL,
qval = NULL,
...

)

S3 method for class 'netsim'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
out = "vals",
sim = NULL,
...

)

Arguments

x An EpiModel object of class icm or netsim.

12 as.data.frame.icm

row.names See as.data.frame.default.

optional See as.data.frame.default.

out Data output to data frame: "mean" for row means across simulations, "sd" for
row standard deviations across simulations, "qnt" for row quantiles at the level
specified in qval, or "vals" for values from individual simulations.

sim If out="vals", the simulation number to output. If not specified, then data from
all simulations will be output.

qval Quantile value required when out="qnt".

... See as.data.frame.default.

Details

These methods work for both icm and netsim class models. The available output includes time-
specific means, standard deviations, quantiles, and simulation values (compartment and flow sizes)
from these stochastic model classes. Means, standard deviations, and quantiles are calculated by
taking the row summary (i.e., each row of data is corresponds to a time step) across all simulations
in the model output.

Value

A data frame containing the data from x.

Examples

Stochastic ICM SIS model
param <- param.icm(inf.prob = 0.8, act.rate = 2, rec.rate = 0.1)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SIS", nsteps = 10,

nsims = 3, verbose = FALSE)
mod <- icm(param, init, control)

Default output all simulation runs, default to all in stacked data.frame
as.data.frame(mod)
as.data.frame(mod, sim = 2)

Time-specific means across simulations
as.data.frame(mod, out = "mean")

Time-specific standard deviations across simulations
as.data.frame(mod, out = "sd")

Time-specific quantile values across simulations
as.data.frame(mod, out = "qnt", qval = 0.25)
as.data.frame(mod, out = "qnt", qval = 0.75)

Not run:
Stochastic SI Network Model
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50

as.data.frame.netdx 13

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.5)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose = FALSE)
mod <- netsim(est, param, init, control)

Same data extraction methods as with ICMs
as.data.frame(mod)
as.data.frame(mod, sim = 2)
as.data.frame(mod, out = "mean")
as.data.frame(mod, out = "sd")
as.data.frame(mod, out = "qnt", qval = 0.25)
as.data.frame(mod, out = "qnt", qval = 0.75)

End(Not run)

as.data.frame.netdx Extract Timed Edgelists for netdx Objects

Description

This function extracts timed edgelists for objects of class netdx into a data frame using the generic
as.data.frame function.

Usage

S3 method for class 'netdx'
as.data.frame(x, row.names = NULL, optional = FALSE, sim, ...)

Arguments

x An EpiModel object of class netdx.

row.names See as.data.frame.default.

optional See as.data.frame.default.

sim The simulation number to output. If not specified, then data from all simulations
will be output.

... See as.data.frame.default.

Value

A data frame containing the data from x.

14 as.network.transmat

Examples

Initialize and parameterize the network model
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Model estimation
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Simulate the network with netdx
dx <- netdx(est, nsims = 3, nsteps = 10, keep.tedgelist = TRUE,

verbose = FALSE)

Extract data from the first simulation
as.data.frame(dx, sim = 1)

Extract data from all simulations
as.data.frame(dx)

as.epi.data.frame Validate and Convert to epi.data.frame

Description

This methods ensures that the data.frame is correctly formatted as an epi.data.frame

Usage

as.epi.data.frame(df)

Arguments

df A data.frame to convert into an epi.data.frame

as.network.transmat Convert transmat Infection Tree into a network Object

Description

Converts a transmission matrix from the get_transmat function into a network::network class
object.

Usage

S3 method for class 'transmat'
as.network(x, ...)

as.phylo.transmat 15

Arguments

x An object of class transmat to be converted into a network class object.

... Unused.

Details

When converting from a transmat to a network object, this functions copies the edge attributes
within the transmission matrix ('at', 'infDur', 'transProb', 'actRate', and 'finalProb')
into edge attributes on the network.

Value

A network::network object.

as.phylo.transmat Convert transmat Infection Tree into a phylo Object

Description

Converts a transmission matrix from the get_transmat function into a phylo class object.

Usage

S3 method for class 'transmat'
as.phylo(x, vertex.exit.times, ...)

Arguments

x An object of class transmat, the output from get_transmat.
vertex.exit.times

Optional numeric vector providing the time of departure of vertices, to be used
to scale the lengths of branches reaching to the tips. Index position on vector
corresponds to network id. NA indicates no departure, so branch will extend to
the end of the tree.

... Further arguments (unused).

Details

Converts a transmat object containing information about the history of a simulated infection into
a ape::phylo object representation suitable for plotting as a tree with plot.phylo. Each infection
event becomes a ’node’ (horizontal branch) in the resulting phylo tree, and each network vertex
becomes a ’tip’ of the tree. The infection events are labeled with the vertex ID of the infector to
make it possible to trace the path of infection.

The infection timing information is included to position the phylo-nodes, with the lines to the tips
drawn to the max time value +1 (unless vertex.exit.times are passed in it effectively assumes
all vertices are active until the end of the simulation).

16 as_cumulative_edgelist

If the transmat contains multiple infection seeds (there are multiple trees with separate root nodes),
this function will return a list of class multiPhylo, each element of which is a phylo object. See
read.tree.

Value

A phylo class object.

Examples

set.seed(13)

Fit a random mixing TERGM with mean degree of 1 and mean edge
duration of 20 time steps
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Parameterize the epidemic model as SI with one infected seed
param <- param.net(inf.prob = 0.5)
init <- init.net(i.num = 1)
control <- control.net(type = "SI", nsteps = 40, nsims = 1, verbose = FALSE)

Simulate the model
mod1 <- netsim(est, param, init, control)

Extract the transmission matrix
tm <- get_transmat(mod1)
head(tm, 15)

Convert to phylo object and plot
tmPhylo <- as.phylo.transmat(tm)
par(mar = c(1,1,1,1))
plot(tmPhylo, show.node.label = TRUE,

root.edge = TRUE,
cex = 0.75)

as_cumulative_edgelist

Convert an object to a cumulative_edgelist

Description

Convert an object to a cumulative_edgelist

Usage

as_cumulative_edgelist(x)

as_tibble_edgelist 17

Arguments

x An object to be converted to a cumulative edgelist

Details

The edges are active from time start to time stop included. If stop is NA, the edge was not disolved
in the simulation that generated the list.

Value

A cumulative_edgelist object, a data.frame with at least the following columns: head, tail,
start, stop.

as_tibble_edgelist Convert an Edgelist into a Tibble

Description

Convert an Edgelist into a Tibble

Usage

as_tibble_edgelist(el)

Arguments

el An edgelist in matrix or data frame form.

Value

The edgelist in tibble form with two columns named head and tail.

check_degdist_bal Check Degree Distribution for Balance in Target Statistics

Description

Checks for consistency in the implied network statistics of a two-group network in which the group
size and group-specific degree distributions are specified.

Usage

check_degdist_bal(num.g1, num.g2, deg.dist.g1, deg.dist.g2)

18 color_tea

Arguments

num.g1 Number of nodes in group 1.
num.g2 Number of nodes in group 2.
deg.dist.g1 Vector with fractional degree distribution for group 1.
deg.dist.g2 Vector with fractional degree distribution for group 2.

Details

This function outputs the number of nodes of degree 0 to g, where g is the length of a fractional
degree distribution vector, given that vector and the size of the group. This utility is used to check for
balance in implied degree given that fractional distribution within two-group network simulations,
in which the degree-constrained counts must be equal across groups.

Examples

An unbalanced distribution
check_degdist_bal(num.g1 = 500, num.g2 = 500,

deg.dist.g2 = c(0.40, 0.55, 0.03, 0.02),
deg.dist.g1 = c(0.48, 0.41, 0.08, 0.03))

A balanced distribution
check_degdist_bal(num.g1 = 500, num.g2 = 500,

deg.dist.g1 = c(0.40, 0.55, 0.04, 0.01),
deg.dist.g2 = c(0.48, 0.41, 0.08, 0.03))

color_tea Create a TEA Variable for Infection Status for ndtv Animations

Description

Creates a new color-named temporally-extended attribute (TEA) variable in a networkDynamic
object containing a disease status TEA in numeric format.

Usage

color_tea(
nd,
old.var = "testatus",
old.sus = "s",
old.inf = "i",
old.rec = "r",
new.var = "ndtvcol",
new.sus,
new.inf,
new.rec,
verbose = TRUE

)

color_tea 19

Arguments

nd An object of class networkDynamic.

old.var Old TEA variable name.

old.sus Status value for susceptible in old TEA variable.

old.inf Status value for infected in old TEA variable.

old.rec Status value for recovered in old TEA variable.

new.var New TEA variable name to be stored in networkDynamic object.

new.sus Status value for susceptible in new TEA variable.

new.inf Status value for infected in new TEA variable.

new.rec Status value for recovered in new TEA variable.

verbose If TRUE, print progress to console.

Details

The ndtv package (https://cran.r-project.org/package=ndtv) produces animated visuals
for dynamic networks with evolving edge structures and nodal attributes. Nodal attribute dynamics
in ndtv movies require a temporally extended attribute (TEA) containing a standard R color for
each node at each time step. By default, the EpiModel package uses TEAs to store disease status
history in network model simulations run in netsim. But that status TEA is in numeric format (0,
1, 2). The color_tea function transforms those numeric values of that disease status TEA into a
TEA with color values in order to visualize status changes in ndtv.

The convention in plot.netsim is to color the susceptible nodes as blue, infected nodes as red,
and recovered nodes as green. Alternate colors may be specified using the new.sus, new.inf, and
new.rec parameters, respectively.

Using the color_tea function with a netsim object requires that TEAs for disease status be used
and that the networkDynamic object be saved in the output: tergmListe must be set to FALSE in
control.net.

Value

The updated object of class networkDynamic.

See Also

netsim and the ndtv package documentation.

https://cran.r-project.org/package=ndtv

20 comp_plot

comp_plot Plot Compartment Diagram for Epidemic Models

Description

Plots a compartment flow diagram for deterministic compartmental models, stochastic individual
contact models, and stochastic network models.

Usage

comp_plot(x, at, digits, ...)

S3 method for class 'netsim'
comp_plot(x, at = 1, digits = 3, ...)

S3 method for class 'icm'
comp_plot(x, at = 1, digits = 3, ...)

S3 method for class 'dcm'
comp_plot(x, at = 1, digits = 3, run = 1, ...)

Arguments

x An EpiModel object of class dcm, icm, or netsim.

at Time step for model statistics.

digits Number of significant digits to print.

... Additional arguments passed to plot (not currently used).

run Model run number, for dcm class models with multiple runs (sensitivity analy-
ses).

Details

The comp_plot function provides a visual summary of an epidemic model at a specific time step.
The information contained in comp_plot is the same as in the summary functions for a model, but
presented graphically as a compartment flow diagram.

For dcm class plots, specify the model run number if the model contains multiple runs, as in a
sensitivity analysis. For icm and netsim class plots, the run argument is not used; the plots show
the means and standard deviations across simulations at the specified time step.

These plots are currently limited to one-group models for each of the three model classes. That
functionality may be expanded in future software releases.

control.dcm 21

Examples

Example 1: DCM SIR model with varying act.rate
param <- param.dcm(inf.prob = 0.2, act.rate = 5:7,

rec.rate = 1/3, a.rate = 1/90, ds.rate = 1/100,
di.rate = 1/35, dr.rate = 1/100)

init <- init.dcm(s.num = 1000, i.num = 1, r.num = 0)
control <- control.dcm(type = "SIR", nsteps = 25, verbose = FALSE)
mod1 <- dcm(param, init, control)
comp_plot(mod1, at = 25, run = 3)

Example 2: ICM SIR model with 3 simulations
param <- param.icm(inf.prob = 0.2, act.rate = 3, rec.rate = 1/50,

a.rate = 1/100, ds.rate = 1/100,
di.rate = 1/90, dr.rate = 1/100)

init <- init.icm(s.num = 500, i.num = 1, r.num = 0)
control <- control.icm(type = "SIR", nsteps = 25,

nsims = 3, verbose = FALSE)
mod2 <- icm(param, init, control)
comp_plot(mod2, at = 25, digits = 1)

control.dcm Control Settings for Deterministic Compartmental Models

Description

Sets the controls for deterministic compartmental models simulated with dcm.

Usage

control.dcm(
type,
nsteps,
dt = 1,
odemethod = "rk4",
dede = FALSE,
new.mod = NULL,
sens.param = TRUE,
print.mod = FALSE,
verbose = FALSE,
...

)

Arguments

type Disease type to be modeled, with the choice of "SI" for Susceptible-Infected
diseases, "SIR" for Susceptible-Infected-Recovered diseases, and "SIS" for
Susceptible-Infected-Susceptible diseases.

22 control.dcm

nsteps Number of time steps to solve the model over or vector of times to solve the
model over. If the number of time steps, then this must be a positive integer of
length 1.

dt Time unit for model solutions, with the default of 1. Model solutions for frac-
tional time steps may be obtained by setting this to a number between 0 and
1.

odemethod Ordinary differential equation (ODE) integration method, with the default of the
"Runge-Kutta 4" method (see deSolve::ode for other options).

dede If TRUE, use the delayed differential equation solver, which allows for time-
lagged variables.

new.mod If not running a base model type, a function with a new model to be simulated
(see details).

sens.param If TRUE, evaluate arguments in parameters with length greater than 1 as sensitiv-
ity analyses, with one model run per value of the parameter. If FALSE, one model
will be run with parameters of arbitrary length (the model may error unless the
model function is designed to accomodate parameter vectors).

print.mod If TRUE, print the model form to the console.

verbose If TRUE, print model progress to the console.

... additional control settings passed to model.

Details

control.dcm sets the required control settings for any deterministic compartmental models solved
with the dcm function. Controls are required for both base model types and original models. For all
base models, the type argument is a necessary parameter and it has no default.

Value

An EpiModel object of class control.dcm.

New Model Functions

The form of the model function for base models may be displayed with the print.mod argument
set to TRUE. In this case, the model will not be run. These model forms may be used as templates to
write original model functions.

These new models may be input and solved with dcm using the new.mod argument, which requires
as input a model function.

See Also

Use param.dcm to specify model parameters and init.dcm to specify the initial conditions. Run
the parameterized model with dcm.

control.icm 23

control.icm Control Settings for Stochastic Individual Contact Models

Description

Sets the controls for stochastic individual contact models simulated with icm.

Usage

control.icm(
type,
nsteps,
nsims = 1,
initialize.FUN = initialize.icm,
infection.FUN = NULL,
recovery.FUN = NULL,
departures.FUN = NULL,
arrivals.FUN = NULL,
prevalence.FUN = NULL,
verbose = FALSE,
verbose.int = 0,
skip.check = FALSE,
...

)

Arguments

type Disease type to be modeled, with the choice of "SI" for Susceptible-Infected
diseases, "SIR" for Susceptible-Infected-Recovered diseases, and "SIS" for
Susceptible-Infected-Susceptible diseases.

nsteps Number of time steps to solve the model over. This must be a positive integer.

nsims Number of simulations to run.

initialize.FUN Module to initialize the model at the outset, with the default function of initialize.icm.

infection.FUN Module to simulate disease infection, with the default function of infection.icm.

recovery.FUN Module to simulate disease recovery, with the default function of recovery.icm.

departures.FUN Module to simulate departures or exits, with the default function of departures.icm.

arrivals.FUN Module to simulate arrivals or entries, with the default function of arrivals.icm.

prevalence.FUN Module to calculate disease prevalence at each time step, with the default func-
tion of prevalence.icm.

verbose If TRUE, print model progress to the console.

verbose.int Time step interval for printing progress to console, where 0 (the default) prints
completion status of entire simulation and positive integer x prints progress after
every x time steps.

24 control.net

skip.check If TRUE, skips the default error checking for the structure and consistency of
the parameter values, initial conditions, and control settings before running base
epidemic models. Setting this to FALSE is recommended when running models
with new modules specified.

... Additional control settings passed to model.

Details

control.icm sets the required control settings for any stochastic individual contact model solved
with the icm function. Controls are required for both base model types and when passing original
process modules. For all base models, the type argument is a necessary parameter and it has no
default.

Value

An EpiModel object of class control.icm.

New Modules

Base ICM models use a set of module functions that specify how the individual agents in the pop-
ulation are subjected to infection, recovery, demographics, and other processes. Core modules are
those listed in the .FUN arguments. For each module, there is a default function used in the simula-
tion. The default infection module, for example, is contained in the infection.icm function.

For original models, one may substitute replacement module functions for any of the default func-
tions. New modules may be added to the workflow at each time step by passing a module function
via the ... argument.

See Also

Use param.icm to specify model parameters and init.icm to specify the initial conditions. Run
the parameterized model with icm.

control.net Control Settings for Stochastic Network Models

Description

Sets the controls for stochastic network models simulated with netsim.

Usage

control.net(
type,
nsteps,
start = 1,
nsims = 1,
ncores = 1,

control.net 25

resimulate.network = FALSE,
tergmLite = FALSE,
cumulative.edgelist = FALSE,
truncate.el.cuml = 0,
attr.rules,
epi.by,
initialize.FUN = initialize.net,
resim_nets.FUN = resim_nets,
summary_nets.FUN = summary_nets,
infection.FUN = NULL,
recovery.FUN = NULL,
departures.FUN = NULL,
arrivals.FUN = NULL,
nwupdate.FUN = nwupdate.net,
prevalence.FUN = prevalence.net,
verbose.FUN = verbose.net,
module.order = NULL,
save.nwstats = TRUE,
nwstats.formula = "formation",
save.transmat = TRUE,
save.network,
save.run = FALSE,
save.cumulative.edgelist = FALSE,
save.other,
verbose = TRUE,
verbose.int = 1,
skip.check = FALSE,
raw.output = FALSE,
tergmLite.track.duration = FALSE,
set.control.ergm = control.simulate.formula(MCMC.burnin = 2e+05),
set.control.tergm = control.simulate.formula.tergm(),
save.diss.stats = TRUE,
dat.updates = NULL,
...

)

Arguments

type Disease type to be modeled, with the choice of "SI" for Susceptible-Infected
diseases, "SIR" for Susceptible-Infected-Recovered diseases, and "SIS" for
Susceptible-Infected-Susceptible diseases.

nsteps Number of time steps to simulate the model over. This must be a positive integer
that is equal to the final step of a simulation. If a simulation is restarted with
start argument, this number must be at least one greater than that argument’s
value.

start For models with network resimulation, time point to start up the simulation. For
restarted simulations, this must be one greater than the final time step in the prior
simulation and must be less than the value in nsteps.

26 control.net

nsims The total number of disease simulations.

ncores Number of processor cores to run multiple simulations on, using the foreach
and doParallel implementations.

resimulate.network

If TRUE, resimulate the network at each time step. This is required when the
epidemic or demographic processes impact the network structure (e.g., vital dy-
namics).

tergmLite Logical indicating usage of either tergm (tergmLite = FALSE), or tergmLite
(tergmLite = TRUE). Default of FALSE.

cumulative.edgelist

If TRUE, calculates a cumulative edgelist within the network simulation module.
This is used when tergmLite is used and the entire networkDynamic object is
not used.

truncate.el.cuml

Number of time steps of the cumulative edgelist to retain. See help for update_cumulative_edgelist
for options.

attr.rules A list containing the rules for setting the attributes of incoming nodes, with one
list element per attribute to be set (see details below).

epi.by A character vector of length 1 containing a nodal attribute for which subgroup
stratified prevalence summary statistics are calculated. This nodal attribute must
be contained in the network model formation formula, otherwise it is ignored.

initialize.FUN Module to initialize the model at time 1, with the default function of initialize.net.

resim_nets.FUN Module to resimulate the network at each time step, with the default function of
resim_nets.

summary_nets.FUN

Module to extract summary statistics of the network at each time step, with the
default function of summary_nets.

infection.FUN Module to simulate disease infection, with the default function of infection.net.

recovery.FUN Module to simulate disease recovery, with the default function of recovery.net.

departures.FUN Module to simulate departure or exit, with the default function of departures.net.

arrivals.FUN Module to simulate arrivals or entries, with the default function of arrivals.net.

nwupdate.FUN Module to handle updating of network structure and nodal attributes due to ex-
ogenous epidemic model processes, with the default function of nwupdate.net.

prevalence.FUN Module to calculate disease prevalence at each time step, with the default func-
tion of prevalence.net.

verbose.FUN Module to print simulation progress to screen, with the default function of verbose.net.

module.order A character vector of module names that lists modules in the order in which
they should be evaluated within each time step. If NULL, the modules will be
evaluated as follows: first any new modules supplied through ... in the order
in which they are listed, then the built-in modules in the order in which they
are listed as arguments above. initialize.FUN will always be run first and
verbose.FUN will always be run last.

save.nwstats If TRUE, save network statistics in a data frame. The statistics to be saved are
specified in the nwstats.formula argument.

control.net 27

nwstats.formula

A right-hand sided ERGM formula that includes network statistics of interest,
with the default to the formation formula terms. Supports multilayer specifi-
cation.

save.transmat If TRUE, complete transmission matrix is saved at simulation end.

save.network If TRUE, networkDynamic or networkLite object is saved at simulation end.

save.run If TRUE, the run sublist of dat is saved, allowing a simulation to restart from
this output.

save.cumulative.edgelist

If TRUE, the cumulative.edgelist is saved at simulation end.

save.other A character vector of elements on the netsim_dat main data list to save out
after each simulation. One example for base models is the attribute list, "attr",
at the final time step.

verbose If TRUE, print model progress to the console.

verbose.int Time step interval for printing progress to console, where 0 prints completion
status of entire simulation and positive integer x prints progress after every x
time steps. The default is to print progress after each time step.

skip.check If TRUE, skips the default error checking for the structure and consistency of
the parameter values, initial conditions, and control settings before running base
epidemic models. Setting this to FALSE is recommended when running models
with new modules specified.

raw.output If TRUE, netsim will output a list of raw data (one per simulation) instead of a
cleaned and formatted netsim object.

tergmLite.track.duration

If TRUE, track duration information for models in tergmLite simulations. Sup-
ports multilayer specification.

set.control.ergm

Control arguments passed to ergm::simulate_formula.network. In netsim,
this is only used when initializing the network with edapprox = TRUE. All other
simulations in netsim use tergm. Supports multilayer specification.

set.control.tergm

Control arguments passed to tergm::simulate_formula.network. See the
help file for netdx for details and examples on specifying this parameter. Sup-
ports multilayer specification.

save.diss.stats

If TRUE, netsim will compute and save duration and dissolution statistics for
plotting and printing, provided save.network is TRUE, tergmLite is FALSE,
and the dissolution model is homogeneous.

dat.updates Either NULL, a single function taking arguments dat, at, and network, or a list
of functions of length one greater than the number of networks being simulated,
with each function in the list taking arguments dat and at. Here dat is the main
netsim_dat class object, at is the current timestep, and network is an index
indicating the current position within the sequence of network (re)simulations
on each time step. If a single function is passed, it will be called before the first
network is simulated and after each network is simulated, with network = 0L

28 control.net

before the first network is simulated and with network = i after the ith network
is simulated. If a list of functions is passed, the first function will be called before
the first network is simulated, and the i + 1th function will be called after the
ith network is simulated. (Note that at = 0L is used for initial cross-sectional
simulations in sim_nets_t1.) The function(s) should return the netsim_dat
object with any updates needed to correctly represent the network states for calls
to simulate and/or summary. This can be useful if nodal attributes appearing in
one network model depend on nodal degrees in a different network.

