
Package ‘Momocs’
January 13, 2026

Title Morphometrics using R

Version 1.5.0

Date 2026-01-12

Description The goal of 'Momocs' is to provide a complete, convenient,
reproducible and open-source toolkit for 2D morphometrics.
It includes most common 2D morphometrics approaches on outlines, open outlines,
configurations of landmarks, traditional morphometrics, and facilities for data preparation,
manipulation and visualization with a consistent grammar throughout.
It allows reproducible, complex morphometrics analyses and other morphometrics approaches
should be easy to plug in, or develop from, on top of this canvas. Companion paper is published
in JSS Bonhomme V, Picq S, Gaucherel C and Claude J (2014) <doi:10.18637/jss.v056.i13>.
Now superseded by 'Momocs2' and the 'MomX' ecosystem.
'Momocs' should be considered retired and will no longer be supported someday.

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/MomX/Momocs/, http://momx.github.io/Momocs/

BugReports https://github.com/MomX/Momocs/issues

Depends R(>= 3.2)

LazyData true

Imports cluster, dendextend, dplyr, magrittr, geometry, geomorph,
ggplot2, graphics, grDevices, jpeg, MASS, progress,
RColorBrewer, sp, sf, utils, vegan, tibble

Suggests devtools, knitr, rmarkdown, testthat, covr, roxygen2

RoxygenNote 7.3.3

NeedsCompilation no

Author Vincent Bonhomme [aut, cre],
Julien Claude [aut] (core functions in base R)

Maintainer Vincent Bonhomme <bonhomme.vincent@gmail.com>

Repository CRAN

Date/Publication 2026-01-13 00:50:38 UTC

1

https://doi.org/10.18637/jss.v056.i13
https://github.com/MomX/Momocs/
http://momx.github.io/Momocs/
https://github.com/MomX/Momocs/issues

2 Contents

Contents
add_ldk . 7
apodemus . 8
arrange . 8
as_df . 9
at_least . 10
bezier . 11
bezier_i . 12
bot . 13
boxplot.OutCoe . 13
boxplot.PCA . 14
breed . 15
bridges . 16
calibrate_deviations . 17
calibrate_harmonicpower . 20
calibrate_r2 . 22
calibrate_reconstructions . 24
chaff . 26
charring . 26
chop . 27
classification_metrics . 28
CLUST . 29
Coe . 30
coeff_rearrange . 32
coeff_sel . 33
coeff_split . 34
color_palettes . 34
col_transp . 36
combine . 37
complex . 38
Coo . 39
coo_align . 41
coo_aligncalliper . 42
coo_alignminradius . 43
coo_alignxax . 44
coo_angle_edges . 45
coo_angle_tangent . 46
coo_area . 47
coo_arrows . 48
coo_baseline . 48
coo_bookstein . 49
coo_boundingbox . 50
coo_calliper . 51
coo_centdist . 52
coo_center . 53
coo_centpos . 54
coo_centsize . 55

Contents 3

coo_check . 55
coo_chull . 56
coo_circularity . 57
coo_close . 59
coo_convexity . 60
coo_down . 61
coo_draw . 62
coo_draw_rads . 63
coo_dxy . 64
coo_eccentricity . 65
coo_elongation . 66
coo_extract . 67
coo_flipx . 68
coo_force2close . 69
coo_interpolate . 70
coo_intersect_angle . 71
coo_intersect_segment . 72
coo_is_closed . 73
coo_jitter . 74
coo_ldk . 75
coo_left . 75
coo_length . 76
coo_likely_clockwise . 77
coo_listpanel . 78
coo_lolli . 79
coo_lw . 80
coo_nb . 81
coo_oscillo . 82
coo_perim . 83
coo_plot . 84
coo_range . 86
coo_rectangularity . 87
coo_rectilinearity . 88
coo_rev . 89
coo_right . 90
coo_rotate . 91
coo_rotatecenter . 92
coo_ruban . 93
coo_sample . 94
coo_samplerr . 95
coo_sample_prop . 96
coo_scalars . 97
coo_scale . 98
coo_shearx . 100
coo_slice . 101
coo_slide . 102
coo_slidedirection . 104
coo_slidegap . 105

4 Contents

coo_smooth . 106
coo_smoothcurve . 107
coo_solidity . 108
coo_tac . 109
coo_template . 110
coo_trans . 111
coo_trim . 112
coo_trimbottom . 113
coo_trimtop . 114
coo_truss . 115
coo_untiltx . 116
coo_up . 117
coo_width . 118
d . 119
def_ldk . 120
def_ldk_angle . 121
def_ldk_tips . 122
def_links . 123
def_slidings . 123
dfourier . 124
dfourier_i . 126
dfourier_shape . 127
dissolve . 128
drawers . 129
ed . 133
edi . 134
edm . 135
edm_nearest . 135
efourier . 136
efourier_i . 138
efourier_shape . 140
export . 141
fac_dispatcher . 142
fgProcrustes . 143
fgsProcrustes . 145
filter . 146
flip_PCaxes . 147
flower . 147
fProcrustes . 148
get_chull_area . 149
get_ldk . 150
get_pairs . 151
get_slidings . 152
harm_pow . 152
hcontrib . 153
hearts . 154
img_plot . 155
import_Conte . 155

Contents 5

import_jpg . 156
import_jpg1 . 158
import_StereoMorph_curve1 . 159
import_tps . 160
import_txt . 161
inspect . 162
is . 163
is_equallyspacedradii . 164
KMEANS . 165
KMEDOIDS . 166
layers . 167
layers_morphospace . 170
LDA . 172
Ldk . 173
ldk_check . 174
ldk_chull . 175
ldk_confell . 176
ldk_contour . 177
ldk_labels . 178
ldk_links . 179
lf_structure . 179
links_all . 180
links_delaunay . 181
MANOVA . 182
MANOVA_PW . 183
MDS . 185
measure . 186
molars . 187
Momocs . 187
morphospace_positions . 188
mosaic_engine . 189
mosquito . 192
mouse . 192
MSHAPES . 193
mutate . 194
NMDS . 195
npoly . 196
nsfishes . 197
oak . 198
olea . 198
Opn . 199
OpnCoe . 200
opoly . 201
opoly_i . 202
Out . 203
OutCoe . 204
palettes . 205
panel . 207

6 Contents

papers . 209
PCA . 210
PCcontrib . 212
perm . 213
pile . 214
pix2chc . 217
plot.LDA . 218
plot.PCA . 222
plot_CV . 228
plot_CV2 . 230
plot_devsegments . 232
plot_LDA . 233
plot_MSHAPES . 236
plot_NMDS . 237
plot_PCA . 239
plot_silhouette . 241
plot_table . 242
pProcrustes . 243
Ptolemy . 244
rearrange_ldk . 245
reLDA . 246
rename . 247
rePCA . 248
rescale . 249
rfourier . 250
rfourier_i . 252
rfourier_shape . 253
rm_asym . 254
rm_harm . 255
rm_missing . 256
rm_uncomplete . 257
rw_fac . 258
sample_frac . 259
sample_n . 260
scree . 261
select . 262
sfourier . 263
sfourier_i . 264
sfourier_shape . 265
shapes . 266
slice . 267
slidings_scheme . 268
stack . 268
subsetize . 271
symmetry . 272
tfourier . 273
tfourier_i . 274
tfourier_shape . 276

add_ldk 7

tie_jpg_txt . 277
tps2d . 277
tps_arr . 278
tps_grid . 280
tps_iso . 281
tps_raw . 283
TraCoe . 284
trilo . 285
verify . 285
which_out . 286
wings . 287

Index 289

add_ldk Adds new landmarks on Out and Opn objects

Description

Helps to add new landmarks on a Coo object on top of existing ones. The number of landmarks
must be specified and rows indices that correspond to the nearest points clicked on every outlines
are stored in the $ldk slot of the Coo object.

Usage

add_ldk(Coo, nb.ldk)

Arguments

Coo an Out or Opn object

nb.ldk the number of landmarks to add on every shape

Details

Note that if no landmarks are already defined, then this function is equivalent to def_ldk.

Value

an Out or an Opn object with some landmarks defined

See Also

Other ldk/slidings methods: def_ldk(), def_slidings(), get_ldk(), get_slidings(), rearrange_ldk(),
slidings_scheme()

8 arrange

Examples

Not run:
hearts <- slice(hearts, 1:5) # to make it shorter to try
click on 3 points, 5 times.
hearts <- def_ldk(hearts, 3)
Don't forget to save the object returned by def_ldk...
hearts2 <- add_ldk(hearts, 3)
stack(hearts2)
hearts2$ldk

End(Not run)

apodemus Data: Outline coordinates of Apodemus (wood mouse) mandibles

Description

Data: Outline coordinates of Apodemus (wood mouse) mandibles

Format

A Out object 64 coordinates of 30 wood molar outlines.

Source

Renaud S, Pale JRM, Michaux JR (2003): Adaptive latitudinal trends in the mandible shape of
Apodemus wood mice. Journal of Biogeography 30:1617-1628. see https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2699.2003.00932.x

See Also

Other datasets: bot, chaff, charring, flower, hearts, molars, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

arrange Arrange rows by variables

Description

Arrange shapes by variables, from the $fac. See examples and ?dplyr::arrange.

Usage

arrange(.data, ...)

as_df 9

Arguments

.data a Coo, Coe, PCA object

... logical conditions

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

Other handling functions: at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), slice(), subsetize()

Examples

olea
we create a new column
olea %>% mutate(id=1:length(.)) %$% fac$id
same but now, shapes are arranged in a desc order, based on id
olea %>% mutate(id=1:length(.)) %>% arrange(desc(id)) %$% fac$id

as_df Turn Momocs objects into tydy data_frames

Description

Used in particular for compatibility with the tidyverse

Usage

as_df(x, ...)

S3 method for class 'Coo'
as_df(x, ...)

S3 method for class 'Coe'
as_df(x, ...)

S3 method for class 'PCA'
as_df(x, retain, ...)

S3 method for class 'LDA'
as_df(x, retain, ...)

10 at_least

Arguments

x an object, typically a Momocs object
... useless here
retain numeric for use with scree methods. Defaut to all. If <1, enough axes to retain

this proportion of variance; if >1, this number of axes.

Value

a dplyr::tibble()

See Also

Other bridges functions: bridges, complex, export()

Examples

first, some (baby) objects
b <- bot %>% coo_sample(12)
bf <- b %>% efourier(5, norm=TRUE)
Coo object
b %>% as_df
Coe object
bf %>% as_df

PCA object
bf %>% PCA %>% as_df # all PCs by default
bf %>% PCA %>% as_df(2) # or 2
bf %>% PCA %>% as_df(0.99) # or enough for 99%

LDA object
bf %>% LDA(~fake) %>% as_df
same options apply

at_least Retain groups with at least n shapes

Description

Examples are self-speaking.

Usage

at_least(x, fac, N)

Arguments

x any Momocs object
fac the id of name of the $fac column
N minimal number of individuals to retain the group

bezier 11

Value

a Momocs object of same class

Note

if N is too ambitious the original object is returned with a message

See Also

Other handling functions: arrange(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), slice(), subsetize()

Examples

table(trilo$onto)
at_least(trilo, "onto", 9)
at_least(trilo, "onto", 16)
at_least(trilo, "onto", 2000) # too ambitious !

bezier Calculates Bezier coefficients from a shape

Description

Calculates Bezier coefficients from a shape

Usage

bezier(coo, n)

Arguments

coo a matrix or a list of (x; y) coordinates

n the degree, by default the number of coordinates.

Value

a list with components:

• $J matrix of Bezier coefficients

• $B matrix of Bezier vertices.

Note

Directly borrowed for Claude (2008), and also called bezier there. Not implemented for open
outlines but may be useful for other purposes.

12 bezier_i

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other bezier functions: bezier_i()

Examples

set.seed(34)
x <- coo_sample(efourier_shape(), 5)
plot(x, ylim=c(-3, 3), asp=1, type='b', pch=20)
b <- bezier(x)
bi <- bezier_i(b$B)
lines(bi, col='red')

bezier_i Calculates a shape from Bezier coefficients

Description

Calculates a shape from Bezier coefficients

Usage

bezier_i(B, nb.pts = 120)

Arguments

B a matrix of Bezier vertices, such as those produced by bezier

nb.pts the number of points to sample along the curve.

Value

a matrix of (x; y) coordinates

Note

Directly borrowed for Claude (2008), and called beziercurve there. Not implemented for open
outlines but may be useful for other purposes.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other bezier functions: bezier()

bot 13

Examples

set.seed(34)
x <- coo_sample(efourier_shape(), 5)
plot(x, ylim=c(-3, 3), asp=1, type='b', pch=20)
b <- bezier(x)
bi <- bezier_i(b$B)
lines(bi, col='red')

bot Data: Outline coordinates of beer and whisky bottles.

Description

Data: Outline coordinates of beer and whisky bottles.

Format

A Out object containing the outlines coordinates and a grouping factor for 20 beer and 20 whisky
bottles

Source

Images have been grabbed on the internet and prepared by the package’s authors. No particular
choice has been made on the dimension of the original images or the brands cited here.

See Also

Other datasets: apodemus, chaff, charring, flower, hearts, molars, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

boxplot.OutCoe Boxplot of morphometric coefficients

Description

Explores the distribution of coefficient values.

Usage

S3 method for class 'OutCoe'
boxplot(x, ...)

Arguments

x the Coe object

... useless here

14 boxplot.PCA

Value

a ggplot2 object

See Also

Other Coe_graphics: hcontrib()

Examples

on OutCoe
bot %>% efourier(9) %>% rm_harm(1) %>% boxplot()

data(olea)
op <- opoly(olea)
boxplot(op)

boxplot.PCA Boxplot on PCA objects

Description

Boxplot on PCA objects

Usage

S3 method for class 'PCA'
boxplot(x, fac = NULL, nax, ...)

Arguments

x PCA, typically obtained with PCA

fac factor, or a name or the column id from the $fac slot

nax the range of PC to plot (1 to 99pc total variance by default)

... useless here

Value

a ggplot object

Examples

bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
boxplot(bot.p)
p <- boxplot(bot.p, 1)
#p + theme_minimal() + scale_fill_grey()
#p + facet_wrap(~PC, scales = "free")

breed 15

breed Jitters Coe (and others) objects

Description

This methods applies column-wise on the coe of any Coe object but relies on a function that can
be used on any matrix. It simply uses rnorm with the mean and sd calculated for every column
(or row). For a Coe object, on every colum, randomly generates coefficients values centered on the
mean of the column, and with a sd equals to it standard deviates multiplied by rate.

Usage

breed(x, ...)

Default S3 method:
breed(x, fac, margin = 2, size, rate = 1, ...)

S3 method for class 'Coe'
breed(x, fac, size, rate = 1, ...)

Arguments

x the object to permute

... useless here

fac a column, a formula or a column id from $fac

margin numeric whether 1 or 2 (rows or columns)

size numeric the required size for the final object, same size by default

rate numeric the number of sd for rnorm, 1 by default.

Value

a Coe object of same class

See Also

Other farming: perm()

Examples

m <- matrix(1:12, nrow=3)
breed(m, margin=2, size=4)
breed(m, margin=1, size=10)

bot.f <- efourier(bot, 12)
bot.m <- breed(bot.f, size=80)
bot.m %>% PCA %>% plot

16 bridges

breed fac wise
bot.f %>% breed(~type, size=50) %>% PCA %>% plot(~type)

bridges Convert between different classes

Description

Convert between different classes

Usage

l2m(l)

m2l(m)

d2m(d)

m2d(m)

l2a(l)

a2l(a)

a2m(a)

m2a(m)

m2ll(m, index = NULL)

Arguments

l list with x and y coordinates as components

m matrix of (x; y) coordinates

d data.frame with two columns

a array of (x; y) coordinates

index numeric, the number of coordinates for every slice

Value

the data in the required class

Note

a2m/m2a change, by essence, the dimension of the data. m2ll is used internally to hanle coo and cur
in Ldk objects but may be useful elsewhere

calibrate_deviations 17

See Also

Other bridges functions: as_df(), complex, export()

Examples

matrix/list
wings[1] %>% coo_sample(4) %>%

m2l() %T>% print %>% # matrix to list
l2m() # and back

data.frame/matrix
wings[1] %>% coo_sample(4) %>%

m2d() %T>% print %>% # matrix to data.frame
d2m # and back

list/array
wings %>% slice(1:2) %$%
coo %>% l2a %T>% print %>% # list to array
a2l # and back

array/matrix
wings %>% slice(1:2) %$%
l2a(coo) %>% # and array (from a list)
a2m %T>% print %>% # to matrix
m2a # and back

m2ll
m2ll(wings[1], c(6, 4, 3, 5)) # grab slices and coordinates

calibrate_deviations Quantitative calibration, through deviations, for Out and Opn objects

Description

Calculate deviations from original and reconstructed shapes using a range of harmonic number.

Usage

calibrate_deviations()

calibrate_deviations_efourier(
x,
id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

18 calibrate_deviations

)

calibrate_deviations_tfourier(
x,
id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

)

calibrate_deviations_rfourier(
x,
id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

)

calibrate_deviations_sfourier(
x,
id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

)

calibrate_deviations_npoly(
x,
id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

)

calibrate_deviations_opoly(
x,

calibrate_deviations 19

id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

)

calibrate_deviations_dfourier(
x,
id = 1,
range,
norm.centsize = TRUE,
dist.method = edm_nearest,
interpolate.factor = 1,
dist.nbpts = 120,
plot = TRUE

)

Arguments

x and Out or Opn object on which to calibrate_deviations

id the shape on which to perform calibrate_deviations

range vector of harmonics (or degree for opoly and npoly on Opn) on which to perform
calibrate_deviations. If not provided, the harmonics corresponding to 0.9, 0.95
and 0.99% of harmonic power are used.

norm.centsize logical whether to normalize deviation by the centroid size

dist.method a method such as edm_nearest to calculate deviations
interpolate.factor

a numeric to increase the number of points on the original shape (1 by default)

dist.nbpts numeric the number of points to use for deviations calculations

plot logical whether to print the graph (FALSE is you just want the calculations)

Details

Note that from version 1.1, the calculation changed and fixed a problem. Before, the ’best’ pos-
sible shape was calculated using the highest possible number of harmonics. This worked well for
efourier but not for others (eg rfourier, tfourier) as they are known to be unstable with high num-
ber of harmonics. From now on, Momocs uses the ’real’ shape, as it is (so it must be centered)
and uses coo_interpolate to produce interpolate.factor times more coordinates as the shape has
and using the default dist.method, eg edm_nearest, the latter finds the euclidean distance, for each
point on the reconstructed shape, the closest point on this interpolated shape. interpolate.factor
being set to 1 by default, no interpolation will be made in you do not ask for it. Note, that interpo-
lation to decrease artefactual errors may also be done outside calibrate_deviations and will be
probably be removed from it in further versions.

Note also that this code is quite old now and would need a good review, planned for 2018.

20 calibrate_harmonicpower

For *poly methods on Opn objects, the deviations are calculated from a degree 12 polynom.

Value

a ggplot object and the full list of intermediate results. See examples.

See Also

Other calibration: calibrate_harmonicpower(), calibrate_r2(), calibrate_reconstructions

Examples

b5 <- slice(bot, 1:5) #for the sake of speed
b5 %>% calibrate_deviations_efourier()
b5 %>% calibrate_deviations_rfourier()
b5 %>% calibrate_deviations_tfourier()
b5 %>% calibrate_deviations_sfourier()

o5 <- slice(olea, 1:5) #for the sake of speed
o5 %>% calibrate_deviations_opoly()
o5 %>% calibrate_deviations_npoly()
o5 %>% calibrate_deviations_dfourier()

calibrate_harmonicpower

Quantitative calibration, through harmonic power, for Out and Opn
objects

Description

Estimates the number of harmonics required for the four Fourier methods implemented in Momocs:
elliptical Fourier analysis (see efourier), radii variation analysis (see rfourier) and tangent angle
analysis (see tfourier) and discrete Fourier transform (see dfourier). It returns and can plot cumu-
lated harmonic power whether dropping the first harmonic or not, and based and the maximum
possible number of harmonics on the Coo object.

Usage

calibrate_harmonicpower()

calibrate_harmonicpower_efourier(
x,
id = 1:length(x),
nb.h,
drop = 1,
thresh = c(90, 95, 99, 99.9),
plot = TRUE

calibrate_harmonicpower 21

)

calibrate_harmonicpower_rfourier(
x,
id = 1:length(x),
nb.h,
drop = 1,
thresh = c(90, 95, 99, 99.9),
plot = TRUE

)

calibrate_harmonicpower_tfourier(
x,
id = 1:length(x),
nb.h,
drop = 1,
thresh = c(90, 95, 99, 99.9),
plot = TRUE

)

calibrate_harmonicpower_sfourier(
x,
id = 1:length(x),
nb.h,
drop = 1,
thresh = c(90, 95, 99, 99.9),
plot = TRUE

)

calibrate_harmonicpower_dfourier(
x,
id = 1:length(x),
nb.h,
drop = 1,
thresh = c(90, 95, 99, 99.9),
plot = TRUE

)

Arguments

x a Coo of Opn object

id the shapes on which to perform calibrate_harmonicpower. All of them by default

nb.h numeric the maximum number of harmonic, on which to base the cumsum

drop numeric the number of harmonics to drop for the cumulative sum

thresh vector of numeric for drawing horizontal lines, and also used for minh below

plot logical whether to plot the result or simply return the matrix Silent message and
progress bars (if any) with options("verbose"=FALSE).

22 calibrate_r2

Details

The power of a given harmonic n is calculated as follows for elliptical Fourier analysis and the n-th
harmonic: HarmonicPowern

A2
n+B2

n+C2
n+D2

n

2 and as follows for radii variation and tangent angle:

HarmonicPowern =
A2

n+B2
n+C2

n+D2
n

2

Value

returns a list with component:

• gg a ggplot object, q the quantile matrix

• minh a quick summary that returns the number of harmonics required to achieve a certain
proportion of the total harmonic power.

See Also

Other calibration: calibrate_deviations(), calibrate_r2(), calibrate_reconstructions

Examples

b5 <- bot %>% slice(1:5)
b5 %>% calibrate_harmonicpower_efourier(nb.h=12)
b5 %>% calibrate_harmonicpower_rfourier(nb.h=12)
b5 %>% calibrate_harmonicpower_tfourier(nb.h=12)
b5 %>% calibrate_harmonicpower_sfourier(nb.h=12)

on Opn
olea %>% slice(1:5) %>%

calibrate_harmonicpower_dfourier(nb.h=12)

let customize the ggplot
library(ggplot2)
cal <- b5 %>% calibrate_harmonicpower_efourier(nb.h=12)
cal$gg + theme_minimal() +
coord_cartesian(xlim=c(3.5, 12.5), ylim=c(90, 100)) +
ggtitle("Harmonic power calibration")

calibrate_r2 Quantitative r2 calibration for Opn objects

Description

Estimates the r2 to calibrate the degree for npoly and opoly methods. Also returns a plot

calibrate_r2 23

Usage

calibrate_r2()

calibrate_r2_opoly(
Opn,
id = 1:length(Opn),
degree.range = 1:8,
thresh = c(0.9, 0.95, 0.99, 0.999),
plot = TRUE,
...

)

calibrate_r2_npoly(
Opn,
id = 1:length(Opn),
degree.range = 1:8,
thresh = c(0.9, 0.95, 0.99, 0.999),
plot = TRUE,
...

)

Arguments

Opn an Opn object

id the ids of shapes on which to calculate r2 (all by default)

degree.range on which to calculate r2

thresh the threshold to return diagnostic

plot logical whether to print the plot

... useless here

Details

May be long, so you can estimate it on a sample either with id here, or one of sample_n or sam-
ple_frac

Value

a ggpot2 object

Note

Silent message and progress bars (if any) with options("verbose"=FALSE).

See Also

Other calibration: calibrate_deviations(), calibrate_harmonicpower(), calibrate_reconstructions

24 calibrate_reconstructions

Examples

olea %>% slice(1:5) %>% #for the sake of spped
calibrate_r2_opoly(degree.range=1:5, thresh=c(0.9, 0.99))

olea %>% slice(1:5) %>% #for the sake of spped
calibrate_r2_npoly(degree.range=1:5, thresh=c(0.9, 0.99))

calibrate_reconstructions

Calibrate using reconstructed shapes

Description

Calculate and displays reconstructed shapes using a range of harmonic number. Compare them
visually with the maximal fit. This explicitely demonstrates how robust efourier is compared to
tfourier and rfourier.

Usage

calibrate_reconstructions_efourier(x, id, range = 1:9)

calibrate_reconstructions_rfourier(x, id, range = 1:9)

calibrate_reconstructions_tfourier(x, id, range = 1:9)

calibrate_reconstructions_sfourier(x, id, range = 1:9)

calibrate_reconstructions_npoly(
x,
id,
range = 2:10,
baseline1 = c(-1, 0),
baseline2 = c(1, 0)

)

calibrate_reconstructions_opoly(
x,
id,
range = 2:10,
baseline1 = c(-1, 0),
baseline2 = c(1, 0)

)

calibrate_reconstructions_dfourier(
x,
id,

calibrate_reconstructions 25

range = 2:10,
baseline1 = c(-1, 0),
baseline2 = c(1, 0)

)

Arguments

x the Coo object on which to calibrate_reconstructions

id the shape on which to perform calibrate_reconstructions

range vector of harmonics on which to perform calibrate_reconstructions

baseline1 (x; y) coordinates for the first point of the baseline

baseline2 (x; y) coordinates for the second point of the baseline

Value

a ggplot object and the full list of intermediate results. See examples.