... Additional control settings passed to model.

Details

control.net sets the required control settings for any network model solved with the netsim func-
tion. Controls are required for both base model types and when passing original process modules.
For an overview of control settings for base models, consult the Network Modeling for Epidemics
course materials For all base models, the type argument is a necessary parameter and it has no
default.

Value

An EpiModel object of class control.net.

The attr.rules Argument

The attr.rules parameter is used to specify the rules for how nodal attribute values for incoming
nodes should be set. These rules are only necessary for models in which there are incoming nodes
(i.e., arrivals). There are three rules available for each attribute value:

• current: new nodes will be assigned this attribute in proportion to the distribution of that
attribute among existing nodes at that current time step.

• t1: new nodes will be assigned this attribute in proportion to the distribution of that attribute
among nodes at time 1 (that is, the proportions set in the original network for netest).

• Value: all new nodes will be assigned this specific value, with no variation. For example, the
rules list attr.rules = list(race = "t1", sex = "current", status = "s") specifies how
the race, sex, and status attributes should be set for incoming nodes. By default, the rule is
"current" for all attributes except status, in which case it is "s" (that is, all incoming nodes
are susceptible).

Checkpointing Simulations

netsim has a built-in checkpoint system to prevent losing computation work if the function is
interrupted (SIGINT, power loss, time limit exceeded on a computation cluster). When enabled,
each simulation will be saved every .checkpoint.steps time steps. Then, if a checkpoint enabled
simulation is launched again with netsim, it will restart at the last checkpoint available in the saved
data.

To enable the checkpoint capabilities of netsim, two control arguments have to be set: .checkpoint.steps,
which is a positive number of time steps to be run between each file save; and .checkpoint.dir,
which is the path to a directory to save the checkpointed data. If .checkpoint.dir directory does

https://epimodel.github.io/sismid/

create_dat_object 29

not exist, netsim will attempt to create it on the first checkpoint save. With these two controls
defined, one can simply re-run netsim with the same arguments to restart a set of simulations that
were interrupted.

Simulations are checkpointed individually: for example, if 3 simulations are run on a single core,
the first 2 are finished, then the interruption occurs during the third, netsim will only restart the
third one from the last checkpoint.

A .checkpoint.compress argument can be set to overwrite the compress argument in saveRDS
used to save the checkpointed data. The current default for saveRDS is gunzip (gz), which provides
fast compression that usually works well on netsim objects.

By default, if netsim reaches the end of all simulations, the checkpoint data directory and its content
are removed before returning the netsim object. The .checkpoint.keep argument can be set to
TRUE to prevent this removal to inspect the raw simulation objects.

New Modules

Base network models use a set of module functions that specify how the individual nodes in the
network are subjected to infection, recovery, demographics, and other processes. Core modules
are those listed in the .FUN arguments. For each module, there is a default function used in the
simulation. The default infection module, for example, is contained in the infection.net function.

For original models, one may substitute replacement module functions for any of the default func-
tions. New modules may be added to the workflow at each time step by passing a module function
via the ... argument. Consult the Extending EpiModel section of the Network Modeling for Epi-
demics course materials. One may remove existing modules, such as arrivals.FUN, from the
workflow by setting the parameter value for that argument to NULL.

End Horizon

netsim implements an "End Horizon" mechanism, where a set of modules are removed from
the simulation at a specific time step. This is enabled through the end.horizon parameter to
control.net.

This parameter must receive a list with fields at, the time step at which the end horizon occurs,
and modules, a character vector with the names of the modules to remove. (e.g ‘list(at = 208,
modules = c("arrivals.FUN", "infections.FUN")))

See Also

Use param.net to specify model parameters and init.net to specify the initial conditions. Run
the parameterized model with netsim.

create_dat_object Create a Minimal netsim_dat Main List Object for a Network Model

Description

This helper function populates a netsim_dat main list object with the minimal required elements.
All parameters are optional. When none are given the resulting object is only a shell list of class
netsim_dat with the different named elements defined as empty lists.

https://epimodel.github.io/sismid/9_extending/mod9-Intro.html

30 create_scenario_list

Usage

create_dat_object(
param = list(),
init = list(),
control = list(),
run = list()

)

Arguments

param An EpiModel object of class param.net.

init An EpiModel object of class init.net.

control An EpiModel object of class control.net.

run A list that will contains the objects created by netsim that are required for
between step communication. This list must be preserved for restarting models.

Value

A netsim_dat main list object.

create_scenario_list Make a list of EpiModel scenarios from a data.frame of scenarios

Description

An EpiModel scenario allows one or multiple set of parameters to be applied to a model a predefined
timesteps. They are usually used by a researcher who wants to model counterfactuals using a pre
calibrated model.

Usage

create_scenario_list(scenarios.df)

Arguments

scenarios.df a data.frame

Value

a list of EpiModel scenarios

dcm 31

scenarios.df

The scenarios.df is a data.frame of values to be used as parameters.

It must contain a ".at" column, specifying when the changes should occur. It requires the "updater"
module of EpiModel. See, vignette. If the ".at" value of a row is less than two, the changes will
be applied to the parameter list iteself. The second mandatory column is ".scenario.id". It is used
to distinguish the different scenarios. If multiple rows share the same ".scenario.id", the resulting
scenario will contain one updater per row. This permits modifying parameters at multiple points in
time. (e.g. an intervention limited in time).

The other column names must correspond either to: the name of one parameter if this parameter is
of size 1 or the name of the parameter with "_1", "_2", "N" with the second part being the position
of the value for a parameter of size > 1. This means that the parameter names cannot contain any
underscore "". (e.g "a.rate", "d.rate_1", "d.rate_2")

dcm Deterministic Compartmental Models

Description

Solves deterministic compartmental epidemic models for infectious disease.

Usage

dcm(param, init, control)

Arguments

param Model parameters, as an object of class param.dcm.

init Initial conditions, as an object of class init.dcm.

control Control settings, as an object of class control.dcm.

Details

The dcm function uses the ordinary differential equation solver in the deSolve package to model
disease as a deterministic compartmental system. The parameterization for these models follows the
standard approach in EpiModel, with epidemic parameters, initial conditions, and control settings.

The dcm function performs modeling of both base model types and original models with new
structures. Base model types include one-group and two-group models with disease types for
Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), and Susceptible-Infected-Susceptible
(SIS). Both base and original models require the param, init, and control inputs.

32 dcm

Value

A list of class dcm with the following elements:

• param: the epidemic parameters passed into the model through param, with additional pa-
rameters added as necessary.

• control: the control settings passed into the model through control, with additional controls
added as necessary.

• epi: a list of data frames, one for each epidemiological output from the model. Outputs for
base models always include the size of each compartment, as well as flows in, out of, and
between compartments.

References

Soetaert K, Petzoldt T, Setzer W. Solving Differential Equations in R: Package deSolve. Journal of
Statistical Software. 2010; 33(9): 1-25. doi:10.18637/jss.v033.i09.

See Also

Extract the model results with as.data.frame.dcm. Summarize the time-specific model results
with summary.dcm. Plot the model results with plot.dcm. Plot a compartment flow diagram with
comp_plot.

Examples

Example 1: SI Model (One-Group)
Set parameters
param <- param.dcm(inf.prob = 0.2, act.rate = 0.25)
init <- init.dcm(s.num = 500, i.num = 1)
control <- control.dcm(type = "SI", nsteps = 500)
mod1 <- dcm(param, init, control)
mod1
plot(mod1)

Example 2: SIR Model with Vital Dynamics (One-Group)
param <- param.dcm(inf.prob = 0.2, act.rate = 5,

rec.rate = 1/3, a.rate = 1/90, ds.rate = 1/100,
di.rate = 1/35, dr.rate = 1/100)

init <- init.dcm(s.num = 500, i.num = 1, r.num = 0)
control <- control.dcm(type = "SIR", nsteps = 500)
mod2 <- dcm(param, init, control)
mod2
plot(mod2)

Example 3: SIS Model with act.rate Sensitivity Parameter
param <- param.dcm(inf.prob = 0.2, act.rate = seq(0.1, 0.5, 0.1),

rec.rate = 1/50)
init <- init.dcm(s.num = 500, i.num = 1)
control <- control.dcm(type = "SIS", nsteps = 500)
mod3 <- dcm(param, init, control)
mod3
plot(mod3)

https://doi.org/10.18637/jss.v033.i09

dedup_cumulative_edgelist 33

Example 4: SI Model with Vital Dynamics (Two-Group)
param <- param.dcm(inf.prob = 0.4, inf.prob.g2 = 0.1,

act.rate = 0.25, balance = "g1",
a.rate = 1/100, a.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/50, di.rate.g2 = 1/50)

init <- init.dcm(s.num = 500, i.num = 1,
s.num.g2 = 500, i.num.g2 = 0)

control <- control.dcm(type = "SI", nsteps = 500)
mod4 <- dcm(param, init, control)
mod4
plot(mod4)

dedup_cumulative_edgelist

Deduplicate a cumulative edgelist by combining overlapping edges

Description

Deduplicate a cumulative edgelist by combining overlapping edges

Usage

dedup_cumulative_edgelist(el)

Arguments

el A cumulative edgelist with potentially overlapping edges

Value

A cumulative edgelist with no overlapping edges

delete_edges Remove Edges That Include Specified Vertices

Description

Given a current two-column matrix of edges and a vector of vertex IDs, this function removes any
rows of the edgelist in which the IDs are present.

Usage

delete_edges(el, vid)

34 delete_vertices

Arguments

el A two-column matrix of current edges (edgelist).

vid A vector of vertex IDs whose edges are to be deleted from the edgelist.

Value

Returns an updated edgelist object, with any edges including the specified vertices removed.

delete_vertices Fast Version of network::delete.vertices for Edgelist-formatted Net-
work

Description

Given a current two-column matrix of edges and a vector of IDs to delete from the matrix, this
function first removes any rows of the edgelist in which the IDs are present and then permutes
downward the index of IDs on the edgelist that were numerically larger than the IDs deleted.

Usage

delete_vertices(el, vid)

Arguments

el A two-column matrix of current edges (edgelist) with an attribute variable n
containing the total current network size.

vid A vector of IDs to delete from the edgelist.

Details

This function is used in EpiModel modules to remove vertices (nodes) from the edgelist object to
account for exits from the population (e.g., deaths and out-migration).

Value

Returns an updated edgelist object, el, with the edges of deleted vertices removed from the edgelist
and the ID numbers of the remaining edges permuted downward.

Examples

Not run:
library("EpiModel")
set.seed(12345)
nw <- network_initialize(100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
x <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

depart_nodes 35

param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5,

tergmLite = TRUE)

Set seed for reproducibility
set.seed(123456)

networkLite representation structure after initialization
dat <- crosscheck.net(x, param, init, control)
dat <- initialize.net(x, param, init, control)

Current edges
head(dat$el[[1]], 20)

Remove nodes 1 and 2
nodes.to.delete <- 1:2
dat$el[[1]] <- delete_vertices(dat$el[[1]], nodes.to.delete)

Newly permuted edges
head(dat$el[[1]], 20)

End(Not run)

depart_nodes Depart Nodes from the netsim_dat Object

Description

Depart Nodes from the netsim_dat Object

Usage

depart_nodes(dat, departures)

Arguments

dat the netsim_dat object

departures the vertex ids of nodes to depart

Details

If tergmLite is FALSE, the vertex ids departures are deactivated (from the current timestep on-
ward) in each networkDynamic stored in dat$nw. If tergmLite is TRUE, the vertex ids departures
are deleted from datel, datattr, and dat$net_attr.

36 dissolution_coefs

Value

the updated netsim_dat object with the nodes in departures departed

dissolution_coefs Dissolution Coefficients for Stochastic Network Models

Description

Calculates dissolution coefficients, given a dissolution model and average edge duration, to pass as
offsets to an ERGM/TERGM model fit in netest.

Usage

dissolution_coefs(dissolution, duration, d.rate = 0)

Arguments

dissolution Right-hand sided STERGM dissolution formula (see netest). See below for
list of supported dissolution models.

duration A vector of mean edge durations in arbitrary time units.

d.rate Departure or exit rate from the population, as a single homogeneous rate that
applies to the entire population.

Details

This function performs two calculations for dissolution coefficients used in a network model esti-
mated with netest:

1. Transformation: the mean durations of edges in a network are mathematically transformed
to logit coefficients.

2. Adjustment: in a dynamic network simulation in an open population (in which there are
departures), it is further necessary to adjust these coefficients; this upward adjustment accounts
for departure as a competing risk to edge dissolution.

The current dissolution models supported by this function and in network model estimation in
netest are as follows:

• ~offset(edges): a homogeneous dissolution model in which the edge duration is the same
for all partnerships. This requires specifying one duration value.

• ~offset(edges) + offset(nodematch("<attr>")): a heterogeneous model in which the
edge duration varies by whether the nodes in the dyad have similar values of a specified at-
tribute. The duration vector should now contain two values: the first is the mean edge duration
of non-matched dyads, and the second is the duration of the matched dyads.

• ~offset(edges) + offset(nodemix("<attr>")): a heterogeneous model that extends the
nodematch model to include non-binary attributes for homophily. The duration vector should
first contain the base value, then the values for every other possible combination in the term.

dissolution_coefs 37

Value

A list of class disscoef with the following elements:

• dissolution: right-hand sided STERGM dissolution formula passed in the function call.

• duration: mean edge durations passed into the function.

• coef.crude: mean durations transformed into logit coefficients.

• coef.adj: crude coefficients adjusted for the risk of departure on edge persistence, if the
d.rate argument is supplied.

• coef.form.corr: corrections to be subtracted from formation coefficients.

• d.rate: the departure rate.

• diss.model.type: the form of the dissolution model; options include edgesonly, nodematch,
and nodemix.

Examples

Homogeneous dissolution model with no departures
dissolution_coefs(dissolution = ~offset(edges), duration = 25)

Homogeneous dissolution model with departures
dissolution_coefs(dissolution = ~offset(edges), duration = 25,

d.rate = 0.001)

Heterogeneous dissolution model in which same-race edges have
shorter duration compared to mixed-race edges, with no departures
dissolution_coefs(dissolution = ~offset(edges) + offset(nodematch("race")),

duration = c(20, 10))

Heterogeneous dissolution model in which same-race edges have
shorter duration compared to mixed-race edges, with departures
dissolution_coefs(dissolution = ~offset(edges) + offset(nodematch("race")),

duration = c(20, 10), d.rate = 0.001)

Not run:
Extended example for differential homophily by age group
Set up the network with nodes categorized into 5 age groups
nw <- network_initialize(n = 1000)
age.grp <- sample(1:5, 1000, TRUE)
nw <- set_vertex_attribute(nw, "age.grp", age.grp)

durations = non-matched, age.grp1 & age.grp1, age.grp2 & age.grp2, ...
TERGM will include differential homophily by age group with nodematch term
Target stats for the formation model are overall edges, and then the number
matched within age.grp 1, age.grp 2, ..., age.grp 5
form <- ~edges + nodematch("age.grp", diff = TRUE)
target.stats <- c(450, 100, 125, 40, 80, 100)

Target stats for the dissolution model are duration of non-matched edges,
then duration of edges matched within age.grp 1, age.grp 2, ..., age.grp 5
durs <- c(60, 30, 80, 100, 125, 160)
diss <- dissolution_coefs(~offset(edges) +

38 edgelist_censor

offset(nodematch("age.grp", diff = TRUE)),
duration = durs)

Fit the TERGM
fit <- netest(nw, form, target.stats, diss)

Full diagnostics to evaluate model fit
dx <- netdx(fit, nsims = 10, ncores = 4, nsteps = 300)
print(dx)

Simulate one long time series to examine timed edgelist
dx <- netdx(fit, nsims = 1, nsteps = 5000, keep.tedgelist = TRUE)

Extract timed-edgelist
te <- as.data.frame(dx)
head(te)

Limit to non-censored edges
te <- te[which(te$onset.censored == FALSE & te$terminus.censored == FALSE),

c("head", "tail", "duration")]
head(te)

Look up the age group of head and tail nodes
te$ag.head <- age.grp[te$head]
te$ag.tail <- age.grp[te$tail]
head(te)

Recover average edge durations for age-group pairing
mean(te$duration[te$ag.head != te$ag.tail])
mean(te$duration[te$ag.head == 1 & te$ag.tail == 1])
mean(te$duration[te$ag.head == 2 & te$ag.tail == 2])
mean(te$duration[te$ag.head == 3 & te$ag.tail == 3])
mean(te$duration[te$ag.head == 4 & te$ag.tail == 4])
mean(te$duration[te$ag.head == 5 & te$ag.tail == 5])
durs

End(Not run)

edgelist_censor Table of Edge Censoring

Description

Outputs a table of the number and percent of edges that are left-censored, right-censored, both-
censored, or uncensored for a networkDynamic object.

Usage

edgelist_censor(el)

epiweb 39

Arguments

el A timed edgelist with start and end times extracted from a networkDynamic
object using the as.data.frame.networkDynamic function.

Details

Given a STERGM simulation over a specified number of time steps, the edges within that simulation
may be left-censored (started before the first step), right-censored (continued after the last step),
right and left-censored, or uncensored. The amount of censoring will increase when the average
edge duration approaches the length of the simulation.

Value

A 4 x 2 table containing the number and percent of edges in el that are left-censored, right-censored,
both-censored, or uncensored.

Examples

Initialize and parameterize network model
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Model estimation
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Simulate the network and extract a timed edgelist
dx <- netdx(est, nsims = 1, nsteps = 100, keep.tedgelist = TRUE,

verbose = FALSE)
el <- as.data.frame(dx)

Calculate censoring
edgelist_censor(el)

epiweb EpiModel Web

Description

Runs a web browser-based GUI of deterministic compartmental models, stochastic individual con-
tact models, and basic network models.

Usage

epiweb(class, ...)

40 generate_random_params

Arguments

class Model class, with options of "dcm", "icm", and "net".

... Additional arguments passed to shiny::runApp.

Details

epiweb runs a web-based GUI of one-group deterministic compartmental models, stochastic indi-
vidual contact models, and stochastic network models with user input on model type, state sizes,
and parameters. Model output may be plotted, summarized, and saved as raw data using the core
EpiModel functionality for these model classes. These applications are built using the shiny pack-
age framework.

References

RStudio. shiny: Web Application Framework for R. R package version 1.0.5. 2015. https:
//shiny.posit.co/.

See Also

dcm, icm, netsim

Examples

Not run:
Deterministic compartmental models
epiweb(class = "dcm")

Stochastic individual contact models
epiweb(class = "icm")

Stochastic network models
epiweb(class = "net")

End(Not run)

generate_random_params

Generate Values for Random Parameters

Description

This function uses the generative functions in the random.params list to create values for the pa-
rameters.

Usage

generate_random_params(param, verbose = FALSE)

https://shiny.posit.co/
https://shiny.posit.co/

generate_random_params 41

Arguments

param The param argument received by the netsim functions.

verbose Should the function output the generated values (default = FALSE)?

Value

A fully instantiated param list.

random.params

The random.params argument to the param.net function must be a named list of functions that
each return a value that can be used as the argument with the same name. In the example below,
param_random is a function factory provided by EpiModel for act.rate and for tx.halt.part.prob
we provide bespoke functions. A function factory is a function that returns a new function (see
https://adv-r.hadley.nz/function-factories.html).

Generator Functions

The functions used inside random_params must be 0 argument functions returning a valid value for
the parameter with the same name.

param_random_set

The random_params list can optionally contain a param_random_set element. It must be a data.frame
of possible values to be used as parameters.

The column names must correspond either to: the name of one parameter, if this parameter is of size
1; or the name of one parameter with "_1", "2", etc. appended, with the number representing the
position of the value, if this parameter is of size > 1. This means that the parameter names cannot
contain any underscores "" if you intend to use param_random_set.

The point of the param.random.set data.frame is to allow the random parameters to be corre-
lated. To achieve this, a whole row of the data.frame is selected for each simulation.

Examples

Not run:

Example with only the generator function

Define random parameter list
my_randoms <- list(

act.rate = param_random(c(0.25, 0.5, 0.75)),
tx.prob = function() rbeta(1, 1, 2),
stratified.test.rate = function() c(
rnorm(1, 0.05, 0.01),
rnorm(1, 0.15, 0.03),
rnorm(1, 0.25, 0.05)

)
)

42 generate_random_params

Parameter model with fixed and random parameters
param <- param.net(inf.prob = 0.3, random.params = my_randoms)

Below, `tx.prob` is set first to 0.3 then assigned a random value using
the function from `my_randoms`. A warning notifying of this overwrite is
therefore produced.
param <- param.net(tx.prob = 0.3, random.params = my_randoms)

Parameters are drawn automatically in netsim by calling the function
within netsim_loop. Demonstrating draws here but this is not used by
end user.
paramDraw <- generate_random_params(param, verbose = TRUE)
paramDraw

Addition of the `param.random.set` `data.frame`

This function will generate sets of correlated parameters
generate_correlated_params <- function() {
param.unique <- runif(1)
param.set.1 <- param.unique + runif(2)
param.set.2 <- param.unique * rnorm(3)

return(list(param.unique, param.set.1, param.set.2))
}

Data.frame set of random parameters :
correlated_params <- t(replicate(10, unlist(generate_correlated_params())))
correlated_params <- as.data.frame(correlated_params)
colnames(correlated_params) <- c(

"param.unique",
"param.set.1_1", "param.set.1_2",
"param.set.2_1", "param.set.2_2", "param.set.2_3"

)

Define random parameter list with the `param.random.set` element
my_randoms <- list(

act.rate = param_random(c(0.25, 0.5, 0.75)),
param.random.set = correlated_params

)

Parameter model with fixed and random parameters
param <- param.net(inf.prob = 0.3, random.params = my_randoms)

Parameters are drawn automatically in netsim by calling the function
within netsim_loop. Demonstrating draws here but this is not used by
end user.
paramDraw <- generate_random_params(param, verbose = TRUE)
paramDraw

End(Not run)

geom_bands 43

geom_bands ggplot2 Geom for Quantile Bands

Description

Plots quantile bands given a data.frame with stochastic model results from icm or netsim.

Usage

geom_bands(mapping, lower = 0.25, upper = 0.75, alpha = 0.25, ...)

Arguments

mapping Standard aesthetic mapping aes() input for ggplot2.

lower Lower quantile for the time series.

upper Upper quantile for the time series.

alpha Transparency of the ribbon fill.

... Additional arguments passed to stat_summary.

Details

This is a wrapper around ggplot::stat_summary with a ribbon geom as aesthetic output.

Examples

param <- param.icm(inf.prob = 0.2, act.rate = 0.25)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SI", nsteps = 250, nsims = 5)
mod1 <- icm(param, init, control)
df <- as.data.frame(mod1)
df.mean <- as.data.frame(mod1, out = "mean")

library(ggplot2)
ggplot() +

geom_line(data = df, mapping = aes(time, i.num, group = sim),
alpha = 0.25, lwd = 0.25, color = "firebrick") +
geom_bands(data = df, mapping = aes(time, i.num),

lower = 0.1, upper = 0.9, fill = "firebrick") +
geom_line(data = df.mean, mapping = aes(time, i.num)) +
theme_minimal()

44 get_attr_history

get_adj_list Returns an adjacency list from an edge list

Description

Returns an adjacency list from an edge list

Usage

get_adj_list(el, n_nodes)

Arguments

el An edge list as a data.frame with columns head and tail

n_nodes The size number of node in the network

Details

The adjacency list is a list of length n_nodes. The entry for each node is a integer vector contain-
ing the index of all the nodes connected to it. This layout makes it directly subsetable in O(1) at the
expanse of memory usage. To get all connections to the nodes 10 and 15 : unlist(adj_list[c(10, 15)]

Value

An adjacency list for the network

get_attr_history Extract the Attributes History from Network Simulations

Description

Extract the Attributes History from Network Simulations

Usage

get_attr_history(sims)

Arguments

sims An EpiModel object of class netsim.

Value

A list of data.frames, one for each "measure" recorded in the simulation by the record_attr_history
function.

get_connected_nodes 45

Examples

Not run:

With `sims` the result of a `netsim` call
get_attr_history(sims)

End(Not run)

get_connected_nodes Returns all the node connected directly or indirectly to a set of nodes

Description

Returns all the node connected directly or indirectly to a set of nodes

Usage

get_connected_nodes(adj_list, nodes)

Arguments

adj_list The network represented as an adjacency list

nodes A set of nodes

Value

A vector of nodes indexes that are connected together with the ones provided in the nodes argument.
The nodes themselves are not listed in this output

get_cumulative_degree Return the Cumulative Degree of a Set of Index Nodes

Description

Return the Cumulative Degree of a Set of Index Nodes

Usage

get_cumulative_degree(
dat,
index_posit_ids,
networks = NULL,
truncate = Inf,
only.active.nodes = FALSE

)

46 get_cumulative_edgelist

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

index_posit_ids

The positional IDs of the indexes of interest.

networks Numerical indexes of the networks to extract the partnerships from. (May be >
1 for models with multi-layer networks.) If NULL, extract from all networks.

truncate After how many time steps a partnership that is no longer active should be re-
moved from the output.

only.active.nodes

If TRUE, then inactive (e.g., deceased) partners will be removed from the output.

Value

A data.frame with 2 columns:

• index_pid: the positional ID (see get_posit_ids) of the indexes.

• degree: the cumulative degree of the index.

Cumulative Degree

The cumulative degree of a node is the number of edges connected to this node at during the time
window. The time window is by default all the steps stored in the cumulative_edgelist or set by
the truncate parameter.

get_cumulative_edgelist

Get a Cumulative Edgelist From a Specified Network

Description

Get a Cumulative Edgelist From a Specified Network

Usage

get_cumulative_edgelist(dat, network)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

network Numerical index of the network from which the cumulative edgelist should be
extracted. (May be > 1 for models with multiple overlapping networks.)

get_cumulative_edgelists_df 47

Value

A cumulative edgelist in data.frame form with 4 columns:

• head: the unique ID (see get_unique_ids) of the head node on the edge.

• tail: the unique ID (see get_unique_ids) of the tail node on the edge.

• start: the time step in which the edge started.

• stop: the time step in which the edge stopped; if ongoing, then NA is returned.

get_cumulative_edgelists_df

Get the Cumulative Edgelists of a Model

Description

Get the Cumulative Edgelists of a Model

Usage

get_cumulative_edgelists_df(dat, networks = NULL)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

networks Numerical indexes of the networks to extract the partnerships from. (May be
> 1 for models with multiple overlapping networks.) If NULL, extract from all
networks.

Value

A data.frame with 5 columns:

• index: the unique ID (see get_unique_ids) of the indexes.

• partner: the unique ID (see get_unique_ids) of the partners/contacts.

• start: the time step in which the edge started.

• stop: the time step in which the edge stopped; if ongoing, then NA is returned.

• network: the numerical index for the network on which the partnership/contact is located.

48 get_degree

get_current_timestep Return the Current Timestep

Description

Return the Current Timestep

Usage

get_current_timestep(dat)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

Value

The current timestep.

get_degree Get Individual Degree from Network or Edgelist

Description

A fast method for querying the current degree of all individuals within a network.

Usage

get_degree(x)

Arguments

x Either an object of class network or edgelist generated from a network. If x
is an edgelist, then it must contain an attribute for the total network size, n.

Details

Individual-level data on the current degree of nodes within a network is often useful for summary
statistics. Given a network class object, net, one way to look up the current degree is to get a
summary of the ERGM term, sociality, as in: summary(net ~ sociality(nodes = NULL)). But
that is computationally inefficient for a number of reasons. This function provides a fast method for
generating the vector of degrees using a query of the edgelist. It is even faster if the parameter x is
already transformed into an edgelist.

get_edgelist 49

Value

A vector of length equal to the total network size, containing the current degree of each node in the
network.

Examples

nw <- network_initialize(n = 500)

set.seed(1)
fit <- ergm(nw ~ edges, target.stats = 250)
sim <- simulate(fit)

Slow ERGM-based method
ergm.method <- unname(summary(sim ~ sociality(nodes = NULL)))
ergm.method

Fast tabulate method with network object
deg.net <- get_degree(sim)
deg.net

Even faster if network already transformed into an edgelist
el <- as.edgelist(sim)
deg.el <- get_degree(el)
deg.el

identical(as.integer(ergm.method), deg.net, deg.el)

get_edgelist Get an Edgelist From the Specified Network

Description

This function outputs an edgelist from the specified network, selecting the method depending on
the stored network type.

Usage

get_edgelist(dat, network)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

network Numerical index of the network from which the edgelist should be extracted.
(May be > 1 for models with multiple overlapping networks.)

50 get_formula_term_attr

Value

An edgelist in matrix form with two columns. Each column contains the posit_ids (see get_posit_ids)
of the nodes in each edge.

get_edgelists_df Get the Edgelist(s) from the Specified Network(s)

Description

Get the Edgelist(s) from the Specified Network(s)

Usage

get_edgelists_df(dat, networks = NULL)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

networks Numerical indexes of the networks to extract the partnerships from. (May be
> 1 for models with multiple overlapping networks.) If NULL, extract from all
networks.

Value

A data.frame with the following columns:

• head: Positional ID of the head node.

• tail: Positional ID of the tail node.

• network: The numerical index of the network on which the edge is located.

get_formula_term_attr Output ERGM Formula Attributes into a Character Vector

Description

Given a formation formula for a network model, outputs a character vector of vertex attributes to be
used in netsim simulations.

Usage

get_formula_term_attr(form, nw)

get_network 51

Arguments

form An ERGM model formula.

nw A network object.

Value

A character vector of vertex attributes.

get_network Extract Network Objects from Network Simulations

Description

Extracts the network object from either a network epidemic model object generated with netsim,
a network diagnostic simulation generated with netdx, or a netsim_dat object used internally
in netsim. For netdx or netsim with tergmLite == FALSE, the extracted network object is a
networkDynamic, which can be collapsed down to a static network object with the collapse
and at arguments. For netsim with tergmLite == TRUE, the extracted network object is the final
networkLite, the collapse argument should be FALSE, and the at argument should be missing.
For netsim_dat, the collapse and at arguments are not supported, and the network object is either
the current networkLite (if tergmLite == TRUE) or the current networkDynamic (if tergmLite ==
FALSE).

Usage

get_network(x, ...)

S3 method for class 'netdx'
get_network(x, sim = 1, collapse = FALSE, at, ...)

S3 method for class 'netsim'
get_network(x, sim = 1, network = 1, collapse = FALSE, at, ...)

S3 method for class 'netsim_dat'
get_network(x, network = 1L, ...)

Arguments

x An EpiModel object of class netsim, netdx, or netsim_dat.

... Additional arguments.

sim Simulation number of extracted network, for netdx and netsim.

collapse If TRUE, collapse the networkDynamic object to a static network object at a
specified time step. Applicable to netdx objects and netsim objects with tergmLite
== FALSE.

52 get_network

at If collapse is TRUE, the time step at which the extracted network should be
collapsed. Applicable to netdx objects and netsim objects with tergmLite ==
FALSE.

network Network number, for netsim or netsim_dat objects with multiple overlapping
networks (advanced use, and not applicable to netdx objects).

Details

This function requires that the network object is saved during the network simulation while running
either netsim or netdx. For the former, that is specified by setting the save.network parameter in
control.net to TRUE. For the latter, that is specified with the keep.tnetwork parameter directly
in netdx.

Value

For netdx or netsim with tergmLite == FALSE, a networkDynamic object (if collapse = FALSE)
or a static network object (if collapse = TRUE). For netsim with tergmLite == TRUE or netsim_dat
with tergmLite == TRUE, a networkLite object. For netsim_dat with tergmLite == FALSE, a
networkDynamic object.

Examples

Set up network and TERGM formula
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Estimate the model
est <- netest(nw, formation, target.stats, coef.diss)

Run diagnostics, saving the networkDynamic objects
dx <- netdx(est, nsteps = 10, nsims = 3, keep.tnetwork = TRUE,

verbose = FALSE)

Extract the network for simulation 2 from dx object
get_network(dx, sim = 2)

Extract and collapse the network from simulation 1 at time step 5
get_network(dx, collapse = TRUE, at = 5)

Parameterize the epidemic model, and simulate it
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose = FALSE)
mod <- netsim(est, param, init, control)

Extract the network for simulation 2 from mod object
get_network(mod, sim = 2)

get_network_attributes 53

Extract and collapse the network from simulation 1 at time step 5
get_network(mod, collapse = TRUE, at = 5)

get_network_attributes

Get Network Attributes from a Network Object

Description

Gets all network attributes except "mnext" from its network argument.

Usage

get_network_attributes(x)

Arguments

x An object of class network or networkLite.

Details

This function is used in EpiModel workflows to copy relevant network attributes from the network
object to the netsim_dat object when initializing netsim runs.

Value

Returns the named list of network attributes.

Examples

nw <- network_initialize(100)
get_network_attributes(nw)

get_network_term_attr Output Network Attributes into a Character Vector

Description

Given a simulated network, outputs a character vector of vertex attributes to be used in netsim
simulations.

Usage

get_network_term_attr(nw)

54 get_nwstats

Arguments

nw A network object.

Value

A character vector of vertex attributes.

get_nwstats Extract Network Statistics from netsim or netdx Object

Description

Extracts network statistics from a network epidemic model simulated with netsim or a network
diagnostics object simulated with netdx. Statistics can be returned either as a single data frame or
as a list of matrices (one matrix for each simulation).

Usage

get_nwstats(x, sim, network = 1, mode = c("data.frame", "list"))

Arguments

x An EpiModel object of class netsim or netdx.

sim A vector of simulation numbers from the extracted object.

network Network number, for netsim objects with multiple overlapping networks (ad-
vanced use, and not applicable to netdx objects).

mode Either "data.frame" or "list", indicating the desired output.

Value

A data frame or list of matrices containing the network statistics.

Examples

Two-group Bernoulli random graph TERGM
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

dx <- netdx(est, nsim = 3, nsteps = 10, verbose = FALSE,
nwstats.formula = ~edges + isolates)

get_nwstats(dx)
get_nwstats(dx, sim = 1)

get_param_set 55

SI epidemic model
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 3,

nwstats.formula = ~edges + meandeg + degree(0:5),
verbose = FALSE)

mod <- netsim(est, param, init, control)

Extract the network statistics from all or sets of simulations
get_nwstats(mod)
get_nwstats(mod, sim = 2)
get_nwstats(mod, sim = c(1, 3))

On the fly summary stats
summary(get_nwstats(mod))
colMeans(get_nwstats(mod))

get_param_set Extract the Parameter Set from Network Simulations

Description

Extract the Parameter Set from Network Simulations

Usage

get_param_set(sims)

Arguments

sims An EpiModel object of class netsim.

Value

A data.frame with one row per simulation and one column per parameter or parameter element
where the parameters are of size > 1.

Output Format

The outputted data.frame has one row per simulation and the columns correspond to the parame-
ters used in this simulation.

The column name will match the parameter name if it is a size 1 parameter or if the param-
eter is of size > 1, there will be N columns (with N being the size of the parameter) named
parameter.name_1, parameter.name_2, ..., parameter.name_N.

56 get_partners

Examples

Setup network
nw <- network_initialize(n = 50)

est <- netest(
nw, formation = ~edges,
target.stats = c(25),
coef.diss = dissolution_coefs(~offset(edges), 10, 0),
verbose = FALSE

)

init <- init.net(i.num = 10)

n <- 5

related.param <- data.frame(
dummy.param = rbeta(n, 1, 2)

)

my.randoms <- list(
act.rate = param_random(c(0.25, 0.5, 0.75)),
dummy.param = function() rbeta(1, 1, 2),
dummy.strat.param = function() c(

rnorm(1, 0, 10),
rnorm(1, 10, 1)

)
)

param <- param.net(
inf.prob = 0.3,
dummy = c(0, 1, 2),
random.params = my.randoms

)

control <- control.net(type = "SI", nsims = 3, nsteps = 5, verbose = FALSE)
mod <- netsim(est, param, init, control)

get_param_set(mod)

get_partners Return the Historical Contacts (Partners) of a Set of Index Nodes

Description

From a full cumulative edgelist that contains the history of contacts (both persistent and one-time),
this function returns a data frame containing details of the index (head) and partner (tail) nodes,
along with start and stop time steps for the partnership and the network location.

get_partners 57

Usage

get_partners(
dat,
index_posit_ids,
networks = NULL,
truncate = Inf,
only.active.nodes = FALSE

)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

index_posit_ids

The positional IDs of the indexes of interest.

networks Numerical indexes of the networks to extract the partnerships from. (May be >
1 for models with multi-layer networks.) If NULL, extract from all networks.

truncate After how many time steps a partnership that is no longer active should be re-
moved from the output.

only.active.nodes

If TRUE, then inactive (e.g., deceased) partners will be removed from the output.

Details

Note that get_partners takes as input the positional IDs of the indexes of interest but returns the
unique IDs. That is by design, because while get_partners would be expected to be called for
active nodes, some partners (contacts) of nodes may be inactive in the network history. Therefore,
both index and partner IDs are returned as unique IDs for consistency. To convert between a posi-
tional to a unique ID, you may use get_posit_ids; to convert between a unique ID to a positional
ID, you may use get_unique_ids.

Value

A data.frame with 5 columns:

• index: the unique IDs of the indexes.

• partner: the unique IDs of the partners/contacts.

• start: the time step at which the edge started.

• stop: the time step in which the edge stopped; if ongoing, then NA is returned.

• network: the numerical index for the network on which the partnership/contact is located.

58 get_sims

get_sims Extract Network Simulations

Description

Subsets the entire netsim object to a subset of simulations, essentially functioning like a reverse of
merge.

Usage

get_sims(x, sims, var)

Arguments

x An object of class netsim.

sims Either a numeric vector of simulation numbers to retain in the output object, or
"mean", which selects the one simulation with the value of the variable specified
in var closest to the mean of var across all simulations.

var A character vector of variables to retain from x if sims is a numeric vector, or a
single variable name for selecting the average simulation from the set if sims =
"mean".

Value

An updated object of class netsim containing only the simulations specified in sims and the vari-
ables specified in var.

Examples

Network model estimation
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Epidemic model
param <- param.net(inf.prob = 0.3)
init <- init.net(i.num = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose.int = 0)
mod1 <- netsim(est1, param, init, control)

Get sim 2
s.g2 <- get_sims(mod1, sims = 2)

Get sims 2 and 3 and keep only a subset of variables
s.g2.small <- get_sims(mod1, sims = 2:3, var = c("i.num", "si.flow"))

get_subnet_adj_list 59

Extract the mean simulation for the variable i.num
sim.mean <- get_sims(mod1, sims = "mean", var = "i.num")

get_subnet_adj_list Return an adjacency list of subnets

Description

Return an adjacency list of subnets

Usage

get_subnet_adj_list(adj_list)

Arguments

adj_list A normal adjacency list

Details

A graph with 4 components: 1, 2, 3, 4, and 5 and 6, 7, 8 would yield a list like so: 1: 2, 3, 4 2: 1 3:
1 4: 1 5: numeric(0) 6: 7, 8 7: 6, 8: 6

This format speeds up the construction of reachable sets on dense networks

Value

An adjacency list where only the first node of a subnet contains the subnet and all other contain
only the first node

get_vertex_attribute Get Vertex Attribute on Network Object

Description

Gets a vertex attribute from an object of class network. This functions simplifies the related func-
tion in the network package.

Usage

get_vertex_attribute(x, attrname)

Arguments

x An object of class network.

attrname The name of the attribute to get.

60 icm

Details

This function is used in EpiModel workflows to query vertex attributes on an initialized empty
network object (see network_initialize).

Value

Returns an object of class network.

Examples

nw <- network_initialize(100)
nw <- set_vertex_attribute(nw, "age", runif(100, 15, 65))
get_vertex_attribute(nw, "age")

icm Stochastic Individual Contact Models

Description

Simulates stochastic individual contact epidemic models for infectious disease.

Usage

icm(param, init, control)

Arguments

param Model parameters, as an object of class param.icm.

init Initial conditions, as an object of class init.icm.

control Control settings, as an object of class control.icm.

Details

Individual contact models are intended to be the stochastic microsimulation analogs to deterministic
compartmental models. ICMs simulate disease spread on individual agents in discrete time as
a function of processes with stochastic variation. The stochasticity is inherent in all transition
processes: infection, recovery, and demographics.

The icm function performs modeling of both the base model types and original models. Base model
types include one-group and two-group models with disease types for Susceptible-Infected (SI),
Susceptible-Infected-Recovered (SIR), and Susceptible-Infected-Susceptible (SIS). Original mod-
els may be built by writing new process modules that either take the place of existing modules (for
example, disease recovery), or supplement the set of existing processes with a new one contained
in an original module.

icm 61

Value

A list of class icm with the following elements:

• param: the epidemic parameters passed into the model through param, with additional pa-
rameters added as necessary.

• control: the control settings passed into the model through control, with additional controls
added as necessary.

• epi: a list of data frames, one for each epidemiological output from the model. Outputs for
base models always include the size of each compartment, as well as flows in, out of, and
between compartments.

See Also

Extract the model results with as.data.frame.icm. Summarize the time-specific model results
with summary.icm. Plot the model results with plot.icm. Plot a compartment flow diagram with
comp_plot.

Examples

Not run:
Example 1: SI Model
param <- param.icm(inf.prob = 0.2, act.rate = 0.25)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SI", nsteps = 500, nsims = 10)
mod1 <- icm(param, init, control)
mod1
plot(mod1)

Example 2: SIR Model
param <- param.icm(inf.prob = 0.2, act.rate = 0.25, rec.rate = 1/50)
init <- init.icm(s.num = 500, i.num = 1, r.num = 0)
control <- control.icm(type = "SIR", nsteps = 500, nsims = 10)
mod2 <- icm(param, init, control)
mod2
plot(mod2)

Example 3: SIS Model
param <- param.icm(inf.prob = 0.2, act.rate = 0.25, rec.rate = 1/50)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SIS", nsteps = 500, nsims = 10)
mod3 <- icm(param, init, control)
mod3
plot(mod3)

Example 4: SI Model with Vital Dynamics (Two-Group)
param <- param.icm(inf.prob = 0.4, inf.prob.g2 = 0.1,

act.rate = 0.25, balance = "g1",
a.rate = 1/100, a.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/50, di.rate.g2 = 1/50)

init <- init.icm(s.num = 500, i.num = 1,

62 init.dcm

s.num.g2 = 500, i.num.g2 = 0)
control <- control.icm(type = "SI", nsteps = 500, nsims = 10)
mod4 <- icm(param, init, control)
mod4
plot(mod4)

End(Not run)

increment_timestep Increment the Current Timestep

Description

This function adds 1 to the timestep counter stored in the netsim_dat main list object.

Usage

increment_timestep(dat)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

Value

The updated netsim_dat main list object.

Mutability

This DOES NOT modify the netsim_dat object in place. The result must be assigned back to dat
in order to be registered: dat <- increment_timestep(dat).

init.dcm Initial Conditions for Deterministic Compartmental Models

Description

Sets the initial conditions for deterministic compartmental models simulated with dcm.

Usage

init.dcm(s.num, i.num, r.num, s.num.g2, i.num.g2, r.num.g2, ...)

init.icm 63

Arguments

s.num Number of initial susceptible persons. For two-group models, this is the number
of initial group 1 susceptible persons.

i.num Number of initial infected persons. For two-group models, this is the number of
initial group 1 infected persons.

r.num Number of initial recovered persons. For two-group models, this is the number
of initial group 1 recovered persons. This parameter is only used for the SIR
model type.

s.num.g2 Number of initial susceptible persons in group 2. This parameter is only used
for two-group models.

i.num.g2 Number of initial infected persons in group 2. This parameter is only used for
two-group models.

r.num.g2 Number of initial recovered persons in group 2. This parameter is only used for
two-group SIR models.

... Additional initial conditions passed to model.

Details

The initial conditions for a model solved with dcm should be input into the init.dcm function. This
function handles initial conditions for both base model types and original models.

Original models may use the parameter names listed as arguments here, a new set of names, or a
combination of both. With new models, initial conditions must be input in the same order that the
solved derivatives from the model are output.

Value

An EpiModel object of class init.dcm.

See Also

Use param.dcm to specify model parameters and control.dcm to specify the control settings. Run
the parameterized model with dcm.

init.icm Initial Conditions for Stochastic Individual Contact Models

Description

Sets the initial conditions for stochastic individual contact models simulated with icm.

Usage

init.icm(s.num, i.num, r.num, s.num.g2, i.num.g2, r.num.g2, ...)

64 init.net

Arguments

s.num Number of initial susceptible persons. For two-group models, this is the number
of initial group 1 susceptible persons.

i.num Number of initial infected persons. For two-group models, this is the number of
initial group 1 infected persons.

r.num Number of initial recovered persons. For two-group models, this is the number
of initial group 1 recovered persons. This parameter is only used for the SIR
model type.

s.num.g2 Number of initial susceptible persons in group 2. This parameter is only used
for two-group models.

i.num.g2 Number of initial infected persons in group 2. This parameter is only used for
two-group models.

r.num.g2 Number of initial recovered persons in group 2. This parameter is only used for
two-group SIR models.

... Additional initial conditions passed to model.

Details

The initial conditions for a model solved with icm should be input into the init.icm function. This
function handles initial conditions for both base models and original models using new modules.

Value

An EpiModel object of class init.icm.

See Also

Use param.icm to specify model parameters and control.icm to specify the control settings. Run
the parameterized model with icm.

init.net Initial Conditions for Stochastic Network Models

Description

Sets the initial conditions for stochastic network models simulated with netsim.