See Also

Other calibration: calibrate_deviations(), calibrate_harmonicpower(), calibrate_r2()

Examples

On Out
shapes %>%

calibrate_reconstructions_efourier(id=1, range=1:6)

you may prefer efourier...
shapes %>%

calibrate_reconstructions_tfourier(id=1, range=1:6)

#' you may prefer efourier...
shapes %>%

calibrate_reconstructions_rfourier(id=1, range=1:6)

#' you may prefer efourier... # todo
#shapes %>%
calibrate_reconstructions_sfourier(id=5, range=1:6)

On Opn
olea %>%

calibrate_reconstructions_opoly(id=1)

olea %>%
calibrate_reconstructions_npoly(id=1)

olea %>%
calibrate_reconstructions_dfourier(id=1)

26 charring

chaff Data: Landmark and semilandmark coordinates on cereal glumes

Description

Data: Landmark and semilandmark coordinates on cereal glumes

Format

An Ldk object with 21 configurations of landmarks and semi-landmarks (4 partitions) sampled on
cereal glumes

Source

Research support was provided by the European Research Council (Evolutionary Origins of Agri-
culture (grant no. 269830-EOA) PI: Glynis Jones, Dept of Archaeology, Sheffield, UK. Data col-
lected by Emily Forster.

See Also

Other datasets: apodemus, bot, charring, flower, hearts, molars, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

charring Data: Outline coordinates from an experimental charring on cereal
grains

Description

Data: Outline coordinates from an experimental charring on cereal grains

Format

An Out object with 18 grains, 3 views on each, for 2 cereal species, charred at different temperatures
for 6 hours (0C (no charring), 230C and 260C).

Source

Research support was provided by the European Research Council (Evolutionary Origins of Agri-
culture (grant no. 269830-EOA) PI: Glynis Jones, Dept of Archaeology, Sheffield, UK. Data col-
lected by Emily Forster.

See Also

Other datasets: apodemus, bot, chaff, flower, hearts, molars, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

chop 27

chop Split to several objects based on a factor

Description

Rougher slicing that accepts a classifier ie a column name from the $fac on Momocs classes.
Returns a named (after every level) list that can be lapply-ed and combined. See examples.

Usage

chop(.data, fac)

Arguments

.data a Coo or Coe object

fac a column name from the $fac

Value

a named list of Coo or Coe objects

See Also

Other handling functions: arrange(), at_least(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), slice(), subsetize()

Examples

olea %>%
filter(var == "Aglan") %>% # to have a balanced nb of 'view'
chop(~view) %>% # split into a list of 2
npoly %>% # separately apply npoly

strict equivalent to lapply(npoly)
combine %>% # recombine
PCA %>% plot # an illustration of the 2 views
treated separately

28 classification_metrics

classification_metrics

Calculate classification metrics on a confusion matrix

Description

In some cases, the class correctness or the proportion of correctly classified individuals is not
enough, so here are more detailed metrics when working on classification.

Usage

classification_metrics(x)

Arguments

x a table or an LDA object

Value

a list with the following components is returned:

1. accuracy the fraction of instances that are correctly classified
2. macro_prf data.frame containing precision (the fraction of correct predictions for a cer-

tain class); recall, the fraction of instances of a class that were correctly predicted; f1 the
harmonic mean (or a weighted average) of precision and recall.

3. macro_avg, just the average of the three macro_prf indices
4. ova a list of one-vs-all confusion matrices for each class
5. ova_sum a single of all ova matrices
6. kappa measure of agreement between the predictions and the actual labels

See Also

The pages below are of great interest to understand these metrics. The code used is partley derived
from the Revolution Analytics blog post (with their authorization). Thanks to them!

1. https://en.wikipedia.org/wiki/Precision_and_recall

2. https://blog.revolutionanalytics.com/2016/03/com_class_eval_metrics_r.html

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MDS(),
MSHAPES(), NMDS(), PCA()

Examples

some morphometrics on 'hearts'
hearts %>% fgProcrustes(tol=1) %>%
coo_slide(ldk=1) %>% efourier(norm=FALSE) %>% PCA() %>%
now the LDA and its summary
LDA(~aut) %>% classification_metrics()

https://en.wikipedia.org/wiki/Precision_and_recall

CLUST 29

CLUST Hierarchical clustering

Description

Performs hierarchical clustering through dist and hclust. So far it is mainly a wrapper around these
two functions, plus plotting using the dendextend package facilities.

Usage

CLUST(x, ...)

Default S3 method:
CLUST(x, ...)

S3 method for class 'Coe'
CLUST(
x,
fac,
type = c("horizontal", "vertical", "fan")[1],
k,
dist_method = "euclidean",
hclust_method = "complete",
retain = 0.99,
labels,
lwd = 1/4,
cex = 1/2,
palette = pal_qual,
...

)

Arguments

x a Coe or PCA object

... useless here

fac factor specification for fac_dispatcher

type character one of c("horizontal", "vertical", "fan") (default: horizontal)

k numeric if provided and greater than 1, cut the tree into this number of groups

dist_method to feed dist’s method argument, that is one of euclidean (default), maximum,
manhattan, canberra, binary or minkowski.

hclust_method to feed hclust’s method argument, one of ward.D, ward.D2, single, complete
(default), average, mcquitty, median or centroid.

retain number of axis to retain if a PCA object is passed. If a number < 1 is passed,
then the number of PCs retained will be enough to capture this proportion of
variance via scree_min

30 Coe

labels factor specification for labelling tips and to feed fac_dispatcher

lwd for branches (default: 0.25)

cex for labels (default: 1)

palette one of available palettes

Value

a ggplot plot

See Also

Other multivariate: KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MDS(), MSHAPES(),
NMDS(), PCA(), classification_metrics()

Examples

On Coe
bf <- bot %>% efourier(6)
CLUST(bf)
with a factor and vertical
CLUST(bf, ~type, "v")
with some cutting and different dist/hclust methods
CLUST(bf,

dist_method="maximum", hclust_method="average",
labels=~type, k=3, lwd=1, cex=1, palette=pal_manual(c("green", "yellow", "red")))

On PCA
bf %>% PCA %>% CLUST

Coe Coe "super" class

Description

Coe class is the ’parent’ or ’super’ class of OutCoe, OpnCoe, LdkCoe and TraCoe classes.

Usage

Coe(...)

Arguments

... anything and, anyway, this function will simply returns a message.

Coe 31

Details

Useful shortcuts are described below. See browseVignettes("Momocs") for a detail of the design
behind Momocs’ classes.

Coe class is the ’parent’ class of the following ’child’ classes

• OutCoe for coefficients from closed outlines morphometrics

• OpnCoe for coefficients from open outlines morphometrics

• LdkCoe for coefficients from configuration of landmarks morphometrics.

In other words, OutCoe, OpnCoe and LdkCoe classes are all, primarily, Coe objects on which we
define generic and specific methods. See their respective help pages for more help.

You can access all the methods available for Coe objects with methods(class=Coe).

Value

a list of class Coe

See Also

Other classes: Coo(), Ldk(), Opn(), OpnCoe(), Out(), OutCoe(), TraCoe()

Examples

to see all methods for Coe objects.
methods(class='Coe')
to see all methods for OutCoe objects.
methods(class='OutCoe') # same for OpnCoe, LdkCoe, TraCoe

bot.f <- efourier(bot, 12)
bot.f
class(bot.f)
inherits(bot.f, "Coe")

if you want to work directly on the matrix of coefficients
bot.f$coe

#getters
bot.f[1]
bot.f[1:5]

#setters
bot.f[1] <- 1:48
bot.f[1]

bot.f[1:5] <- matrix(1:48, nrow=5, ncol=48, byrow=TRUE)
bot.f[1:5]

An illustration of Momocs design. See also browseVignettes("Momocs")
op <- opoly(olea, 5)
op

32 coeff_rearrange

class(op)
op$coe # same thing

wp <- fgProcrustes(wings, tol=1e-4)
wp
class(wp) # for Ldk methods, LdkCoe objects can also be considered as Coo objects
so you can apply all Ldk methods available.
wp$coe # Procrustes aligned coordinates

coeff_rearrange Rearrange a matrix of (typically Fourier) coefficients

Description

Momocs uses colnamed matrices to store (typically) Fourier coefficients in Coe objects (typi-
cally OutCoe). They are arranged as rank-wise: A1, A2, ..., An, B1, ..., Bn, C1, ..., Cn,
D1, ..., Dn. From other softwares they may arrive as A1, B1, C1, D1, ..., An, Bn, Cn, Dn, this
functions helps to go from one to the other format. In short, this function rearranges column order.
See examples.

Usage

coeff_rearrange(x, by = c("name", "rank")[1])

Arguments

x matrix (with colnames)

by character either "name" (A1, A2, ..) or "rank" (A1, B1, ...)

Value

a Momocs object of same class

Examples

m_name <- m_rank <- matrix(1:32, 2, 16)
this one is ordered by name
colnames(m_name) <- paste0(rep(letters[1:4], each=4), 1:4)
this one is ordered by rank
colnames(m_rank) <- paste0(letters[1:4], rep(1:4, each=4))

m_rank
m_rank %>% coeff_rearrange(by="name")
m_rank %>% coeff_rearrange(by="rank") #no change

m_name
m_name %>% coeff_rearrange(by="name") # no change
m_name %>% coeff_rearrange(by="rank")

coeff_sel 33

coeff_sel Helps to select a given number of harmonics from a numerical vector.

Description

coeff_sel helps to select a given number of harmonics by returning their indices when arranged as
a numeric vector. For instance, harmonic coefficients are arranged in the $coe slot of Coe-objects in
that way: A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn, D1, . . . , D − n after an elliptical Fourier analysis
(see efourier and efourier) while CnandDn harmonic are absent for radii variation and tangent
angle approaches (see rfourier and tfourier respectively). . This function is used internally but
might be of interest elwewhere.

Usage

coeff_sel(retain = 8, drop = 0, nb.h = 32, cph = 4)

Arguments

retain numeric. The number of harmonics to retain.

drop numeric. The number of harmonics to drop

nb.h numeric. The maximum harmonic rank.

cph numeric. Must be set to 2 for rfourier and tfourier were used.

Value

coeff_sel returns indices that can be used to select columns from an harmonic coefficient matrix.
coeff_split returns a named list of coordinates.

Examples

bot.f <- efourier(bot, 32)
coe <- bot.f$coe # the raw matrix
coe
if you want, say the first 8 harmonics but not the first one
retain <- coeff_sel(retain=8, drop=1, nb.h=32, cph=4)
head(coe[, retain])

34 color_palettes

coeff_split Converts a numerical description of harmonic coefficients to a named
list.

Description

coeff_split returns a named list of coordinates from a vector of harmonic coefficients. For in-
stance, harmonic coefficients are arranged in the $coe slot of Coe-objects in that way: A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn, D1, . . . , D−
n after an elliptical Fourier analysis (see efourier and efourier) while CnandDn harmonic are ab-
sent for radii variation and tangent angle approaches (see rfourier and tfourier respectively). This
function is used internally but might be of interest elwewhere.

Usage

coeff_split(cs, nb.h = 8, cph = 4)

Arguments

cs A vector of harmonic coefficients.

nb.h numeric. The maximum harmonic rank.

cph numeric. Must be set to 2 for rfourier and tfourier were used.

Value

Returns a named list of coordinates.

Examples

coeff_split(1:128, nb.h=32, cph=4) # efourier
coeff_split(1:64, nb.h=32, cph=2) # t/r fourier

color_palettes Some color palettes

Description

Colors, colors, colors.

color_palettes 35

Usage

col_summer(n)

col_summer2(n)

col_spring(n)

col_autumn(n)

col_black(n)

col_solarized(n)

col_gallus(n)

col_qual(n)

col_heat(n)

col_hot(n)

col_cold(n)

col_sari(n)

col_india(n)

col_bw(n)

col_grey(n)

Arguments

n the number of colors to generate from the color palette

Value

colors (hexadecimal format)

Note

Among available color palettes, col_solarized is based on Solarized: https://ethanschoonover.
com/solarized/; col_div, col_qual, col_heat, col_cold and col_gallus are based on on Col-
orBrewer2: https://colorbrewer2.org/.

Examples

wheel <- function(palette, n=10){
op <- par(mar=rep(0, 4)) ; on.exit(par(op))

https://ethanschoonover.com/solarized/
https://ethanschoonover.com/solarized/
https://colorbrewer2.org/

36 col_transp

pie(rep(1, n), col=palette(n), labels=NA, clockwise=TRUE)}

Qualitative
wheel(col_qual)
wheel(col_solarized)
wheel(col_summer)
wheel(col_summer2)
wheel(col_spring)
wheel(col_autumn)

Divergent
wheel(col_gallus)
wheel(col_india)

Sequential
wheel(col_heat)
wheel(col_hot)
wheel(col_cold)
wheel(col_sari)
wheel(col_bw)
wheel(col_grey)

Black only for pubs
wheel(col_black)

col_transp Transparency helpers and palettes

Description

To ease transparency handling.

Usage

col_transp(n, col = "#000000", ceiling = 1)

col_alpha(cols, transp = 0)

Arguments

n the number of colors to generate

col a color in hexadecimal format on which to generate levels of transparency

ceiling the maximal opacity (from 0 to 1)

cols on or more colors, provided as hexadecimal values

transp numeric between 0 and 1, the value of the transparency to obtain

Value

colors

combine 37

Examples

x <- col_transp(10, col='#000000')
x
barplot(1:10, col=x, main='a transparent black is grey')

summer10 <- col_summer(10)
summer10
summer10.transp8 <- col_alpha(summer10, 0.8)
summer10.transp8
summer10.transp2 <- col_alpha(summer10, 0.8)
summer10.transp2
x <- 1:10
barplot(x, col=summer10.transp8)
barplot(x/2, col=summer10.transp2, add=TRUE)

combine Combine several objects

Description

Combine Coo objects after a slicing, either manual or using slice or chop. Note that on Coo object,
it combines row-wise (ie, merges shapes as a c would do) ; but on Coe it combines column-wise
(merges coefficients). In the latter case, Coe must have the same number of shapes (not necessarily
the same number of coefficients). Also the $fac of the first Coe is retrieved. A separate version
may come at some point.

Usage

combine(...)

Arguments

... a list of Out(Coe), Opn(Coe), Ldk objects (but of the same class)

Value

a Momocs object of same class

Note

Note that the order of shapes or their coefficients is not checked, so anything with the same number
of rows will be merged.

See Also

Other handling functions: arrange(), at_least(), chop(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), slice(), subsetize()

38 complex

Examples

w <- filter(bot, type=="whisky")
b <- filter(bot, type=="beer")
combine(w, b)
or, if you have many levels
bot_s <- chop(bot, ~type)
bot_s$whisky
note that you can apply something (single function or a more
complex pipe) then combine everyone, since combine also works on lists
eg:
bot_s2 <- efourier(bot_s, 10) # equivalent to lapply(bot_s, efourier, 10)
bot_sf <- combine(bot_s2)

pipe style
efourier(bot_s, 10) %>% combine()

complex Convert complex to/from cartesian coordinates

Description

Convert complex to/from cartesian coordinates

Usage

cpx2coo(Z)

coo2cpx(coo)

Arguments

Z coordinates expressed in the complex form

coo coordinates expressed in the cartesian form

Value

coordinates expressed in the cartesian/complex form

See Also

Other bridges functions: as_df(), bridges, export()

Examples

shapes[4] %>% # from cartesian
coo_sample(24) %>%
coo2cpx() %T>% # to complex
cpx2coo() # and back

Coo 39

Coo Coo "super" class

Description

Coo class is the ’parent’ or ’super’ class of Out, Opn and Ldk classes.

Usage

Coo(...)

Arguments

... anything and, anyway, this function will simply returns a message.

Details

Useful shortcuts are described below. See browseVignettes("Momocs") for a detail of the design
behind Momocs’ classes.

Coo class is the ’parent’ class of the following ’child’ classes

• Out for closed outlines

• Opn for open outlines

• Ldk for configuration of landmarks

Since all ’child classes’ of them handle (x; y) coordinates among other generic methods, but also all
have their specificity, this architecture allow to recycle generic methods and to use specific methods.

In other words, Out, Opn and Ldk classes are all, primarily, Coo objects on which we define generic
and specific methods. See their respective help pages for more help.

Coo objects all have the following components:

• $coo which is a list of matrices for coordinates
• $fac a data_frame for covariates (if any). You can provide this data_frame directly, as long

as it has as many rows as there are matrices in $coo (see examples), or use an helper function
such as lf_structure.

You can access all the methods available for Coo objects with methods(class=Coo).

Value

a list of class Coo

See Also

Other classes: Coe(), Ldk(), Opn(), OpnCoe(), Out(), OutCoe(), TraCoe()

40 Coo

Examples

to see all methods for Coo objects.
methods(class='Coo')

to see all methods for Out objects.
methods(class='Out') # same for Opn and Ldk

Let's take an Out example. But all methods shown here
work on Ldk (try on 'wings') and on Opn ('olea')
bot

Primarily a 'Coo' object, but also an 'Out'
class(bot)
inherits(bot, "Coo")
panel(bot)
stack(bot)

Getters (you can also use it to set data)
bot[1] %>% coo_plot()
bot[1:5] %>% str()

Setters
bot[1] <- shapes[4]
panel(bot)

bot[1:5] <- shapes[4:8]
panel(bot)

access the different components
$coo coordinates
head(bot$coo)
$fac grouping factors
head(bot$fac)
or if you know the name of the column of interest
bot$type
table
table(bot$fac)
an internal view of an Out object
str(bot)

subsetting
see ?filter, ?select, and their 'see also' section for the
complete list of dplyr-like verbs implemented in Momocs

length(bot) # the number of shapes
names(bot) # access all individual names
bot2 <- bot
names(bot2) <- paste0('newnames', 1:length(bot2)) # define new names

Add a $fac from scratch
coo <- bot[1:5] # a list of five matrices
length(coo)

coo_align 41

sapply(coo, class)

fac <- data.frame(name=letters[1:5], value=c(5:1))
Then you have to define the subclass using the right builder
here we have outlines, so we use Out
x <- Out(coo, fac)
x$coo
x$fac

coo_align Aligns coordinates

Description

Aligns the coordinates along their longer axis using var-cov matrix and eigen values.

Usage

coo_align(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other aligning functions: coo_aligncalliper(), coo_alignminradius(), coo_alignxax()

Other coo_ utilities: coo_aligncalliper(), coo_alignminradius(), coo_alignxax(), coo_baseline(),
coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

coo_plot(bot[1])
coo_plot(coo_align(bot[1]))

on a Coo
b <- bot %>% slice(1:5) # for speed sake
stack(coo_align(b))

42 coo_aligncalliper

coo_aligncalliper Aligns shapes along their ’calliper length’

Description

And returns them registered on bookstein coordinates. See coo_bookstein.

Usage

coo_aligncalliper(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates, or any Coo object.

See Also

Other aligning functions: coo_align(), coo_alignminradius(), coo_alignxax()

Other coo_ utilities: coo_align(), coo_alignminradius(), coo_alignxax(), coo_baseline(),
coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

b <- bot[1]
coo_plot(b)
coo_plot(coo_aligncalliper(b))

b <- bot %>% slice(1:5) # for speed sake
bot.al <- coo_aligncalliper(b)
stack(bot.al)

coo_alignminradius 43

coo_alignminradius Aligns shapes using their shortest radius

Description

And returns them slided with the first coordinate on the east. May be used as an aligning strategy
on shapes with a clear ’invaginate’ part.

Usage

coo_alignminradius(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other aligning functions: coo_align(), coo_aligncalliper(), coo_alignxax()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignxax(), coo_baseline(),
coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

b <- bot %>% slice(1:5) # for speed sake
stack(coo_alignminradius(b))

44 coo_alignxax

coo_alignxax Aligns shapes along the x-axis

Description

Align the longest axis of a shape along the x-axis.

Usage

coo_alignxax(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Details

If some shapes are upside-down (or mirror of each others), try redefining a new starting point
(eg with coo_slidedirection) before the alignment step. This may solve your problem because
coo_calliper orders the $arr.ind used by coo_aligncalliper.

Value

a matrix of (x; y) coordinates, or any Coo object.

See Also

Other aligning functions: coo_align(), coo_aligncalliper(), coo_alignminradius()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_baseline(),
coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

b <- bot[1]
coo_plot(b)
coo_plot(coo_alignxax(b))

coo_angle_edges 45

coo_angle_edges Calculates the angle of every edge of a shape

Description

Returns the angle (in radians) of every edge of a shape,

Usage

coo_angle_edges(coo, method = c("atan2", "acos")[1])

Default S3 method:
coo_angle_edges(coo, method = c("atan2", "acos")[1])

S3 method for class 'Coo'
coo_angle_edges(coo, method = c("atan2", "acos")[1])

Arguments

coo a matrix or a list of (x; y) coordinates or any Coo

method ’atan2’ (or ’acos’) for a signed (or not) angle.

Value

numeric the angles in radians for every edge.

Note

coo_thetapts is deprecated and will be removed in future releases.

See Also

Other coo_ descriptors: coo_angle_tangent(), coo_area(), coo_boundingbox(), coo_chull(),
coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(), coo_length(),
coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

b <- coo_sample(bot[1], 64)
coo_angle_edges(b)

46 coo_angle_tangent

coo_angle_tangent Calculates the tangent angle along the perimeter of a shape

Description

Calculated using complex numbers and returned in radians minus the first one (modulo 2*pi).

Usage

coo_angle_tangent(coo)

Default S3 method:
coo_angle_tangent(coo)

S3 method for class 'Coo'
coo_angle_tangent(coo)

coo_tangle(coo)

Arguments

coo a matrix of coordinates or any Coo

Value

numeric, the tangent angle along the perimeter, or a list of those for Coo

See Also

tfourier

Other coo_ descriptors: coo_angle_edges(), coo_area(), coo_boundingbox(), coo_chull(),
coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(), coo_length(),
coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

b <- bot[1]
phi <- coo_angle_tangent(b)
phi2 <- coo_angle_tangent(coo_smooth(b, 2))
plot(phi, type='l')
plot(phi2, type='l', col='red') # ta is very sensible to noise

on Coo
bot %>% coo_angle_tangent

coo_area 47

coo_area Calculates the area of a shape

Description

Calculates the area for a (non-crossing) shape.

Usage

coo_area(coo)

Arguments

coo a matrix of (x; y) coordinates.

Value

numeric, the area.

Note

Using area.poly in gpc package is a good idea, but their licence impedes Momocs to rely on it.
but here is the function to do it, once gpc is loaded: area.poly(as(coo, 'gpc.poly'))

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_boundingbox(), coo_chull(),
coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(), coo_length(),
coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

coo_area(bot[1])
for the distribution of the area of the bottles dataset
hist(sapply(bot$coo, coo_area), breaks=10)

48 coo_baseline

coo_arrows Plots (lollipop) differences between two configurations

Description

Draws ’arrows’ between two configurations.

Usage

coo_arrows(coo1, coo2, length = coo_centsize(coo1)/15, angle = 20, ...)

Arguments

coo1 A list or a matrix of coordinates.

coo2 A list or a matrix of coordinates.

length a length for the arrows.

angle an angle for the arrows

... optional parameters to fed arrows.

Value

a plot

See Also

Other plotting functions: coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(), coo_ruban(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Examples

coo_arrows(coo_sample(olea[3], 50), coo_sample(olea[6], 50))
title("Hi there !")

coo_baseline Register new baselines

Description

A non-exact baseline registration on t1 and t2 coordinates, for the ldk1-th and ldk2-th points. By
default it returns Bookstein’s coordinates.

Usage

coo_baseline(coo, ldk1, ldk2, t1, t2)

coo_bookstein 49

Arguments

coo matrix of (x; y) coordinates or any Coo object.

ldk1 numeric the id of the first point of the new baseline

ldk2 numeric the id of the second point of the new baseline

t1 numeric the (x; y) coordinates of the 1st point of the new baseline

t2 numeric the (x; y) coordinates of the 2nd point of the new baseline

Value

a matrix of (x; y) coordinates or a Coo object.

See Also

Other baselining functions: coo_bookstein()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

h <- hearts %>% slice(1:5) # for speed sake
stack(h)
stack(coo_baseline(h, 2, 4, c(-1, 0), c(1, 1)))

coo_bookstein Register Bookstein’s coordinates

Description

Registers a new baseline for the shape, with the ldk1-th and ldk2-th points being set on (x =
−0.5; y = 0) and (x = 0.5; y = 0), respectively.

Usage

coo_bookstein(coo, ldk1, ldk2)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

ldk1 numeric the id of the first point of the new baseline (the first, by default)

ldk2 numeric the id of the second point of the new baseline (the last, by default)

50 coo_boundingbox

Details

For Out, it tries to do it using $ldk slot. Also the case for Opn, but if no landmark is defined, it will
do it on the first and the last point of the shape.