Usage

init.net(i.num, r.num, i.num.g2, r.num.g2, status.vector, infTime.vector, ...)

init.net 65

Arguments

i.num Number of initial infected persons. For two-group models, this is the number of
initial group 1 infected persons.

r.num Number of initial recovered persons. For two-group models, this is the number
of initial group 1 recovered persons. This parameter is only used for the SIR
model type.

i.num.g2 Number of initial infected persons in group 2. This parameter is only used for
two-group models.

r.num.g2 Number of initial recovered persons in group 2. This parameter is only used for
two-group SIR models.

status.vector A vector of length equal to the size of the input network, containing the sta-
tus of each node. Setting status here overrides any inputs passed in the .num
arguments.

infTime.vector A vector of length equal to the size of the input network, containing the (his-
torical) time of infection for each of those nodes with a current status of "i".
Can only be used if status.vector is used, and must contain NA values for any
nodes whose status is not "i".

... Additional initial conditions passed to model.

Details

The initial conditions for a model solved with netsim should be input into the init.net function.
This function handles initial conditions for both base models and new modules. For an overview of
specifying initial conditions across a variety of base network models, consult the Network Modeling
for Epidemics tutorials.

Value

An EpiModel object of class init.net.

See Also

Use param.net to specify model parameters and control.net to specify the control settings. Run
the parameterized model with netsim.

Examples

Example of using status.vector and infTime.vector together
n <- 100
status <- sample(c("s", "i"), size = n, replace = TRUE, prob = c(0.8, 0.2))
infTime <- rep(NA, n)
infTime[which(status == "i")] <- -rgeom(sum(status == "i"), prob = 0.01) + 2

init.net(status.vector = status, infTime.vector = infTime)

https://epimodel.github.io/sismid/
https://epimodel.github.io/sismid/

66 InitErgmTerm.absdiffnodemix

InitErgmTerm.absdiffby

Definition for absdiffby ERGM Term

Description

This function defines and initializes the absdiffby ERGM term that allows for representing ho-
mophily with respect to a non-binary attribute (e.g., age) differentially by a binary attribute (e.g.,
sex).

Usage

InitErgmTerm.absdiffby(nw, arglist, ...)

Arguments

nw An object of class network.

arglist A list of arguments as specified in the ergm.userterms package framework.

... Additional data passed into the function as specified in the ergm.userterms
package framework.

Details

This ERGM user term was written to allow for age-based homophily in partnership formation that is
asymmetric by sex. The absdiff component targets age-based homophily while the by component
allows that to be structured by a binary attribute such as "male", in order to enforce an offset in
the average difference. This allows, for example, a average age difference in partnerships, but with
males (on average) older than females.

InitErgmTerm.absdiffnodemix

Definition for absdiffnodemix ERGM Term

Description

This function defines and initializes the absdiffnodemix ERGM term that allows for targeting ho-
mophily based on a non-binary attribute (e.g., age) by combinations of a binary attribute (e.g., race).

Usage

InitErgmTerm.absdiffnodemix(nw, arglist, ...)

InitErgmTerm.fuzzynodematch 67

Arguments

nw An object of class network.

arglist A list of arguments as specified in the ergm.userterms package framework.

... Additional data passed into the function as specified in the ergm.userterms
package framework.

Details

This ERGM user term was written to allow for age-based homophily in partnership formation that
is heterogeneous by race. The absdiff component targets the distribution of age mixing on that
continuous variable, and the nodemix component differentiates this for black-black, black-white,
and white-white couples.

InitErgmTerm.fuzzynodematch

Definition for fuzzynodematch ERGM Term

Description

This function defines and initializes the fuzzynodematch ERGM term that allows for generalized
homophily.

Usage

InitErgmTerm.fuzzynodematch(nw, arglist, ...)

Arguments

nw An object of class network.

arglist A list of arguments as specified in the ergm.userterms package framework.

... Additional data passed into the function as specified in the ergm.userterms
package framework.

Details

This ERGM user term was written to allow for generalized homophily.The attr term argument
should specify a character vertex attribute encoding the "venues" associated to each node. The
split argument should specify a string that separates different "venues" in the attribute value for
each node, as handled by strsplit with fixed = TRUE. For example, if split is "|" (the default),
and the attribute value for a given node is "a12|b476", then the associated venues for this node are
"a12" and "b476". The empty string "" is interpreted as "no venues".

If the binary term argument is FALSE (the default), the change statistic for an on-toggle is the
number of unique venues associated to both nodes (informally speaking, this could be described as
the number of venues on which the two nodes "match"); if binary is TRUE, the change statistic for
an on-toggle is 1 if any venue is associated to both nodes, and 0 otherwise.

68 is.transmat

is.transmat Extract Transmissions Matrix from Network Epidemic Model

Description

Extracts the matrix of transmission data for each transmission event that occurred within a network
epidemic model.

Usage

is.transmat(x)

get_transmat(x, sim = 1, deduplicate = TRUE)

Arguments

x An EpiModel object of class netsim.

sim Simulation number of extracted network.

deduplicate If TRUE, randomly select one transmission event in the case that multiple events
current per newly infected agent within a time step.

Value

A data frame with the following standard columns:

• at: the time step at which the transmission occurred.

• sus: the ID number of the susceptible (newly infected) node.

• inf: the ID number of the infecting node.

• infDur: the duration of the infecting node’s disease at the time of the transmission.

• transProb: the probability of transmission per act.

• actRate: the rate of acts per unit time.

• finalProb: the final transmission probability for the transmission event.

Examples

Simulate SI epidemic on two-group Bernoulli random graph
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose = FALSE)
mod <- netsim(est, param, init, control)

is_active_posit_ids 69

Extract the transmission matrix from simulation 2
get_transmat(mod, sim = 2)

is_active_posit_ids Are These Nodes Active (Positional IDs)

Description

Are These Nodes Active (Positional IDs)

Usage

is_active_posit_ids(dat, posit_ids)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

posit_ids A vector of node positional identifiers.

Value

A logical vector with TRUE if the node is still active and FALSE otherwise.

is_active_unique_ids Are These Nodes Active (Unique IDs)

Description

Are These Nodes Active (Unique IDs)

Usage

is_active_unique_ids(dat, unique_ids)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

unique_ids A vector of node unique identifiers.

Value

A logical vector with TRUE if the node is still active and FALSE otherwise.

70 merge.icm

merge.icm Merge Data across Stochastic Individual Contact Model Simulations

Description

Merges epidemiological data from two independent simulations of stochastic individual contact
models from icm.

Usage

S3 method for class 'icm'
merge(x, y, ...)

Arguments

x An EpiModel object of class icm.

y Another EpiModel object of class icm, with the identical model parameteriza-
tion as x.

... Additional merge arguments (not used).

Details

This merge function combines the results of two independent simulations of icm class models,
simulated under separate function calls. The model parameterization between the two calls must
be exactly the same, except for the number of simulations in each call. This allows for manual
parallelization of model simulations.

This merge function does not work the same as the default merge, which allows for a combined
object where the structure differs between the input elements. Instead, the function checks that
objects are identical in model parameterization in every respect (except number of simulations) and
binds the results.

Value

An EpiModel object of class icm containing the data from both x and y.

Examples

param <- param.icm(inf.prob = 0.2, act.rate = 0.8)
init <- init.icm(s.num = 1000, i.num = 100)
control <- control.icm(type = "SI", nsteps = 10,

nsims = 3, verbose = FALSE)
x <- icm(param, init, control)

control <- control.icm(type = "SI", nsteps = 10,
nsims = 1, verbose = FALSE)

y <- icm(param, init, control)

merge.netsim 71

z <- merge(x, y)

Examine separate and merged data
as.data.frame(x)
as.data.frame(y)
as.data.frame(z)

merge.netsim Merge Model Simulations across netsim Objects

Description

Merges epidemiological data from two independent simulations of stochastic network models from
netsim.

Usage

S3 method for class 'netsim'
merge(
x,
y,
keep.transmat = TRUE,
keep.network = TRUE,
keep.nwstats = TRUE,
keep.other = TRUE,
param.error = TRUE,
keep.diss.stats = TRUE,
...

)

Arguments

x An EpiModel object of class netsim.

y Another EpiModel object of class netsim, with the identical model parameteri-
zation as x.

keep.transmat If TRUE, keep the transmission matrices from the original x and y elements. Note:
transmission matrices only saved when (save.transmat == TRUE).

keep.network If TRUE, keep the networkDynamic objects from the original x and y elements.
Note: network only saved when (tergmLite == FALSE).

keep.nwstats If TRUE, keep the network statistics (as set by the nwstats.formula parameter
in control.netsim) from the original x and y elements.

keep.other If TRUE, keep the other simulation elements (as set by the save.other parameter
in control.netsim) from the original x and y elements.

param.error If TRUE, if x and y have different params (in param.net) or controls (passed
in control.net) an error will prevent the merge. Use FALSE to override that
check.

72 merge.netsim

keep.diss.stats

If TRUE, keep diss.stats from the original x and y objects.

... Additional merge arguments (not currently used).

Details

This merge function combines the results of two independent simulations of netsim class models,
simulated under separate function calls. The model parameterization between the two calls must
be exactly the same, except for the number of simulations in each call. This allows for manual
parallelization of model simulations.

This merge function does not work the same as the default merge, which allows for a combined
object where the structure differs between the input elements. Instead, the function checks that
objects are identical in model parameterization in every respect (except number of simulations) and
binds the results.

Value

An EpiModel object of class netsim containing the data from both x and y.

Examples

Network model
nw <- network_initialize(n = 100)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)
est <- netest(nw, formation = ~edges, target.stats = 25,

coef.diss = coef.diss, verbose = FALSE)

Epidemic models
param <- param.net(inf.prob = 1)
init <- init.net(i.num = 1)
control <- control.net(type = "SI", nsteps = 20, nsims = 2,

save.nwstats = TRUE,
nwstats.formula = ~edges + degree(0),
verbose = FALSE)

x <- netsim(est, param, init, control)
y <- netsim(est, param, init, control)

Merging
z <- merge(x, y)

Examine separate and merged data
as.data.frame(x)
as.data.frame(y)
as.data.frame(z)

modules.icm 73

modules.icm Modules for Stochastic Individual Contact Models

Description

Stochastic individual contact models of infectious disease simulate epidemics in which contacts
between individuals are instantaneous events in discrete time. They are intended to be the stochastic
microsimulation analogs to deterministic compartmental models.

The icm function handles both the simulation tasks. Within this function are a series of modules
that initialize the simulation and then simulate new infections, recoveries, and vital dynamics at
each time step. A module also handles the basic bookkeeping calculations for disease prevalence.

Writing original ICMs will require modifying the existing modules or adding new modules to the
workflow in icm. The existing modules may be used as a template for replacement or new modules.

This help page presents a brief overview of the module functions in the order in which they are
used within icm, in order to help guide users in writing their own module functions. These module
functions are not shown on the help index since they are not called directly by the end-user. To
understand these functions in more detail, review the separate help pages listed below.

Initialization Module

This function sets up agent attributes, like disease status, on the network at the starting time step
of disease simulation, t1. For multiple-simulation function calls, these are reset at the beginning of
each simulation.

• initialize.icm: sets which agents are initially infected, through the initial conditions passed
in init.icm.

Disease Status Modification Modules

The main disease simulation occurs at each time step given the current state of the population at
that step. Infection of agents is simulated as a function of disease parameters and population com-
position. Recovery of agents is likewise simulated with respect to infected nodes. These functions
also analyze the flows for summary measures such as disease incidence.

• infection.icm: randomly draws an edgelist given the parameters, subsets the list for dis-
cordant pairs, and simulates transmission on those discordant pairs through a series of draws
from a binomial distribution.

• recovery.icm: simulates recovery from infection either to a lifelong immune state (for SIR
models) or back to the susceptible state (for SIS models), as a function of the recovery rate
specified in the rec.rate parameter. The recovery rate may vary for two-group models.

Demographic Modules

Vital dynamics such as arrival and departure processes are simulated at each time step to update
entries into and exits from the population. These are used in open-population ICMs.

74 modules.net

• departures.icm: randomly simulates departures or exits for agents given the departure rate
specified in the disease-state and group-specific departure parameters in param.icm. This
involves deactivating agents from the population, but their historical data is preserved in the
simulation.

• arrivals.icm: randomly simulates new arrivals into the population given the current popula-
tion size and the arrival rate parameters. This involves adding new agents into the population.

Bookkeeping Module

Simulations require bookkeeping at each time step to calculate the summary epidemiological statis-
tics used in the model output analysis.

• prevalence.icm: calculates the number in each disease state (susceptible, infected, recov-
ered) at each time step for those active agents in the population.

modules.net Modules for Stochastic Network Models

Description

Stochastic network models of infectious disease in EpiModel require statistical modeling of net-
works, simulation of those networks forward through time, and simulation of epidemic dynamics
on top of those evolving networks. The netsim function handles both the network and epidemic
simulation tasks. Within this function are a series of modules that initialize the simulation and then
simulate new infections, recoveries, and demographics on the network. Modules also handle the
resimulation of the network and some bookkeeping calculations for disease prevalence.

Writing original network models that expand upon our "base" model set will require modifying the
existing modules or adding new modules to the workflow in netsim. The existing modules may be
used as a template for replacement or new modules.

This help page provides an orientation to these module functions, in the order in which they are
used within netsim, to help guide users in writing their own functions. These module functions are
not shown on the help index since they are not called directly by the end-user. To understand these
functions in more detail, review the separate help pages listed below.

Initialization Module

This function sets up nodal attributes, like disease status, on the network at the starting time step
of disease simulation, t1. For multiple-simulation function calls, these are reset at the beginning of
each individual simulation.

• initialize.net: sets up the main netsim_dat data structure used in the simulation, initial-
izes which nodes are infected (via the initial conditions passed in init.net), and simulates a
first time step of the networks given the network model fit from netest.

modules.net 75

Disease Status Modification Modules

The main disease simulation occurs at each time step given the current state of the network at
that step. Infection of nodes is simulated as a function of attributes of the nodes and the edges.
Recovery of nodes is likewise simulated as a function of nodal attributes of those infected nodes.
These functions also calculate summary flow measures such as disease incidence.

• infection.net: simulates disease transmission given an edgelist of discordant partnerships
by calculating the relevant transmission and act rates for each edge, and then updating the
nodal attributes and summary statistics.

• recovery.net: simulates recovery from infection either to a lifelong immune state (for SIR
models) or back to the susceptible state (for SIS models), as a function of the recovery rate
parameters specified in param.net.

Demographic Modules

Demographics such as arrival and departure processes are simulated at each time step to update
entries into and exits from the network. These are used in epidemic models with network feedback,
in which the network is resimulated at each time step to account for the nodal changes affecting the
edges.

• departures.net: randomly simulates departure for nodes given their disease status (suscep-
tible, infected, recovered), and their group-specific departure rates specified in param.net.
Departures involve deactivating nodes.

• arrivals.net: randomly simulates new arrivals into the network given the current population
size and the arrival rate specified in the a.rate parameters. This involves adding new nodes
into the network.

Network Resimulation Module

In dependent network models, the network object is resimulated at each time step to account for
changes in the size of the network (changed through entries and exits), and the disease status of the
nodes.

• resim_nets: resimulates the network object one time step forward given the set of formation
and dissolution coefficients estimated in netest.

Bookkeeping Module

Network simulations require bookkeeping at each time step to calculate the summary epidemiolog-
ical statistics used in the model output analysis.

• prevalence.net: calculates the number in each disease state (susceptible, infected, recov-
ered) at each time step for those active nodes in the network. If the epi.by control is used, it
calculates these statistics by a set of specified nodal attributes.

• verbose.net: summarizes the current state of the simulation and prints this to the console.

76 mutate_epi

One- & Two-Group Modules

If epidemic type is supplied within control.net, EpiModel defaults each of the base epidemic
and demographic modules described above (arrivals.FUN, departures.FUN, infection.FUN, recov-
ery.FUN) to the correct .net function based on variables passed to param.net (e.g. num.g2, denoting
population size of group two, would select the two-group variants of the aforementioned modules).
Two-group modules are denoted by a .2g affix (e.g., recovery.2g.net)

multilayer Specify Controls by Network

Description

This utility function allows specification of certain netsim controls to vary by network. The
netsim control arguments currently supporting multilayer specifications are nwstats.formula,
set.control.ergm, set.control.tergm, and tergmLite.track.duration.

Usage

multilayer(...)

Arguments

... control arguments to apply to each network, with the index of the network cor-
responding to the index of the control argument

Value

an object of class multilayer containing the specified control arguments

mutate_epi Add New Epidemiology Variables

Description

Inspired by dplyr::mutate, mutate_epi adds new variables to the epidemiological and related
variables within simulated model objects of any class in EpiModel.

Usage

mutate_epi(x, ...)

Arguments

x An EpiModel object of class dcm, icm, or netsim.

... Name-value pairs of expressions (see examples below).

net-accessor 77

Value

The updated EpiModel object of class dcm, icm, or netsim.

Examples

DCM example
param <- param.dcm(inf.prob = 0.2, act.rate = 0.25)
init <- init.dcm(s.num = 500, i.num = 1)
control <- control.dcm(type = "SI", nsteps = 500)
mod1 <- dcm(param, init, control)
mod1 <- mutate_epi(mod1, prev = i.num/num)
plot(mod1, y = "prev")

Network model example
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 1, i.num.g2 = 0)
control <- control.net(type = "SI", nsteps = 10, nsims = 3,

verbose = FALSE)
mod1 <- netsim(est1, param, init, control)
mod1

Add the prevalences to the dataset
mod1 <- mutate_epi(mod1, i.prev = i.num / num,

i.prev.g2 = i.num.g2 / num.g2)
plot(mod1, y = c("i.prev", "i.prev.g2"), qnts = 0.5, legend = TRUE)

Add incidence rate per 100 person years (assume time step = 1 week)
mod1 <- mutate_epi(mod1, ir100 = 5200*(si.flow + si.flow.g2) /

(s.num + s.num.g2))
as.data.frame(mod1)
as.data.frame(mod1, out = "mean")

net-accessor Functions to Access and Edit the Main netsim_dat Object in Network
Models

Description

These get_, set_, append_, and add_ functions allow a safe and efficient way to retrieve and
mutate the main netsim_dat class object of network models (typical variable name dat).

78 net-accessor

Usage

get_attr_list(dat, item = NULL)

get_attr(dat, item, posit_ids = NULL, override.null.error = FALSE)

add_attr(dat, item)

set_attr(dat, item, value, posit_ids = NULL, override.length.check = FALSE)

append_attr(dat, item, value, n.new)

remove_node_attr(dat, posit_ids)

get_epi_list(dat, item = NULL)

get_epi(dat, item, at = NULL, override.null.error = FALSE)

add_epi(dat, item)

set_epi(dat, item, at, value)

get_param_list(dat, item = NULL)

get_param(dat, item, override.null.error = FALSE)

add_param(dat, item)

set_param(dat, item, value)

get_control_list(dat, item = NULL)

get_control(dat, item, override.null.error = FALSE)

get_network_control(dat, network, item, override.null.error = FALSE)

add_control(dat, item)

set_control(dat, item, value)

get_init_list(dat, item = NULL)

get_init(dat, item, override.null.error = FALSE)

add_init(dat, item)

set_init(dat, item, value)

append_core_attr(dat, at, n.new)

net-accessor 79

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

item A character vector containing the name of the element to access (for get_ func-
tions), create (for add_ functions), or edit (for set_ and append_ functions).
Can be of length > 1 for get_*_list functions.

posit_ids For set_attr and get_attr, a numeric vector of posit_ids to subset the desired
item.

override.null.error

If TRUE, get_ will return NULL if the item does not exist instead of throwing
an error. (default = FALSE).

value New value to be attributed in the set_ and append_ functions.

override.length.check

If TRUE, set_attr allows the modification of the item size. (default = FALSE).

n.new For append_core_attr, the number of new nodes to initiate with core attributes;
for append_attr, the number of new elements to append at the end of item.

at For get_epi, the timestep at which to access the specified item; for set_epi,
the timestep at which to add the new value for the epi output item; for append_core_attr,
the current time step.

network index of network for which to get control

Value

A vector or a list of vectors for get_ functions; the main list object for set_, append_, and add_
functions.

Core Attribute

The append_core_attr function initializes the attributes necessary for EpiModel to work (the four
core attributes are: "active", "unique_id", "entrTime", and "exitTime"). These attributes are used in
the initialization phase of the simulation, to create the nodes (see initialize.net); and also used
when adding nodes during the simulation (see arrivals.net).

Mutability

The set_, append_, and add_ functions DO NOT modify the netsim_dat object in place. The
result must be assigned back to dat in order to be registered: dat <- set_*(dat, item, value).

set_ and append_ vs add_

The set_ and append_ functions edit a pre-existing element or create a new one if it does not exist
already by calling the add_ functions internally.

80 netdx

Examples

dat <- create_dat_object(control = list(nsteps = 150))
dat <- append_core_attr(dat, 1, 100)

dat <- add_attr(dat, "age")
dat <- set_attr(dat, "age", runif(100))
dat <- set_attr(dat, "status", rbinom(100, 1, 0.9))
dat <- append_attr(dat, "status", 1, 10)
dat <- append_attr(dat, "age", NA, 10)
get_attr_list(dat)
get_attr_list(dat, c("age", "active"))
get_attr(dat, "status")
get_attr(dat, "status", c(1, 4))

dat <- add_epi(dat, "i.num")
dat <- set_epi(dat, "i.num", 150, 10)
dat <- set_epi(dat, "s.num", 150, 90)
get_epi_list(dat)
get_epi_list(dat, c("i.num", "s.num"))
get_epi(dat, "i.num")
get_epi(dat, "i.num", c(1, 4))

dat <- add_param(dat, "x")
dat <- set_param(dat, "x", 0.4)
dat <- set_param(dat, "y", 0.8)
get_param_list(dat)
get_param_list(dat, c("x", "y"))
get_param(dat, "x")

dat <- add_init(dat, "x")
dat <- set_init(dat, "x", 0.4)
dat <- set_init(dat, "y", 0.8)
get_init_list(dat)
get_init_list(dat, c("x", "y"))
get_init(dat, "x")

dat <- add_control(dat, "x")
dat <- set_control(dat, "x", 0.4)
dat <- set_control(dat, "y", 0.8)
get_control_list(dat)
get_control_list(dat, c("x", "y"))
get_control(dat, "x")

netdx Dynamic Network Model Diagnostics

Description

Runs dynamic diagnostics on an ERGM/STERGM estimated with netest.

netdx 81

Usage

netdx(
x,
nsims = 1,
dynamic = TRUE,
nsteps,
nwstats.formula = "formation",
set.control.ergm = control.simulate.formula(),
set.control.tergm = control.simulate.formula.tergm(),
sequential = TRUE,
keep.tedgelist = FALSE,
keep.tnetwork = FALSE,
verbose = TRUE,
ncores = 1,
skip.dissolution = FALSE

)

Arguments

x An EpiModel object of class netest.

nsims Number of simulations to run.

dynamic If TRUE, runs dynamic diagnostics. If FALSE and the netest object was fit with
the Edges Dissolution approximation method, simulates from the static ERGM
fit.

nsteps Number of time steps per simulation (dynamic simulations only).
nwstats.formula

A right-hand sided ERGM formula with the network statistics of interest. The
default is the formation formula of the network model contained in x.

set.control.ergm

Control arguments passed to ergm’s simulate_formula.network (see details).
set.control.tergm

Control arguments passed to tergm’s simulate_formula.network (see details).

sequential For static diagnostics (dynamic=FALSE): if FALSE, each of the nsims simulated
Markov chains begins at the initial network; if TRUE, the end of one simulation
is used as the start of the next.

keep.tedgelist If TRUE, keep the timed edgelist generated from the dynamic simulations. Re-
turned in the form of a list of matrices, with one entry per simulation. Accessible
at $edgelist.

keep.tnetwork If TRUE, keep the full networkDynamic objects from the dynamic simulations.
Returned in the form of a list of nD objects, with one entry per simulation.
Accessible at $network.

verbose If TRUE, print progress to the console.

ncores Number of processor cores to run multiple simulations on, using the foreach
and doParallel implementations.

skip.dissolution

If TRUE, skip over the calculations of duration and dissolution stats in netdx.

82 netdx

Details

The netdx function handles dynamic network diagnostics for network models fit with the netest
function. Given the fitted model, netdx simulates a specified number of dynamic networks for
a specified number of time steps per simulation. The network statistics in nwstats.formula are
saved for each time step. Summary statistics for the formation model terms, as well as dissolution
model and relational duration statistics, are then calculated and can be accessed when printing or
plotting the netdx object. See print.netdx and plot.netdx for details on printing and plotting.

Value

A list of class netdx.

Control Arguments

Models fit with the full STERGM method in netest (setting the edapprox argument to FALSE)
require only a call to tergm’s simulate_formula.network. Control parameters for those simula-
tions may be set using set.control.tergm in netdx. The parameters should be input through the
control.simulate.formula.tergm function, with the available parameters listed in the tergm::control.simulate.formula.tergm
help page in the tergm package.

Models fit with the ERGM method with the edges dissolution approximation (setting edapprox to
TRUE) require a call first to ergm’s simulate_formula.network for simulating an initial network,
and second to tergm’s simulate_formula.network for simulating that static network forward
through time. Control parameters may be set for both processes in netdx. For the first, the pa-
rameters should be input through the control.simulate.formula() function, with the available
parameters listed in the ergm::control.simulate.formula help page in the ergm package. For
the second, parameters should be input through the control.simulate.formula.tergm() func-
tion, with the available parameters listed in the tergm::control.simulate.formula.tergm help
page in the tergm package. An example is shown below.

See Also

Plot these model diagnostics with plot.netdx.

Examples

Not run:
Network initialization and model parameterization
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~ offset(edges), duration = 25)

Estimate the model
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Static diagnostics on the ERGM fit
dx1 <- netdx(est,

nsims = 1e4, dynamic = FALSE,
nwstats.formula = ~ edges + meandeg + concurrent

)

netest 83

dx1
plot(dx1, method = "b", stats = c("edges", "concurrent"))

Dynamic diagnostics on the STERGM approximation
dx2 <- netdx(est,

nsims = 5, nsteps = 500,
nwstats.formula = ~ edges + meandeg + concurrent,
set.control.ergm = control.simulate.formula(MCMC.burnin = 1e6)

)
dx2
plot(dx2, stats = c("edges", "meandeg"), plots.joined = FALSE)
plot(dx2, type = "duration")
plot(dx2, type = "dissolution", qnts.col = "orange2")
plot(dx2, type = "dissolution", method = "b", col = "bisque")

Dynamic diagnostics on a more complex model
nw <- network_initialize(n = 1000)
nw <- set_vertex_attribute(nw, "neighborhood", rep(1:10, 100))
formation <- ~edges + nodematch("neighborhood", diff = TRUE)
target.stats <- c(800, 45, 81, 24, 16, 32, 19, 42, 21, 24, 31)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges) +

offset(nodematch("neighborhood", diff = TRUE)),
duration = c(52, 58, 61, 55, 81, 62, 52, 64, 52, 68, 58))

est2 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
dx3 <- netdx(est2, nsims = 5, nsteps = 100)
print(dx3)
plot(dx3)
plot(dx3, type = "duration", plots.joined = TRUE, qnts = 0.2, legend = TRUE)
plot(dx3, type = "dissolution", mean.smooth = FALSE, mean.col = "red")

End(Not run)

netest Dynamic Network Model Estimation

Description

Estimates statistical network models using the exponential random graph modeling (ERGM) frame-
work with extensions for dynamic/temporal models (STERGM).

Usage

netest(
nw,
formation,
target.stats,
coef.diss,
constraints,
coef.form = NULL,

84 netest

edapprox = TRUE,
set.control.ergm = control.ergm(),
set.control.tergm = control.tergm(),
set.control.ergm.ego = NULL,
verbose = FALSE,
nested.edapprox = TRUE,
...

)

Arguments

nw An object of class network or egor, with the latter indicating an ergm.ego fit.

formation Right-hand sided STERGM formation formula in the form ~edges + ..., where
... are additional network statistics.

target.stats Vector of target statistics for the formation model, with one number for each
network statistic in the model. Ignored if fitting via ergm.ego.

coef.diss An object of class disscoef output from the dissolution_coefs function.

constraints Right-hand sided formula specifying constraints for the modeled network, in the
form ~..., where ... are constraint terms. By default, no constraints are set.

coef.form Vector of coefficients for the offset terms in the formation formula.

edapprox If TRUE, use the indirect edges dissolution approximation method for the dy-
namic model fit, otherwise use the more time-intensive full STERGM estimation
(see details). For nw of class egor, only edapprox = TRUE is supported.

set.control.ergm

Control arguments passed to ergm (see details).
set.control.tergm

Control arguments passed to tergm (see details).
set.control.ergm.ego

Control arguments passed to ergm.ego (see details).

verbose If TRUE, print model fitting progress to console.
nested.edapprox

Logical. If edapprox = TRUE the dissolution model is an initial segment of the
formation model (see details).

... Additional arguments passed to other functions.

Details

netest is a wrapper function for the ergm, ergm.ego, and tergm functions that estimate static and
dynamic network models. Network model estimation is the first step in simulating a stochastic
network epidemic model in EpiModel. The output from netest is a necessary input for running the
epidemic simulations in netsim. With a fitted network model, one should always first proceed to
model diagnostics, available through the netdx function, to check model fit. A detailed description
of fitting these models, along with examples, may be found in the Network Modeling for Epidemics
tutorials.

https://epimodel.github.io/sismid/

netest 85

Value

A fitted network model object of class netest.

Edges Dissolution Approximation

The edges dissolution approximation method is described in Carnegie et al. This approximation
requires that the dissolution coefficients are known, that the formation model is being fit to cross-
sectional data conditional on those dissolution coefficients, and that the terms in the dissolution
model are a subset of those in the formation model. Under certain additional conditions, the for-
mation coefficients of a STERGM model are approximately equal to the coefficients of that same
model fit to the observed cross-sectional data as an ERGM, minus the corresponding coefficients
in the dissolution model. The approximation thus estimates this ERGM (which is typically much
faster than estimating a STERGM) and subtracts the dissolution coefficients.

The conditions under which this approximation best hold are when there are few relational changes
from one time step to another; i.e. when either average relational durations are long, or density
is low, or both. Conveniently, these are the same conditions under which STERGM estimation is
slowest. Note that the same approximation is also used to obtain starting values for the STERGM
estimate when the latter is being conducted. The estimation does not allow for calculation of stan-
dard errors, p-values, or likelihood for the formation model; thus, this approach is of most use when
the main goal of estimation is to drive dynamic network simulations rather than to conduct inference
on the formation model. The user is strongly encouraged to examine the behavior of the resulting
simulations to confirm that the approximation is adequate for their purposes. For an example, see
the vignette for the package tergm.

It has recently been found that subtracting a modified version of the dissolution coefficients from
the formation coefficients provides a more principled approximation, and this is now the form of the
approximation applied by netest. The modified values subtracted from the formation coefficients
are equivalent to the (crude) dissolution coefficients with their target durations increased by 1. The
nested.edapprox argument toggles whether to implement this modified version by appending
the dissolution terms to the formation model and appending the relevant values to the vector of
formation model coefficients (value = FALSE), whereas the standard version subtracts the relevant
values from the initial formation model coefficients (value = TRUE).

Control Arguments

The ergm, ergm.ego, and tergm functions allow control settings for the model fitting process. When
fitting a STERGM directly (setting edapprox to FALSE), control parameters may be passed to the
tergm function with the set.control.tergm argument in netest. The controls should be input
through the control.tergm() function, with the available parameters listed in the tergm::control.tergm
help page in the tergm package.

When fitting a STERGM indirectly (setting edapprox to TRUE), control settings may be passed to
the ergm function using set.control.ergm, or to the ergm.ego function using set.control.ergm.ego.
The controls should be input through the control.ergm() and control.ergm.ego() functions, re-
spectively, with the available parameters listed in the ergm::control.ergm help page in the ergm
package and the ergm.ego::control.ergm.ego help page in the ergm.ego package. An example
is below.

86 netsim

References

Krivitsky PN, Handcock MS. "A Separable Model for Dynamic Networks." JRSS(B). 2014; 76.1:
29-46.

Carnegie NB, Krivitsky PN, Hunter DR, Goodreau SM. An Approximation Method for Improving
Dynamic Network Model Fitting. Journal of Computational and Graphical Statistics. 2014; 24(2):
502-519.

Jenness SM, Goodreau SM and Morris M. EpiModel: An R Package for Mathematical Modeling
of Infectious Disease over Networks. Journal of Statistical Software. 2018; 84(8): 1-47.

See Also

Use netdx to diagnose the fitted network model, and netsim to simulate epidemic spread over a
simulated dynamic network consistent with the model fit.

Examples

Initialize a network of 100 nodes
nw <- network_initialize(n = 100)

Set formation formula
formation <- ~edges + concurrent

Set target statistics for formation
target.stats <- c(50, 25)

Obtain the offset coefficients
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)

Estimate the STERGM using the edges dissolution approximation
est <- netest(nw, formation, target.stats, coef.diss,

set.control.ergm = control.ergm(MCMC.burnin = 1e5,
MCMC.interval = 1000))

est

To estimate the STERGM directly, use edapprox = FALSE
est2 <- netest(nw, formation, target.stats, coef.diss, edapprox = FALSE)

netsim Stochastic Network Models

Description

Simulates stochastic network epidemic models for infectious disease.

Usage

netsim(x, param, init, control)

netsim 87

Arguments

x If control$start == 1, either a fitted network model object of class netest or
a list of such objects. If control$start > 1, an object of class netsim. When
multiple networks are used, the node sets (including network size and nodal
attributes) are assumed to be the same for all networks.

param Model parameters, as an object of class param.net.

init Initial conditions, as an object of class init.net.

control Control settings, as an object of class control.net.

Details

Stochastic network models explicitly represent phenomena within and across edges (pairs of nodes
that remain connected) over time. This enables edges to have duration, allowing for repeated
transmission-related acts within the same dyad, specification of edge formation and dissolution
rates, control over the temporal sequencing of multiple edges, and specification of network-level
features. A detailed description of these models, along with examples, is found in the Network
Modeling for Epidemics course materials.

The netsim function performs modeling of both the base model types and original models. Base
model types include one-group and two-group models with disease types for Susceptible-Infected
(SI), Susceptible-Infected-Recovered (SIR), and Susceptible-Infected-Susceptible (SIS).

Original models may be parameterized by writing new process modules that either take the place
of existing modules (for example, disease recovery), or supplement the set of existing processes
with a new one contained in a new module. This functionality is documented in the Extending
EpiModel section of the Network Modeling for Epidemics course materials. The list of modules
within netsim available for modification is listed in modules.net.

Value

A list of class netsim with the following elements:

• param: the epidemic parameters passed into the model through param, with additional pa-
rameters added as necessary.

• control: the control settings passed into the model through control, with additional controls
added as necessary.

• epi: a list of data frames, one for each epidemiological output from the model. Outputs for
base models always include the size of each compartment, as well as flows in, out of, and
between compartments.

• stats: a list containing two sublists, nwstats for any network statistics saved in the simulation,
and transmat for the transmission matrix saved in the simulation. See control.net for
further details.

• network: a list of lists of networkDynamic or networkLite objects, with one list of objects
for each model simulation.

If control$raw.output == TRUE: A list of the raw (pre-processed) netsim_dat objects, for use in
simulation continuation.

https://epimodel.github.io/sismid/
https://epimodel.github.io/sismid/
https://epimodel.github.io/sismid/9_extending/mod9-Intro.html
https://epimodel.github.io/sismid/9_extending/mod9-Intro.html
https://epimodel.github.io/sismid/

88 netsim

References

Jenness SM, Goodreau SM and Morris M. EpiModel: An R Package for Mathematical Modeling
of Infectious Disease over Networks. Journal of Statistical Software. 2018; 84(8): 1-47.

See Also

Extract the model results with as.data.frame.netsim. Summarize the time-specific model results
with summary.netsim. Plot the model results with plot.netsim.

Examples

Not run:
Example 1: SI Model without Network Feedback
Network model estimation
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Epidemic model
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, verbose.int = 0)
mod1 <- netsim(est1, param, init, control)

Print, plot, and summarize the results
mod1
plot(mod1)
summary(mod1, at = 50)

Example 2: SIR Model with Network Feedback
Recalculate dissolution coefficient with departure rate
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20,

d.rate = 0.0021)

Reestimate the model with new coefficient
est2 <- netest(nw, formation, target.stats, coef.diss)

Reset parameters to include demographic rates
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15,

rec.rate = 0.02, rec.rate.g2 = 0.02,
a.rate = 0.002, a.rate.g2 = NA,
ds.rate = 0.001, ds.rate.g2 = 0.001,
di.rate = 0.001, di.rate.g2 = 0.001,
dr.rate = 0.001, dr.rate.g2 = 0.001)

init <- init.net(i.num = 10, i.num.g2 = 10,
r.num = 0, r.num.g2 = 0)

control <- control.net(type = "SIR", nsteps = 100, nsims = 5,
resimulate.network = TRUE, tergmLite = TRUE)

network_initialize 89

Simulate the model with new network fit
mod2 <- netsim(est2, param, init, control)

Print, plot, and summarize the results
mod2
plot(mod2)
summary(mod2, at = 40)

End(Not run)

network_initialize Initialize Network Object

Description

Initialize an undirected network object for use in EpiModel workflows.

Usage

network_initialize(n)

Arguments

n Network size.

Details

This function is used in EpiModel workflows to initialize an empty network object. The network
attributes directed, bipartite, hyper, loops, and multiple are set to FALSE.

Value

Returns an object of class network.

Examples

nw <- network_initialize(100)
nw

90 overwrite_attrs

nwupdate.net Dynamic Network Updates

Description

This function handles all calls to the network object contained on the main netsim_dat object
handled in netsim.

Usage

nwupdate.net(dat, at)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

at Current time step.

Value

The updated netsim_dat main list object.

overwrite_attrs Helper to use a data.frame to initialize some attributes

Description

Uses dat$init$init_attr to overwrite some attributes of the nodes at initialization

Usage

overwrite_attrs(dat)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

Details

If an init_attr data.frame is present in dat$init, use it to overwrite the attributes it contains.
init_attr must have a number of rows equal to the number of nodes in the model as the attributes
will be overwritten one to one, ensuring the correct ordering. init_attr columns MUST have a
corresponding attribute already initialized. See "R/default_attributes.R" for adding new attributes to
the model. init_attr is removed from dat$init at the end of the function to free up its memory.

padded_vector 91

Value

The updated netsim_dat main list object.

padded_vector Grow a Vector to a Given Size, Padding it With Empty Elements

Description

Grow a vector to a given size, padding it with NULL if orig is a list and with NA otherwise

Usage

padded_vector(orig, size)

Arguments

orig A vector to grow.

size The final size of the vector.

Value

A vector of size size padded with NULLs or NAs at the end.

param.dcm Epidemic Parameters for Deterministic Compartmental Models

Description

Sets the epidemic parameters for deterministic compartmental models simulated with dcm.

Usage

param.dcm(
inf.prob,
inter.eff,
inter.start,
act.rate,
rec.rate,
a.rate,
ds.rate,
di.rate,
dr.rate,
inf.prob.g2,
act.rate.g2,
rec.rate.g2,

92 param.dcm

a.rate.g2,
ds.rate.g2,
di.rate.g2,
dr.rate.g2,
balance,
...

)

Arguments

inf.prob Probability of infection per transmissible act between a susceptible and an in-
fected person. In two-group models, this is the probability of infection for the
group 1 members.

inter.eff Efficacy of an intervention which affects the per-act probability of infection.
Efficacy is defined as 1 - the relative hazard of infection given exposure to the
intervention, compared to no exposure.

inter.start Time step at which the intervention starts, between 1 and the number of time
steps specified in the model. This will default to 1 if inter.eff is defined but
this parameter is not.

act.rate Average number of transmissible acts per person per unit time. For two-group
models, this is the number of acts per group 1 person per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

rec.rate Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models). The recovery rate is the reciprocal of the disease duration. For two-
group models, this is the recovery rate for group 1 persons only. This parameter
is only used for SIR and SIS models.

a.rate Arrival or entry rate. For one-group models, the arrival rate is the rate of new
arrivals per person per unit time. For two-group models, the arrival rate is pa-
rameterized as a rate per group 1 person per unit time, with the a.rate.g2 rate
set as described below.

ds.rate Departure or exit rate for susceptible persons. For two-group models, it is the
rate for the group 1 susceptible persons only.

di.rate Departure or exit rate for infected persons. For two-group models, it is the rate
for the group 1 infected persons only.

dr.rate Departure or exit rate for recovered persons. For two-group models, it is the
rate for the group 1 recovered persons only. This parameter is only used for SIR
models.

inf.prob.g2 Probability of infection per transmissible act between a susceptible group 2 per-
son and an infected group 1 person. It is the probability of infection to group 2
members.

act.rate.g2 Average number of transmissible acts per group 2 person per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

param.dcm 93

rec.rate.g2 Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models) for group 2 persons. This parameter is only used for two-group SIR
and SIS models.

a.rate.g2 Arrival or entry rate for group 2. This may either be specified numerically as
the rate of new arrivals per group 2 persons per unit time, or as NA in which case
the group 1 rate, a.rate, governs the group 2 rate. The latter is used when, for
example, the first group is conceptualized as female, and the female population
size determines the arrival rate. Such arrivals are evenly allocated between the
two groups.

ds.rate.g2 Departure or exit rate for group 2 susceptible persons.

di.rate.g2 Departure or exit rate for group 2 infected persons.

dr.rate.g2 Departure or exit rate for group 2 recovered persons. This parameter is only
used for SIR model types.

balance For two-group models, balance the act.rate to the rate set for group 1 (with
balance="g1") or group 2 (with balance="g2"). See details.

... Additional arguments passed to model.

Details

param.dcm sets the epidemic parameters for deterministic compartmental models solved with the
dcm function. The models may use the base types, for which these parameters are used, or original
model specifications for which these parameters may be used (but not necessarily).

For base models, the model specification will be selected as a function of the model parameters
entered here and the control settings in control.dcm. One-group and two-group models are avail-
able, where the former assumes a homogeneous mixing in the population and the latter assumes
some form of heterogeneous mixing between two distinct partitions in the population (e.g., men
and women). Specifying any group two parameters (those with a .g2) implies the simulation of a
two-group model. All the parameters for a desired model type must be specified, even if they are
zero.

Value

An EpiModel object of class param.dcm.

Act Balancing

In two-group models, a balance between the number of acts for group 1 members and those for
group 2 members must be maintained. With purely heterogeneous mixing, the product of one group
size and act rate must equal the product of the other group size and act rate: N1α1 = N2α2, where
Ni is the group size and αi the group-specific act rate at time t. The balance parameter here
specifies which group’s act rate should control the others with respect to balancing.

Sensitivity Analyses

dcm has been designed to easily run DCM sensitivity analyses, where a series of models varying
one or more of the model parameters is run. This is possible by setting any parameter as a vector of
length greater than one.

94 param.icm

New Model Types

An original model may use either the existing model parameters named here, an original set of
parameters, or a combination of both. The ... argument allows the user to pass an arbitrary set
of new model parameters into param.dcm. Whereas there are strict checks for base models that
the model parameters are valid, parameter validity is the user’s responsibility with these original
models.

See Also

Use init.dcm to specify the initial conditions and control.dcm to specify the control settings.
Run the parameterized model with dcm.

param.icm Epidemic Parameters for Stochastic Individual Contact Models

Description

Sets the epidemic parameters for stochastic individual contact models simulated with icm.

Usage

param.icm(
inf.prob,
inter.eff,
inter.start,
act.rate,
rec.rate,
a.rate,
ds.rate,
di.rate,
dr.rate,
inf.prob.g2,
act.rate.g2,
rec.rate.g2,
a.rate.g2,
ds.rate.g2,
di.rate.g2,
dr.rate.g2,
balance,
...

)

Arguments

inf.prob Probability of infection per transmissible act between a susceptible and an in-
fected person. In two-group models, this is the probability of infection for the
group 1 members.

param.icm 95

inter.eff Efficacy of an intervention which affects the per-act probability of infection.
Efficacy is defined as 1 - the relative hazard of infection given exposure to the
intervention, compared to no exposure.

inter.start Time step at which the intervention starts, between 1 and the number of time
steps specified in the model. This will default to 1 if inter.eff is defined but
this parameter is not.

act.rate Average number of transmissible acts per person per unit time. For two-group
models, this is the number of acts per group 1 person per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

rec.rate Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models). The recovery rate is the reciprocal of the disease duration. For two-
group models, this is the recovery rate for group 1 persons only. This parameter
is only used for SIR and SIS models.

a.rate Arrival or entry rate. For one-group models, the arrival rate is the rate of new
arrivals per person per unit time. For two-group models, the arrival rate is pa-
rameterized as a rate per group 1 person per unit time, with the a.rate.g2 rate
set as described below.

ds.rate Departure or exit rate for susceptible persons. For two-group models, it is the
rate for the group 1 susceptible persons only.

di.rate Departure or exit rate for infected persons. For two-group models, it is the rate
for the group 1 infected persons only.

dr.rate Departure or exit rate for recovered persons. For two-group models, it is the
rate for the group 1 recovered persons only. This parameter is only used for SIR
models.

inf.prob.g2 Probability of infection per transmissible act between a susceptible group 2 per-
son and an infected group 1 person. It is the probability of infection to group 2
members.

act.rate.g2 Average number of transmissible acts per group 2 person per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

rec.rate.g2 Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models) for group 2 persons. This parameter is only used for two-group SIR
and SIS models.

a.rate.g2 Arrival or entry rate for group 2. This may either be specified numerically as
the rate of new arrivals per group 2 persons per unit time, or as NA in which case
the group 1 rate, a.rate, governs the group 2 rate. The latter is used when, for
example, the first group is conceptualized as female, and the female population
size determines the arrival rate. Such arrivals are evenly allocated between the
two groups.

ds.rate.g2 Departure or exit rate for group 2 susceptible persons.

di.rate.g2 Departure or exit rate for group 2 infected persons.

dr.rate.g2 Departure or exit rate for group 2 recovered persons. This parameter is only
used for SIR model types.