For Out and Opn defines the first landmark as the first point of the new shapes with coo_slide.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other baselining functions: coo_baseline()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_boundingbox(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

h <- hearts %>% slice(1:5) # for the sake of speed
stack(h)
stack(coo_bookstein(h, 2, 4))
h <- hearts[1]
coo_plot(h)
coo_plot(coo_bookstein(h, 20, 57), border='red')

coo_boundingbox Calculates coordinates of the bounding box

Description

Calculates coordinates of the bounding box

Usage

coo_boundingbox(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

data.frame with coordinates of the bounding box

coo_calliper 51

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_calliper(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()
Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_chull(),
coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(), coo_length(),
coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

bot[1] %>% coo_boundingbox()
bot %>% coo_boundingbox()

coo_calliper Calculates the calliper length

Description

Also called the Feret’s diameter, the longest distance between two points of the shape provided.

Usage

coo_calliper(coo, arr.ind = FALSE)

Arguments

coo a matrix of (x; y) coordinates or any Coo

arr.ind logical, see below.

Value

numeric, the centroid size. If arr.ind=TRUE, a data_frame.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_centdist(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

52 coo_centdist

Examples

b <- bot[1]
coo_calliper(b)
p <- coo_calliper(b, arr.ind=TRUE)
p
p$length
ids <- p$arr_ind[[1]]
coo_plot(b)
segments(b[ids[1], 1], b[ids[1], 2], b[ids[2], 1], b[ids[2], 2], lty=2)

on a Coo
bot %>%
coo_sample(32) %>% # for speed sake
coo_calliper()

bot %>%
coo_sample(32) %>% # for speed sake
coo_calliper(arr.ind=TRUE)

coo_centdist Returns the distance between everypoints and the centroid

Description

For every point of the shape, returns the (centroid-points) distance.

Usage

coo_centdist(coo)

Arguments

coo a matrix of (x; y) coordinates.

Value

a matrix of (x; y) coordinates.

See Also

Other centroid functions: coo_centpos(), coo_centsize()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_center(), coo_centpos(),
coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(), coo_interpolate(),
coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(), coo_nb(), coo_perim(),
coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

coo_center 53

Examples

b <- coo_sample(bot[1], 64)
d <- coo_centdist(b)
barplot(d, xlab="Points along the outline", ylab="Distance to the centroid (pixels)")

coo_center Centers coordinates

Description

Returns a shape centered on the origin. The two functions are strictly equivalent.

Usage

coo_center(coo)

coo_centre(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

coo_plot(bot[1])
same as
coo_plot(coo_centre(bot[1]))
this
coo_plot(coo_center(bot[1]))

on Coo objects
b <- slice(bot, 1:5) # speed sake
stack(slice(b, 1:5))
stack(coo_center(b))

54 coo_centpos

coo_centpos Calculate centroid coordinates

Description

Returns the (x; y) centroid coordinates of a shape.

Usage

coo_centpos(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

(x; y) coordinates of the centroid as a vector or a matrix.

See Also

Other centroid functions: coo_centdist(), coo_centsize()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

b <- bot[1]
coo_plot(b)
xy <- coo_centpos(b)
points(xy[1], xy[2], cex=2, col='blue')
on a Coo
coo_centpos(bot)

coo_centsize 55

coo_centsize Calculates centroid size

Description

Calculates centroid size

Usage

coo_centsize(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Details

This function can be used to integrate size - if meaningful - to Coo objects. See also coo_length and
rescale.

Value

numeric, the centroid size.

See Also

Other centroid functions: coo_centdist(), coo_centpos()

Examples

coo_centsize(bot[1])
on a Coo
coo_centsize(bot)
add it to $fac
mutate(bot, size=coo_centsize(bot))

coo_check Checks shapes

Description

A simple utility, used internally, mostly in the coo functions and methods. Returns a matrix of
coordinates, when passed with either a list or a matrix of coordinates.

Usage

coo_check(coo)

56 coo_chull

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

matrix of (x; y) coordinates or a Coo object.

Examples

#coo_check('Not a shape')
#coo_check(iris)
#coo_check(matrix(1:10, ncol=2))
#coo_check(list(x=1:5, y=6:10))

coo_chull Calculates the (recursive) convex hull of a shape

Description

coo_chull returns the ids of points that define the convex hull of a shape. A simple wrapper around
chull, mainly used in graphical functions.

Usage

coo_chull(coo)

Default S3 method:
coo_chull(coo)

S3 method for class 'Coo'
coo_chull(coo)

coo_chull_onion(coo, close = TRUE)

Default S3 method:
coo_chull_onion(coo, close = TRUE)

S3 method for class 'Coo'
coo_chull_onion(coo, close = TRUE)

Arguments

coo a matrix of (x; y) coordinates or any Coo.

close logical whether to close onion rings (TRUE by default)

Details

coo_chull_onion recursively find their convex hull, remove them, until less than 3 points are left.

coo_circularity 57

Value

coo_chull returns a matrix of points defining the convex hull of the shape; a list for Coo.
coo_chull_onion returns a list of successive onions rings, and a list of lists for Coo.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(), coo_length(),
coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

coo_chull
h <- coo_sample(hearts[4], 32)
coo_plot(h)
ch <- coo_chull(h)
lines(ch, col='red', lty=2)

bot %>% coo_chull

coo_chull_onion
x <- bot %>% efourier(6) %>% PCA
all_whisky_points <- x %>% as_df() %>% filter(type=="whisky") %>% select(PC1, PC2)
plot(x, ~type, eig=FALSE)
peeling_the_whisky_onion <- all_whisky_points %>% as.matrix %>% coo_chull_onion()
you may need to par(xpd=NA) to ensure all segments
even those outside the graphical window are drawn
peeling_the_whisky_onion$coo %>% lapply(coo_draw)
simulated data
xy <- replicate(2, rnorm(50))
coo_plot(xy, poly=FALSE)
xy %>% coo_chull_onion() %$% coo %>%
lapply(polygon, col="#00000022")

coo_circularity Calculates the Haralick’s circularity of a shape

Description

coo_circularity calculates the ’circularity measure’. Also called ’compactness’ and ’shape fac-
tor’ sometimes. coo_circularityharalick calculates Haralick’s circularity which is less sensible
to digitalization noise than coo_circularity. coo_circularitynorm calculates ’circularity’, also
called compactness and shape factor, but normalized to the unit circle.

58 coo_circularity

Usage

coo_circularity(coo)

Default S3 method:
coo_circularity(coo)

S3 method for class 'Coo'
coo_circularity(coo)

coo_circularityharalick(coo)

Default S3 method:
coo_circularityharalick(coo)

S3 method for class 'Coo'
coo_circularityharalick(coo)

coo_circularitynorm(coo)

Default S3 method:
coo_circularitynorm(coo)

S3 method for class 'Coo'
coo_circularitynorm(coo)

Arguments

coo a matrix of (x; y) coordinates or any Coo

Value

numeric for single shapes, list for Coo of the corresponding circularity measurement.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Com-
puter Vision. 177-196.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_convexity(), coo_eccentricity, coo_elongation(), coo_length(), coo_lw(),
coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(), coo_tac(),
coo_width()

Examples

coo_circularity
bot[1] %>% coo_circularity()

coo_close 59

bot %>%
slice(1:5) %>% # for speed sake only
coo_circularity

coo_circularityharalick
bot[1] %>% coo_circularityharalick()
bot %>%

slice(1:5) %>% # for speed sake only
coo_circularityharalick

coo_circularitynorm
bot[1] %>% coo_circularitynorm()
bot %>%

slice(1:5) %>% # for speed sake only
coo_circularitynorm

coo_close Closes/uncloses shapes

Description

Returns a closed shape from (un)closed shapes. See also coo_unclose.

Returns a unclosed shape from (un)closed shapes. See also coo_close.

Usage

coo_close(coo)

coo_unclose(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates, or a Coo object.

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),

60 coo_convexity

coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

x <- (matrix(1:10, ncol=2))
x2 <- coo_close(x)
x3 <- coo_unclose(x2)
x
coo_is_closed(x)
x2
coo_is_closed(x2)
x3
coo_is_closed(x3)
x <- (matrix(1:10, ncol=2))
x2 <- coo_close(x)
x3 <- coo_unclose(x2)
x
coo_is_closed(x)
x2
coo_is_closed(x2)
x3
coo_is_closed(x3)

coo_convexity Calculates the convexity of a shape

Description

Calculated using a ratio of the eigen values (inertia axis)

Usage

coo_convexity(coo)

Arguments

coo a matrix of (x; y) coordinates.

coo_down 61

Value

numeric for a single shape, list for a Coo

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Com-
puter Vision. 177-196.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_eccentricity, coo_elongation(), coo_length(), coo_lw(),
coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(), coo_tac(),
coo_width()

Examples

coo_convexity(bot[1])
bot %>%

slice(1:3) %>% # for speed sake only
coo_convexity()

coo_down coo_down Retains coordinates with negative y-coordinates

Description

Useful when shapes are aligned along the x-axis (e.g. because of a bilateral symmetry) and when
one wants to retain just the lower side.

Usage

coo_down(coo, slidegap = FALSE)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

slidegap logical whether to apply coo_slidegap after coo_down

Value

a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)

62 coo_draw

Note

When shapes are "sliced" along the x-axis, it usually results on open curves and thus to huge/artefactual
gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples
there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which
is done automatically.

See Also

Other opening functions: coo_left(), coo_right(), coo_up()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_dxy(), coo_extract(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

b <- coo_alignxax(bot[1])
coo_plot(b)
coo_draw(coo_down(b), border='red')

coo_draw Adds a shape to the current plot

Description

coo_draw is simply a coo_plot with plot.new=FALSE, ie that adds a shape on the active plot.

Usage

coo_draw(coo, ...)

Arguments

coo a list or a matrix of coordinates.

... optional parameters for coo_plot

Value

a drawing on the last plot

coo_draw_rads 63

See Also

Other plotting functions: coo_arrows(), coo_listpanel(), coo_lolli(), coo_plot(), coo_ruban(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Examples

b1 <- bot[4]
b2 <- bot[5]
coo_plot(b1)
coo_draw(b2, border='red') # all coo_plot arguments will work for coo_draw

coo_draw_rads Draw radii to the current plot

Description

Given a shape, all centroid-points radii are drawn using segments that can be passed with options

Usage

coo_draw_rads(coo, ...)

Arguments

coo a shape

... arguments to feed segments

Value

a drawing on the last plot

Examples

shp <- shapes[4] %>% coo_sample(24) %T>% coo_plot
coo_draw_rads(shp, col=col_summer(24))

64 coo_dxy

coo_dxy Calculate abscissa and ordinate on a shape

Description

A simple wrapper to calculate dxi - dx1 and dyi - dx1.

Usage

coo_dxy(coo)

Arguments

coo a matrix (or a list) of (x; y) coordinates or any Coo

Value

a data.frame with two components dx and dy for single shapes or a list of such data.frames
for Coo

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_extract(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

coo_dxy(coo_sample(bot[1], 12))

bot %>%
slice(1:5) %>% coo_sample(12) %>% # for readability and speed only
coo_dxy()

coo_eccentricity 65

coo_eccentricity Calculates the eccentricity of a shape

Description

coo_eccentricityeigen uses the ratio of the eigen values (inertia axes of coordinates). coo_eccentricityboundingbox
uses the width/length ratio (see coo_lw).

Usage

coo_eccentricityeigen(coo)

Default S3 method:
coo_eccentricityeigen(coo)

S3 method for class 'Coo'
coo_eccentricityeigen(coo)

coo_eccentricityboundingbox(coo)

Default S3 method:
coo_eccentricityboundingbox(coo)

S3 method for class 'Coo'
coo_eccentricityboundingbox(coo)

Arguments

coo a matrix of (x; y) coordinates or any Coo

Value

numeric for single shapes, list for Coo.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Com-
puter Vision. 177-196.

See Also

coo_eccentricityboundingbox

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_elongation(), coo_length(), coo_lw(),
coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(), coo_tac(),
coo_width()

66 coo_elongation

Examples

coo_eccentricityeigen
bot[1] %>% coo_eccentricityeigen()
bot %>%

slice(1:3) %>% # for speed sake only
coo_eccentricityeigen()

coo_eccentricityboundingbox
bot[1] %>% coo_eccentricityboundingbox()
bot %>%

slice(1:3) %>% # for speed sake only
coo_eccentricityboundingbox()

coo_elongation Calculates the elongation of a shape

Description

Calculates the elongation of a shape

Usage

coo_elongation(coo)

Arguments

coo a matrix of (x; y) coordinates.

Value

numeric, the eccentricity of the bounding box

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Com-
puter Vision. 177-196.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_length(), coo_lw(),
coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(), coo_tac(),
coo_width()

Examples

coo_elongation(bot[1])
on Coo
for speed sake
bot %>% slice(1:3) %>% coo_elongation

coo_extract 67

coo_extract Extract coordinates from a shape

Description

Extract ids coordinates from a single shape or a Coo object.

Usage

coo_extract(coo, ids)

Arguments

coo either a matrix of (x; y) coordinates or a Coo object.

ids integer, the ids of points to sample.

Details

It probably only make sense for Coo objects with the same number of coordinates and them being
homologous, typically on Ldk.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other sampling functions: coo_interpolate(), coo_sample(), coo_sample_prop(), coo_samplerr()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_flipx(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

coo_extract(bot[1], c(3, 9, 12)) # or :
bot[1] %>% coo_extract(c(3, 9, 12))

68 coo_flipx

coo_flipx Flips shapes

Description

coo_flipx flips shapes about the x-axis; coo_flipy about the y-axis.

Usage

coo_flipx(coo)

coo_flipy(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates

See Also

Other transforming functions: coo_shearx()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_force2close(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

cat <- shapes[4]
cat <- coo_center(cat)
coo_plot(cat)
coo_draw(coo_flipx(cat), border="red")
coo_draw(coo_flipy(cat), border="blue")

#' # to flip an entire Coo:
shapes2 <- shapes
shapes$coo <- lapply(shapes2$coo, coo_flipx)

coo_force2close 69

coo_force2close Forces shapes to close

Description

An exotic function that distribute the distance between the first and the last points of unclosed
shapes, so that they become closed. May be useful (?) e.g. for t/rfourier methods where recon-
structed shapes may not be closed.

Usage

coo_force2close(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

b <- coo_sample(bot[1], 64)
b <- b[1:40,]
coo_plot(b)
coo_draw(coo_force2close(b), border='red')

70 coo_interpolate

coo_interpolate Interpolates coordinates

Description

Interpolates n coordinates ’among existing points’between’ existing points, along the perimeter of
the coordinates provided and keeping the first point

Usage

coo_interpolate(coo, n)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

n integer, the number fo points to interpolate.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other sampling functions: coo_extract(), coo_sample(), coo_sample_prop(), coo_samplerr()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

b5 <- bot %>% slice(1:5) # for speed sake
stack(b5)
stack(coo_scale(b5))
stack(b5)
stack(coo_interpolate(coo_sample(b5, 12), 120))
coo_plot(bot[1])
coo_plot(coo_interpolate(coo_sample(bot[1], 12), 120))

coo_intersect_angle 71

coo_intersect_angle Nearest intersection between a shape and a segment specified with an
angle

Description

Take a shape, and segment starting on the centroid and having a particular angle, which point is the
nearest where the segment intersects with the shape?

Usage

coo_intersect_angle(coo, angle = 0)

coo_intersect_direction(coo, direction = c("down", "left", "up", "right")[4])

Default S3 method:
coo_intersect_direction(coo, direction = c("down", "left", "up", "right")[4])

S3 method for class 'Coo'
coo_intersect_direction(coo, direction = c("down", "left", "up", "right")[4])

Arguments

coo matrix of (x; y) coordinates or any Coo object.

angle numeric an angle in radians (0 by default).

direction character one of "down", "left", "up", "right" ("right" by default)

Value

numeric the id of the nearest point or a list for Coo See examples.

Note

shapes are always centered before this operation. If you need a simple direction such as (down,
left, up, right)ward, then use coo_intersect_direction which does not need to find an intersec-
tion but relies on coordinates and is about 1000.

See Also

Other coo_ intersect: coo_intersect_segment()

Examples

coo <- bot[1] %>% coo_center %>% coo_scale
coo_plot(coo)
coo %>% coo_intersect_angle(pi/7) %>%

coo[., , drop=FALSE] %>% points(col="red")

72 coo_intersect_segment

many angles
coo_plot(coo)
sapply(seq(0, pi, pi/12),

function(x) coo %>% coo_intersect_angle(x)) -> ids
coo[ids,] %>% points(col="blue")

coo %>%
coo_intersect_direction("down") %>%
coo[.,, drop=FALSE] %>% points(col="orange")

coo_intersect_segment Nearest intersection between a shape and a segment

Description

Take a shape, and an intersecting segment, which point is the nearest of where the segment intersects
with the shape? Most of the time, centering before makes more sense.

Usage

coo_intersect_segment(coo, seg, center = TRUE)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

seg a 2x2 matrix defining the starting and ending points; or a list or a numeric of
length 4.

center logical whether to center the shape (TRUE by default)

Value

numeric the id of the nearest point, a list for Coo. See examples.

See Also

Other coo_ intersect: coo_intersect_angle()

Examples

coo <- bot[1] %>% coo_center %>% coo_scale
seg <- c(0, 0, 2, 2) # passed as a numeric of length(4)
coo_plot(coo)
segments(seg[1], seg[2], seg[3], seg[4])
coo %>% coo_intersect_segment(seg) %T>% print %>%
prints on the console and draw it

coo[., , drop=FALSE] %>% points(col="red")

on Coo

coo_is_closed 73

bot %>%
slice(1:3) %>% # for the sake of speed
coo_center %>%
coo_intersect_segment(matrix(c(0, 0, 1000, 1000), ncol=2, byrow=TRUE))

coo_is_closed Test if shapes are closed

Description

Returns TRUE/FALSE whether the last coordinate of the shapes is the same as the first one.

Usage

coo_is_closed(coo)

is_open(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a single or a vector of logical.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

coo_is_closed(matrix(1:10, ncol=2))
coo_is_closed(coo_close(matrix(1:10, ncol=2)))
coo_is_closed(bot)
coo_is_closed(coo_close(bot))

74 coo_jitter

coo_jitter Jitters shapes

Description

A simple wrapper around jitter.

Usage

coo_jitter(coo, ...)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

... additional parameter for jitter

Value

a matrix of (x; y) coordinates or a Coo object

See Also

get_pairs

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

b <-bot[1]
coo_plot(b, zoom=0.2)
coo_draw(coo_jitter(b, amount=3), border="red")

for a Coo example, see \link{get_pairs}

coo_ldk 75

coo_ldk Defines landmarks interactively

Description

Allows to interactively define a nb.ldk number of landarks on a shape. Used in other facilities to
acquire/manipulate data.

Usage

coo_ldk(coo, nb.ldk, close = FALSE, points = TRUE)

Arguments

coo a matrix or a list of (x; y) coordinates.

nb.ldk integer, the number of landmarks to define

close logical whether to close (typically for outlines)

points logical whether to display points

Value

numeric that corresponds to the closest ids, on the shape, from cliked points.

Examples

Not run:
b <- bot[1]
coo_ldk(b, 3) # run this, and click 3 times
coo_ldk(bot, 2) # this also works on Out

End(Not run)

coo_left Retains coordinates with negative x-coordinates

Description

Useful when shapes are aligned along the y-axis (e.g. because of a bilateral symmetry) and when
one wants to retain just the lower side.

Usage

coo_left(coo, slidegap = FALSE)

76 coo_length

Arguments

coo matrix of (x; y) coordinates or any Coo object.

slidegap logical whether to apply coo_slidegap after coo_left

Value

a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)

Note

When shapes are "sliced" along the y-axis, it usually results on open curves and thus to huge/artefactual
gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples
there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which
is done automatically.

See Also

Other opening functions: coo_down(), coo_right(), coo_up()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

b <- coo_center(bot[1])
coo_plot(b)
coo_draw(coo_left(b), border='red')

coo_length Calculates the length of a shape

Description

Nothing more than coo_lw(coo)[1].

Usage

coo_length(coo)

coo_likely_clockwise 77

Arguments

coo a matrix of (x; y) coordinates or a Coo object

Details

This function can be used to integrate size - if meaningful - to Coo objects. See also coo_centsize
and rescale.

Value

the length (in pixels) of the shape

See Also

coo_lw, coo_width

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

coo_length(bot[1])
coo_length(bot)
mutate(bot, size=coo_length(bot))

coo_likely_clockwise Tests if shapes are (likely) developping clockwise or anticlockwise

Description

Tests if shapes are (likely) developping clockwise or anticlockwise

Usage

coo_likely_clockwise(coo)

Default S3 method:
coo_likely_clockwise(coo)

S3 method for class 'Coo'
coo_likely_clockwise(coo)

coo_likely_anticlockwise(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

78 coo_listpanel

Value

a single or a vector of logical.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_nb(),
coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

shapes[4] %>% coo_sample(64) %>% coo_plot() #clockwise cat
shapes[4] %>% coo_likely_clockwise()
shapes[4] %>% coo_rev() %>% coo_likely_clockwise()

on Coo
shapes %>% coo_likely_clockwise %>% `[`(4)

coo_listpanel Plots sets of shapes.

Description

coo_listpanel plots a list of shapes if passed with a list of coordinates. Mainly used by panel.Coo
functions. If used outside the latter, shapes must be "templated", see coo_template. If you want to
reorder shapes according to a factor, use arrange.

Usage

coo_listpanel(
coo.list,
dim,
byrow = TRUE,
fromtop = TRUE,
cols,
borders,
poly = TRUE,
points = FALSE,
points.pch = 3,
points.cex = 0.2,
points.col = "#333333",
...

)

coo_lolli 79

Arguments

coo.list A list of coordinates

dim A vector of the form (nb.row, nb.cols) to specify the panel display. If miss-
ing, shapes are arranged in a square.

byrow logical. Whether to draw successive shape by row or by col.

fromtop logical. Whether to display shapes from the top of the plotting region.

cols A vector of colors to fill shapes.

borders A vector of colors to draw shape borders.

poly logical whether to use polygon or lines to draw shapes. mainly for use for out-
lines and open outlines.

points logical if poly is set to FALSE whether to add points

points.pch if points is TRUE, a pch for these points

points.cex if points is TRUE, a cex for these points

points.col if points is TRUE, a col for these points

... additional arguments to feed generic plot

Value

Returns (invisibly) a data.frame with position of shapes that can be used for other sophisticated
plotting design.

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_lolli(), coo_plot(), coo_ruban(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Examples

coo_listpanel(bot$coo) # equivalent to panel(bot)

coo_lolli Plots (lollipop) differences between two configurations

Description

Draws ’lollipops’ between two configurations.

Usage

coo_lolli(coo1, coo2, pch = NA, cex = 0.5, ...)

80 coo_lw

Arguments

coo1 A list or a matrix of coordinates.

coo2 A list or a matrix of coordinates.

pch a pch for the points (default to NA)

cex a cex for the points

... optional parameters to fed points and segments.

Value

a drawing on the last plot

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_plot(), coo_ruban(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Examples

coo_lolli(coo_sample(olea[3], 50), coo_sample(olea[6], 50))
title("A nice title !")

coo_lw Calculates length and width of a shape

Description

Returns the length and width of a shape based on their iniertia axis i.e. alignment to the x-axis. The
length is defined as the range along the x-axis; the width as the range on the y-axis.

Usage

coo_lw(coo)

Arguments

coo a matrix of (x; y) coordinates or Coo object

Value

a vector of two numeric: the length and the width.

coo_nb 81

See Also

coo_length, coo_width.

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(), coo_solidity(),
coo_tac(), coo_width()

Examples

coo_lw(bot[1])

coo_nb Counts coordinates

Description

Returns the number of coordinates, for a single shape or a Coo object

Usage

coo_nb(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

either a single numeric or a vector of numeric

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up(), is_equallyspacedradii()

Examples

single shape
coo_nb(bot[1])
Coo object
coo_nb(bot)

82 coo_oscillo

coo_oscillo Momocs’ ’oscilloscope’ for Fourier-based approaches

Description

Shape analysis deals with curve fitting, whether x(t) and y(t) positions along the curvilinear ab-
scissa and/or radius/tangent angle variation. These functions are mainly intended for (self-)teaching
of Fourier-based methods.

Usage

coo_oscillo(
coo,
method = c("efourier", "rfourier", "tfourier", "all")[4],
shape = TRUE,
nb.pts = 12

)

Arguments

coo A list or a matrix of coordinates.

method character among c('efourier', 'rfourier', 'tfourier', 'all'). 'all'
by default

shape logical whether to plot the original shape

nb.pts integer. The number or reference points, sampled equidistantly along the
curvilinear abscissa and added on the oscillo curves.

Value

the plotted values

See Also

exemplifying functions

Examples

coo_oscillo(shapes[4])
coo_oscillo(shapes[4], 'efourier')
coo_oscillo(shapes[4], 'rfourier')
coo_oscillo(shapes[4], 'tfourier')
#tfourier is prone to high-frequency noise but smoothing can help
coo_oscillo(coo_smooth(shapes[4], 10), 'tfourier')

coo_perim 83

coo_perim Calculates perimeter and variations

Description

coo_perim calculates the perimeter; coo_perimpts calculates the euclidean distance between every
points of a shape; coo_perimcum does the same and calculates and cumulative sum.

Usage

coo_perimpts(coo)

Default S3 method:
coo_perimpts(coo)

S3 method for class 'Coo'
coo_perimpts(coo)

coo_perimcum(coo)

Default S3 method:
coo_perimcum(coo)

S3 method for class 'Coo'
coo_perimcum(coo)

coo_perim(coo)

Default S3 method:
coo_perim(coo)

S3 method for class 'Coo'
coo_perim(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo

Value

numeric the distance between every point or a list of those.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),

84 coo_plot

coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

for speed sake
b1 <- coo_sample(bot[1], 12)
b5 <- bot %>% slice(1:5) %>% coo_sample(12)

coo_perim
coo_perim(b1)
coo_perim(b5)

coo_perimpts
coo_perimpts(b1)
b5 %>% coo_perimpts()

coo_perimcum
b1 %>% coo_perimcum()
b5 %>% coo_perimcum()

coo_plot Plots a single shape

Description

A simple wrapper around plot for plotting shapes. Widely used in Momocs in other graphical
functions, in methods, etc.

Usage

coo_plot(
coo,
xlim,
ylim,
border = "#333333",
col = NA,
lwd = 1,
lty = 1,
points = FALSE,
first.point = TRUE,
cex.first.point = 0.5,
centroid = TRUE,
xy.axis = TRUE,
pch = 1,

coo_plot 85

cex = 0.5,
main = NA,
poly = TRUE,
plot.new = TRUE,
plot = TRUE,
zoom = 1,
...

)

ldk_plot(coo, ...)

Arguments

coo A list or a matrix of coordinates.

xlim If coo_plot is called and coo is missing, then a vector of length 2 specifying
the ylim of the ploting area.

ylim If coo_plot is called and coo is missing, then a vector of length 2 specifying
the ylim of the ploting area.

border A color for the shape border.

col A color to fill the shape polygon.

lwd The lwd for drawing shapes.

lty The lty for drawing shapes.

points logical. Whether to display points. If missing and number of points is < 100,
then points are plotted.

first.point logical whether to plot or not the first point.
cex.first.point

numeric size of this first point

centroid logical. Whether to display centroid.

xy.axis logical. Whether to draw the xy axis.

pch The pch for points.

cex The cex for points.

main character. A title for the plot.

poly logical whether to use polygon and lines to draw the shape, or just points. In
other words, whether the shape should be considered as a configuration of land-
marks or not (eg a closed outline).

plot.new logical whether to plot or not a new frame.

plot logical whether to plot something or just to create an empty plot.

zoom a numeric to take your distances.

... further arguments for use in coo_plot methods. See examples.

Value

a plot

86 coo_range

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_ruban(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Examples

b <- bot[1]
coo_plot(b)
coo_plot(bot[2], plot.new=FALSE) # equivalent to coo_draw(bot[2])
coo_plot(b, zoom=2)
coo_plot(b, border='blue')
coo_plot(b, first.point=FALSE, centroid=FALSE)
coo_plot(b, points=TRUE, pch=20)
coo_plot(b, xy.axis=FALSE, lwd=2, col='#F2F2F2')

coo_range Calculate coordinates range

Description

coo_range simply returns the range, coo_range_enlarge enlarges it by a k proportion. coo_diffrange
return the amplitude (ie diff after coo_range)

Usage

coo_range(coo)

Default S3 method:
coo_range(coo)

S3 method for class 'Coo'
coo_range(coo)

coo_range_enlarge(coo, k)

Default S3 method:
coo_range_enlarge(coo, k = 0)

S3 method for class 'Coo'
coo_range_enlarge(coo, k = 0)

S3 method for class 'list'
coo_range_enlarge(coo, k = 0)

coo_diffrange(coo)

coo_rectangularity 87

Default S3 method:
coo_diffrange(coo)

S3 method for class 'Coo'
coo_diffrange(coo)

S3 method for class 'list'
coo_diffrange(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

k numeric proportion by which to enlarge it

Value

a matrix of range such as (min, max) x (x, y)

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

bot[1] %>% coo_range # single shape
bot %>% coo_range # Coo object

bot[1] %>% coo_range_enlarge(1/50) # single shape
bot %>% coo_range_enlarge(1/50) # Coo object

coo_rectangularity Calculates the rectangularity of a shape

Description

Calculates the rectangularity of a shape

Usage

coo_rectangularity(coo)

88 coo_rectilinearity

Arguments

coo a matrix of (x; y) coordinates or any Coo

Value

numeric for a single shape, list for Coo

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Com-
puter Vision. 177-196.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_lw(), coo_rectilinearity(), coo_scalars(), coo_solidity(), coo_tac(),
coo_width()

Examples

coo_rectangularity(bot[1])

bot %>%
slice(1:3) %>% # for speed sake only
coo_rectangularity

coo_rectilinearity Calculates the rectilinearity of a shape

Description

As proposed by Zunic and Rosin (see below). May need some testing/review.

Usage

coo_rectilinearity(coo)

Arguments

coo a matrix of (x; y) coordinates or any Coo

Value

numeric for a single shape, list for Coo

coo_rev 89

Note

due to the laborious nature of the algorithm (in nb.pts^2), and of its implementation, it may be very
long to compute.

Source

Zunic J, Rosin PL. 2003. Rectilinearity measurements for polygons. IEEE Transactions on Pattern
Analysis and Machine Intelligence 25: 1193-1200.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_lw(), coo_rectangularity(), coo_scalars(), coo_solidity(), coo_tac(),
coo_width()

Examples

bot[1] %>%
coo_sample(32) %>% # for speed sake only
coo_rectilinearity

bot %>%
slice(1:3) %>% coo_sample(32) %>% # for speed sake only
coo_rectilinearity

coo_rev Reverses coordinates

Description

Returns the reverse suite of coordinates, i.e. change shape’s orientation

Usage

coo_rev(coo)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

Value

a matrix of (x; y) coordinates or a Coo object

90 coo_right

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_right(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

b <- coo_sample(bot[1], 4)
b
coo_rev(b)

coo_right Retains coordinates with positive x-coordinates

Description

Useful when shapes are aligned along the y-axis (e.g. because of a bilateral symmetry) and when
one wants to retain just the upper side.

Usage

coo_right(coo, slidegap = FALSE)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

slidegap logical whether to apply coo_slidegap after coo_right

Value

a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)

Note

When shapes are "sliced" along the y-axis, it usually results on open curves and thus to huge/artefactual
gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples
there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which
is done automatically.

coo_rotate 91

See Also

Other opening functions: coo_down(), coo_left(), coo_up()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_rotate(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

b <- coo_center(bot[1])
coo_plot(b)
coo_draw(coo_right(b), border='red')

coo_rotate Rotates coordinates

Description

Rotates the coordinates by a ’theta’ angle (in radians) in the trigonometric direction (anti-clockwise).
If not provided, assumed to be the centroid size. It involves three steps: centering from current po-
sition, dividing coordinates by ’scale’, translating to the original position.

Usage

coo_rotate(coo, theta = 0)

Arguments

coo either a matrix of (x; y) coordinates, or any Coo object.

theta numericthe angle (in radians) to rotate shapes.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotatecenter(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),

92 coo_rotatecenter

coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Other rotation functions: coo_rotatecenter()

Examples

coo_plot(bot[1])
coo_plot(coo_rotate(bot[1], pi/2))

on Coo
b <- bot %>% slice(1:5) # for speed sake
stack(b)
stack(coo_rotate(b, pi/2))

coo_rotatecenter Rotates shapes with a custom center

Description

rotates a shape of ’theta’ angles (in radians) and with a (x; y) ’center’.

Usage

coo_rotatecenter(coo, theta, center = c(0, 0))

Arguments

coo matrix of (x; y) coordinates or any Coo object.

theta numeric the angle (in radians) to rotate shapes.

center numeric the (x; y) position of the center

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other rotation functions: coo_rotate()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_sample(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Other rotation functions: coo_rotate()

coo_ruban 93

Examples

b <- bot[1]
coo_plot(b)
coo_draw(coo_rotatecenter(b, -pi/2, c(200, 200)), border='red')

coo_ruban Plots differences as (colored) segments aka a ruban

Description

Useful to display differences between shapes

Usage

coo_ruban(coo, dev, palette = col_heat, normalize = TRUE, ...)

Arguments

coo a shape, typically a mean shape

dev numeric a vector of distances or anythinh relevant

palette the color palette to use or any palette

normalize logical whether to normalize (TRUE by default) distances

... other parameters to fed segments, eg lwd (see examples)

Value

a plot

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Examples

ms <- MSHAPES(efourier(bot , 10), "type")
b <- msshpbeer
w <- msshpwhisky
we obtain the mean shape, then euclidean distances between points
m <- MSHAPES(list(b, w))
d <- edm(b, w)
First plot
coo_plot(m, plot=FALSE)

94 coo_sample

coo_draw(b)
coo_draw(w)
coo_ruban(m, d, lwd=5)

#Another example
coo_plot(m, plot=FALSE)
coo_ruban(m, d, palette=col_summer2, lwd=5)

#If you want linewidth rather than color
coo_plot(m, plot=FALSE)
coo_ruban(m, d, palette=col_black)

coo_sample Sample coordinates (among points)

Description

Sample n coordinates among existing points.

Usage

coo_sample(coo, n)

Arguments

coo either a matrix of (x; y) coordinates or an Out or an Opn object.

n integer, the number fo points to sample.

Details

For the Out an Opn methods (pointless for Ldk), in an $ldk component is defined, it is changed
accordingly by multiplying the ids by n over the number of coordinates.

Value

a matrix of (x; y) coordinates, or an Out or an Opn object.

See Also

Other sampling functions: coo_extract(), coo_interpolate(), coo_sample_prop(), coo_samplerr()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

coo_samplerr 95

Examples

b <- bot[1]
stack(bot)
stack(coo_sample(bot, 24))
coo_plot(b)
coo_plot(coo_sample(b, 24))

coo_samplerr Samples coordinates (regular radius)

Description

Samples n coordinates with a regular angle.

Usage

coo_samplerr(coo, n)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

n integer, the number of points to sample.

Details

By design, this function samples among existing points, so using coo_interpolate prior to it may be
useful to have more homogeneous angles. See examples.

Value

a matrix of (x; y) coordinates or a Coo object.

See Also

Other sampling functions: coo_extract(), coo_interpolate(), coo_sample(), coo_sample_prop()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

96 coo_sample_prop

Examples

stack(bot)
bot <- coo_center(bot)
stack(coo_samplerr(bot, 12))
coo_plot(bot[1])
coo_plot(rr <- coo_samplerr(bot[1], 12))
cpos <- coo_centpos(bot[1])
segments(cpos[1], cpos[2], rr[, 1], rr[, 2])

Sometimes, interpolating may be useful:
shp <- hearts[1] %>% coo_center

given a shp, draw segments from each points on it, to its centroid
draw_rads <- function(shp, ...){
segments(shp[, 1], shp[, 2], coo_centpos(shp)[1], coo_centpos(shp)[2], ...)

}

calculate the sd of argument difference in successive points,
in other words a proxy for the homogeneity of angles
sd_theta_diff <- function(shp)

shp %>% complex(real=.[, 1], imaginary=.[, 2]) %>%
Arg %>% `[`(-1) %>% diff %>% sd

no interpolation: all points are sampled from existing points but the
angles are not equal
shp %>% coo_plot(points=TRUE, main="no interpolation")
shp %>% coo_samplerr(64) %T>% draw_rads(col="red") %>% sd_theta_diff
with interpolation: much more homogeneous angles
shp %>% coo_plot(points=TRUE)
shp %>% coo_interpolate(360) %>% coo_samplerr(64) %T>% draw_rads(col="blue") %>% sd_theta_diff

coo_sample_prop Sample a proportion of coordinates (among points)

Description

A simple wrapper around coo_sample

Usage

coo_sample_prop(coo, prop = 1)

Arguments

coo either a matrix of (x; y) coordinates or an Out or an Opn object.

prop numeric, the proportion of points to sample

coo_scalars 97

Details

As for coo_sample if an $ldk component is defined, it is changed accordingly by multiplying the
ids by n over the number of coordinates.

Value

a matrix of (x; y) coordinates, or an Out or an Opn object.

See Also

Other sampling functions: coo_extract(), coo_interpolate(), coo_sample(), coo_samplerr()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(), coo_slide(), coo_slidedirection(),
coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(), coo_trans(), coo_trim(),
coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

single shape
bot[1] %>% coo_nb()
bot[1] %>% coo_sample_prop(0.5) %>% coo_nb()

coo_scalars Calculates all scalar descriptors of shape

Description

See examples for the full list.

Usage

coo_scalars(coo, rectilinearity = FALSE)

Arguments

coo a matrix of (x; y) coordinates or any Coo

rectilinearity logical whether to include rectilinearity using coo_rectilinearity

Details

coo_rectilinearity being not particularly optimized, it takes around 30 times more time to include it
than to calculate all others and is thus not includedby default. by default.

98 coo_scale

Value

data_frame

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_solidity(),
coo_tac(), coo_width()

Examples

df <- bot %>% coo_scalars() # pass bot %>% coo_scalars(TRUE) if you want rectilinearity
colnames(df) %>% cat(sep="\n") # all scalars used

a PCA on all these descriptors
TraCoe(coo_scalars(bot), fac=bot$fac) %>% PCA %>% plot_PCA(~type)

coo_scale Scales coordinates

Description

coo_scale scales the coordinates by a ’scale’ factor. If not provided, assumed to be the centroid
size. It involves three steps: centering from current position, dividing coordinates by ’scale’, push-
ing back to the original position. coo_scalex applies a scaling (or shrinking) parallel to the x-axis,
coo_scaley does the same for the y axis.

Usage

coo_scale(coo, scale)

Default S3 method:
coo_scale(coo, scale = coo_centsize(coo))

S3 method for class 'Coo'
coo_scale(coo, scale)

coo_scalex(coo, scale = 1)

Default S3 method:
coo_scalex(coo, scale = 1)

S3 method for class 'Coo'
coo_scalex(coo, scale = 1)

coo_scale 99

coo_scaley(coo, scale = 1)

Default S3 method:
coo_scaley(coo, scale = 1)

S3 method for class 'Coo'
coo_scaley(coo, scale = 1)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

scale the scaling factor, by default, the centroid size for coo_scale; 1 for scalex and
scaley.

Value

a single shape or a Coo object

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_shearx(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Other scaling functions: coo_template()

Examples

on a single shape
b <- bot[1] %>% coo_center %>% coo_scale
coo_plot(b, lwd=2)
coo_draw(coo_scalex(b, 1.5), bor="blue")
coo_draw(coo_scaley(b, 0.5), bor="red")

this also works on Coo objects:
b <- slice(bot, 5) # for speed sake
stack(b)
b %>% coo_center %>% coo_scale %>% stack
b %>% coo_center %>% coo_scaley(0.5) %>% stack
#equivalent to:
#b %>% coo_center %>% coo_scalex(2) %>% stack

100 coo_shearx

coo_shearx Shears shapes

Description

coo_shearx applies a shear mapping on a matrix of (x; y) coordinates (or a list), parallel to the
x-axis (i.e. x’ = x + ky; y’ = y + kx). coo_sheary does it parallel to the y-axis.

Usage

coo_shearx(coo, k)

coo_sheary(coo, k)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

k numeric shear factor

Value

a matrix of (x; y) coordinates.

See Also

Other transforming functions: coo_flipx()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_slice(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

coo <- coo_template(shapes[11])
coo_plot(coo)
coo_draw(coo_shearx(coo, 0.5), border="blue")
coo_draw(coo_sheary(coo, 0.5), border="red")

coo_slice 101

coo_slice Slices shapes between successive coordinates

Description

Takes a shape with n coordinates. When you pass this function with at least two ids (<= n), the
shape will be open on the corresponding coordinates and slices returned as a list

Usage

coo_slice(coo, ids, ldk)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

ids numeric of length >= 2, where to slice the shape(s)

ldk numeric the id of the ldk to use as ids, only on Out and Opn. If provided, ids
will be ignored.

Value

a list of shapes or a list of Opn

See Also

Have a look to coo_slidegap if you have problems with gaps after slicing around landmarks and/or
starting points.

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slide(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

h <- slice(hearts, 1:5) # speed purpose only
single shape, a list of matrices is returned
sh <- coo_slice(h[1], c(12, 24, 36, 48))
coo_plot(sh[[1]])
panel(Opn(sh))
on a Coo, a list of Opn is returned
makes no sense if shapes are not normalized first
sh2 <- coo_slice(h, c(12, 24, 36, 48))
panel(sh2[[1]])

102 coo_slide

Use coo_slice with `ldk` instead:
hearts as an example
x <- h %>% fgProcrustes(tol=1)
4 landmarks
stack(x)
x$ldk[1:5]

here we slice
y <- coo_slice(x, ldk=1:4)

plotting
stack(y[[1]])
stack(y[[2]])

new ldks from tipping points, new ldks from angle
olea %>% slice(1:5) %>% # for the sake of speed
def_ldk_tips %>%
def_ldk_angle(0.75*pi) %>% def_ldk_angle(0.25*pi) %>%
coo_slice(ldk =1:4) -> oleas
oleas[[1]] %>% stack
oleas[[2]] %>% stack # etc.

domestic operations
y[[3]] %>% coo_area()
shape analysis of a slice
y[[1]] %>% coo_bookstein() %>% npoly %>% PCA %>% plot(~aut)

coo_slide Slides coordinates

Description

Slides the coordinates so that the id-th point become the first one.

Usage

coo_slide(coo, id, ldk)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

id numeric the id of the point that will become the new first point. See details
below for the method on Coo objects.

ldk numeric the id of the ldk to use as id, only on Out

coo_slide 103

Details

For Coo objects, and in particular for Out and Opn three different ways of coo_sliding are available:

• no ldk passed and a single id is passed: all id-th points within the shapes will become the
first points. $ldk will be slided accordingly.

• no ldk passed and a vector of ids matching the length of the Coo: for every shape, the id-th
point will be used as the id-th point. $ldk will be slided accordingly.

• a single ldk is passed: the ldk-th ldk will be used to slide every shape. If an id is (also) passed,
it is ignored with a message.

See examples.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

coo_slice and friends.

Other sliding functions: coo_slidedirection(), coo_slidegap()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

h <- hearts %>% slice(1:5) # for speed sake
stack(h)
set the first landmark as the starting point
stack(coo_slide(h, ldk=1))
set the 50th point as the starting point (everywhere)
stack(coo_slide(h, id=50))
set the id-random-th point as the starting point (everywhere)
set.seed(123) # just for the reproducibility
id_random <- sample(x=min(sapply(h$coo, nrow)), size=length(h),
replace=TRUE)
stack(coo_slide(h, id=id_random))

104 coo_slidedirection

coo_slidedirection Slides coordinates in a particular direction

Description

Shapes are centered and then, according to direction, the point northwards, southwards, eastwards or
westwards the centroid, becomes the first point with coo_slide. ’right’ is possibly the most sensible
option (and is by default), since 0 radians points eastwards, relatively to the origin. This should be
followed by a coo_untiltx is most cases to remove any rotationnal dephasing/bias.

Usage

coo_slidedirection(
coo,
direction = c("down", "left", "up", "right")[4],
center,
id

)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

direction character one of "down", "left", "up", "right" ("right" by default)

center logical whether to center or not before sliding

id numeric whether to return the id of the point or the slided shapes

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other sliding functions: coo_slide(), coo_slidegap()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidegap(), coo_smooth(), coo_smoothcurve(), coo_template(), coo_trans(),
coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

coo_slidegap 105

Examples

b <- coo_rotate(bot[1], pi/6) # dummy example just to make it obvious
coo_plot(b) # not the first point
coo_plot(coo_slidedirection(b, "up"))
coo_plot(coo_slidedirection(b, "right"))
coo_plot(coo_slidedirection(b, "left"))
coo_plot(coo_slidedirection(b, "down"))

on Coo objects
b <- bot %>% slice(1:5) # for speed sake
stack(b)
stack(coo_slidedirection(b, "right"))

This should be followed by a [coo_untiltx] in most (if not all) cases
stack(coo_slidedirection(b, "right") %>% coo_untiltx)

coo_slidegap Slides coordinates using the widest gap

Description

When slicing a shape using two landmarks, or functions such as coo_up, an open curve is obtained
and the rank of points make wrong/artefactual results. If the widest gap is > 5 * median of other
gaps, then the couple of coordinates forming this widest gap is used as starting and ending points.
This switch helps to deal with open curves. Examples are self-speaking. Use force=TRUE to bypass
this check

Usage

coo_slidegap(coo, force)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

force logical whether to use the widest gap, with no check, as the real gap

Value

a matrix of (x; y) coordinates or a Coo object.

See Also

Other sliding functions: coo_slide(), coo_slidedirection()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),

106 coo_smooth

coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_smooth(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

cat <- coo_center(shapes[4])
coo_plot(cat)

we only retain the bottom of the cat
cat_down <- coo_down(cat, slidegap=FALSE)

see? the segment on the x-axis coorespond to the widest gap.
coo_plot(cat_down)

that's what we meant
coo_plot(coo_slidegap(cat_down))

coo_smooth Smoothes coordinates

Description

Smoothes coordinates using a simple moving average. May be useful to remove digitization noise,
mainly on outlines and open outlines.

Usage

coo_smooth(coo, n)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

n integer the number of smoothing iterations

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other smoothing functions: coo_smoothcurve()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),

coo_smoothcurve 107

coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smoothcurve(), coo_template(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Examples

b5 <- slice(bot, 1:5) # for speed sake
stack(b5)
stack(coo_smooth(b5, 10))
coo_plot(b5[1])
coo_plot(coo_smooth(b5[1], 30))

coo_smoothcurve Smoothes coordinates on curves

Description

Smoothes coordinates using a simple moving average but let the first and last points unchanged.
May be useful to remove digitization noise on curves.

Usage

coo_smoothcurve(coo, n)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

n integer to specify the number of smoothing iterations

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

Other smoothing functions: coo_smooth()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_template(), coo_trans(),
coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

108 coo_solidity

Examples

o <- olea[1]
coo_plot(o, border='grey50', points=FALSE)
coo_draw(coo_smooth(o, 24), border='blue', points=FALSE)
coo_draw(coo_smoothcurve(o, 24), border='red', points=FALSE)

coo_solidity Calculates the solidity of a shape

Description

Calculated using the ratio of the shape area and the convex hull area.

Usage

coo_solidity(coo)

Arguments

coo a matrix of (x; y) coordinates or any Coo

Value

numeric for a single shape, list for Coo

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Com-
puter Vision. 177-196.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(),
coo_tac(), coo_width()

Examples

coo_solidity(bot[1])

bot %>%
slice(1:3) %>% # for speed sake only
coo_solidity

coo_tac 109

coo_tac Calculates the total absolute curvature of a shape

Description

Calculated using the sum of the absolute value of the second derivative of the smooth.spline
prediction for each defined point.

Usage

coo_tac(coo)

Arguments

coo a matrix of (x; y) coordinates or any Coo

Value

numeric for a single shape and for Coo

Source

Siobhan Braybrook.

See Also

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(),
coo_solidity(), coo_width()

Examples

coo_tac(bot[1])

bot %>%
slice(1:3) %>% # for speed sake only
coo_tac

110 coo_template

coo_template ’Templates’ shapes

Description

coo_template returns shape centered on the origin and inscribed in a size-side square. coo_template_relatively
does the same but the biggest shape (as prod(coo_diffrange)) will be of size=size and conse-
quently not defined on single shapes.

Usage

coo_template(coo, size)

Default S3 method:
coo_template(coo, size = 1)

S3 method for class 'list'
coo_template(coo, size = 1)

S3 method for class 'Coo'
coo_template(coo, size = 1)

coo_template_relatively(coo, size = 1)

S3 method for class 'list'
coo_template_relatively(coo, size = 1)

S3 method for class 'Coo'
coo_template_relatively(coo, size = 1)

Arguments

coo A list or a matrix of coordinates.

size numeric. Indicates the length of the side ’inscribing’ the shape.

Details

See coo_listpanel for an illustration of this function. The morphospaces functions also take profit
of this function. May be useful to develop other graphical functions.

Value

Returns a matrix of (x; y)coordinates.

coo_trans 111

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Other scaling functions: coo_scale()

Examples

coo <- bot[1]
coo_plot(coo_template(coo), xlim=c(-1, 1), ylim=c(-1, 1))
rect(-0.5, -0.5, 0.5, 0.5)

s <- 0.01
coo_plot(coo_template(coo, s))
rect(-s/2, -s/2, s/2, s/2)

coo_trans Translates coordinates

Description

Translates the coordinates by a ’x’ and ’y’ value

Usage

coo_trans(coo, x = 0, y = 0)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

x numeric translation along the x-axis.

y numeric translation along the y-axis.

Value

a matrix of (x; y) coordinates, or a Coo object.

112 coo_trim

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(),
is_equallyspacedradii()

Examples

coo_plot(bot[1])
coo_plot(coo_trans(bot[1], 50, 100))

on Coo
b <- bot %>% slice(1:5) # for speed sake
stack(b)
stack(coo_trans(b, 50, 100))

coo_trim Trims both ends coordinates from shape

Description

Removes trim coordinates at both ends of a shape, ie from top and bottom of the shape matrix.