96 param.icm

balance For two-group models, balance the act.rate to the rate set for group 1 (with
balance="g1") or group 2 (with balance="g2"). See details.

... Additional arguments passed to model.

Details

param.icm sets the epidemic parameters for the stochastic individual contact models simulated
with the icm function. Models may use the base types, for which these parameters are used, or new
process modules which may use these parameters (but not necessarily).

For base models, the model specification will be chosen as a result of the model parameters entered
here and the control settings in control.icm. One-group and two-group models are available,
where the former assumes a homogeneous mixing in the population and the latter assumes some
form of heterogeneous mixing between two distinct partitions in the population (e.g., men and
women). Specifying any group two parameters (those with a .g2) implies the simulation of a two-
group model. All the parameters for a desired model type must be specified, even if they are zero.

Value

An EpiModel object of class param.icm.

Act Balancing

In two-group models, a balance between the number of acts for group 1 members and those for
group 2 members must be maintained. With purely heterogeneous mixing, the product of one group
size and act rate must equal the product of the other group size and act rate: N1α1 = N2α2, where
Ni is the group size and αi the group-specific act rate at time t. The balance parameter here
specifies which group’s act rate should control the others with respect to balancing.

New Modules

To build original models outside of the base models, new process modules may be constructed to
replace the existing modules or to supplement the existing set. These are passed into the control
settings in control.icm. New modules may use either the existing model parameters named here,
an original set of parameters, or a combination of both. The ... allows the user to pass an arbitrary
set of original model parameters into param.icm. Whereas there are strict checks with default
modules for parameter validity, these checks are the user’s responsibility with new modules.

See Also

Use init.icm to specify the initial conditions and control.icm to specify the control settings.
Run the parameterized model with icm.

param.net 97

param.net Epidemic Parameters for Stochastic Network Models

Description

Sets the epidemic parameters for stochastic network models simulated with netsim.

Usage

param.net(
inf.prob,
inter.eff,
inter.start,
act.rate,
rec.rate,
a.rate,
ds.rate,
di.rate,
dr.rate,
inf.prob.g2,
rec.rate.g2,
a.rate.g2,
ds.rate.g2,
di.rate.g2,
dr.rate.g2,
...

)

Arguments

inf.prob Probability of infection per transmissible act between a susceptible and an in-
fected person. In two-group models, this is the probability of infection to the
group 1 nodes. This may also be a vector of probabilities, with each element
corresponding to the probability in that time step of infection (see Time-Varying
Parameters below).

inter.eff Efficacy of an intervention which affects the per-act probability of infection.
Efficacy is defined as 1 - the relative hazard of infection given exposure to the
intervention, compared to no exposure.

inter.start Time step at which the intervention starts, between 1 and the number of time
steps specified in the model. This will default to 1 if inter.eff is defined but
this parameter is not.

act.rate Average number of transmissible acts per partnership per unit time (see act.rate
Parameter below). This may also be a vector of rates, with each element corre-
sponding to the rate in that time step of infection (see Time-Varying Parameters
below).

98 param.net

rec.rate Average rate of recovery with immunity (in SIR models) or re-susceptibility
(in SIS models). The recovery rate is the reciprocal of the disease duration.
For two-group models, this is the recovery rate for group 1 persons only. This
parameter is only used for SIR and SIS models. This may also be a vector of
rates, with each element corresponding to the rate in that time step of infection
(see Time-Varying Parameters below).

a.rate Arrival or entry rate. For one-group models, the arrival rate is the rate of new
arrivals per person per unit time. For two-group models, the arrival rate is pa-
rameterized as a rate per group 1 person per unit time, with the a.rate.g2 rate
set as described below.

ds.rate Departure or exit rate for susceptible persons. For two-group models, it is the
rate for group 1 susceptible persons only.

di.rate Departure or exit rate for infected persons. For two-group models, it is the rate
for group 1 infected persons only.

dr.rate Departure or exit rate for recovered persons. For two-group models, it is the rate
for group 1 recovered persons only. This parameter is only used for SIR models.

inf.prob.g2 Probability of transmission given a transmissible act between a susceptible group
2 person and an infected group 1 person. It is the probability of transmission to
group 2 members.

rec.rate.g2 Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models) for group 2 persons. This parameter is only used for two-group SIR
and SIS models.

a.rate.g2 Arrival or entry rate for group 2. This may either be specified numerically as
the rate of new arrivals per group 2 person per unit time, or as NA, in which case
the group 1 rate, a.rate, governs the group 2 rate. The latter is used when, for
example, the first group is conceptualized as female, and the female population
size determines the arrival rate. Such arrivals are evenly allocated between the
two groups.

ds.rate.g2 Departure or exit rate for group 2 susceptible persons.
di.rate.g2 Departure or exit rate for group 2 infected persons.
dr.rate.g2 Departure or exit rate for group 2 recovered persons. This parameter is only

used for SIR model types.
... Additional arguments passed to model.

Details

param.net sets the epidemic parameters for the stochastic network models simulated with the
netsim function. Models may use the base types, for which these parameters are used, or new
process modules which may use these parameters (but not necessarily). A detailed description of
network model parameterization for base models is found in the Network Modeling for Epidemics
tutorials.
For base models, the model specification will be chosen as a result of the model parameters entered
here and the control settings in control.net. One-group and two-group models are available,
where the latter assumes a heterogeneous mixing between two distinct partitions in the population
(e.g., men and women). Specifying any two-group parameters (those with a .g2) implies the simu-
lation of a two-group model. All the parameters for a desired model type must be specified, even if
they are zero.

https://epimodel.github.io/sismid/

param.net 99

Value

An EpiModel object of class param.net.

The act.rate Parameter

A key difference between these network models and DCM/ICM classes is the treatment of trans-
mission events. With DCM and ICM, contacts or partnerships are mathematically instantaneous
events: they have no duration in time, and thus no changes may occur within them over time. In
contrast, network models allow for partnership durations defined by the dynamic network model,
summarized in the model dissolution coefficients calculated in dissolution_coefs. Therefore,
the act.rate parameter has a different interpretation here, where it is the number of transmissible
acts per partnership per unit time.

Time-Varying Parameters

The inf.prob, act.rate, rec.rate arguments (and their .g2 companions) may be specified as
time-varying parameters by passing in a vector of probabilities or rates, respectively. The value
in each position on the vector then corresponds to the probability or rate at that discrete time step
for the infected partner. For example, an inf.prob of c(0.5, 0.5, 0.1) would simulate a 0.5
transmission probability for the first two time steps of a person’s infection, followed by a 0.1 for
the third time step. If the infected person has not recovered or exited the population by the fourth
time step, the third element in the vector will carry forward until one of those events occurs or the
simulation ends. For further examples, see the Network Modeling for Epidemics tutorials.

Random Parameters

In addition to deterministic parameters in either fixed or time-varying varieties above, one may also
include a generator for random parameters. These might include a vector of potential parameter
values or a statistical distribution definition; in either case, one draw from the generator would be
completed per individual simulation. This is possible by passing a list named random.params into
param.net, with each element of random.params a named generator function. See the help page
and examples in generate_random_params. A simple factory function for sampling is provided
with param_random but any function will do.

Using a Parameter data.frame

It is possible to set input parameters using a specifically formatted data.frame object. The first 3
columns of this data.frame must be:

• param: The name of the parameter. If this is a non-scalar parameter (a vector of length > 1),
end the parameter name with the position on the vector (e.g., "p_1", "p_2", ...).

• value: the value for the parameter (or the value of the parameter in the Nth position if non-
scalar).

• type: a character string containing either "numeric", "logical", or "character" to define
the parameter object class.

In addition to these 3 columns, the data.frame can contain any number of other columns, such as
details or source columns to document parameter meta-data. However, these extra columns will
not be used by EpiModel.

https://epimodel.github.io/sismid/

100 param.net

This data.frame is then passed in to param.net under a data.frame.parameters argument. Fur-
ther details and examples are provided in the "Working with Model Parameters in EpiModel" vi-
gnette.

Parameters with New Modules

To build original models outside of the base models, new process modules may be constructed to
replace the existing modules or to supplement the existing set. These are passed into the control
settings in control.net. New modules may use either the existing model parameters named here,
an original set of parameters, or a combination of both. The ... allows the user to pass an arbitrary
set of original model parameters into param.net. Whereas there are strict checks with default
modules for parameter validity, this becomes a user responsibility when using new modules.

See Also

Use init.net to specify the initial conditions and control.net to specify the control settings.
Run the parameterized model with netsim.

Examples

Example SIR model parameterization with fixed and random parameters
Network model estimation
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Random epidemic parameter list (here act.rate values are sampled uniformly
with helper function param_random, and inf.prob follows a general Beta
distribution with the parameters shown below)
my_randoms <- list(

act.rate = param_random(1:3),
inf.prob = function() rbeta(1, 1, 2)

)

Parameters, initial conditions, and control settings
param <- param.net(rec.rate = 0.02, random.params = my_randoms)

Printing parameters shows both fixed and and random parameter functions
param

Set initial conditions and controls
init <- init.net(i.num = 10, r.num = 0)
control <- control.net(type = "SIR", nsteps = 10, nsims = 3, verbose = FALSE)

Simulate the model
sim <- netsim(est, param, init, control)

Printing the sim object shows the randomly drawn values for each simulation
sim

param.net_from_table 101

Parameter sets can be extracted with:
get_param_set(sim)

param.net_from_table Parameters List for Stochastic Network Models from a Formatted Data
Frame

Description

Sets the epidemic parameters for stochastic network models with netsim using a specially formatted
data frame of parameters.

Usage

param.net_from_table(long.param.df)

Arguments

long.param.df A data.frame of parameters. See details for the expected format.

Value

A list object of class param.net, which can be passed to netsim.

long.param.df

It is possible to set input parameters using a specifically formatted data.frame object. The first 3
columns of this data.frame must be:

• param: The name of the parameter. If this is a non-scalar parameter (a vector of length > 1),
end the parameter name with the position on the vector (e.g., "p_1", "p_2", ...).

• value: the value for the parameter (or the value of the parameter in the Nth position if non-
scalar).

• type: a character string containing either "numeric", "logical", or "character" to define
the parameter object class.

In addition to these 3 columns, the data.frame can contain any number of other columns, such as
details or source columns to document parameter meta-data. However, these extra columns will
not be used by EpiModel.

102 param_random

param.net_to_table Coerce a list of parameters to a long.param.df

Description

Coerce a list of parameters to a long.param.df

Usage

param.net_to_table(params)

Arguments

params A list of parameters to be formatted into a long.param.df

Value

A data.frame of parameters.

long.param.df

It is possible to set input parameters using a specifically formatted data.frame object. The first 3
columns of this data.frame must be:

• param: The name of the parameter. If this is a non-scalar parameter (a vector of length > 1),
end the parameter name with the position on the vector (e.g., "p_1", "p_2", ...).

• value: the value for the parameter (or the value of the parameter in the Nth position if non-
scalar).

• type: a character string containing either "numeric", "logical", or "character" to define
the parameter object class.

In addition to these 3 columns, the data.frame can contain any number of other columns, such as
details or source columns to document parameter meta-data. However, these extra columns will
not be used by EpiModel.

param_random Create a Value Sampler for Random Parameters

Description

This function returns a 0 argument function that can be used as a generator function in the random.params
argument of the param.net function.

Usage

param_random(values, prob = NULL)

plot.dcm 103

Arguments

values A vector of values to sample from.

prob A vector of weights to use during sampling. If NULL, all values have the same
probability of being picked (default = NULL).

Value

A 0 argument generator function to sample one of the values from the values vector.

See Also

param.net and generate_random_params

Examples

Define function with equal sampling probability
a <- param_random(1:5)
a()

Define function with unequal sampling probability
b <- param_random(1:5, prob = c(0.1, 0.1, 0.1, 0.1, 0.6))
b()

plot.dcm Plot Data from a Deterministic Compartmental Epidemic Model

Description

Plots epidemiological data from a deterministic compartment epidemic model solved with dcm.

Usage

S3 method for class 'dcm'
plot(
x,
y = NULL,
popfrac = FALSE,
run = NULL,
col = NULL,
lwd = NULL,
lty = NULL,
alpha = 0.9,
legend = NULL,
leg.name = NULL,
leg.cex = 0.8,
grid = FALSE,

104 plot.dcm

add = FALSE,
main = "",
xlim = NULL,
ylim = NULL,
xlab = "Time",
ylab = NULL,
...

)

Arguments

x An EpiModel object of class dcm.

y Output compartments or flows from dcm object to plot.

popfrac If TRUE, plot prevalence of values rather than numbers (see details).

run Run number to plot, for models with multiple runs (default is run 1).

col Color for lines, either specified as a single color in a standard R color format, or
alternatively as a color palette from RColorBrewer::RColorBrewer (see details).

lwd Line width for output lines.

lty Line type for output lines.

alpha Transparency level for lines, where 0 = transparent and 1 = opaque (see adjustcolor
function).

legend Type of legend to plot. Values are "n" for no legend, "full" for full legend, and
"lim" for limited legend (see details).

leg.name Character string to use for legend, with the default determined automatically
based on the y input.

leg.cex Legend scale size.

grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

add If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

main a main title for the plot, see also title.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’.
The default value, NULL, indicates that the range of the finite values to be plotted
should be used.

ylim the y limits of the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

... Additional arguments to pass to main plot window (see plot.default).

plot.dcm 105

Details

This function plots epidemiological outcomes from a deterministic compartmental model solved
with dcm. Depending on the number of model runs (sensitivity analyses) and number of groups, the
default plot is the fractional proportion of each compartment in the model over time. The specific
compartments or flows to plot may be set using the y parameter, and in multiple run models the
specific run may also be specified.

The popfrac Argument

Compartment prevalence is the size of a compartment over some denominator. To plot the raw
numbers from any compartment, use popfrac=FALSE; this is the default. The popfrac parameter
calculates and plots the denominators of all specified compartments using these rules:

1. for one-group models, the prevalence of any compartment is the compartment size divided by
the total population size; 2) for two-group models, the prevalence of any compartment is the
compartment size divided by the group size.

Color Palettes

Since dcm supports multiple run sensitivity models, plotting the results of such models uses a com-
plex color scheme for distinguishing runs. This is accomplished using the RColorBrewer::RColorBrewer
color palettes, which include a range of linked colors using named palettes. For plot.dcm, one may
either specify a brewer color palette listed in RColorBrewer::brewer.pal.info, or, alternatively,
a vector of standard R colors (named, hexidecimal, or positive integers; see col2rgb).

Plot Legends

There are three automatic legend types available, and the legend is added by default for plots. To
turn off the legend, use legend="n". To plot a legend with values for every line in a sensitivity
analysis, use legend="full". With models with many runs, this may be visually overwhelming.
In those cases, use legend="lim" to plot a legend limited to the highest and lowest values of the
varying parameter in the model. In cases where the default legend names are not helpful, one may
override those names with the leg.name argument.

See Also

dcm, RColorBrewer::brewer.pal.info

Examples

Deterministic SIR model with varying act rate
param <- param.dcm(inf.prob = 0.2, act.rate = 1:10,

rec.rate = 1/3, a.rate = 0.011, ds.rate = 0.01,
di.rate = 0.03, dr.rate = 0.01)

init <- init.dcm(s.num = 1000, i.num = 1, r.num = 0)
control <- control.dcm(type = "SIR", nsteps = 100, dt = 0.25)
mod <- dcm(param, init, control)

Plot disease prevalence by default
plot(mod)

106 plot.epi.data.frame

Plot prevalence of susceptibles
plot(mod, y = "s.num", popfrac = TRUE, col = "Greys")

Plot number of susceptibles
plot(mod, y = "s.num", popfrac = FALSE, col = "Greys", grid = TRUE)

Plot multiple runs of multiple compartments together
plot(mod, y = c("s.num", "i.num"),

run = 5, xlim = c(0, 50), grid = TRUE)
plot(mod, y = c("s.num", "i.num"),

run = 10, lty = 2, legend = "n", add = TRUE)

plot.epi.data.frame Plot Epidemic Model Results From a Netsim Data.Frame

Description

This function is a wrapper around plot.netsim accepting a data.frame obtain with as.data.frame(netsim_object).

Usage

S3 method for class 'epi.data.frame'
plot(
x,
y = NULL,
sims = NULL,
legend = NULL,
mean.col = NULL,
qnts.col = NULL,
sim.lwd = NULL,
sim.col = NULL,
sim.alpha = NULL,
popfrac = FALSE,
qnts = 0.5,
qnts.alpha = 0.5,
qnts.smooth = TRUE,
mean.line = TRUE,
mean.smooth = TRUE,
add = FALSE,
mean.lwd = 2,
mean.lty = 1,
xlim = NULL,
ylim = NULL,
main = NULL,
xlab = NULL,
ylab = NULL,

plot.epi.data.frame 107

sim.lines = FALSE,
grid = FALSE,
leg.cex = 0.8,
...

)

Arguments

x A data.frame obtain with as.data.frame(netsim_object).

y Output compartments or flows from netsim object to plot.

sims If type="epi" or "formation", a vector of simulation numbers to plot. If
type="network", a single simulation number for which to plot the network,
or else "min" to plot the simulation number with the lowest disease prevalence,
"max" for the simulation with the highest disease prevalence, or "mean" for
the simulation with the prevalence closest to the mean across simulations at the
specified time step.

legend If TRUE, plot default legend.

mean.col Vector of any standard R color format for mean lines.

qnts.col Vector of any standard R color format for polygons.

sim.lwd Line width for simulation lines.

sim.col Vector of any standard R color format for simulation lines.

sim.alpha Transparency level for simulation lines, where 0 = transparent and 1 = opaque
(see adjustcolor function).

popfrac If TRUE, plot prevalence of values rather than numbers (see details).

qnts If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

qnts.alpha Transparency level for quantile polygons, where 0 = transparent and 1 = opaque
(see adjustcolor function).

qnts.smooth If TRUE, use a loess smoother on quantile polygons.

mean.line If TRUE, plot mean of simulations across time.

mean.smooth If TRUE, use a loess smoother on the mean line.

add If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

mean.lwd Line width for mean lines.

mean.lty Line type for mean lines.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’.
The default value, NULL, indicates that the range of the finite values to be plotted
should be used.

ylim the y limits of the plot.

main a main title for the plot, see also title.

xlab a label for the x axis, defaults to a description of x.

108 plot.icm

ylab a label for the y axis, defaults to a description of y.
sim.lines If TRUE, plot individual simulation lines. Default is to plot lines for one-group

models but not for two-group models.
grid If TRUE, a grid is added to the background of plot (see grid for details), with

default of nx by ny.
leg.cex Legend scale size.
... Additional arguments to pass.

plot.icm Plot Data from a Stochastic Individual Contact Epidemic Model

Description

Plots epidemiological data from a stochastic individual contact model simulated with icm.

Usage

S3 method for class 'icm'
plot(
x,
y = NULL,
popfrac = FALSE,
sim.lines = FALSE,
sims = NULL,
sim.col = NULL,
sim.lwd = NULL,
sim.alpha = NULL,
mean.line = TRUE,
mean.smooth = TRUE,
mean.col = NULL,
mean.lwd = 2,
mean.lty = 1,
qnts = 0.5,
qnts.col = NULL,
qnts.alpha = 0.5,
qnts.smooth = TRUE,
legend = TRUE,
leg.cex = 0.8,
grid = FALSE,
add = FALSE,
xlim = NULL,
ylim = NULL,
main = "",
xlab = "Time",
ylab = NULL,
...

)

plot.icm 109

Arguments

x An EpiModel model object of class icm.

y Output compartments or flows from icm object to plot. ——-

popfrac If TRUE, plot prevalence of values rather than numbers (see details).

sim.lines If TRUE, plot individual simulation lines. Default is to plot lines for one-group
models but not for two-group models.

sims A vector of simulation numbers to plot.

sim.col Vector of any standard R color format for simulation lines.

sim.lwd Line width for simulation lines.

sim.alpha Transparency level for simulation lines, where 0 = transparent and 1 = opaque
(see adjustcolor function).

mean.line If TRUE, plot mean of simulations across time.

mean.smooth If TRUE, use a loess smoother on the mean line.

mean.col Vector of any standard R color format for mean lines.

mean.lwd Line width for mean lines.

mean.lty Line type for mean lines.

qnts If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

qnts.col Vector of any standard R color format for polygons.

qnts.alpha Transparency level for quantile polygons, where 0 = transparent and 1 = opaque
(see adjustcolor function).

qnts.smooth If TRUE, use a loess smoother on quantile polygons.

legend If TRUE, plot default legend.

leg.cex Legend scale size.

grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

add If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’.
The default value, NULL, indicates that the range of the finite values to be plotted
should be used.

ylim the y limits of the plot.

main a main title for the plot, see also title.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

... Additional arguments to pass.

110 plot.icm

Details

This plotting function will extract the epidemiological output from a model object of class icm
and plot the time series data of disease prevalence and other results. The summary statistics that
the function calculates and plots are individual simulation lines, means of the individual simu-
lation lines, and quantiles of those individual simulation lines. The mean line, toggled on with
mean.line=TRUE, is calculated as the row mean across simulations at each time step.

Compartment prevalences are the size of a compartment over some denominator. To plot the raw
numbers from any compartment, use popfrac=FALSE; this is the default for any plots of flows.
The popfrac parameter calculates and plots the denominators of all specified compartments using
these rules: 1) for one-group models, the prevalence of any compartment is the compartment size
divided by the total population size; 2) for two-group models, the prevalence of any compartment
is the compartment size divided by the group population size. For any prevalences that are not
automatically calculated, the mutate_epi function may be used to add new variables to the icm
object to plot or analyze.

The quantiles show the range of outcome values within a certain specified quantile range. By
default, the interquartile range is shown: that is the middle 50\ middle 95\ where they are plotted by
default, specify qnts=FALSE.

See Also

icm

Examples

Example 1: Plotting multiple compartment values from SIR model
param <- param.icm(inf.prob = 0.5, act.rate = 0.5, rec.rate = 0.02)
init <- init.icm(s.num = 500, i.num = 1, r.num = 0)
control <- control.icm(type = "SIR", nsteps = 100,

nsims = 3, verbose = FALSE)
mod <- icm(param, init, control)
plot(mod, grid = TRUE)

Example 2: Plot only infected with specific output from SI model
param <- param.icm(inf.prob = 0.25, act.rate = 0.25)
init <- init.icm(s.num = 500, i.num = 10)
control <- control.icm(type = "SI", nsteps = 100,

nsims = 3, verbose = FALSE)
mod2 <- icm(param, init, control)

Plot prevalence
plot(mod2, y = "i.num", mean.line = FALSE, sim.lines = TRUE)

Plot incidence
par(mfrow = c(1, 2))
plot(mod2, y = "si.flow", mean.smooth = TRUE, grid = TRUE)
plot(mod2, y = "si.flow", qnts.smooth = FALSE, qnts = 1)

plot.netdx 111

plot.netdx Plot Dynamic Network Model Diagnostics

Description

Plots dynamic network model diagnostics calculated in netdx.