Usage

coo_trim(coo, trim = 1)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

trim numeric, the number of coordinates to trim

Value

a trimmed shape

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),

coo_trimbottom 113

coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trimbottom(), coo_trimtop(), coo_untiltx(), coo_up(),
is_equallyspacedradii()

Other coo_trimming functions: coo_trimbottom(), coo_trimtop()

Examples

olea[1] %>% coo_sample(12) %T>%
print() %T>% ldk_plot() %>%
coo_trim(1) %T>% print() %>% points(col="red")

coo_trimbottom Trims bottom coordinates from shape

Description

Removes trim coordinates from the bottom of a shape.

Usage

coo_trimbottom(coo, trim = 1)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

trim numeric, the number of coordinates to trim

Value

a trimmed shape

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimtop(), coo_untiltx(), coo_up(), is_equallyspacedradii()

Other coo_trimming functions: coo_trim(), coo_trimtop()

114 coo_trimtop

Examples

olea[1] %>% coo_sample(12) %T>%
print() %T>% ldk_plot() %>%
coo_trimbottom(4) %T>% print() %>% points(col="red")

coo_trimtop Trims top coordinates from shape

Description

Removes trim coordinates from the top of a shape.

Usage

coo_trimtop(coo, trim = 1)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

trim numeric, the number of coordinates to trim

Value

a trimmed shape

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_untiltx(), coo_up(),
is_equallyspacedradii()

Other coo_trimming functions: coo_trim(), coo_trimbottom()

Examples

olea[1] %>% coo_sample(12) %T>%
print() %T>% ldk_plot() %>%
coo_trimtop(4) %T>% print() %>% points(col="red")

coo_truss 115

coo_truss Truss measurement

Description

A method to calculate on shapes or on Coo truss measurements, that is all pairwise combinations
of euclidean distances

Usage

coo_truss(x)

Arguments

x a shape or an Ldk object

Value

a named numeric or matrix

Note

Mainly implemented for historical/didactical reasons.

See Also

Other premodern: measure()

Examples

example on a single shape
cat <- coo_sample(shapes[4], 6)
coo_truss(cat)

example on wings dataset
tx <- coo_truss(wings)

txp <- PCA(tx, scale. = TRUE, center=TRUE, fac=wings$fac)
plot(txp, 1)

116 coo_untiltx

coo_untiltx Removes rotation so that the centroid and a given point are parallel to
the x-axis

Description

Rotationnal biases appear after coo_slidedirection (and friends). Typically useful for outline analy-
sis where phasing matters. See examples.

Usage

coo_untiltx(coo, id, ldk)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

id numeric the id of the point that will become the new first point. See details
below for the method on Coo objects.

ldk numeric the id of the ldk to use as id, only on Out

Details

For Coo objects, and in particular for Out and Opn two different ways of coo_sliding are available:

• no ldk passed and an id is passed: all id-th points within the shapes will become the first
points.

• a single ldk is passed: the ldk-th ldk will be used to slide every shape. If an id is (also) passed,
id is ignored with a message.

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

coo_slide and friends.

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_up(),
is_equallyspacedradii()

coo_up 117

Examples

on a single shape
bot[1] %>% coo_center %>% coo_align %>%

coo_sample(12) %>% coo_slidedirection("right") %T>%
coo_plot() %>% # the first point is not on the x-axis
coo_untiltx() %>%
coo_draw(border="red") # this (red) one is

on an Out
prepare bot
prebot <- bot %>% coo_center %>% coo_scale %>%

coo_align %>% coo_slidedirection("right")
prebot %>% stack # some dephasing remains
prebot %>% coo_slidedirection("right") %>% coo_untiltx() %>% stack # much better
here there is no change but the second, untilted, is correct
prebot %>% efourier(8, norm=FALSE) %>% PCA %>% plot_PCA(~type)
prebot %>% coo_untiltx %>% efourier(8, norm=FALSE) %>% PCA %>% plot_PCA(~type)

an example using ldks:
the landmark #2 is on the x-axis
hearts %>%

slice(1:5) %>% fgProcrustes(tol=1e-3) %>% # for speed sake
coo_center %>% coo_untiltx(ldk=2) %>% stack

coo_up Retains coordinates with positive y-coordinates

Description

Useful when shapes are aligned along the x-axis (e.g. because of a bilateral symmetry) and when
one wants to retain just the upper side.

Usage

coo_up(coo, slidegap = FALSE)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

slidegap logical whether to apply coo_slidegap after coo_down

Value

a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)

118 coo_width

Note

When shapes are "sliced" along the x-axis, it usually results on open curves and thus to huge/artefactual
gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples
there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which
is done automatically.

See Also

Other opening functions: coo_down(), coo_left(), coo_right()

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),
coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
is_equallyspacedradii()

Examples

b <- coo_alignxax(bot[1])
coo_plot(b)
coo_draw(coo_up(b), border='red')

coo_width Calculates the width of a shape

Description

Nothing more than coo_lw(coo)[2].

Usage

coo_width(coo)

Arguments

coo a matrix of (x; y) coordinates or Coo object

Value

the width (in pixels) of the shape

d 119

See Also

coo_lw, coo_length.

Other coo_ descriptors: coo_angle_edges(), coo_angle_tangent(), coo_area(), coo_boundingbox(),
coo_chull(), coo_circularity(), coo_convexity(), coo_eccentricity, coo_elongation(),
coo_length(), coo_lw(), coo_rectangularity(), coo_rectilinearity(), coo_scalars(),
coo_solidity(), coo_tac()

Examples

coo_width(bot[1])

d A wrapper to calculates euclidean distances between two points

Description

The main advantage over ed is that it is a method that can be passed to different objects and used in
combination with measure. See examples.

Usage

d(x, id1, id2)

Arguments

x a Ldk (typically), an Out or a matrix
id1 id of the 1st row
id2 id of the 2nd row

Value

numeric

Note

On Out objects, we first get_ldk.

See Also

if you want all pairwise combinations, see coo_truss

Examples

single shape
d(wings[1], 1, 4)
Ldk object
d(wings, 1, 4)
Out object
d(hearts, 2, 4)

120 def_ldk

def_ldk Defines new landmarks on Out and Opn objects

Description

Helps to define landmarks on a Coo object. The number of landmarks must be specified and rows
indices that correspond to the nearest points clicked on every outlines are stored in the $ldk slot of
the Coo object.

Usage

def_ldk(Coo, nb.ldk, close, points)

Arguments

Coo an Out or Opn object

nb.ldk the number of landmarks to define on every shape

close logical whether to close (typically for outlines)

points logical whether to display points

Value

an Out or an Opn object with some landmarks defined

See Also

Other ldk/slidings methods: add_ldk(), def_slidings(), get_ldk(), get_slidings(), rearrange_ldk(),
slidings_scheme()

Examples

Not run:
bot <- bot[1:5] # to make it shorter to try
click on 3 points, 5 times.
Don't forget to save the object returned by def_ldk...
bot2 <- def_ldk(bot, 3)
stack(bot2)
bot2$ldk

End(Not run)

def_ldk_angle 121

def_ldk_angle Add new landmarks based on angular positions

Description

A wrapper on coo_intersect_angle and coo_intersect_direction for Out and Opn objects.

Usage

def_ldk_angle(coo, angle)

def_ldk_direction(coo, direction = c("down", "left", "up", "right")[4])

Default S3 method:
def_ldk_direction(coo, direction = c("down", "left", "up", "right")[4])

S3 method for class 'Out'
def_ldk_direction(coo, direction = c("down", "left", "up", "right")[4])

S3 method for class 'Opn'
def_ldk_direction(coo, direction = c("down", "left", "up", "right")[4])

Arguments

coo a Out or Opn object

angle numeric an angle in radians (0 by default).

direction character one of "down", "left", "up", "right" ("right" by default)

Value

a Momocs object of same class

Note

any existing ldk will be preserved.

See Also

Typically used before coo_slice and coo_slide. See def_ldk_tips as well.

Examples

adds a new landmark towards south east
hearts %>%

slice(1:5) %>% # for speed purpose only
def_ldk_angle(-pi/6) %>%

stack()

122 def_ldk_tips

on Out and towards NW and NE here
olea %>%

slice(1:5) %>% #for speed purpose only
def_ldk_angle(3*pi/4) %>%
def_ldk_angle(pi/4) %>%
stack

def_ldk_tips Define tips as new landmarks

Description

On Opn objects, this can be used before coo_slice. See examples.

Usage

def_ldk_tips(coo)

Arguments

coo Opn object

Value

a Momocs object of same class

Note

any existing ldk will be preserved.

Examples

is_ldk(olea) # no ldk for olea
olea %>%
slice(1:3) %>% #for the sake of speed
def_ldk_tips %>%
def_ldk_angle(3*pi/4) %>% def_ldk_angle(pi/4) %T>% stack %>%
coo_slice(ldk=1:4) -> oleas
stack(oleas[[1]])
stack(oleas[[2]]) # etc.

def_links 123

def_links Defines links between landmarks

Description

Works on Ldk objects, on 2-cols matrices, 3-dim arrays (MSHAPES turns it into a matrix).

Usage

def_links(x, nb.ldk)

Arguments

x Ldk, matric or array

nb.ldk numeric the iterative procedure is stopped when the user click on the top of the
graphical window.

Value

a Momocs object of same class

See Also

Other ldk helpers: ldk_check(), links_all(), links_delaunay()

Examples

Not run:
wm <- MSHAPES(wings)
links <- def_links(wm, 3) # click to define pairs of landmarks
ldk_links(wm, links)

End(Not run)

def_slidings Defines sliding landmarks matrix

Description

Defines sliding landmarks matrix

Usage

def_slidings(Coo, slidings)

124 dfourier

Arguments

Coo an Ldk object

slidings a matrix, a numeric or a list of numeric. See Details

Details

$slidings in Ldk must be a ’valid’ matrix: containing ids of coordinates, none of them being lower
than 1 and higher the number of coordinates in $coo.

slidings matrix contains 3 columns (before, slide, after). It is inspired by geomorph and
should be compatible with it.

This matrix can be passed directly if the slidings argument is a matrix. Of course, it is strictly
equivalent to Ldk$slidings <- slidings.

slidings can also be passed as "partition(s)", when sliding landmarks identified by their ids (which
are a row number) are consecutive in the $coo.

A single partition can be passed either as a numeric (eg 4:12), if points 5 to 11 must be considered
as sliding landmarks (4 and 12 being fixed); or as a list of numeric.

See examples below.

Value

a Momocs object of same class

See Also

Other ldk/slidings methods: add_ldk(), def_ldk(), get_ldk(), get_slidings(), rearrange_ldk(),
slidings_scheme()

Examples

#waiting for a sliding dataset...

dfourier Discrete cosinus transform

Description

Calculates discrete cosine transforms, as introduced by Dommergues and colleagues, on a shape
(mainly open outlines).

dfourier 125

Usage

dfourier(coo, nb.h)

Default S3 method:
dfourier(coo, nb.h)

S3 method for class 'Opn'
dfourier(coo, nb.h)

S3 method for class 'list'
dfourier(coo, nb.h)

S3 method for class 'Coo'
dfourier(coo, nb.h)

Arguments

coo a matrix (or a list) of (x; y) coordinates

nb.h numeric the number of harmonics to calculate

Value

a list with the following components:

• an the A harmonic coefficients

• bn the B harmonic coefficients

• mod the modules of the points

• arg the arguments of the points

Note

This method has been only poorly tested in Momocs and should be considered as experimental. Yet
improved by a factor 10, this method is still long to execute. It will be improved in further releases
but it should not be so painful right now. It also explains the progress bar. Shapes should be aligned
before performing the dct transform.

Silent message and progress bars (if any) with options("verbose"=FALSE).

References

• Dommergues, C. H., Dommergues, J.-L., & Verrecchia, E. P. (2007). The Discrete Cosine
Transform, a Fourier-related Method for Morphometric Analysis of Open Contours. Mathe-
matical Geology, 39(8), 749-763. doi:10.1007/s11004-007-9124-6

• Many thanks to Remi Laffont for the translation in R).

See Also

Other dfourier: dfourier_i(), dfourier_shape()

126 dfourier_i

Examples

o <- olea %>% slice(1:5) # for the sake of speed
od <- dfourier(o)
od
op <- PCA(od)
plot(op, 1)

dfourier and inverse dfourier
o <- olea[1]
o <- coo_bookstein(o)
coo_plot(o)
o.dfourier <- dfourier(o, nb.h=12)
o.dfourier
o.i <- dfourier_i(o.dfourier)
o.i <- coo_bookstein(o.i)
coo_draw(o.i, border='red')

#future calibrate_reconstructions
o <- olea[1]
h.range <- 2:13
coo <- list()
for (i in seq(along=h.range)){
coo[[i]] <- dfourier_i(dfourier(o, nb.h=h.range[i]))}
names(coo) <- paste0('h', h.range)
panel(Opn(coo), borders=col_india(12), names=TRUE)
title('Discrete Cosine Transforms')

dfourier_i Investe discrete cosinus transform

Description

Calculates inverse discrete cosine transforms (see dfourier), given a list of A and B harmonic coef-
ficients, typically such as those produced by dfourier.

Usage

dfourier_i(df, nb.h, nb.pts = 60)

Arguments

df a list with $A and $B components, containing harmonic coefficients.

nb.h a custom number of harmonics to use

nb.pts numeric the number of pts for the shape reconstruction

Value

a matrix of (x; y) coordinates

dfourier_shape 127

Note

Only the core functions so far. Will be implemented as an Opn method soon.

References

• Dommergues, C. H., Dommergues, J.-L., & Verrecchia, E. P. (2007). The Discrete Cosine
Transform, a Fourier-related Method for Morphometric Analysis of Open Contours. Mathe-
matical Geology, 39(8), 749-763. doi:10.1007/s11004-007-9124-6

• Many thanks to Remi Laffont for the translation in R).

See Also

Other dfourier: dfourier(), dfourier_shape()

Examples

dfourier and inverse dfourier
o <- olea[1]
o <- coo_bookstein(o)
coo_plot(o)
o.dfourier <- dfourier(o, nb.h=12)
o.dfourier
o.i <- dfourier_i(o.dfourier)
o.i <- coo_bookstein(o.i)
coo_draw(o.i, border='red')

o <- olea[1]
h.range <- 2:13
coo <- list()
for (i in seq(along=h.range)){
coo[[i]] <- dfourier_i(dfourier(o, nb.h=h.range[i]))}
names(coo) <- paste0('h', h.range)
panel(Opn(coo), borders=col_india(12), names=TRUE)
title('Discrete Cosine Transforms')

dfourier_shape Calculates and draws ’dfourier’ shapes

Description

Calculates shapes based on ’Discrete cosine transforms’ given harmonic coefficients (see dfourier)
or can generate some random ’dfourier’ shapes. Mainly intended to generate shapes and/or to
understand how dfourier works.

Usage

dfourier_shape(A, B, nb.h, nb.pts = 60, alpha = 2, plot = TRUE)

128 dissolve

Arguments

A vector of harmonic coefficients

B vector of harmonic coefficients

nb.h if A and/or B are not provided, the number of harmonics to generate

nb.pts if A and/or B are not provided, the number of points to use to reconstruct the
shapes

alpha The power coefficient associated with the (usually decreasing) amplitude of the
harmonic coefficients (see efourier_shape)

plot logical whether to plot the shape

Value

a list of shapes or a plot

See Also

Other dfourier: dfourier(), dfourier_i()

Examples

some signatures
panel(coo_align(Opn(replicate(48, dfourier_shape(alpha=0.5, nb.h=6)))))
some worms
panel(coo_align(Opn(replicate(48, dfourier_shape(alpha=2, nb.h=6)))))

dissolve Dissolve Coe objects

Description

the opposite of combine, typically used after it. Note that the $fac slot may be wrong since com-
bine...well combines... this $fac. See examples.

Usage

dissolve(x, retain)

Arguments

x a Coe object

retain the partition id to retain. Or their name if the partitions are named (see x$method)
eg after a chop

Value

a Momocs object of same class

drawers 129

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), slice(), subsetize()

Examples

data(bot)
w <- filter(bot, type=="whisky")
b <- filter(bot, type=="beer")
wf <- efourier(w, 10)
bf <- efourier(b, 10)
wbf <- combine(wf, bf)
dissolve(wbf, 1)
dissolve(wbf, 2)

or using chop (yet combine here makes no sense)
bw <- bot %>% chop(~type) %>% lapply(efourier, 10) %>% combine
bw %>% dissolve(1)
bw %>% dissolve(2)

drawers grindr drawers for shape plots

Description

Useful drawers for building custom shape plots using the grindr approach. See examples and vi-
gnettes.

Usage

draw_polygon(
coo,
f,
col = par("fg"),
fill = NA,
lwd = 1,
lty = 1,
transp = 0,
pal = pal_qual,
...

)

draw_outline(
coo,
f,
col = par("fg"),
fill = NA,

130 drawers

lwd = 1,
lty = 1,
transp = 0,
pal = pal_qual,
...

)

draw_outlines(
coo,
f,
col = par("fg"),
fill = NA,
lwd = 1,
lty = 1,
transp = 0,
pal = pal_qual,
...

)

draw_points(
coo,
f,
col = par("fg"),
cex = 1/2,
pch = 20,
transp = 0,
pal = pal_qual,
...

)

draw_landmarks(
coo,
f,
col = par("fg"),
cex = 1/2,
pch = 20,
transp = 0,
pal = pal_qual,
...

)

draw_lines(
coo,
f,
col = par("fg"),
lwd = 1,
lty = 1,
transp = 0,

drawers 131

pal = pal_qual,
...

)

draw_centroid(
coo,
f,
col = par("fg"),
pch = 3,
cex = 0.5,
transp = 0,
pal = pal_qual,
...

)

draw_curve(
coo,
f,
col = par("fg"),
lwd = 1,
lty = 1,
transp = 0,
pal = pal_qual,
...

)

draw_curves(
coo,
f,
col = par("fg"),
lwd = 1,
lty = 1,
transp = 0,
pal = pal_qual,
...

)

draw_firstpoint(
coo,
f,
label = "^",
col = par("fg"),
cex = 3/4,
transp = 0,
pal = pal_qual,
...

)

132 drawers

draw_axes(coo, col = "#999999", lwd = 1/2, ...)

draw_ticks(coo, col = "#333333", cex = 3/4, lwd = 3/4, ...)

draw_labels(coo, labels = 1:nrow(coo), cex = 1/2, d = 1/20, ...)

draw_links(
coo,
f,
links,
col = "#99999955",
lwd = 1/2,
lty = 1,
transp = 0,
pal = pal_qual,
...

)

draw_title(
coo,
main = "",
sub = "",
cex = c(1, 3/4),
font = c(2, 1),
padding = 1/200,
...

)

Arguments

coo matrix of 2 columns for (x, y) coordinates

f an optionnal factor specification to feed. See examples and vignettes.

col color (hexadecimal) to draw components

fill color (hexadecimal) to draw components

lwd to draw components

lty to draw components

transp numeric transparency (default:0, min:0, max:1)

pal a palette to use if no col/border/etc. are provided. See [palettes]

... additional options to feed core functions for each drawer

cex to draw components ((c(2, 1) by default) for draw_title)

pch to draw components

label to indicate first point

labels character name of labels to draw (defaut to 1:nrow(coo))

d numeric proportion of d(centroid-each_point) to add when centrifugating
landmarks

ed 133

links matrix of links to use to draw segments between landmarks. See wings$ldk
for an example

main character title (empty by default)

sub character subtitle (empty by default)

font numeric to feed text (c(2, 1) by default)

padding numeric a fraction of the graphical window (1/200 by default)

Value

a drawing layer

Note

This approach will (soon) replace coo_plot and friends in further versions. All comments are wel-
come.

See Also

grindr_layers

Other grindr: layers, layers_morphospace, mosaic_engine(), papers, pile(), plot_LDA(),
plot_NMDS(), plot_PCA()

Examples

bot[1] %>% paper_grid() %>% draw_polygon()
olea %>% paper_chess %>% draw_lines(~var)

hearts[240] %>% paper_white() %>% draw_outline() %>%
coo_sample(24) %>% draw_landmarks %>% draw_labels() %>%
draw_links(links=replicate(2, sample(1:24, 8)))

bot %>%
paper_grid() %>%
draw_outlines() %>%
draw_title("Alcohol abuse \nis dangerous for health", "Drink responsibly")

ed Calculates euclidean distance between two points.

Description

ed simply calculates euclidean distance between two points defined by their (x; y) coordinates.

Usage

ed(pt1, pt2)

134 edi

Arguments

pt1 (x; y) coordinates of the first point.

pt2 (x; y) coordinates of the second point.

Value

Returns the euclidean distance between the two points.

See Also

edm, edm_nearest, dist.

Examples

ed(c(0,1), c(1,0))

edi Calculates euclidean intermediate between two points.

Description

edi simply calculates coordinates of a points at the relative distance r on the pt1-pt2 defined by
their (x; y) coordinates. This function is used internally but may be of interest for other analyses.

Usage

edi(pt1, pt2, r = 0.5)

Arguments

pt1 (x; y) coordinates of the first point.

pt2 (x; y) coordinates of the second point.

r the relative distance from pt1 to pt2.

Value

returns the (x; y) interpolated coordinates.

See Also

ed, edm.

Examples

edi(c(0,1), c(1,0), r = 0.5)

edm 135

edm Calculates euclidean distance every pairs of points in two matrices.

Description

edm returns the euclidean distances between points 1− > n of two 2-col matrices of the same
dimension. This function is used internally but may be of interest for other analyses.

Usage

edm(m1, m2)

Arguments

m1 The first matrix of coordinates.

m2 The second matrix of coordinates.

Details

If one wishes to align two (or more shapes) Procrustes surimposition may provide a better solution.

Value

Returns a vector of euclidean distances between pairwise coordinates in the two matrices.

See Also

ed, edm_nearest, dist.

Examples

x <- matrix(1:10, nc=2)
edm(x, x)
edm(x, x+1)

edm_nearest Calculates the shortest euclidean distance found for every point of one
matrix among those of a second.

Description

edm_nearest calculates the shortest euclidean distance found for every point of one matrix among
those of a second. In other words, if m1, m2 have n rows, the result will be the shortest distance for
the first point of m1 to any point of m2 and so on, n times. This function is used internally but may
be of interest for other analyses.

136 efourier

Usage

edm_nearest(m1, m2, full = FALSE)

Arguments

m1 The first list or matrix of coordinates.

m2 The second list or matrix of coordinates.

full logical. Whether to returns a condensed version of the results.

Details

So far this function is quite time consumming since it performs n × n euclidean distance compu-
tation. If one wishes to align two (or more shapes) Procrustes surimposition may provide a better
solution.

Value

If full is TRUE, returns a list with two components: d which is for every point of m1 the short-
est distance found between it and any point in m2, and pos the (m2) row indices of these points.
Otherwise returns d as a numeric vector of the shortest distances.

See Also

ed, edm, dist.

Examples

x <- matrix(1:10, nc=2)
edm_nearest(x, x+rnorm(10))
edm_nearest(x, x+rnorm(10), full=TRUE)

efourier Elliptical Fourier transform (and its normalization)

Description

efourier computes Elliptical Fourier Analysis (or Transforms or EFT) from a matrix (or a list) of
(x; y) coordinates. efourier_norm normalizes Fourier coefficients. Read Details carefully.

Usage

efourier(x, ...)

Default S3 method:
efourier(x, nb.h, smooth.it = 0, ...)

S3 method for class 'Out'

efourier 137

efourier(x, nb.h, smooth.it = 0, norm = TRUE, start = FALSE, ...)

S3 method for class 'list'
efourier(x, ...)

efourier_norm(ef, start = FALSE)

Arguments

x A list or a matrix of coordinates or a Out object

... useless here

nb.h integer. The number of harmonics to use. If missing, 12 is used on shapes; 99
percent of harmonic power on Out objects, both with messages.

smooth.it integer. The number of smoothing iterations to perform.

norm whether to normalize the coefficients using efourier_norm

start logical. For efourier whether to consider the first point as homologous; for
efourier_norm whether to conserve the position of the first point of the outline.

ef list with a_n, b_n, c_n and d_n Fourier coefficients, typically returned by
efourier

Details

For the maths behind see the paper in JSS.

Normalization of coefficients has long been a matter of trouble, and not only for newcomers. There
are two ways of normalizing outlines: the first, and by far the most used, is to use a "numerical"
alignment, directly on the matrix of coefficients. The coefficients of the first harmonic are consumed
by this process but harmonics of higher rank are normalized in terms of size and rotation. This is
sometimes referred as using the "first ellipse", as the harmonics define an ellipse in the plane, and
the first one is the mother of all ellipses, on which all others "roll" along. This approach is really
convenient as it is done easily by most software (if not the only option) and by Momocs too. It is
the default option of efourier.

But here is the pitfall: if your shapes are prone to bad aligments among all the first ellipses, this
will result in poorly (or even not at all) "homologous" coefficients. The shapes particularly prone
to this are either (at least roughly) circular and/or with a strong bilateral symmetry. You can try
to use stack on the Coe object returned by efourier. Also, and perhaps more explicitely, mor-
phospace usually show a mirroring symmetry, typically visible when calculated in some couple of
components (usually the first two).

If you see these upside-down (or 180 degrees rotated) shapes on the morphospace, you should
seriously consider aligning your shapes before the efourier step, and performing the latter with
norm = FALSE.

Such a pitfall explains the (quite annoying) message when passing efourier with just the Out.

You have several options to align your shapes, using control points (or landmarks), by far the most
time consuming (and less reproducible) but possibly the best one too when alignment is too tricky
to automate. You can also try Procrustes alignment (see fgProcrustes) through their calliper
length (see coo_aligncalliper), etc. You should also make the first point homologous either with
coo_slide or coo_slidedirection to minimize any subsequent problems.

138 efourier_i

I will dedicate (some day) a vignette or a paper to this problem.

Value

For efourier, a list with components: an, bn, cn, dn harmonic coefficients, plus ao and co. The
latter should have been named a0 and c0 in Claude (2008) but I (intentionnaly) propagated the error.

For efourier_norm, a list with components: A, B, C, D for harmonic coefficients, plus size, the
magnitude of the semi-major axis of the first fitting ellipse, theta angle, in radians, between the
starting and the semi-major axis of the first fitting ellipse, psi orientation of the first fitting ellipse,
ao and do, same as above, and lnef that is the concatenation of coefficients.

Note

Directly borrowed for Claude (2008).

Silent message and progress bars (if any) with options("verbose"=FALSE).

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp. Ferson S, Rohlf FJ, Koehn
RK. 1985. Measuring shape variation of two-dimensional outlines. Systematic Biology 34: 59-68.

See Also

Other efourier: efourier_i(), efourier_shape()

Examples

single shape
coo <- bot[1]
coo_plot(coo)
ef <- efourier(coo, 12)
same but silent
efourier(coo, 12, norm=TRUE)
inverse EFT
efi <- efourier_i(ef)
coo_draw(efi, border='red', col=NA)

on Out
bot %>% slice(1:5) %>% efourier

efourier_i Inverse elliptical Fourier transform

Description

efourier_i uses the inverse elliptical Fourier transformation to calculate a shape, when given a list
with Fourier coefficients, typically obtained computed with efourier.

efourier_i 139

Usage

efourier_i(ef, nb.h, nb.pts = 120)

Arguments

ef list. A list containing an, bn, cn and dn Fourier coefficients, such as returned
by efourier.

nb.h integer. The number of harmonics to use. If not specified, length(ef$an) is
used.

nb.pts integer. The number of points to calculate.

Details

See efourier for the mathematical background.

Value

A matrix of (x; y) coordinates.

Note

Directly borrowed for Claude (2008), and also called iefourier there.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp. Ferson S, Rohlf FJ, Koehn
RK. 1985. Measuring shape variation of two-dimensional outlines. Systematic Biology 34: 59-68.

See Also

Other efourier: efourier(), efourier_shape()

Examples

coo <- bot[1]
coo_plot(coo)
ef <- efourier(coo, 12)
ef
efi <- efourier_i(ef)
coo_draw(efi, border='red', col=NA)

140 efourier_shape

efourier_shape Calculates and draw ’efourier’ shapes.

Description

efourier_shape calculates a ’Fourier elliptical shape’ given Fourier coefficients (see Details) or
can generate some ’efourier’ shapes. Mainly intended to generate shapes and/or to understand how
efourier works.

Usage

efourier_shape(an, bn, cn, dn, nb.h, nb.pts = 60, alpha = 2, plot = TRUE)

Arguments

an numeric. The an Fourier coefficients on which to calculate a shape.

bn numeric. The bn Fourier coefficients on which to calculate a shape.

cn numeric. The cn Fourier coefficients on which to calculate a shape.

dn numeric. The dn Fourier coefficients on which to calculate a shape.

nb.h integer. The number of harmonics to use.

nb.pts integer. The number of points to calculate.

alpha numeric. The power coefficient associated with the (usually decreasing) ampli-
tude of the Fourier coefficients (see Details).

plot logical. Whether to plot or not the shape.

Details

efourier_shape can be used by specifying nb.h and alpha. The coefficients are then sampled
in an uniform distribution (−π;π) and this amplitude is then divided by harmonicrankalpha. If
alpha is lower than 1, consecutive coefficients will thus increase. See efourier for the mathematical
background.

Value

A list with components:

• x vector of x-coordinates

• y vector of y-coordinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Ferson S, Rohlf FJ, Koehn RK. 1985. Measuring shape variation of two-dimensional outlines.
Systematic Biology 34: 59-68.

export 141

See Also

Other efourier: efourier(), efourier_i()

Examples

ef <- efourier(bot[1], 24)
efourier_shape(efan, efbn, efcn, efdn) # equivalent to efourier_i(ef)
efourier_shape() # is autonomous

panel(Out(a2l(replicate(100,
efourier_shape(nb.h=6, alpha=2.5, plot=FALSE))))) # Bubble family

export Exports Coe objects and shapes

Description

Writes a .txt or .xls or whatever readable from a single shape, a Coe, or a PCA object, along with
individual names and $fac.

Usage

export(x, file, sep, dec)

Arguments

x a Coe or PCA object

file the filenames data.txt by default

sep the field separator string to feed write.table). (default to tab) tab by default

dec the string to feed write.table) (default ".") by default.

Value

an external file

Note

This is a simple wrapper around write.table.

Default parameters will write a .txt file, readable by foreign programs. With default parameters,
numbers will use dots as decimal points, which is considered as a character chain in Excel in many
countries (locale versions). This can be solved by using dec=',' as in the examples below.

If you are looking for your file, and did not specified file, getwd() will help.

I have to mention that everytime you use this function, and cowardly run from R to Excel and do
’statistics’ there, an innocent and adorable kitten is probably murdered somewhere. Use R!

142 fac_dispatcher

See Also

Other bridges functions: as_df(), bridges, complex

Examples

Will write (and remove) files on your working directory!
Not run:
bf <- efourier(bot, 6)
Export Coe (here Fourier coefficients)
export(bf) # data.txt which can be opened by every software including MS Excel

If you come from a country that uses comma as decimal separator (not recommended, but...)
export(bf, dec=',')
export(bf, file='data.xls', dec=',')

Export PCA scores
bf %>% PCA %>% export()

for shapes (matrices)
export(bot[1], file='bot1.txt')

remove these files from your machine
file.remove("coefficients.txt", "data.xls", "scores.txt")

End(Not run)

fac_dispatcher Brew and serve fac from Momocs object

Description

Ease various specifications for fac specification when passed to Momocs objects. Intensively used
(internally).

Usage

fac_dispatcher(x, fac)

Arguments

x a Momocs object (any Coo, Coe, PCA, etc.)

fac a specification to extract from fac

Details

fac can be:

• a factor, passed on the fly

fgProcrustes 143

• a column id from $fac

• a column name from fac; if not found, return NULL with a message

• a formula in the form: ~column_name (from $fac, no quotes). It expresses more in a concise
way. Also allows interacting on the fly. See examples.

• a NULL returns a NULL, with a message

Value

a prepared factor (or a numeric). See examples

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), filter(),
mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

Examples

bot <- mutate(bot, s=rnorm(40), fake=factor(rep(letters[1:4], 10)))

factor, on the fly
fac_dispatcher(bot, factor(rep(letters[1:4], 10)))

column id
fac_dispatcher(bot, 1)

column name
fac_dispatcher(bot, "type")
same, numeric case
fac_dispatcher(bot, "s")

formula interface
fac_dispatcher(bot, ~type)

formula interface + interaction on the fly
fac_dispatcher(bot, ~type+fake)

when passing NULL or non existing column
fac_dispatcher(42, NULL)
fac_dispatcher(bot, "loser")

fgProcrustes Full Generalized Procrustes alignment between shapes

Description

Directly borrowed from Claude (2008), called there the fgpa2 function.

144 fgProcrustes

Usage

fgProcrustes(x, tol, coo)

Arguments

x an array, a list of configurations, or an Out, Opn or Ldk object

tol numeric when to stop iterations

coo logical, when working on Out or Opn, whether to use $coo rather than $ldk

Details

If performed on an Out or an Opn object, will try to use the $ldk slot, if landmarks have been
previousy defined, then (with a message) on the $coo slot, but in that case, all shapes must have the
same number of coordinates (coo_sample may help).

Value

a list with components:

• rotated array of superimposed configurations

• iterationnumber number of iterations

• Q convergence criterion

• Qi full list of Q

• Qd difference between successive Q

• interproc.dist minimal sum of squared norms of pairwise differences between all shapes
in the superimposed sample

• mshape mean shape configuration

• cent.size vector of centroid sizes.

or an Out, Opn or an Ldk object.

Note

Slightly less optimized than procGPA in the shapes package (~20% on my machine). Will be
optimized when performance will be the last thing to improve! Silent message and progress bars (if
any) with options("verbose"=FALSE).

References

Claude, J. (2008). Morphometrics with R. Analysis (p. 316). Springer.

See Also

Other procrustes functions: fProcrustes(), fgsProcrustes(), pProcrustes()

fgsProcrustes 145

Examples

on Ldk
w <- wings %>% slice(1:5) # for the sake of speed
stack(w)
fgProcrustes(w, tol=0.1) %>% stack()

on Out
h <- hearts %>% slice(1:5) # for the sake of speed
stack(h)
fgProcrustes(h) %>% stack()

fgsProcrustes Full Generalized Procrustes alignment between shapes with sliding
landmarks

Description

Directly wrapped around geomorph::gpagen.

Usage

fgsProcrustes(x)

Arguments

x Ldk object with some $slidings

Value

a list

Note

Landmarks methods are the less tested in Momocs. Keep in mind that some features are still exper-
imental and that your help is welcome.

Source

See ?gpagen in geomorph package

See Also

Other procrustes functions: fProcrustes(), fgProcrustes(), pProcrustes()

Examples

ch <- chaff %>% slice(1:5) # for the sake of speed
chaffp <- fgsProcrustes(ch)
chaffp
chaffp %>% PCA() %>% plot("taxa")

146 filter

filter Subset based on conditions

Description

Return shapes with matching conditions, from the $fac. See examples and ?dplyr::filter.

Usage

filter(.data, ...)

Arguments

.data a Coo, Coe, PCA object

... logical conditions

Details

dplyr verbs are maintained. You should probbaly not filter on PCA objects. The latter are calculated
using all individuals and filtering may lead to false conclusions. If you want to highlith some
individuals, see examples in plot_PCA.

Value

a Momocs object of the same class.

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

Examples

olea
we retain on dorsal views
filter(olea, view=="VD")
only dorsal views and Aglan+PicMa varieties
filter(olea, view=="VD", var %in% c("Aglan", "PicMa"))
we create an id column and retain the 120 first shapes
olea %>% mutate(id=1:length(olea)) %>% filter(id > 120)

flip_PCaxes 147

flip_PCaxes Flips PCA axes

Description

Simply multiply by -1, corresponding scores and rotation vectors for PCA objects. PC orientation
being arbitrary, this may help to have a better display.

Usage

flip_PCaxes(x, axs)

Arguments

x a PCA object

axs numeric which PC(s) to flip

Examples

bp <- bot %>% efourier(6) %>% PCA
bp %>% plot
bp %>% flip_PCaxes(1) %>% plot()

flower Data: Measurement of iris flowers

Description

Data: Measurement of iris flowers

Format

A TraCoe object with 150 measurements of 4 variables (petal + sepal) x (length x width) on 3
species of iris. This dataset is the classical iris formatted for Momocs.

Source

see iris

See Also

Other datasets: apodemus, bot, chaff, charring, hearts, molars, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

148 fProcrustes

fProcrustes Full Procrustes alignment between two shapes

Description

Directly borrowed from Claude (2008), called there the fPsup function.

Usage

fProcrustes(coo1, coo2)

Arguments

coo1 configuration matrix to be superimposed onto the centered preshape of coo2.

coo2 reference configuration matrix.

Value

a list with components:

• coo1 superimposed centered preshape of coo1 onto the centered preshape of coo2

• coo2 centered preshape of coo2

• rotation rotation matrix

• scale scale parameter

• DF full Procrustes distance between coo1 and coo2.

References

Claude, J. (2008). Morphometrics with R. Analysis (p. 316). Springer.

See Also

Other procrustes functions: fgProcrustes(), fgsProcrustes(), pProcrustes()

get_chull_area 149

get_chull_area Calculates convex hull area/volume of PCA scores

Description

May be useful to compare shape diversity. Expressed in PCA units that should only be compared
within the same PCA.

Usage

get_chull_area(x, fac, xax = 1, yax = 2)

get_chull_volume(x, fac, xax = 1, yax = 2, zax = 3)

Arguments

x a PCA object

fac (optionnal) column name or ID from the $fac slot.

xax the first PC axis to use (1 by default)

yax the second PC axis (2 by default)

zax the third PC axis (3 by default only for volume)

Details

get_chull_area is calculated using coo_chull followed by coo_area; get_chull_volume is calculated
using geometry::convexhulln

Value

If fac is not provided global area/volume is returned; otherwise a named list for every level of fac

Examples

bp <- PCA(efourier(bot, 12))
get_chull_area(bp)
get_chull_area(bp, 1)

get_chull_volume(bp)
get_chull_volume(bp, 1)

150 get_ldk

get_ldk Retrieves landmarks coordinates

Description

See Details for the different behaviors implemented.

Usage

get_ldk(Coo)

Arguments

Coo an Out, Opn or Ldk object

Details

Different behaviors depending on the class of the object:

• Ldk: retrieves landmarks.

• Ldk with slidings defined: retrieves only the fixed landmarks, not the sliding ones. See also
get_slidings.

• Out landmarks from $ldk and $coo, if any.

• Opn: same as above.

Value

a list of shapes

See Also

Other ldk/slidings methods: add_ldk(), def_ldk(), def_slidings(), get_slidings(), rearrange_ldk(),
slidings_scheme()

Examples

Out example
ldk.h <- get_ldk(hearts)
stack(Ldk(ldk.h))

on Ldk (no slidings)
get_ldk(wings) # equivalent to wings$coo

on Ldk (slidings)
get_ldk(chaff)
get_ldk(chaff) %>% Ldk %>% fgProcrustes(tol=0.1) %>% stack

get_pairs 151

get_pairs Get paired individual on a Coe, PCA or LDA objects

Description

If you have paired individuals, i.e. before and after a treatment or for repeated measures, and if you
have coded coded it into $fac, this methods allows you to retrieve the corresponding PC/LD scores,
or coefficients for Coe objects.

Usage

get_pairs(x, fac, range)

Arguments

x any Coe, PCA of LDA object.

fac factor or column name or id corresponding to the pairing factor.

range numeric the range of coefficients for Coe, or PC (LD) axes on which to return
scores.

Value

a list with components x1 all coefficients/scores corresponding to the first level of the fac provided;
x2 same thing for the second level; fac the corresponding fac.

Examples

bot2 <- bot1 <- coo_scale(coo_center(coo_sample(bot, 60)))
bot1facsession <- factor(rep("session1", 40))
we simulate an measurement error
bot2 <- coo_jitter(bot1, amount=0.01)
bot2facsession <- factor(rep("session2", 40))
botc <- combine(bot1, bot2)
botcf <- efourier(botc, 12)

we gonna plot the PCA with the two measurement sessions and the two types
botcp <- PCA(botcf)
plot(botcp, "type", col=col_summer(2), pch=rep(c(1, 20), each=40), eigen=FALSE)
bot.pairs <- get_pairs(botcp, fac = "session", range=1:2)
segments(bot.pairs$session1[, 1], bot.pairs$session1[, 2],

bot.pairs$session2[, 1], bot.pairs$session2[, 2],
col=col_summer(2)[bot.pairsfactype])

152 harm_pow

get_slidings Extracts sliding landmarks coordinates

Description

From an Ldk object.

Usage

get_slidings(Coo, partition)

Arguments

Coo an Ldk object

partition numeric which one(s) to get.

Value

a list of list(s) of coordinates.

See Also

Other ldk/slidings methods: add_ldk(), def_ldk(), def_slidings(), get_ldk(), rearrange_ldk(),
slidings_scheme()

Examples

for each example below a list with partition containign shapes is returned
extracts the first partition
get_slidings(chaff, 1) %>% names()
the first and the fourth
get_slidings(chaff, c(1, 4)) %>% names()
all of them
get_slidings(chaff) %>% names
here we want to see it
get_slidings(chaff, 1)[[1]] %>% Ldk %>% stack

harm_pow Calculates harmonic power given a list from e/t/rfourier

Description

Given a list with an, bn (and eventually cn and dn), returns the harmonic power.

Usage

harm_pow(xf)

hcontrib 153

Arguments

xf A list with an, bn (and cn, dn) components, typically from a e/r/tfourier passed
on coo_

Value

Returns a vector of harmonic power

Examples

ef <- efourier(bot[1], 24)
rf <- efourier(bot[1], 24)
harm_pow(ef)
harm_pow(rf)

plot(cumsum(harm_pow(ef)[-1]), type='o',
main='Cumulated harmonic power without the first harmonic',
ylab='Cumulated harmonic power', xlab='Harmonic rank')

hcontrib Harmonic contribution to shape

Description

Calculates contribution of harmonics to shape. The amplitude of every coefficients of a given har-
monic is multiplied by the coefficients provided and the resulting shapes are reconstructed and
plotted. Naturally, only works on Fourier-based methods.

Usage

hcontrib(Coe, ...)

S3 method for class 'OutCoe'
hcontrib(
Coe,
id,
harm.r,
amp.r = c(0, 0.5, 1, 2, 5, 10),
main = "Harmonic contribution to shape",
xlab = "Harmonic rank",
ylab = "Amplification factor",
...

)

154 hearts

Arguments

Coe a Coe object (either OutCoe or (soon) OpnCoe)
... additional parameter to pass to coo_draw

id the id of a particular shape, otherwise working on the meanshape
harm.r range of harmonics on which to explore contributions
amp.r a vector of numeric for multiplying coefficients
main a title for the plot
xlab a title for the x-axis
ylab a title for the y-axis

Value

a plot

See Also

Other Coe_graphics: boxplot.OutCoe()

Examples

data(bot)
bot.f <- efourier(bot, 12)
hcontrib(bot.f)
hcontrib(bot.f, harm.r=3:10, amp.r=1:8, col="grey20",

main="A huge panel")

hearts Data: Outline coordinates of hand-drawn hearts

Description

Data: Outline coordinates of hand-drawn hearts

Format

A Out object with the outline coordinates of 240 hand-drawn hearts by 8 different persons, with 4
landmarks.

Source

We thank the fellows of the Ecology Department of the French Institute of Pondicherry that drawn
the hearts, that then have been smoothed, scaled, centered, and downsampled to 80 coordinates per
outline.

See Also

Other datasets: apodemus, bot, chaff, charring, flower, molars, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

img_plot 155

img_plot Plots a .jpg image

Description

A very simple image plotter. If provided with a path, reads the .jpg and plots it. If not provided with
an imagematrix, will ask you to choose interactively a .jpeg image.

Usage

img_plot(img)

img_plot0(img)

Arguments

img a matrix of an image, such as those obtained with readJPEG.

Details

img_plot is used in import functions such as import_jpg1; img_plot0 does the same job but pre-
serves the par and plots axes.

Value

a plot

import_Conte Extract outlines coordinates from an image silhouette

Description

Provided with an image ’mask’ (i.e. black pixels on a white background), and a point form where
to start the algorithm, returns the (x; y) coordinates of its outline.

Usage

import_Conte(img, x)

Arguments

img a matrix of a binary image mask.

x numeric the (x; y) coordinates of a starting point within the shape.

Details

Used internally by import_jpg1 but may be useful for other purposes.

156 import_jpg

Value

a matrix the (x; y) coordinates of the outline points.

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

If you have an image with more than a single shape, then you may want to try imager::highlight
function. Momocs may use this at some point.

References

• The original algorithm is due to: Pavlidis, T. (1982). Algorithms for graphics and image
processing. Computer science press.

• is detailed in: Rohlf, F. J. (1990). An overview of image processing and analysis techniques
for morphometrics. In Proceedings of the Michigan Morphometrics Workshop. Special Pub-
lication No. 2 (pp. 47-60). University of Michigan Museum of Zoology: Ann Arbor.

• and translated in R by: Claude, J. (2008). Morphometrics with R. (p. 316). Springer.

See Also

Other import functions: import_StereoMorph_curve1(), import_jpg(), import_jpg1(), import_tps(),
import_txt(), pix2chc()

import_jpg Extract outline coordinates from multiple .jpg files

Description

This function is used to import outline coordinates and is built around import_jpg1.

Usage

import_jpg(
jpg.paths = .lf.auto(),
auto.notcentered = TRUE,
fun.notcentered = NULL,
threshold = 0.5

)

import_jpg 157

Arguments

jpg.paths a vector of paths corresponding to the .jpg files to import. If not provided (or
NULL), switches to the automatic version. See Details below.

auto.notcentered

logical if TRUE random locations will be used until. one of them is (assumed)
to be within the shape (because of a black pixel); if FALSE a locator will be
called, and you will have to click on a point within the shape.

fun.notcentered

NULL by default. Is your shapes are not centered and if a random pick of a
black pixel is not satisfactory. See import_jpg1 help and examples.

threshold the threshold value use to binarize the images. Above, pixels are turned to 1,
below to 0.

Details

see import_jpg1 for important informations about how the outlines are extracted, and import_Conte
for the algorithm itself.

If jpg.paths is not provided (or NULL), you will have to select any .jpg file in the folder that
contains all your files. All the outlines should be imported then.

Value

a list of matrices of (x; y) coordinates that can be passed to Out

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

Silent message and progress bars (if any) with options("verbose"=FALSE).

See Also

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg1(), import_tps(),
import_txt(), pix2chc()

Examples

lf <- list.files('/foo/jpegs', full.names=TRUE)
coo <- import_jpg(lf)
Out(coo)

coo <- import_jpg()

158 import_jpg1

import_jpg1 Extract outline coordinates from a single .jpg file

Description

Used to import outline coordinates from .jpg files. This function is used for single images and is
wrapped by import_jpg. It relies itself on import_Conte

Usage

import_jpg1(
jpg.path,
auto.notcentered = TRUE,
fun.notcentered = NULL,
threshold = 0.5,
...

)

Arguments

jpg.path vector of paths corresponding to the .jpg files to import, such as those obtained
with list.files.

auto.notcentered

logical if TRUE random locations will be used until one of them is (assumed)
to be within the shape (because it corresponds to a black pixel) and only if the
middle point is not black; if FALSE a locator will be called, and you will have
to click on a point within the shape.

fun.notcentered

NULL by default but can accept a function that, when passed with an image-
matrix and returns a numeric of length two that corresponds to a starting point
on the imagematrix for the Conte algorithm. A while instruction wraps it, so
the function may be wrong in proposing this starting position. See the examples
below for a quick example.

threshold the threshold value use to binarize the images. Above, pixels are turned to 1,
below to 0.

... arguments to be passed to read.table, eg. ’skip’, ’dec’, etc.

Details

jpegs can be provided either as RVB or as 8-bit greylevels or monochrome. The function binarizes
pixels values using the ’threshold’ argument. It will try to start to apply the import_Conte algorithm
from the center of the image and ’looking’ downwards for the first black/white ’frontier’ in the
pixels. This point will be the first of the outlines. The latter may be useful if you align manually the
images and if you want to retain this information in the consequent morphometric analyses.

If the point at the center of the image is not within the shape, i.e. is ’white’ you have two choices
defined by the ’auto.notcentered’ argument. If it’s TRUE, some random starting points will be tried

import_StereoMorph_curve1 159

until on of them is ’black’ and within the shape; if FALSE you will be asked to click on a point
within the shape.

If some pixels on the borders are not white, this functions adds a 2-pixel border of white pixels;
otherwise import_Conte would fail and return an error.

Finally, remember that if the images are not in your working directory, list.files must be called with
the argument full.names=TRUE!

Note that the use of the fun.notcentered argument will probably leads to serious headaches and
will probably imply the dissection of these functions: import_Conte, img_plot and import_jpg
itself

Value

a matrix of (x; y) coordinates that can be passed to Out

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

See Also

import_jpg, import_Conte, import_txt, lf_structure. See also Momocs’ vignettes for data import.

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg(), import_tps(),
import_txt(), pix2chc()

import_StereoMorph_curve1

Import files creates by StereoMorph into Momocs

Description

Helps to read .txt files created by StereoMorph into (x; y) coordinates or Momocs objects. Can be
applied to ’curves’ or ’ldk’ text files.

Usage

import_StereoMorph_curve1(path)

import_StereoMorph_curve(path, names)

import_StereoMorph_ldk1(path)

import_StereoMorph_ldk(path, names)

160 import_tps

Arguments

path toward a single file or a folder containing .txt files produced by StereoMorph

names to feed lf_structure

Details

*1 functions import a single .txt file. Their counterpart (no ’1’) work when path indicates the
folder, i.e. ’curves’ or ’ldk’. They then return a list of Opn or Ldk objects, respectively. Please do
not hesitate to contact me should you have a particular case or need something.