Usage

S3 method for class 'netdx'
plot(
x,
type = "formation",
method = "l",
sims = NULL,
stats = NULL,
duration.imputed = TRUE,
sim.lines = FALSE,
sim.col = NULL,
sim.lwd = NULL,
mean.line = TRUE,
mean.smooth = TRUE,
mean.col = NULL,
mean.lwd = 2,
mean.lty = 1,
qnts = 0.5,
qnts.col = NULL,
qnts.alpha = 0.5,
qnts.smooth = TRUE,
targ.line = TRUE,
targ.col = NULL,
targ.lwd = 2,
targ.lty = 2,
plots.joined = NULL,
legend = NULL,
grid = FALSE,
...

)

Arguments

x An EpiModel object of class netdx.

type Plot type, with options of "formation" for network model formation statis-
tics, "duration" for dissolution model statistics for average edge duration, or
"dissolution" for dissolution model statistics for proportion of ties dissolved
per time step.

112 plot.netdx

method Plot method, with options of "l" for line plots and "b" for box plots.

sims A vector of simulation numbers to plot.

stats Statistics to plot. For type = "formation", stats are among those specified in
the call to netdx; for type = "duration", "dissolution", stats are among
those of the dissolution model (without offset()). The default is to plot all
statistics.

duration.imputed

If type = "duration", a logical indicating whether or not to impute starting
times for relationships extant at the start of the simulation. Defaults to TRUE
when type = "duration".

sim.lines If TRUE, plot individual simulation lines. Default is to plot lines for one-group
models but not for two-group models.

sim.col Vector of any standard R color format for simulation lines.

sim.lwd Line width for simulation lines.

mean.line If TRUE, plot mean of simulations across time.

mean.smooth If TRUE, use a loess smoother on the mean line.

mean.col Vector of any standard R color format for mean lines.

mean.lwd Line width for mean lines.

mean.lty Line type for mean lines.

qnts If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

qnts.col Vector of any standard R color format for polygons.

qnts.alpha Transparency level for quantile polygons, where 0 = transparent and 1 = opaque
(see adjustcolor function).

qnts.smooth If TRUE, use a loess smoother on quantile polygons.

targ.line If TRUE, plot target or expected value line for the statistic of interest.

targ.col Vector of standard R colors for target statistic lines, with default colors based on
RColorBrewer color palettes.

targ.lwd Line width for the line showing the target statistic values.

targ.lty Line type for the line showing the target statistic values.

plots.joined If TRUE, combine all statistics in one plot, versus one plot per statistic if FALSE.

legend If TRUE, plot default legend.

grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

... Additional arguments to pass.

Details

The plot function for netdx objects will generate plots of two types of model diagnostic statistics
that run as part of the diagnostic tools within that function. The formation plot shows the summary
statistics requested in nwstats.formula, where the default includes those statistics in the network
model formation formula specified in the original call to netest.

plot.netdx 113

The duration plot shows the average age of existing edges at each time step, up until the maximum
time step requested. The age is used as an estimator of the average duration of edges in the equilib-
rium state. When duration.imputed = FALSE, edges that exist at the beginning of the simulation
are assumed to start with an age of 1, yielding a burn-in period before the observed mean approaches
its target. When duration.imputed = TRUE, expected ages prior to the start of the simulation are
calculated from the dissolution model, typically eliminating the need for a burn-in period.

The dissolution plot shows the proportion of the extant ties that are dissolved at each time step,
up until the maximum time step requested. Typically, the proportion of ties that are dissolved is the
reciprocal of the mean relational duration. This plot thus contains similar information to that in the
duration plot, but should reach its expected value more quickly, since it is not subject to censoring.

The plots.joined argument will control whether the statistics are joined in one plot or plotted
separately, assuming there are multiple statistics in the model. The default is based on the number
of network statistics requested. The layout of the separate plots within the larger plot window is
also based on the number of statistics.

See Also

netdx

Examples

Not run:
Network initialization and model parameterization
nw <- network_initialize(n = 500)
nw <- set_vertex_attribute(nw, "sex", rbinom(500, 1, 0.5))
formation <- ~edges + nodematch("sex")
target.stats <- c(500, 300)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges) +

offset(nodematch("sex")), duration = c(50, 40))

Estimate the model
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Static diagnostics
dx1 <- netdx(est, nsims = 1e4, dynamic = FALSE,

nwstats.formula = ~edges + meandeg + concurrent +
nodefactor("sex", levels = NULL) +
nodematch("sex"))

dx1

Plot diagnostics
plot(dx1)
plot(dx1, stats = c("edges", "concurrent"), mean.col = "black",

sim.lines = TRUE, plots.joined = FALSE)
plot(dx1, stats = "edges", method = "b",

col = "seagreen3", grid = TRUE)

Dynamic diagnostics
dx2 <- netdx(est, nsims = 10, nsteps = 500,

nwstats.formula = ~edges + meandeg + concurrent +
nodefactor("sex", levels = NULL) +

114 plot.netsim

nodematch("sex"))
dx2

Formation statistics plots, joined and separate
plot(dx2, grid = TRUE)
plot(dx2, type = "formation", plots.joined = TRUE)
plot(dx2, type = "formation", sims = 1, plots.joined = TRUE,

qnts = FALSE, sim.lines = TRUE, mean.line = FALSE)
plot(dx2, type = "formation", plots.joined = FALSE,

stats = c("edges", "concurrent"), grid = TRUE)

plot(dx2, method = "b", col = "bisque", grid = TRUE)
plot(dx2, method = "b", stats = "meandeg", col = "dodgerblue")

Duration statistics plot
par(mfrow = c(1, 2))
With duration imputed
plot(dx2, type = "duration", sim.line = TRUE, sim.lwd = 0.3,

targ.lty = 1, targ.lwd = 0.5)
Without duration imputed
plot(dx2, type = "duration", sim.line = TRUE, sim.lwd = 0.3,

targ.lty = 1, targ.lwd = 0.5, duration.imputed = FALSE)

Dissolution statistics plot
plot(dx2, type = "dissolution", qnts = 0.25, grid = TRUE)
plot(dx2, type = "dissolution", method = "b", col = "pink1")

End(Not run)

plot.netsim Plot Data from a Stochastic Network Epidemic Model

Description

Plots epidemiological and network data from a stochastic network model simulated with netsim.

Usage

S3 method for class 'netsim'
plot(
x,
type = "epi",
y = NULL,
popfrac = FALSE,
sim.lines = FALSE,
sims = NULL,
sim.col = NULL,
sim.lwd = NULL,

plot.netsim 115

sim.alpha = NULL,
mean.line = TRUE,
mean.smooth = TRUE,
mean.col = NULL,
mean.lwd = 2,
mean.lty = 1,
qnts = 0.5,
qnts.col = NULL,
qnts.alpha = 0.5,
qnts.smooth = TRUE,
legend = NULL,
leg.cex = 0.8,
grid = FALSE,
add = FALSE,
network = 1,
at = 1,
col.status = FALSE,
shp.g2 = NULL,
vertex.cex = NULL,
stats = NULL,
targ.line = TRUE,
targ.col = NULL,
targ.lwd = 2,
targ.lty = 2,
plots.joined = NULL,
duration.imputed = TRUE,
method = "l",
main = NULL,
xlim = NULL,
xlab = NULL,
ylim = NULL,
ylab = NULL,
...

)

Arguments

x An EpiModel model object of class netsim.

type Type of plot: "epi" for epidemic model results, "network" for a static net-
work plot (plot.network), or "formation", "duration", or "dissolution"
for network formation, duration, or dissolution statistics.

y Output compartments or flows from netsim object to plot.

popfrac If TRUE, plot prevalence of values rather than numbers (see details).

sim.lines If TRUE, plot individual simulation lines. Default is to plot lines for one-group
models but not for two-group models.

sims If type="epi" or "formation", a vector of simulation numbers to plot. If
type="network", a single simulation number for which to plot the network,

116 plot.netsim

or else "min" to plot the simulation number with the lowest disease prevalence,
"max" for the simulation with the highest disease prevalence, or "mean" for
the simulation with the prevalence closest to the mean across simulations at the
specified time step.

sim.col Vector of any standard R color format for simulation lines.

sim.lwd Line width for simulation lines.

sim.alpha Transparency level for simulation lines, where 0 = transparent and 1 = opaque
(see adjustcolor function).

mean.line If TRUE, plot mean of simulations across time.

mean.smooth If TRUE, use a loess smoother on the mean line.

mean.col Vector of any standard R color format for mean lines.

mean.lwd Line width for mean lines.

mean.lty Line type for mean lines.

qnts If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

qnts.col Vector of any standard R color format for polygons.

qnts.alpha Transparency level for quantile polygons, where 0 = transparent and 1 = opaque
(see adjustcolor function).

qnts.smooth If TRUE, use a loess smoother on quantile polygons.

legend If TRUE, plot default legend.

leg.cex Legend scale size.

grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

add If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

network Network number, for simulations with multiple networks representing the pop-
ulation.

at If type = "network", time step for network graph.

col.status If TRUE and type="network", automatic disease status colors (blue = suscepti-
ble, red = infected, green = recovered).

shp.g2 If type = "network" and x is for a two-group model, shapes for the Group 2
vertices, with acceptable inputs of "triangle" and "square". Group 1 vertices
will remain circles.

vertex.cex Relative size of plotted vertices if type="network", with implicit default of 1.

stats If type="formation","duration","dissolution", statistics to plot. For type
= "formation", stats are among those specified in nwstats.formula of control.net;
for type = "duration", "dissolution", stats are among those of the disso-
lution model (without offset()). The default is to plot all statistics.

targ.line If TRUE, plot target or expected value line for the statistic of interest.

targ.col Vector of standard R colors for target statistic lines, with default colors based on
RColorBrewer color palettes.

plot.netsim 117

targ.lwd Line width for the line showing the target statistic values.

targ.lty Line type for the line showing the target statistic values.

plots.joined If TRUE and type="formation","duration","dissolution", combine all statis-
tics in one plot, versus one plot per statistic if FALSE.

duration.imputed

If type = "duration", a logical indicating whether or not to impute starting
times for relationships extant at the start of the simulation. Defaults to TRUE
when type = "duration".

method Plot method for type="formation", "duration", "dissolution", with op-
tions of "l" for line plots and "b" for box plots.

main a main title for the plot, see also title.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’.
The default value, NULL, indicates that the range of the finite values to be plotted
should be used.

xlab a label for the x axis, defaults to a description of x.

ylim the y limits of the plot.

ylab a label for the y axis, defaults to a description of y.

... Additional arguments to pass.

Details

This plot function can produce three types of plots with a stochastic network model simulated
through netsim:

1. type="epi": epidemic model results (e.g., disease prevalence and incidence) may be plotted.

2. type="network": a static network plot will be generated. A static network plot of a dy-
namic network is a cross-sectional extraction of that dynamic network at a specific time point.
This plotting function wraps the network::plot.network function in the network package.
Consult the help page for plot.network for all of the plotting parameters. In addition, four
plotting parameters specific to netsim plots are available: sim, at, col.status, and shp.g2.

3. type="formation": summary network statistics related to the network model formation are
plotted. These plots are similar to the formation plots for netdx objects. When running
a netsim simulation, one must specify there that save.nwstats=TRUE; the plot here will
then show the network statistics requested explicitly in nwstats.formula, or will use the
formation formula set in netest otherwise.

4. type="duration","dissolution": as in plot.netdx; supported in plot.netsim only when
the dissolution model is ~offset(edges), tergmLite is FALSE, and save.network is TRUE.

When type="epi", this plotting function will extract the epidemiological output from a model
object of class netsim and plot the time series data of disease prevalence and other results. The
summary statistics that the function calculates and plots are individual simulation lines, means of
the individual simulation lines, and quantiles of those individual simulation lines. The mean line,
toggled on with mean.line=TRUE, is calculated as the row mean across simulations at each time
step.

118 plot.netsim

Compartment prevalences are the size of a compartment over some denominator. To plot the raw
numbers from any compartment, use popfrac=FALSE; this is the default for any plots of flows.
The popfrac parameter calculates and plots the denominators of all specified compartments using
these rules: 1) for one-group models, the prevalence of any compartment is the compartment size
divided by the total population size; 2) for two-group models, the prevalence of any compartment
is the compartment size divided by the group population size. For any prevalences that are not
automatically calculated, the mutate_epi function may be used to add new variables to the netsim
object to plot or analyze.

The quantiles show the range of outcome values within a certain specified quantile range. By
default, the interquartile range is shown: that is the middle 50\ middle 95\ where they are plotted by
default, specify qnts=FALSE.

When type="network", this function will plot cross sections of the simulated networks at specified
time steps. Because it is only possible to plot one time step from one simulation at a time, it is
necessary to enter these in the at and sims parameters. To aid in visualizing representative and
extreme simulations at specific time steps, the sims parameter may be set to "mean" to plot the
simulation in which the disease prevalence is closest to the average across all simulations, "min" to
plot the simulation in which the prevalence is lowest, and "max" to plot the simulation in which the
prevalence is highest.

See Also

network::plot.network, mutate_epi

Examples

SI Model without Network Feedback
Initialize network and set network model parameters
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Estimate the network model
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Simulate the epidemic model
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 20, nsims = 3,

verbose = FALSE, save.nwstats = TRUE,
nwstats.formula = ~edges + meandeg + concurrent)

mod <- netsim(est, param, init, control)

Plot epidemic trajectory
plot(mod)
plot(mod, type = "epi", grid = TRUE)
plot(mod, type = "epi", popfrac = TRUE)
plot(mod, type = "epi", y = "si.flow", qnts = 1, ylim = c(0, 4))

plot.transmat 119

Plot static networks
par(mar = c(0, 0, 0, 0))
plot(mod, type = "network", vertex.cex = 1.5)

Automatic coloring of infected nodes as red
par(mfrow = c(1, 2), mar = c(0, 0, 2, 0))
plot(mod, type = "network", main = "Min Prev | Time 50",

col.status = TRUE, at = 20, sims = "min", vertex.cex = 1.25)
plot(mod, type = "network", main = "Max Prev | Time 50",

col.status = TRUE, at = 20, sims = "max", vertex.cex = 1.25)

Automatic shape by group number (circle = group 1)
par(mar = c(0, 0, 0, 0))
plot(mod, type = "network", at = 20, col.status = TRUE,

shp.g2 = "square")
plot(mod, type = "network", at = 20, col.status = TRUE,

shp.g2 = "triangle", vertex.cex = 2)

Plot formation statistics
par(mfrow = c(1,1), mar = c(3,3,1,1), mgp = c(2,1,0))
plot(mod, type = "formation", grid = TRUE)
plot(mod, type = "formation", plots.joined = FALSE)
plot(mod, type = "formation", sims = 2:3)
plot(mod, type = "formation", plots.joined = FALSE,

stats = c("edges", "concurrent"))
plot(mod, type = "formation", stats = "meandeg",

mean.lwd = 1, qnts.col = "seagreen", mean.col = "black")

plot.transmat Plot transmat Infection Tree in Three Styles

Description

Plots the transmission matrix tree from from get_transmat in one of three styles: a phylogram, a
directed network, or a transmission timeline.

Usage

S3 method for class 'transmat'
plot(x, style = c("phylo", "network", "transmissionTimeline"), ...)

Arguments

x A transmat object to be plotted.

style Character name of plot style. One of "phylo", "network", or "transmissionTimeline".

... Additional plot arguments to be passed to lower-level plot functions (plot.network,
plot.phylo, or transmissionTimeline).

120 print.netdx

Details

The phylo plot requires the ape package. The transmissionTimeline plot requires that the ndtv
package.

See Also

network::plot.network, plot.phylo, transmissionTimeline.

print.netdx Utility Function for Printing netdx Object

Description

Prints basic information and statistics from a netdx object.

Usage

S3 method for class 'netdx'
print(x, digits = 3, ...)

Arguments

x an object of class netdx

digits number of digits to print in statistics tables

... additional arguments (currently ignored)

Details

Given a netdx object, print.netdx prints the diagnostic method (static/dynamic), number of sim-
ulations, and (if dynamic) the number of time steps per simulation used in generating the netdx
object, as well as printing the formation statistics table and (if present) the duration and dissolution
statistics tables. The statistics tables are interpreted as follows.

Each row has the name of a particular network statistic. In the formation table, these correspond to
actual network statistics in the obvious way. In the duration and dissolution tables, these correspond
to dissolution model dyad types: in a homogeneous dissolution model, all dyads are of the edges
type; in a heterogeneous dissolution model, a dyad with a nonzero nodematch or nodemix change
statistic in the dissolution model has type equal to that statistic, and has type equal to edges other-
wise. The statistics of interest for the duration and dissolution tables are, respectively, the mean age
of extant edges and the edge dissolution rate, broken down by dissolution model dyad type. (The
current convention is to treat the mean age and dissolution rate for a particular dissolution dyad type
as 0 on time steps with no edges of that type; this behavior may be changed in the future.)

The columns are named Target, Sim Mean, Pct Diff, Sim SE, Z Score, SD(Sim Means), and SD(Statistic).
The Sim Mean column refers to the mean statistic value, across all time steps in all simulations in
the dynamic case, and across all sampled networks in all simulations in the static case. The Sim
SE column refers to the standard error in the mean, estimated using coda::effectiveSize. The
Target column indicates the target value (if present) for the statistic, and the Pct Diff column

reachable-nodes 121

gives (Sim Mean - Target)/Target when Target is present. The Z Score column gives (Sim Mean
- Target)/(Sim SE). The SD(Sim Means) column gives the empirical standard deviation across
simulations of the mean statistic value within simulation, and SD(Statistic) gives the empirical
standard deviation of the statistic value across all the simulated data.

reachable-nodes Get the Forward or Backward Reachable Nodes for a Set of Nodes

Description

These functions return the Forward or Backward Reachable Nodes of a set of nodes in a network
over a time. Warning, these functions ignore nodes without edges in the period of interest. See the
Number of Nodes section for details It is much faster than iterating tsna::tPath. The distance
between to each node can be back calculated using the length of the reachable set at each time step
and the fact that the reachable sets are ordered by the time to arrival.

Usage

get_forward_reachable(
el_cuml,
from_step,
to_step,
nodes = NULL,
dense_optim = "auto"

)

get_backward_reachable(
el_cuml,
from_step,
to_step,
nodes = NULL,
dense_optim = "auto"

)

Arguments

el_cuml a cumulative edgelist object. That is a data.frame with at least columns: head,
tail, start and stop. Start and stop are inclusive.

from_step the beginning of the time period.

to_step the end of the time period.

nodes the subset of nodes to calculate the FRP for. (default = NULL, all nodes)

dense_optim pre-process the adjacency list to speed up the computations on dense networks.
"auto" (default), enable the optimisation when n_edges > n_nodes. "yes" al-
ways enables and "no" always disables. The overhead of the optimization is not
worth it on sparse networks.

122 reachable-nodes

Value

A named list containing: reached: the set of reachable nodes for each of the nodes. lengths: A
matrix of length(nodes) rows and one column per timestep + 1 with the length of the reachable set
at each step from from_step - 1 to to_step. The first column is always one as the set of reachables
at the beginning is just the node itself.

Number of Nodes

To speed up the calculations and lower the memory usage, these functions only take into account
nodes with edges in the cumulative edgelist over the period of interest. The nodes are identified
in the reached and lengths sublists by names (e.g. node_1093). Nodes without any edges are
therefore not calculated as the only node they reach is themselve (length of 1). Take this fact into
account when exploring the distribution of Forward Reachable Paths for example. As the nodes
with FRP == 1 are not in the output.

Time and Memory Use

These functions may be used to efficiently calculate multiple sets of reachable nodes. As cumulative
edgelists are way smaller than full networkDynamic objects, theses functions are suited for large
and dense networks. Also, as long as the size of the nodes set is greater than 5, theses functions are
faster than iterating over tsna::tPath.

Displaying Progress

These functions are using the progressr package to display its progression. Use progressr::with_progress({
fwd_reach <- get_forward_reachable(el, from = 1, to = 260) }) to display the progress bar.
Or see the progressr package for more information and customization.

Examples

Not run:

load a network dynamic object
nd <- readRDS("nd_obj.Rds")
convert it to a cumulative edgelist
el_cuml <- as_cumulative_edgelist(nd)

sample 100 node indexes
nnodes <- max(el_cuml$head, el_cuml$tail)
nodes <- sample(nnodes, 100)

`get_forward_reachable` uses steps [from_step, to_step] inclusive
el_fwd <- get_forward_reachable(el_cuml, 1, 52, nodes)[["reached"]]

check if the results are consistent with `tsna::tPath`
nodes <- strsplit(names(el_fwd), "_")
for (i in seq_along(el_fwd)) {

node <- as.integer(nodes[[i]][2])
t_fwd <- tsna::tPath(
nd, v = node,
start = 1, end = 52 + 1, # tPath works from [start, end) right exclusive

https://progressr.futureverse.org/articles/progressr-intro.html
https://progressr.futureverse.org/articles/progressr-intro.html

record_attr_history 123

direction = "fwd"
)

t_fwd_set <- which(t_fwd$tdist < Inf)
if(!setequal(el_fwd[[i]], t_fwd_set))

stop("Missmatch on node: ", node)
}

Backward:
el_bkwd <- get_backward_reachable(el_cuml, 1, 52, nodes = 1)[["reached"]]
nodes <- strsplit(names(el_bkwd), "_")
t_bkwd <- tsna::tPath(

nd, v = nodes[i][2],
start = 1, end = 52 + 1,
direction = "bkwd", type = "latest.depart"

)
t_bkwd_set <- which(t_bkwd$tdist < Inf)
setequal(el_bkwd[[1]], t_bkwd_set)

End(Not run)

record_attr_history Record Attribute History

Description

This function records values specific to a time-step and a group of nodes. In the records, the
posit_ids are converted to unique_ids which allows the recording of data for nodes that are
no longer in the network by the end of the run. The records are stored in dat[["attr.history"]]
where dat is the main netsim_dat class object, and can be accessed from the netsim object with
get_attr_history.

Usage

record_attr_history(dat, at, attribute, posit_ids, values)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

at The time where the recording happens.

attribute The name of the value to record.

posit_ids A numeric vector of posit_ids to which the measure applies. (see get_posit_ids).

values The values to be recorded.

124 record_raw_object

Details

See the "Time-Varying Parameters" section of the "Working With Model Parameters" vignette.

Value

The updated netsim_dat main list object.

Examples

Not run:
This function must be used inside a custom module
dat <- record_attr_history(dat, at, "attr_1", get_posit_ids(dat), 5)
some_nodes <- get_posit_ids(dat)
some_nodes <- some_nodes[runif(length(some_nodes)) < 0.2]
dat <- record_attr_history(

dat, at,
"attr_2",
some_nodes,
rnorm(length(some_nodes))

)

End(Not run)

record_raw_object Record an Arbitrary Object During a Simulation

Description

This function records any object during a simulation to allow its inspection afterward. The records
are stored in dat[["raw.records"]] during the simulation, where dat is the main netsim_dat
class object, and in the netsim object under the raw.records collections::queue object.

Usage

record_raw_object(dat, at, label, object)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

at The time where the recording happens.

label The name to give to the recorded object.

object The object to be recorded.

Details

See the "Time-Varying Parameters" section of the "Working With Model Parameters" vignette.

set_current_timestep 125

Value

The updated netsim_dat main list object.

Examples

Not run:

dat <- record_raw_object(dat, at, "a.df", data.frame(x = 2:200))
dat <- record_raw_object(dat, at, "a.message", "I recorded something")

End(Not run)

set_current_timestep Set the Current Timestep

Description

Changes the current timestep in the netsim_dat object. Use with caution. This function exists to
work around unforeseen corner cases. In most situation, increment_timestep is preferred.

Usage

set_current_timestep(dat, timestep)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

timestep The new value for the timestep.

Value

The updated netsim_dat main list object.

Mutability

This DOES NOT modify the netsim_dat object in place. The result must be assigned back to dat
in order to be registered: dat <- increment_timestep(dat).

126 set_vertex_attribute

set_transmat Save Transmission Matrix

Description

This function appends the transmission matrix created during infection.net and infection.2g.net.

Usage

set_transmat(dat, del, at)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

del Discordant edgelist created within infection.net and infection.2g.net.

at Current time step.

Details

This internal function works within the parent infection.net functions to save the transmission
matrix created at time step at to the main netsim_dat class object dat.

Value

The updated netsim_dat main list object.

set_vertex_attribute Set Vertex Attribute on Network Object

Description

Sets a vertex attribute on an object of class network. This function simplifies the related function
in the network package.

Usage

set_vertex_attribute(x, attrname, value, v)

Arguments

x An object of class network.

attrname The name of the attribute to set.

value A vector of values of the attribute to be set.

v IDs for the vertices whose attributes are to be altered.

summary.dcm 127

Details

This function is used in EpiModel workflows to set vertex attributes on an initialized empty network
object (see network_initialize.

Value

Returns an object of class network.

Examples

nw <- network_initialize(100)
nw <- set_vertex_attribute(nw, "age", runif(100, 15, 65))
nw

summary.dcm Summary Model Statistics

Description

Extracts and prints model statistics solved with dcm.

Usage

S3 method for class 'dcm'
summary(object, at, run = 1, digits = 3, ...)

Arguments

object An EpiModel object of class dcm.

at Time step for model statistics.

run Model run number, for dcm class models with multiple runs (sensitivity analy-
ses).

digits Number of significant digits to print.

... Additional summary function arguments (not used).

Details

This function provides summary statistics for the main epidemiological outcomes (state and transi-
tion size and prevalence) from a dcm model. Time-specific summary measures are provided, so it is
necessary to input a time of interest. For multiple-run models (sensitivity analyses), input a model
run number. See examples below.

See Also

dcm

128 summary.icm

Examples

Deterministic SIR model with varying act.rate
param <- param.dcm(inf.prob = 0.2, act.rate = 2:4, rec.rate = 1/3,

a.rate = 0.011, ds.rate = 0.01,
di.rate = 0.03, dr.rate = 0.01)

init <- init.dcm(s.num = 1000, i.num = 1, r.num = 0)
control <- control.dcm(type = "SIR", nsteps = 50)
mod <- dcm(param, init, control)
summary(mod, at = 25, run = 1)
summary(mod, at = 25, run = 3)
summary(mod, at = 26, run = 3)

summary.icm Summary Model Statistics

Description

Extracts and prints model statistics simulated with icm.

Usage

S3 method for class 'icm'
summary(object, at, digits = 3, ...)

Arguments

object An EpiModel object of class icm.

at Time step for model statistics.

digits Number of significant digits to print.

... Additional summary function arguments.

Details

This function provides summary statistics for the main epidemiological outcomes (state and transi-
tion size and prevalence) from an icm model. Time-specific summary measures are provided, so it
is necessary to input a time of interest.

See Also

icm

summary.netsim 129

Examples

Stochastic ICM SI model with 3 simulations
param <- param.icm(inf.prob = 0.2, act.rate = 1)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SI", nsteps = 50,

nsims = 5, verbose = FALSE)
mod <- icm(param, init, control)
summary(mod, at = 25)
summary(mod, at = 50)

summary.netsim Summary Model Statistics

Description

Extracts and prints model statistics simulated with netsim.

Usage

S3 method for class 'netsim'
summary(object, at, digits = 3, ...)

Arguments

object An EpiModel object of class netsim.

at Time step for model statistics.

digits Number of significant digits to print.

... Additional summary function arguments.

Details

This function provides summary statistics for the main epidemiological outcomes (state and transi-
tion size and prevalence) from a netsim model. Time-specific summary measures are provided, so
it is necessary to input a time of interest.

See Also

netsim

Examples

Not run:
SI Model without Network Feedback
Initialize network and set network model parameters
nw <- network_initialize(n = 100)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 50))
formation <- ~edges

130 trim_netest

target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Estimate the ERGM models (see help for netest)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Parameters, initial conditions, and controls for model
param <- param.net(inf.prob = 0.3, inf.prob.g2 = 0.15)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 100, nsims = 5, verbose.int = 0)

Run the model simulation
mod <- netsim(est1, param, init, control)

summary(mod, at = 1)
summary(mod, at = 50)
summary(mod, at = 100)

End(Not run)

trim_netest Function to Reduce the Size of a netest Object

Description

Trims formula environments from the netest object. Optionally converts the newnetwork element
of the netest object to a networkLite class, and removes the fit element (if present) from the
netest object.

Usage

trim_netest(
object,
as.networkLite = TRUE,
keep.fit = FALSE,
keep = character(0)

)

Arguments

object A netest class object.

as.networkLite If TRUE, converts object$newnetwork to a networkLite.

keep.fit If FALSE, removes the object$fit (if present) on the netest object.

keep Character vector of object names to keep in formula environments. By default,
all objects are removed.

truncate_sim 131

Details

With larger, more complex network structures with epidemic models, it is generally useful to reduce
the memory footprint of the fitted TERGM model object (estimated with netest). This utility
function removes all but the bare essentials needed for simulating a network model with netsim.

The function always trims the environments of object$constraints and object$coef.diss$dissolution.

When both edapprox = TRUE and nested.edapprox = TRUE in the netest call, also trims the envi-
ronments of object$formula and object$formation.

When both edapprox = TRUE and nested.edapprox = FALSE in the netest call, also trims the envi-
ronments of object$formula, environment(object$formation)$formation, and environment(object$formation)$dissolution.

When edapprox = FALSE in the netest call, also trims the environments of object$formation,
environment(object$formula)$formation and environment(object$formula)$dissolution.

By default all objects are removed from these trimmed environments. Specific objects may be re-
tained by passing their names as the keep argument. For the output of trim_netest to be usable in
netsim simulation, any objects referenced in the formulas should be included in the keep argument.

If as.networkLite = TRUE, converts object$newnetwork to a networkLite object. If keep.fit
= FALSE, removes fit (if present) from object.

Value

A netest object with formula environments trimmed, optionally with the newnetwork element
converted to a networkLite and the fit element removed.

Examples

nw <- network_initialize(n = 100)
formation <- ~edges + concurrent
target.stats <- c(50, 25)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)
est <- netest(nw, formation, target.stats, coef.diss,

set.control.ergm = control.ergm(MCMC.burnin = 1e5,
MCMC.interval = 1000))

print(object.size(est), units = "KB")

est.small <- trim_netest(est)
print(object.size(est.small), units = "KB")

truncate_sim Truncate Simulation Time Series

Description

Left-truncates simulation epidemiological summary statistics and network statistics at a specified
time step.

132 unique_id-tools

Usage

truncate_sim(x, at)

Arguments

x Object of class netsim or icm.

at Time step at which to left-truncate the time series.

Details

This function would be used when running a follow-up simulation from time steps b to c after a
burn-in period from time a to b, where the final time window of interest for data analysis is b to c
only.

Value

The updated object of class netsim or icm.

Examples

param <- param.icm(inf.prob = 0.2, act.rate = 0.25)
init <- init.icm(s.num = 500, i.num = 1)
control <- control.icm(type = "SI", nsteps = 200, nsims = 1)
mod1 <- icm(param, init, control)
df <- as.data.frame(mod1)
print(df)
plot(mod1)
mod1$control$nsteps

mod2 <- truncate_sim(mod1, at = 150)
df2 <- as.data.frame(mod2)
print(df2)
plot(mod2)
mod2$control$nsteps

unique_id-tools Convert Unique Identifiers to/from Positional Identifiers

Description

EpiModel refers to its nodes either by positional identifiers (posit_ids), which describe the posi-
tion of a node in the attr vector, or by unique identifiers (unique_ids), which allow references to
nodes even after they are deactivated.

update_cumulative_edgelist 133

Usage

get_unique_ids(dat, posit_ids = NULL)

get_posit_ids(dat, unique_ids = NULL)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

posit_ids A vector of node positional identifiers (default = NULL).

unique_ids A vector of node unique identifiers (default = NULL).

Value

A vector of unique or positional identifiers.

All elements

When unique_ids or posit_ids is NULL (default) the full list of positional IDs or unique IDs is
returned.

Deactivated nodes

When providing unique_ids of deactivated nodes to get_posit_ids, NAs are returned instead and
a warning is produced.

update_cumulative_edgelist

Update a Cumulative Edgelist of the Specified Network

Description

Update a Cumulative Edgelist of the Specified Network

Usage

update_cumulative_edgelist(dat, network, truncate = 0)

Arguments

dat Main netsim_dat object containing a networkDynamic object and other initial-
ization information passed from netsim.

network Numerical index of the network for which the cumulative edgelist will be up-
dated. (May be > 1 for models with multiple overlapping networks.)

truncate After how many time steps a partnership that is no longer active should be re-
moved from the output.

134 update_dissolution

Value

The updated netsim_dat main list object.

Truncation

To avoid storing a cumulative edgelist too long, the truncate parameter defines a number of steps
after which an edge that is no longer active is truncated out of the cumulative edgelist. When
truncate = Inf, no edges are ever removed. When truncate = 0, only the active edges are kept.
You may want this behavior to keep track of the active edges’ start step.

update_dissolution Adjust Dissolution Component of Network Model Fit

Description

Adjusts the dissolution component of a dynamic ERGM fit using the netest function with the
edges dissolution approximation method.

Usage

update_dissolution(old.netest, new.coef.diss, nested.edapprox = TRUE)

Arguments

old.netest An object of class netest, from the netest function.

new.coef.diss An object of class disscoef, from the dissolution_coefs function.
nested.edapprox

Logical. If edapprox = TRUE the dissolution model is an initial segment of the
formation model (see details in netest).

Details

Fitting an ERGM is a computationally intensive process when the model includes dyad dependent
terms. With the edges dissolution approximation method of Carnegie et al, the coefficients for a
temporal ERGM are approximated by fitting a static ERGM and adjusting the formation coeffi-
cients to account for edge dissolution. This function provides a very efficient method to adjust the
coefficients of that model when one wants to use a different dissolution model; a typical use case
may be to fit several different models with different average edge durations as targets. The example
below exhibits that case.

Value

An updated network model object of class netest.

update_params 135

Examples

Not run:
nw <- network_initialize(n = 1000)

Two dissolutions: an average duration of 300 versus 200
diss.300 <- dissolution_coefs(~offset(edges), 300, 0.001)
diss.200 <- dissolution_coefs(~offset(edges), 200, 0.001)

Fit the two reference models
est300 <- netest(nw = nw,

formation = ~edges,
target.stats = c(500),
coef.diss = diss.300)

est200 <- netest(nw = nw,
formation = ~edges,
target.stats = c(500),
coef.diss = diss.200)

Alternatively, update the 300 model with the 200 coefficients
est200.compare <- update_dissolution(est300, diss.200)

identical(est200$coef.form, est200.compare$coef.form)

End(Not run)

update_params Update Model Parameters for Stochastic Network Models

Description

Updates epidemic model parameters originally set with param.net and adds new parameters.

Usage

update_params(param, new.param.list)

Arguments

param Object of class param.net, output from function of same name.

new.param.list Named list of new parameters to add to original parameters.

Details

This function can update any original parameters specified with param.net and add new parame-
ters. This function would be used if the inputs to param.net were a long list of fixed model param-
eters that needed supplemental replacements or additions for particular model runs (e.g., changing
an intervention efficacy parameter but leaving all other parameters fixed).

136 use_scenario

The new.param.list object should be a named list object containing named parameters matching
those already in x (in which case those original parameter values will be replaced) or not matching
(in which case new parameters will be added to param).

Value

An updated list object of class param.net, which can be passed to the EpiModel function netsim.

Examples

x <- param.net(inf.prob = 0.5, act.rate = 2)
y <- list(inf.prob = 0.75, dx.rate = 0.2)
z <- update_params(x, y)
print(z)

use_scenario Apply a scenario object to a param.net object

Description

Apply a scenario object to a param.net object

Usage

use_scenario(param, scenario)

Arguments

param Object of class param.net, output from function of same name.

scenario a scenario object usually created from a data.frame of scenarios using the
create_scenario_list function. See the vignette "network-model-scenarios".

Value

An updated list object of class param.net, which can be passed to the EpiModel function netsim.

scenario

A scenario is a list containing an "id" field, the name of the scenario and a ".param.updater.list"
containing a list of updaters that modifies the parameters of the model at given time steps. If a
scenario contains a parameter not defined in the param object, an error will be produced. See the
vignette "model-parameters" for the technical detail of their implementation.

Index

∗ colorUtils
color_tea, 18

∗ extract
as.data.frame.dcm, 10
as.data.frame.icm, 11
as.data.frame.netdx, 13
get_network, 51
get_nwstats, 54
get_sims, 58
is.transmat, 68
merge.icm, 70
merge.netsim, 71
summary.dcm, 127
summary.icm, 128
summary.netsim, 129

∗ model
dcm, 31
icm, 60
netest, 83
netsim, 86

∗ netUtils
check_degdist_bal, 17
dissolution_coefs, 36
edgelist_censor, 38

∗ package
EpiModel-package, 4

∗ parameterization
control.dcm, 21
control.icm, 23
control.net, 24
init.dcm, 62
init.icm, 63
init.net, 64
param.dcm, 91
param.icm, 94
param.net, 97

∗ plot
comp_plot, 20
geom_bands, 43

plot.dcm, 103
plot.epi.data.frame, 106
plot.icm, 108
plot.netdx, 111
plot.netsim, 114

absdiffby (InitErgmTerm.absdiffby), 66
absdiffnodemix

(InitErgmTerm.absdiffnodemix),
66

add_attr (net-accessor), 77
add_control (net-accessor), 77
add_epi (net-accessor), 77
add_init (net-accessor), 77
add_param (net-accessor), 77
add_vertices, 7
ape::phylo, 15
append_attr (net-accessor), 77
append_core_attr (net-accessor), 77
apportion_lr, 8
arrivals.icm, 23, 74
arrivals.net, 26, 75, 79
arrive_nodes, 9
as.data.frame.dcm, 10, 32
as.data.frame.default, 10, 12, 13
as.data.frame.icm, 11, 61
as.data.frame.netdx, 13
as.data.frame.netsim, 88
as.data.frame.netsim

(as.data.frame.icm), 11
as.epi.data.frame, 14
as.network.transmat, 14
as.phylo.transmat, 15
as_cumulative_edgelist, 16
as_tibble_edgelist, 17

check_degdist_bal, 17
coda::effectiveSize, 120
col2rgb, 105
color_tea, 18

137

138 INDEX

comp_plot, 20, 32, 61
control.dcm, 5, 21, 31, 63, 93, 94
control.icm, 5, 23, 60, 64, 96
control.net, 5, 19, 24, 30, 52, 65, 71, 76, 87,

98, 100, 116
create_dat_object, 29
create_scenario_list, 30

dcm, 6, 10, 21, 22, 31, 40, 63, 93, 94, 103, 105,
127

dedup_cumulative_edgelist, 33
delete_edges, 33
delete_vertices, 34
depart_nodes, 35
departures.icm, 23, 74
departures.net, 26, 75
deSolve::ode, 22
dissolution_coefs, 36, 84, 99, 134

edgelist_censor, 38
EpiModel (EpiModel-package), 4
EpiModel-package, 4
epiweb, 39
ergm.ego::control.ergm.ego, 85
ergm::control.ergm, 85
ergm::control.simulate.formula, 82

finite, 104, 107, 109, 117
fuzzynodematch

(InitErgmTerm.fuzzynodematch),
67

generate_random_params, 40, 99, 103
geom_bands, 43
get_adj_list, 44
get_attr (net-accessor), 77
get_attr_history, 44
get_attr_list (net-accessor), 77
get_backward_reachable

(reachable-nodes), 121
get_connected_nodes, 45
get_control (net-accessor), 77
get_control_list (net-accessor), 77
get_cumulative_degree, 45
get_cumulative_edgelist, 46
get_cumulative_edgelists_df, 47
get_current_timestep, 48
get_degree, 48
get_edgelist, 49

get_edgelists_df, 50
get_epi (net-accessor), 77
get_epi_list (net-accessor), 77
get_formula_term_attr, 50
get_forward_reachable

(reachable-nodes), 121
get_init (net-accessor), 77
get_init_list (net-accessor), 77
get_network, 51
get_network_attributes, 53
get_network_control (net-accessor), 77
get_network_term_attr, 53
get_nwstats, 54
get_param (net-accessor), 77
get_param_list (net-accessor), 77
get_param_set, 55
get_partners, 56
get_posit_ids, 57
get_posit_ids (unique_id-tools), 132
get_sims, 58
get_subnet_adj_list, 59
get_transmat, 15
get_transmat (is.transmat), 68
get_unique_ids, 57
get_unique_ids (unique_id-tools), 132
get_vertex_attribute, 59
grid, 104, 108, 109, 112, 116

icm, 6, 23, 24, 40, 43, 60, 64, 70, 73, 96, 108,
110, 128

increment_timestep, 62
infection.2g.net, 126
infection.icm, 23, 24, 73
infection.net, 26, 29, 75, 126
init.dcm, 5, 22, 31, 62, 94
init.icm, 5, 24, 60, 63, 73, 96
init.net, 5, 29, 30, 64, 74, 100
InitErgmTerm.absdiffby, 66
InitErgmTerm.absdiffnodemix, 66
InitErgmTerm.fuzzynodematch, 67
initialize.icm, 23, 73
initialize.net, 26, 74, 79
is.transmat, 68
is_active_posit_ids, 69
is_active_unique_ids, 69

merge.icm, 70
merge.netsim, 71
modules.icm, 73

INDEX 139

modules.net, 74, 87
multilayer, 27, 76
mutate_epi, 76, 110, 118

net-accessor, 77
netdx, 6, 27, 51, 52, 54, 80, 84, 86, 111–113
netest, 6, 28, 36, 74, 75, 80, 82, 83, 112, 131,

134
netsim, 6, 19, 24, 28–30, 40, 43, 46–54, 57,

62, 65, 68, 69, 71, 72, 74, 76, 79, 84,
86, 86, 90, 97, 98, 100, 101, 114,
117, 123–126, 129, 131, 133, 136

network::network, 14, 15
network::plot.network, 117, 118, 120
network_initialize, 60, 89, 127
nwupdate.net, 26, 90

overwrite_attrs, 90

padded_vector, 91
param.dcm, 5, 22, 31, 63, 91
param.icm, 5, 24, 60, 64, 74, 94
param.net, 5, 29, 30, 41, 65, 71, 75, 76, 97,

102, 103, 135
param.net_from_table, 101
param.net_to_table, 102
param_random, 99, 102
plot.dcm, 32, 103
plot.default, 104
plot.epi.data.frame, 106
plot.icm, 61, 108
plot.netdx, 82, 111, 117
plot.netsim, 19, 88, 114
plot.phylo, 15, 120
plot.transmat, 119
prevalence.icm, 23, 74
prevalence.net, 26, 75
print.netdx, 82, 120

RColorBrewer::brewer.pal.info, 105
RColorBrewer::RColorBrewer, 104, 105
reachable-nodes, 121
read.tree, 16
record_attr_history, 123
record_raw_object, 124
recovery.icm, 23, 73
recovery.net, 26, 75
remove_node_attr (net-accessor), 77
resim_nets, 26, 75

set_attr (net-accessor), 77
set_control (net-accessor), 77
set_current_timestep, 125
set_epi (net-accessor), 77
set_init (net-accessor), 77
set_param (net-accessor), 77
set_transmat, 126
set_vertex_attribute, 126
sim_nets_t1, 28
summary.dcm, 32, 127
summary.icm, 61, 128
summary.netsim, 88, 129
summary_nets, 26

tergm::control.simulate.formula.tergm,
82

tergm::control.tergm, 85
title, 104, 107, 109, 117
transmat, 15, 119
transmat (is.transmat), 68
transmissionTimeline, 120
trim_netest, 130
truncate_sim, 131

unique_id-tools, 132
update_cumulative_edgelist, 26, 133
update_dissolution, 134
update_params, 135
use_scenario, 136

verbose.net, 26, 75

	EpiModel-package
	add_vertices
	apportion_lr
	arrive_nodes
	as.data.frame.dcm
	as.data.frame.icm
	as.data.frame.netdx
	as.epi.data.frame
	as.network.transmat
	as.phylo.transmat
	as_cumulative_edgelist
	as_tibble_edgelist
	check_degdist_bal
	color_tea
	comp_plot
	control.dcm
	control.icm
	control.net
	create_dat_object
	create_scenario_list
	dcm
	dedup_cumulative_edgelist
	delete_edges
	delete_vertices
	depart_nodes
	dissolution_coefs
	edgelist_censor
	epiweb
	generate_random_params
	geom_bands
	get_adj_list
	get_attr_history
	get_connected_nodes
	get_cumulative_degree
	get_cumulative_edgelist
	get_cumulative_edgelists_df
	get_current_timestep
	get_degree
	get_edgelist
	get_edgelists_df
	get_formula_term_attr
	get_network
	get_network_attributes
	get_network_term_attr
	get_nwstats
	get_param_set
	get_partners
	get_sims
	get_subnet_adj_list
	get_vertex_attribute
	icm
	increment_timestep
	init.dcm
	init.icm
	init.net
	InitErgmTerm.absdiffby
	InitErgmTerm.absdiffnodemix
	InitErgmTerm.fuzzynodematch
	is.transmat
	is_active_posit_ids
	is_active_unique_ids
	merge.icm
	merge.netsim
	modules.icm
	modules.net
	multilayer
	mutate_epi
	net-accessor
	netdx
	netest
	netsim
	network_initialize
	nwupdate.net
	overwrite_attrs
	padded_vector
	param.dcm
	param.icm
	param.net
	param.net_from_table
	param.net_to_table
	param_random
	plot.dcm
	plot.epi.data.frame
	plot.icm
	plot.netdx
	plot.netsim
	plot.transmat
	print.netdx
	reachable-nodes
	record_attr_history
	record_raw_object
	set_current_timestep
	set_transmat
	set_vertex_attribute
	summary.dcm
	summary.icm
	summary.netsim
	trim_netest
	truncate_sim
	unique_id-tools
	update_cumulative_edgelist
	update_dissolution
	update_params
	use_scenario
	Index