Value

a list of class Coo

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

See Also

Other import functions: import_Conte(), import_jpg(), import_jpg1(), import_tps(), import_txt(),
pix2chc()

Other import functions: import_Conte(), import_jpg(), import_jpg1(), import_tps(), import_txt(),
pix2chc()

Other import functions: import_Conte(), import_jpg(), import_jpg1(), import_tps(), import_txt(),
pix2chc()

Other import functions: import_Conte(), import_jpg(), import_jpg1(), import_tps(), import_txt(),
pix2chc()

import_tps Import a tps file

Description

And returns a list of coordinates, curves, scale

Usage

import_tps(tps.path, curves = TRUE)

tps2coo(tps, curves = TRUE)

import_txt 161

Arguments

tps.path lines, typically from readLines, describing a single shape in tps-like format. You
will need to manually build your Coo object from it: eg Out(coo=your_list$coo).

curves logical whether to read curves, if any

tps lines for a single tps file tps2coo is used in import_tps and may be useful for
data import. When provided with lines (eg after readLines) from a tps-like de-
scription (with "LM", "CURVES", etc.) returns a list of coordinates, curves,
etc.

Value

a list with components: coo a matrix of coordinates; cur a list of matrices; scale the scale as a
numeric.

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

See Also

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg(), import_jpg1(),
import_txt(), pix2chc()

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg(), import_jpg1(),
import_txt(), pix2chc()

import_txt Import coordinates from a .txt file

Description

A wrapper around read.table that can be used to import outline/landmark coordinates.

Usage

import_txt(txt.paths = .lf.auto(), ...)

Arguments

txt.paths a vector of paths corresponding to the .txt files to import. If not provided (or
NULL), switches to the automatic version, just as in import_jpg. See Details
there.

... arguments to be passed to read.table, eg. ’skip’, ’dec’, etc.

162 inspect

Details

Columns are not named in the .txt files. You can tune this using the ... argument. Define the
read.table arguments that allow to import a single file, and then pass them to this function, ie if your
.txt file has a header (eg (’x’, ’y’)), do not forget header=TRUE.

Value

a list of matrix(ces) of (x; y) coordinates that can be passed to Out, Opn and Ldk.

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

Silent message and progress bars (if any) with options("verbose"=FALSE).

See Also

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg(), import_jpg1(),
import_tps(), pix2chc()

inspect Graphical inspection of shapes

Description

Allows to plot shapes, individually, for Coo (Out, Opn or Ldk) objects.

Usage

inspect(x, id, ...)

Arguments

x the Coo object

id the id of the shape to plot, if not provided a random shape is plotted. If passed
with 'all' all shapes are plotted, one by one.

... further arguments to be passed to coo_plot

Value

an interactive plot

See Also

Other Coo_graphics: panel(), stack()

is 163

Examples

Not run:
inspect(bot, 5)
inspect(bot)
inspect(bot, 5, pch=3, points=TRUE) # an example of '...' use

End(Not run)

is Class and component testers

Description

Class testers test if any of the classes of an object is of a given class. For instance is_PCA on a
PCA object (of classes PCA and prcomp) will return TRUE. Component testers check if there_is a
particular component (eg $fac, etc.) in an object.

Usage

is_Coo(x)

is_PCA(x)

is_LDA(x)

is_Out(x)

is_Opn(x)

is_Ldk(x)

is_Coe(x)

is_OutCoe(x)

is_OpnCoe(x)

is_LdkCoe(x)

is_TraCoe(x)

is_shp(x)

is_fac(x)

is_ldk(x)

164 is_equallyspacedradii

is_slidings(x)

is_links(x)

Arguments

x the object to test

Value

logical

Examples

is_Coo(bot)
is_Out(bot)
is_Ldk(bot)
is_ldk(hearts) # mind the capitals!

is_equallyspacedradii Tests if coordinates likely have equally spaced radii

Description

Returns TRUE/FALSE whether the sd of angles between all successive radii is below/above thesh

Usage

is_equallyspacedradii(coo, thres)

Arguments

coo matrix of (x; y) coordinates or any Coo object.

thres numeric a threshold (arbitrarily pi/90, eg 2 degrees, by default)

Value

a single or a vector of logical. If NA are returned, some coordinates are likely identical, at least for
x or y.

See Also

Other coo_ utilities: coo_align(), coo_aligncalliper(), coo_alignminradius(), coo_alignxax(),
coo_baseline(), coo_bookstein(), coo_boundingbox(), coo_calliper(), coo_centdist(),
coo_center(), coo_centpos(), coo_close(), coo_down(), coo_dxy(), coo_extract(), coo_flipx(),
coo_force2close(), coo_interpolate(), coo_is_closed(), coo_jitter(), coo_left(), coo_likely_clockwise(),
coo_nb(), coo_perim(), coo_range(), coo_rev(), coo_right(), coo_rotate(), coo_rotatecenter(),
coo_sample(), coo_sample_prop(), coo_samplerr(), coo_scale(), coo_shearx(), coo_slice(),

KMEANS 165

coo_slide(), coo_slidedirection(), coo_slidegap(), coo_smooth(), coo_smoothcurve(),
coo_template(), coo_trans(), coo_trim(), coo_trimbottom(), coo_trimtop(), coo_untiltx(),
coo_up()

Examples

bot[1] %>% is_equallyspacedradii
bot[1] %>% coo_samplerr(36) %>% is_equallyspacedradii
higher tolerance but wrong
bot[1] %>% coo_samplerr(36) %>% is_equallyspacedradii(thres=5*2*pi/360)
coo_interpolate is a better option
bot[1] %>% coo_interpolate(1200) %>% coo_samplerr(36) %>% is_equallyspacedradii
Coo method
bot %>% coo_interpolate(360) %>% coo_samplerr(36) %>% is_equallyspacedradii

KMEANS KMEANS on PCA objects

Description

A very basic implementation of k-means. Beware that morphospaces are calculated so far for the
1st and 2nd component.

Usage

KMEANS(x, ...)

S3 method for class 'PCA'
KMEANS(x, centers, nax = 1:2, pch = 20, cex = 0.5, ...)

Arguments

x PCA object

... additional arguments to be passed to kmeans

centers numeric number of centers

nax numeric the range of PC components to use (1:2 by default)

pch to draw the points

cex to draw the points

Value

the same thing as kmeans

See Also

Other multivariate: CLUST(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MDS(), MSHAPES(),
NMDS(), PCA(), classification_metrics()

166 KMEDOIDS

Examples

data(bot)
bp <- PCA(efourier(bot, 10))
KMEANS(bp, 2)

KMEDOIDS KMEDOIDS

Description

A basic implementation of kmedoids on top of cluster::pam Beware that morphospaces are calcu-
lated so far for the 1st and 2nd component.

Usage

KMEDOIDS(x, k, metric = "euclidean", ...)

Default S3 method:
KMEDOIDS(x, k, metric = "euclidean", ...)

S3 method for class 'Coe'
KMEDOIDS(x, k, metric = "euclidean", ...)

S3 method for class 'PCA'
KMEDOIDS(x, k, metric = "euclidean", retain, ...)

Arguments

x a Coe or PCA object

k numeric number of centers

metric one of euclidean (default) or manhattan, to feed cluster::pam

... additional arguments to feed cluster::pam

retain when passing a PCA how many PCs to retain, or a proportion of total variance,
see LDA

Value

see cluster::pam. Other components are returned (fac, etc.)

See Also

Other multivariate: CLUST(), KMEANS(), LDA(), MANOVA(), MANOVA_PW(), MDS(), MSHAPES(),
NMDS(), PCA(), classification_metrics()

layers 167

Examples

data(bot)
bp <- PCA(efourier(bot, 10))
KMEANS(bp, 2)

set.seed(123) # for reproducibility on a dummy matrix
matrix(rnorm(100, 10, 10)) %>%
KMEDOIDS(5)

On a Coe
bot_f <- bot %>% efourier()

bot_k <- bot_f %>% KMEDOIDS(2)
confusion matrix
table(bot_kfactype, bot_k$clustering)

on a PCA
bot_k2 <- bot_f %>% PCA() %>% KMEDOIDS(12, retain=0.9)

confusion matrix
with(bot_k, table(fac$type, clustering))
silhouette plot
bot_k %>% plot_silhouette()

average width as a function of k
k_range <- 2:12
widths <- sapply(k_range, function(k) KMEDOIDS(bot_f, k=k)$silinfo$avg.width)
plot(k_range, widths, type="b")

layers grindr layers for multivariate plots

Description

Useful layers for building custom mutivariate plots using the cheapbabi approach. See examples.

Usage

layer_frame(x, center_origin = TRUE, zoom = 0.9)

layer_axes(x, col = "#999999", lwd = 1/2, ...)

layer_ticks(x, col = "#333333", cex = 3/4, lwd = 3/4, ...)

layer_grid(x, col = "#999999", lty = 3, grid = 3, ...)

layer_box(x, border = "#e5e5e5", ...)

layer_fullframe(x, ...)

168 layers

layer_points(x, pch = 20, cex = 4/log1p(nrow(x$xy)), transp = 0, ...)

layer_ellipses(x, conf = 0.5, lwd = 1, alpha = 0, ...)

layer_ellipsesfilled(x, conf = 0.5, lwd = 1, alpha = 0, ...)

layer_ellipsesaxes(x, conf = 0.5, lwd = 1, alpha = 0, ...)

layer_chull(x, ...)

layer_chullfilled(x, alpha = 0.8, ...)

layer_stars(x, alpha = 0.5, ...)

layer_delaunay(x, ...)

layer_density(
x,
levels_density = 20,
levels_contour = 4,
alpha = 1/3,
n = 200,
density = TRUE,
contour = TRUE

)

layer_labelpoints(
x,
col = par("fg"),
cex = 2/3,
font = 1,
abbreviate = FALSE,
...

)

layer_labelgroups(
x,
col = par("fg"),
cex = 3/4,
font = 2,
rect = TRUE,
alpha = 1/4,
abbreviate = FALSE,
...

)

layer_rug(x, size = 1/200, ...)

layers 169

layer_histogram_2(x, freq = FALSE, breaks, split = FALSE, transp = 0)

layer_density_2(x, bw, split = FALSE, rug = TRUE, transp = 0)

layer_title(x, title = "", cex = 3/4, ...)

layer_axesnames(x, cex = 3/4, name = "Axis", ...)

layer_eigen(x, nb_max = 5, cex = 1/2, ...)

layer_axesvar(x, cex = 3/4, ...)

layer_legend(x, probs = seq(0, 1, 0.25), cex = 3/4, ...)

Arguments

x a list, typically returned by plot_PCA

center_origin logical whether to center the origin (default TRUE)

zoom numeric to change the zoom (default 0.9)

col color (hexadecimal) to use for drawing components

lwd linewidth for drawing components

... additional options to feed core functions for each layer

cex to use for drawing components

lty linetype for drawing components

grid numeric number of grid to draw

border color (hexadecimal) to use to draw border

pch to use for drawing components

transp transparency to use (min: 0 defaut:0 max:1)

conf numeric between 0 and 1 for confidence ellipses

alpha numeric between 0 and 1 for the transparency of components

levels_density numeric number of levels to use to feed MASS::kde2d

levels_contour numeric number of levels to use to feed graphics::contour

n numeric number of grid points to feed MASS::kde2d

density logical whether to draw density estimate

contour logical whether to draw contour lines

font to feed text

abbreviate logical whether to abbreviate names

rect logical whether to draw a rectangle below names

size numeric as a fraction of graphical window (default: 1/200)

freq logicalto feed[hist] (default:FALSE‘)

170 layers_morphospace

breaks to feed hist (default: calculated on the pooled values)

split logical whether to split the two distributions into two plots

bw to feed density (default: stats::bw.nrd0)

rug logical whether to add rug (default: TRUE)

title to add to the plot (default "")

name to use on axes (default "Axis")

nb_max numeric number of eigen values to display (default 5)

probs numeric sequence to feed stats::quantile and to indicate where to draw ticks
and legend labels

Value

a drawing layer

See Also

grindr_drawers

Other grindr: drawers, layers_morphospace, mosaic_engine(), papers, pile(), plot_LDA(),
plot_NMDS(), plot_PCA()

layers_morphospace Morphospace layers

Description

Used internally by plot_PCA, plot_LDA, etc. but may be useful elsewhere.

Usage

layer_morphospace_PCA(
x,
position = c("range", "full", "circle", "xy", "range_axes", "full_axes")[1],
nb = 12,
nr = 6,
nc = 5,
rotate = 0,
size = 0.9,
col = "#999999",
flipx = FALSE,
flipy = FALSE,
draw = TRUE

)

layer_morphospace_LDA(
x,

layers_morphospace 171

position = c("range", "full", "circle", "xy", "range_axes", "full_axes")[1],
nb = 12,
nr = 6,
nc = 5,
rotate = 0,
size = 0.9,
col = "#999999",
flipx = FALSE,
flipy = FALSE,
draw = TRUE

)

Arguments

x layered PCA or LDA. Typically, the object returned by plot_PCA and plot_LDA

position one of range, full, circle, xy, range_axes, full_axes to feed mor-
phospace_positions (default: range)

nb numeric total number of shapes when position="circle" (default: 12)

nr numeric number of rows to position shapes (default: 6)

nc numeric number of columns to position shapes (default 5)

rotate numeric angle (in radians) to rotate shapes when displayed on the morphospace
(default: 0)

size numeric size to use to feed coo_template (default: 0.9)

col color to draw shapes (default: #999999)

flipx logical whether to flip shapes against the x-axis (default: FALSE)

flipy logical whether to flip shapes against the y-axis (default: FALSE)

draw logical whether to draw shapes (default: TRUE)

Value

a drawing layer

See Also

Other grindr: drawers, layers, mosaic_engine(), papers, pile(), plot_LDA(), plot_NMDS(),
plot_PCA()

Other grindr: drawers, layers, mosaic_engine(), papers, pile(), plot_LDA(), plot_NMDS(),
plot_PCA()

172 LDA

LDA Linear Discriminant Analysis on Coe objects

Description

Calculates a LDA on Coe on top of MASS::lda.

Usage

LDA(x, fac, retain, ...)

Default S3 method:
LDA(x, fac, retain, ...)

S3 method for class 'PCA'
LDA(x, fac, retain = 0.99, ...)

Arguments

x a Coe or a PCA object

fac the grouping factor (names of one of the $fac column or column id)

retain the proportion of the total variance to retain (if retain<1) using scree, or the
number of PC axis (if retain>1).

... additional arguments to feed lda

Value

a ’LDA’ object on which to apply plot.LDA, which is a list with components:

• x any Coe object (or a matrix)

• fac grouping factor used

• removed ids of columns in the original matrix that have been removed since constant (if any)

• mod the raw lda mod from lda

• mod.pred the predicted model using x and mod

• CV.fac cross-validated classification

• CV.tab cross-validation tabke

• CV.correct proportion of correctly classified individuals

• CV.ce class error

• LDs unstandardized LD scores see Claude (2008)

• mshape mean values of coefficients in the original matrix

• method inherited from the Coe object (if any)

Ldk 173

Note

For LDA.PCA, retain can be passed as a vector (eg: 1:5, and retain=1, retain=2, ..., retain=5) will
be tried, or as "best" (same as before but retain=1:number_of_pc_axes is used).

Silent message and progress bars (if any) with options("verbose"=FALSE).

See Also

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), MANOVA(), MANOVA_PW(), MDS(), MSHAPES(),
NMDS(), PCA(), classification_metrics()

Examples

bot.f <- efourier(bot, 24)
bot.p <- PCA(bot.f)
LDA(bot.p, 'type', retain=0.99) # retains 0.99 of the total variance
LDA(bot.p, 'type', retain=5) # retain 5 axis
bot.l <- LDA(bot.p, 'type', retain=0.99)
plot_LDA(bot.l)
bot.f <- mutate(bot.f, plop=factor(rep(letters[1:4], each=10)))
bot.l <- LDA(PCA(bot.f), 'plop')
plot_LDA(bot.l) # will replace the former soon

Ldk Builds an Ldk object

Description

In Momocs, Ldk classes objects are lists of configurations of landmarks, with optionnal compo-
nents, on which generic methods such as plotting methods (e.g. stack) and specific methods (e.g.
fgProcrustes). Ldk objects are primarily Coo objects. In a sense, morphometrics methods on Ldk
objects preserves (x, y) coordinates and LdkCoe are also Ldk objects.

Usage

Ldk(coo, fac = dplyr::tibble(), links = NULL, slidings = NULL)

Arguments

coo a list of matrices of (x; y) coordinates, or an array, or an Ldk object or a
data.frame (and friends)

fac (optionnal) a data.frame of factors and/or numerics specifying the grouping
structure

links (optionnal) a 2-columns matrix of ’links’ between landmarks, mainly for plot-
ting

slidings (optionnal) a 3-columns matrix defining (if any) sliding landmarks

174 ldk_check

Details

All the shapes in x must have the same number of landmarks. If you are trying to make an Ldk
object from an Out or an Opn object, try coo_sample beforehand to homogeneize the number of
coordinates among shapes. Please note that Ldk methods are as experimental.

implementation of $slidings is inspired by geomorph

Value

an Ldk object

See Also

Other classes: Coe(), Coo(), Opn(), OpnCoe(), Out(), OutCoe(), TraCoe()

Examples

#Methods on Ldk
methods(class=Ldk)

str(mosquito)

ldk_check Checks ’ldk’ shapes

Description

A simple utility, used internally, mostly by Ldk methods, in some graphical functions, and notably
in l2a. Returns an array of landmarks arranged as (nb.ldk) x (x; y) x (nb.shapes), when passed
with either a list, a matrix or an array of coordinates. If a list is provided, checks that the number of
landmarks is consistent.

Usage

ldk_check(ldk)

Arguments

ldk a matrix of (x; y) coordinates, a list, or an array.

Value

an array of (x; y) coordinates.

See Also

Other ldk helpers: def_links(), links_all(), links_delaunay()

ldk_chull 175

Examples

#coo_check('Not a shape')
#coo_check(matrix(1:10, ncol=2))
#coo_check(list(x=1:5, y=6:10))

ldk_chull Draws convex hulls around landmark positions

Description

A wrapper that uses coo_chull

Usage

ldk_chull(ldk, col = "grey40", lty = 1)

Arguments

ldk an array (or a list) of landmarks

col a color for drawing the convex hull

lty an lty for drawing the convex hulls

Value

a drawing on the last plot

See Also

coo_chull, chull, ldk_confell, ldk_contour

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Other ldk plotters: ldk_confell(), ldk_contour(), ldk_labels(), ldk_links()

Examples

coo_plot(MSHAPES(wings))
ldk_chull(wings$coo)

176 ldk_confell

ldk_confell Draws confidence ellipses for landmark positions

Description

Draws confidence ellipses for landmark positions

Usage

ldk_confell(
ldk,
conf = 0.5,
col = "grey40",
ell.lty = 1,
ax = TRUE,
ax.lty = 2

)

Arguments

ldk an array (or a list) of landmarks

conf the confidence level (normal quantile, 0.5 by default)

col the color for the ellipse

ell.lty an lty for the ellipse

ax logical whether to draw ellipses axes

ax.lty an lty for ellipses axes

Value

a drawing on the last plot

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_chull(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Other ldk plotters: ldk_chull(), ldk_contour(), ldk_labels(), ldk_links()

Examples

coo_plot(MSHAPES(wings))
ldk_confell(wings$coo)

ldk_contour 177

ldk_contour Draws kernel density contours around landmark

Description

Using kde2d in the MASS package.

Usage

ldk_contour(ldk, nlevels = 5, grid.nb = 50, col = "grey60")

Arguments

ldk an array (or a list) of landmarks

nlevels the number of contour lines

grid.nb the grid.nb

col a color for drawing the contour lines

Value

a drawing on the last plot

See Also

kde2d, ldk_confell, ldk_chull

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_chull(), ldk_confell(), ldk_labels(), ldk_links(), plot_devsegments(),
plot_table()

Other ldk plotters: ldk_chull(), ldk_confell(), ldk_labels(), ldk_links()

Examples

coo_plot(MSHAPES(wings))
ldk_contour(wings$coo)

178 ldk_labels

ldk_labels Add landmarks labels

Description

Add landmarks labels

Usage

ldk_labels(ldk, d = 0.05, cex = 2/3, ...)

Arguments

ldk a matrix of (x; y) coordinates: where to plot the labels

d how far from the coordinates, on a (centroid-landmark) segment

cex the cex for the label

... additional parameters to fed text

Value

a drawing on the last plot

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_chull(), ldk_confell(), ldk_contour(), ldk_links(), plot_devsegments(),
plot_table()

Other ldk plotters: ldk_chull(), ldk_confell(), ldk_contour(), ldk_links()

Examples

coo_plot(wings[1])
ldk_labels(wings[1])
closer and smaller
coo_plot(wings[1])
ldk_labels(wings[1], d=0.05, cex=0.5)

ldk_links 179

ldk_links Draws links between landmarks

Description

Cosmetics only but useful to visualize shape variation.

Usage

ldk_links(ldk, links, ...)

Arguments

ldk a matrix of (x; y) coordinates

links a matrix of links. On the first column the starting-id, on the second column the
ending-id (id= the number of the coordinate)

... additional parameters to fed segments

Value

a drawing on the last plot

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), plot_devsegments(),
plot_table()

Other ldk plotters: ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels()

lf_structure bind_db.Coe <- bind_db.Coo Extracts structure from filenames

Description

If filenames are consistently named with the same character serating factors, and with every indi-
vidual including its belonging levels, e.g.:

• 001_speciesI_siteA_ind1_dorsalview

• 002_speciesI_siteA_ind2_lateralview

etc., this function returns a data.frame from it that can be passed to Out, Opn, Ldk objects.

Usage

lf_structure(lf, names = character(), split = "_", trim.extension = FALSE)

180 links_all

Arguments

lf a list (its names are used, except if it is a list from import_tps in this case
names(lf$coo) is used) of a list of filenames, as characters, typically such as
those obtained with list.files. Alternatively, a path to a folder containing the
files. Actually, if lf is of length 1 (a single character), the function assumes it is
a path and do a list.files on it.

names the names of the groups, as a vector of characters which length corresponds to
the number of groups.

split character, the spliting factor used for the file names.

trim.extension logical. Whether to remove the last for characters in filenames, typically their
extension, e.g. ’.jpg’.

Details

The number of groups must be consistent across filenames.

Value

data.frame with, for every individual, the corresponding level for every group.

Note

This is, to my view, a good practice to ’store’ the grouping structure in filenames, but it is of course
not mandatory.

Note also that you can: i) do a import_jpg and save is a list, say ’foo’; then ii) pass ’names(foo)’ to
lf_structure. See Momocs’ vignette for an illustration.

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

See Also

import_jpg1, import_Conte, import_txt, lf_structure. See also Momocs’ vignettes for data import.

Other babel functions: tie_jpg_txt()

links_all Creates links (all pairwise combinations) between landmarks

Description

Creates links (all pairwise combinations) between landmarks

Usage

links_all(coo)

links_delaunay 181

Arguments

coo a matrix (or a list) of (x; y) coordinates

Value

a matrix that can be passed to ldk_links, etc. The columns are the row ids of the original shape.

See Also

Other ldk helpers: def_links(), ldk_check(), links_delaunay()

Examples

w <- wings[1]
coo_plot(w)
links <- links_all(w)
ldk_links(w, links)

links_delaunay Creates links (Delaunay triangulation) between landmarks

Description

Creates links (Delaunay triangulation) between landmarks

Usage

links_delaunay(coo)

Arguments

coo a matrix (or a list) of (x; y) coordinates

Details

uses delaunayn in the geometry package.

Value

a matrix that can be passed to ldk_links, etc. The columns are the row ids of the original shape.

See Also

Other ldk helpers: def_links(), ldk_check(), links_all()

182 MANOVA

Examples

w <- wings[1]
coo_plot(w, poly=FALSE)
links <- links_delaunay(w)
ldk_links(w, links)

MANOVA Multivariate analysis of (co)variance on Coe objects

Description

Performs multivariate analysis of variance on PCA objects.

Usage

MANOVA(x, fac, test = "Hotelling", retain, drop)

S3 method for class 'OpnCoe'
MANOVA(x, fac, test = "Hotelling", retain, drop)

S3 method for class 'OutCoe'
MANOVA(x, fac, test = "Hotelling", retain, drop)

S3 method for class 'PCA'
MANOVA(x, fac, test = "Hotelling", retain = 0.99, drop)

Arguments

x a Coe object

fac a name of a colum in the $fac slot, or its id, or a formula

test a test for manova ('Hotelling' by default)

retain how many harmonics (or polynomials) to retain, for PCA the highest number of
PC axis to retain, or the proportion of the variance to capture.

drop how many harmonics (or polynomials) to drop

Details

Performs a MANOVA/MANCOVA on PC scores. Just a wrapper around manova. See examples for
multifactorial manova and summary.manova for more details and examples.

Value

a list of matrices of (x,y) coordinates.

MANOVA_PW 183

Note

Needs a review and should be considered as experimental. Silent message and progress bars (if any)
with options("verbose"=FALSE).

See Also

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA_PW(), MDS(), MSHAPES(),
NMDS(), PCA(), classification_metrics()

Examples

MANOVA
bot.p <- PCA(efourier(bot, 12))
MANOVA(bot.p, 'type')

op <- PCA(npoly(olea, 5))
MANOVA(op, 'domes')

m <- manova(op$x[, 1:5] ~ op$fac$domes * op$fac$var)
summary(m)
summary.aov(m)

MANCOVA example
we create a numeric variable, based on centroid size
bot %<>% mutate(cs=coo_centsize(.))
same pipe
bot %>% efourier %>% PCA %>% MANOVA("cs")

MANOVA_PW Pairwise Multivariate analyses of variance

Description

A wrapper for pairwise MANOVAs on Coe objects. Calculates a MANOVA for every pairwise
combination of the factor provided.

Usage

MANOVA_PW(x, ...)

S3 method for class 'PCA'
MANOVA_PW(x, fac, retain = 0.99, ...)

184 MANOVA_PW

Arguments

x a PCA object

... more arguments to feed MANOVA

fac a name (or its id) of a grouping factor in $fac or a factor or a formula.

retain the number of PC axis to retain (1:retain) or the proportion of variance to capture
(0.99 par default).

Value

a list with the following components is returned (invisibly because $manovas may be very long, see
examples):

• manovas a list containing all the raw manovas

• summary

• stars.tab a table with ’significance stars’, discutable but largely used: ’’ if Pr(>F) < 0.001; ’’
of < 0.01; ’’ if < 0.05; ’.’ if < 0.10 and ’-’ if above.

Note

Needs a review and should be considered as experimental. If the fac passed has only two levels,
there is only pair and it is equivalent to MANOVA. MANOVA_PW.PCA works with the regular manova.

See Also

MANOVA, manova.

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MDS(), MSHAPES(), NMDS(),
PCA(), classification_metrics()

Examples

we create a fake factor with 4 levels
botfacfake <- factor(rep(letters[1:4], each=10))
bot.p <- PCA(efourier(bot, 8))
MANOVA_PW(bot.p, 'fake') # or MANOVA_PW(bot.p, 2)

an example on open outlines
op <- PCA(npoly(olea))
MANOVA_PW(op, 'domes')
to get the results
res <- MANOVA_PW(op, 'domes')
res$manovas
res$stars.tab
res$summary

MDS 185

MDS (Metric) multidimensional scaling

Description

A wrapper around stats::cmdscale.

Usage

MDS(x, method = "euclidean", k = 2, ...)

Arguments

x any Coe object

method a dissiminarity index to feed method in stats::dist (default: euclidean)

k numeric number of dimensions to feed stats::cmdscale (default: 2)

... additional parameters to feed stats::cmdscale

Details

For Details, see vegan::metaMDS

Value

what is returned by stats::dist plus $fac. And prepend MDS class to it.

See Also

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MSHAPES(),
NMDS(), PCA(), classification_metrics()

Examples

x <- bot %>% efourier %>% MDS
x

186 measure

measure Measures shape descriptors

Description

Calculates shape descriptors on Coo and other objects. Any function that returns a scalar when fed
coordinates can be passed and naturally those of Momocs (pick some there apropos("coo_")).
Functions without arguments (eg coo_area) have to be passed without brackets but functions with
arguments (eg d) have to be passed "entirely". See examples.

Usage

measure(x, ...)

Arguments

x any Coo object, or a list of shapes, or a shape as a matrix.

... a list of functions. See examples.

Value

a TraCoe object, or a raw data.frame

See Also

Other premodern: coo_truss()

Examples

bm <- measure(bot, coo_area, coo_perim)
bm
bm$coe

how to use arguments, eg with the d() function
measure(wings, coo_area, d(1, 3), d(4, 5))

alternatively, to get a data_frame
measure(bot$coo, coo_area, coo_perim)

and also, to get a data_frame (one row)
measure(bot[1], coo_area, coo_perim)

molars 187

molars Data: Outline coordinates of 360 molars

Description

Courtesy of Julien Corny and Florent Detroit.

Format

A Out object containing 79 equilinearly spaced (x; y) coordinates for 360 crown outlines, of modern
human molars, along with their type ($type) - 90 first upper molars (UM1), 90 second upper molars
(UM2), 90 first lower molars (LM1), 90 second lower molars (LM2) - and the individual (ind) they
come from (the data of the 360 molars are taken from 180 individuals).

Source

Corny, J., & Detroit, F. (2014). Technical Note: Anatomic identification of isolated modern hu-
man molars: testing Procrustes aligned outlines as a standardization procedure for elliptic fourier
analysis. American Journal of Physical Anthropology, 153(2), 314-22. doi:10.1002/ajpa.22428 see
https://onlinelibrary.wiley.com/doi/abs/10.1002/ajpa.22428

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, mosquito, mouse, nsfishes,
oak, olea, shapes, trilo, wings

Momocs Momocs

Description

The goal of Momocs is to provide a complete, convenient, reproducible and open-source toolkit
for 2D morphometrics. It includes most common 2D morphometrics approaches on outlines, open
outlines, configurations of landmarks, traditional morphometrics, and facilities for data prepara-
tion, manipulation and visualization with a consistent grammar throughout. It allows reproducible,
complex morphometric analyses and other morphometrics approaches should be easy to plug in, or
develop from, on top of this canvas.

Details

To cite Momocs in publications: citation("Momocs").

Value

nothing

188 morphospace_positions

Cheers

We are very grateful to (in alphabetical order): Sean Asselin, Laurent Bouby, Matt Bulbert, Simon
Crameri, Julia Cooke, April Dinwiddie, Carl Lipo, Cedric Gaucherel, Catherine Girard, QGouil
(GitHub), Christian Steven Hoggard, Sarah Ivorra, Glynis Jones, Nathalie Keller, Ricardo Kriebel,
Remi Laffont, Fabien Lafuma, Matthias Mace, Stas Malavin, Neus Martinez, Ben Marwick, Sabrina
Renaud, Marcelo Reginato, Evan Saitta, Bill Sellers, David Siddons, Eleanor Stillman, Theodore
Stammer, Tom Stubbs, Norbert Telmon, Jean-Frederic Terral, Bill Venables, Daniele Ventura,
Michael Wallace, Asher Wishkerman, John Wood for their helpful ideas and bug reports.

Author(s)

Maintainer: Vincent Bonhomme <bonhomme.vincent@gmail.com>

Authors:

• Julien Claude (core functions in base R)

References

• Bonhomme V, Picq S, Gaucherel C, Claude J. 2014. Momocs: Outline Analysis Using R.
Journal of Statistical Software 56. https://www.jstatsoft.org/v56/i13.

• Claude J. 2008. Morphometrics with R. Springer-Verlag, New-York.

See Also

• Homepage: https://github.com/MomX/Momocs

• Issues: https://github.com/MomX/Momocs/issues

• Tutorial: browseVignettes("Momocs") or http://momx.github.io/Momocs/

• Email: bonhomme.vincent@gmail.com to contribute to dev, ask for something, propose col-
laboration, share your data, etc.

morphospace_positions Calculates nice positions on a plane for drawing shapes

Description

Calculates nice positions on a plane for drawing shapes

Usage

morphospace_positions(
xy,
pos.shp = c("range", "full", "circle", "xy", "range_axes", "full_axes")[1],
nb.shp = 12,
nr.shp = 6,
nc.shp = 5,
circle.r.shp

)

https://www.jstatsoft.org/v56/i13
https://github.com/MomX/Momocs
https://github.com/MomX/Momocs/issues
http://momx.github.io/Momocs/

mosaic_engine 189

Arguments

xy a matrix of points typically from a PCA or other multivariate method on which
morphospace can be calculated

pos.shp how shapes should be positionned: range of xy, full extent of the plane,
circle as a rosewind, on xy values provided, range_axes on the range of xy
but on the axes, full_axes same thing but on (0.85) range of the axes. You can
also directly pass a matrix (or a data.frame) with columns named ("x", "y").

nb.shp the total number of shapes

nr.shp the number of rows to position shapes

nc.shp the number of cols to position shapes

circle.r.shp if circle, its radius

Details

See plot.PCA for self-speaking examples

Value

a data.frame of positions

mosaic_engine Plots mosaics of shapes.

Description

Will soon replace panel. See examples and vignettes.

Usage

mosaic_engine(
coo_list,
dim,
asp = 1,
byrow = TRUE,
fromtop = TRUE,
sample = 60,
relatively = FALSE,
template_size = 0.92

)

mosaic(x, ...)

S3 method for class 'Out'
mosaic(
x,

190 mosaic_engine

f,
relatively = FALSE,
pal = pal_qual,
sample = 60,
paper_fun = paper_white,
draw_fun = draw_outlines,
legend = TRUE,
dim = NA,
asp = 1,
byrow = TRUE,
fromtop = TRUE,
...

)

S3 method for class 'Opn'
mosaic(
x,
f,
relatively = FALSE,
pal = pal_qual,
sample = 60,
paper_fun = paper_white,
draw_fun = draw_curves,
legend = TRUE,
dim = NA,
asp = 1,
byrow = TRUE,
fromtop = TRUE,
...

)

S3 method for class 'Ldk'
mosaic(
x,
f,
relatively = FALSE,
pal = pal_qual,
sample = 60,
paper_fun = paper_white,
draw_fun = draw_landmarks,
legend = TRUE,
dim = NA,
asp = 1,
byrow = TRUE,
fromtop = TRUE,
...

)

mosaic_engine 191

Arguments

coo_list list of shapes

dim numeric of length 2, the desired dimensions for rows and columns

asp numeric the yx ratio used to calculate dim (1 by default).

byrow logical whether to order shapes by rows

fromtop logical whether to order shapes from top

sample numeric number of points to coo_sample

relatively logical if TRUE use coo_template_relatively or, if FALSE(by default) coo_template.
In other words, whether to preserve size or not.

template_size numeric to feed coo_template(_relatively). Only useful to add padding
around shapes when the default value (0.95) is lowered.

x any Coo object

... additional arguments to feed the main drawer if the number of shapes is > 1000
(default: 64). If non-numeric (eg FALSE) do not sample.

f factor specification to feed fac_dispatcher

pal one of palettes

paper_fun a papers function (default: paper)

draw_fun one of drawers for pile.list

legend logical whether to draw a legend (will be improved in further versions)

Value

a list of templated and translated shapes

See Also

Other grindr: drawers, layers, layers_morphospace, papers, pile(), plot_LDA(), plot_NMDS(),
plot_PCA()

Examples

On Out ---
bot %>% mosaic
bot %>% mosaic(~type)

As with other grindr functions you can continue the pipe
bot %>% mosaic(~type, asp=0.5) %>% draw_firstpoint

On Opn ---- same grammar
olea %>% mosaic(~view+var, paper_fun=paper_dots)

On Ldk
mosaic(wings, ~group, pal=pal_qual_Dark2, pch=3)

On Out with different sizes

192 mouse

would work on other Coo too
shapes2 <- shapes
sizes <- runif(30, 1, 2)
shapes2 %>% mosaic(relatively=FALSE)
shapes2 %>% mosaic(relatively=TRUE) %>% draw_centroid()

mosquito Data: Outline coordinates of mosquito wings.

Description

Data: Outline coordinates of mosquito wings.

Format

A Out object with the 126 mosquito wing outlines outlines used Rohlf and Archie (1984). Note that
the links defined here are quite approximate.

Source

Rohlf F, Archie J. 1984. A comparison of Fourier methods for the description of wing shape in
mosquitoes (Diptera: Culicidae). Systematic Biology: 302-317.

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mouse, nsfishes,
oak, olea, shapes, trilo, wings

mouse Data: Outline coordinates of mouse molars

Description

Data: Outline coordinates of mouse molars

Format

A Out object 64 coordinates of 30 wood molar outlines.

Source

Renaud S, Dufour AB, Hardouin EA, Ledevin R, Auffray JC (2015): Once upon multivariate
analyses: When they tell several stories about biological evolution. PLoS One 10:1-18 https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0132801

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, nsfishes,
oak, olea, shapes, trilo, wings

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132801
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132801

MSHAPES 193

MSHAPES Mean shape calculation for Coo, Coe, etc.

Description

Quite a versatile function that calculates mean (or median, or whatever function) on list or an array
of shapes, an Ldk object. It can also be used on Coe objects. In that case, the reverse transformation
(from coefficients to shapes) is calculated, (within groups defined with the fac argument if provided)
and the Coe object is also returned (in $Coe) along with a list of shapes (in $shp) and can then be
passed to plot_MSHAPES.

Usage

MSHAPES(x, fac = NULL, FUN = mean, nb.pts = 120, ...)

Arguments

x a list, array, Ldk, LdkCoe, OutCoe or OpnCoe or PCA object

fac factor specification for fac_dispatcher

FUN a function to compute the mean shape (mean by default, by median can be con-
sidered)

nb.pts numeric the number of points for calculated shapes (only Coe objects)

... useless here.

Value

the averaged shape; on Coe objects, a list with two components: $Coe object of the same class, and
$shp a list of matrices of (x, y) coordinates. On PCA and LDA objects, the FUN (typically mean or
median) of scores on PCs or LDs. This method used on the latter objects may be moved to another
function at some point.

See Also

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MDS(),
NMDS(), PCA(), classification_metrics()

Examples

on shapes
MSHAPES(wings)
MSHAPES(wings$coo)
MSHAPES(coo_sample(bot, 24)$coo)
stack(wings)
coo_draw(MSHAPES(wings))

bot.f <- efourier(bot, 12)
MSHAPES(bot.f) # the mean (global) shape

194 mutate

ms <- MSHAPES(bot.f, 'type')
ms$Coe
class(ms$Coe)
ms <- ms$shp
coo_plot(ms$beer)
coo_draw(ms$whisky, border='forestgreen')

mutate Add new variables

Description

Add new variables to the $fac. See examples and ?dplyr::mutate.

Usage

mutate(.data, ...)

Arguments

.data a Coo, Coe, PCA object

... comma separated list of unquoted expressions

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

Examples

olea
mutate(olea, id=factor(1:length(olea)))

NMDS 195

NMDS Non metric multidimensional scaling

Description

A wrapper around vegan::metaMDS.

Usage

NMDS(x, distance = "bray", k = 2, try = 20, trymax = 20, ...)

Arguments

x any Coe object

distance a dissiminarity index to feed vegan::vegdist (default: bray)

k numeric number of dimensions to feed vegan::metaMDS (default: 2)

try numeric minimum number of random starts to feed vegan::metaMDS (default:
20)

trymax numeric minimum number of random starts to feed vegan::metaMDS (default:
20)

... additional parameters to feed vegan::metaMDS

Details

For Details, see vegan::metaMDS

Value

what is returned by vegan::metaMDS plus $fac. And prepend NMDS class to it.

See Also

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MDS(),
MSHAPES(), PCA(), classification_metrics()

Examples

x <- bot %>% efourier %>% NMDS

Shepard diagram # before a Momocs wrapper
vegan::stressplot(x)

196 npoly

npoly Calculate natural polynomial fits on open outlines

Description

Calculates natural polynomial coefficients, through a linear model fit (see lm), from a matrix of (x;
y) coordinates or an Opn object

Usage

npoly(x, ...)

Default S3 method:
npoly(x, degree, ...)

S3 method for class 'Opn'
npoly(
x,
degree,
baseline1 = c(-0.5, 0),
baseline2 = c(0.5, 0),
nb.pts = 120,
...

)

S3 method for class 'list'
npoly(x, ...)

Arguments

x a matrix (or a list) of (x; y) coordinates or an Opn object

... useless here

degree polynomial degree for the fit (the Intercept is also returned)

baseline1 numeric the (x; y) coordinates of the first baseline by default (x = −0.5; y = 0)

baseline2 numeric the (x; y) coordinates of the second baseline by default (x = 0.5; y =
0)

nb.pts number of points to sample and on which to calculate polynomials

Value

when applied on a single shape, a list with components:

• coeff the coefficients (including the intercept)

• ortho whether orthogonal or natural polynomials were fitted

• degree degree of the fit (could be retrieved through coeff though)

nsfishes 197

• baseline1 the first baseline point (so far the first point)

• baseline2 the second baseline point (so far the last point)

• r2 the r2 from the fit

• mod the raw lm model

otherwise, an OpnCoe object.

See Also

Other polynomials: opoly(), opoly_i()

Examples

data(olea)
o <- olea[1]
op <- opoly(o, degree=4)
op
shape reconstruction
opi <- opoly_i(op)
coo_plot(o)
coo_draw(opi, border="red")
R2 for degree 1 to 10
r <- numeric()
for (i in 1:10) { r[i] <- npoly(o, degree=i)$r2 }
plot(2:10, r[2:10], type='b', pch=20, col='red', main='R2 / degree')

nsfishes Data: Outline coordinates of North Sea fishes

Description

Data: Outline coordinates of North Sea fishes

Format

A Out object containing the outlines coordinates for 218 fishes from the North Sea along with
taxonomical cofactors.

Source

Caillon F, Frelat R, Mollmann C, Bonhomme V (submitted)

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, mouse,
oak, olea, shapes, trilo, wings

198 olea

oak Data: Configuration of landmarks of oak leaves

Description

From Viscosi and Cardini (2001).

Format

A Ldk object containing 11 (x; y) landmarks from 176 oak leaves wings, from

Source

Viscosi, V., & Cardini, A. (2011). Leaf morphology, taxonomy and geometric morphometrics: a
simplified protocol for beginners. PloS One, 6(10), e25630. doi:10.1371/journal.pone.0025630

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, mouse,
nsfishes, olea, shapes, trilo, wings

olea Data: Outline coordinates of olive seeds open outlines.

Description

Data: Outline coordinates of olive seeds open outlines.

Format

An Opn object with the outline coordinates of olive seeds.

Source

We thank Jean-Frederic Terral and Sarah Ivorra (UMR CBAE, Montpellier, France) from allowing
us to share the data.

You can have a look to the original paper: Terral J-F, Alonso N, Capdevila RB i, Chatti N, Fabre
L, Fiorentino G, Marinval P, Jorda GP, Pradat B, Rovira N, et al. 2004. Historical biogeogra-
phy of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to
biological and archaeological material. Journal of Biogeography 31: 63-77.

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, mouse,
nsfishes, oak, shapes, trilo, wings

Opn 199

Opn Builds an Opn object

Description

In Momocs, Opn classes objects are lists of open outlines, with optionnal components, on which
generic methods such as plotting methods (e.g. stack) and specific methods (e.g. npoly can be
applied. Opn objects are primarily Coo objects.

Usage

Opn(x, fac = dplyr::tibble(), ldk = list())

Arguments

x list of matrices of (x; y) coordinates, or an array, or a data.frame (and friends)

fac (optionnal) a data.frame of factors and/or numerics specifying the grouping
structure

ldk (optionnal) list of landmarks as row number indices

Value

an Opn object

See Also

Other classes: Coe(), Coo(), Ldk(), OpnCoe(), Out(), OutCoe(), TraCoe()

Examples

#Methods on Opn
methods(class=Opn)
we load some open outlines. See ?olea for credits
olea
panel(olea)
orthogonal polynomials
op <- opoly(olea, degree=5)
we print the Coe
op
Let's do a PCA on it
op.p <- PCA(op)
plot(op.p, 'domes')
plot(op.p, 'var')
and now an LDA after a PCA
olda <- LDA(PCA(op), 'var')
for CV table and others
olda
plot_LDA(olda)

200 OpnCoe

OpnCoe Builds an OpnCoe object

Description

In Momocs, OpnCoe classes objects are wrapping around lists of morphometric coefficients, along
with other informations, on which generic methods such as plotting methods (e.g. boxplot) and
specific methods can be applied. OpnCoe objects are primarily Coe objects.

Usage

OpnCoe(
coe = matrix(),
fac = dplyr::tibble(),
method = character(),
baseline1 = numeric(),
baseline2 = numeric(),
mod = list(),
r2 = numeric()

)

Arguments

coe matrix of morphometric coefficients

fac (optionnal) a data.frame of factors, specifying the grouping structure

method used to obtain these coefficients

baseline1 (x; y) coordinates of the first baseline point

baseline2 (x; y) coordinates of the second baseline point

mod an R lm object, used to reconstruct shapes

r2 numeric, the r-squared from every model

Value

an OpnCoe object

See Also

Other classes: Coe(), Coo(), Ldk(), Opn(), Out(), OutCoe(), TraCoe()

Examples

all OpnCoe classes
methods(class='OpnCoe')

opoly 201

opoly Calculate orthogonal polynomial fits on open outlines

Description

Calculates orthogonal polynomial coefficients, through a linear model fit (see lm), from a matrix of
(x; y) coordinates or a Opn object

Usage

opoly(x, ...)

Default S3 method:
opoly(x, degree, ...)

S3 method for class 'Opn'
opoly(
x,
degree,
baseline1 = c(-0.5, 0),
baseline2 = c(0.5, 0),
nb.pts = 120,
...

)

S3 method for class 'list'
opoly(x, ...)

Arguments

x a matrix (or a list) of (x; y) coordinates

... useless here

degree polynomial degree for the fit (the Intercept is also returned)

baseline1 numeric the (x; y) coordinates of the first baseline by default (x = −0.5; y = 0)

baseline2 numeric the (x; y) coordinates of the second baseline by default (x = 0.5; y =
0)

nb.pts number of points to sample and on which to calculate polynomials

Value

a list with components when applied on a single shape:

• coeff the coefficients (including the intercept)

• ortho whether orthogonal or natural polynomials were fitted

• degree degree of the fit (could be retrieved through coeff though)

202 opoly_i

• baseline1 the first baseline point (so far the first point)

• baseline2 the second baseline point (so far the last point)

• r2 the r2 from the fit

• mod the raw lm model

otherwise an OpnCoe object.

Note

Orthogonal polynomials are sometimes called Legendre’s polynomials. They are preferred over
natural polynomials since adding a degree do not change lower orders coefficients.

See Also

Other polynomials: npoly(), opoly_i()

Examples

data(olea)
o <- olea[1]
op <- opoly(o, degree=4)
op
shape reconstruction
opi <- opoly_i(op)
coo_plot(o)
coo_draw(opi)
lines(opi, col='red')
R2 for degree 1 to 10
r <- numeric()
for (i in 1:10) { r[i] <- opoly(o, degree=i)$r2 }
plot(2:10, r[2:10], type='b', pch=20, col='red', main='R2 / degree')

opoly_i Calculates shape from a polynomial model

Description

Returns a matrix of (x; y) coordinates when passed with a list obtained with opoly or npoly.

Usage

opoly_i(pol, nb.pts = 120, reregister = TRUE)

npoly_i(pol, nb.pts = 120, reregister = TRUE)

Out 203

Arguments

pol a pol list such as created by npoly or opoly

nb.pts the number of points to predict. By default (and cannot be higher) the number
of points in the original shape.

reregister logical whether to reregister the shape with the original baseline.

Value

a matrix of (x; y) coordinates.

See Also

Other polynomials: npoly(), opoly()

Examples

data(olea)
o <- olea[5]
coo_plot(o)
for (i in 2:7){
x <- opoly_i(opoly(o, i))
coo_draw(x, border=col_summer(7)[i], points=FALSE) }

Out Builds an Out object

Description

In Momocs, Out-classes objects are lists of closed outlines, with optional components, and on
which generic methods such as plotting methods (e.g. stack) and specific methods (e.g. efourier
can be applied. Out objects are primarily Coo objects.

Usage

Out(x, fac = dplyr::tibble(), ldk = list())

Arguments

x a list of matrices of (x; y) coordinates, or an array or an Out object or an Ldk
object, or a data.frame (and friends)

fac (optional) a data.frame of factors and/or numerics specifying the grouping
structure

ldk (optional) list of landmarks as row number indices

Value

an Out object

204 OutCoe

See Also

Other classes: Coe(), Coo(), Ldk(), Opn(), OpnCoe(), OutCoe(), TraCoe()

Examples

methods(class=Out)

OutCoe Builds an OutCoe object

Description

In Momocs, OutCoe classes objects are wrapping around lists of morphometric coefficients, along
with other informations, on which generic methods such as plotting methods (e.g. boxplot) and
specific methods can be applied. OutCoe objects are primarily Coe objects.

Usage

OutCoe(coe = matrix(), fac = dplyr::tibble(), method, norm)

Arguments

coe matrix of harmonic coefficients

fac (optional) a data.frame of factors, specifying the grouping structure

method used to obtain these coefficients

norm the normalisation used to obtain these coefficients

Details

These methods can be applied on Out objects:

Value

an OutCoe object

See Also

Other classes: Coe(), Coo(), Ldk(), Opn(), OpnCoe(), Out(), TraCoe()

Examples

all OutCoe methods
methods(class='OutCoe')

palettes 205

palettes Color palettes

Description

All colorblind friendly RColorBrewer palettes recreated without the number of colors limitation
and with transparency support thanks to pal_alpha that can be used alone. Also, all viridis palettes
(see the package on CRAN), yet color ramps are borrowed and Momocs does not depend on it.
Also, pal_qual_solarized based on Solarized: https://ethanschoonover.com/solarized/
and pal_seq_grey only shades of grey from grey10 to grey90.

Usage

pal_alpha(cols, transp = 0)

pal_manual(cols, transp = 0)

pal_qual_solarized(n, transp = 0)

pal_seq_grey(n, transp = 0)

pal_div_BrBG(n, transp = 0)

pal_div_PiYG(n, transp = 0)

pal_div_PRGn(n, transp = 0)

pal_div_PuOr(n, transp = 0)

pal_div_RdBu(n, transp = 0)

pal_div_RdYlBu(n, transp = 0)

pal_qual_Dark2(n, transp = 0)

pal_qual_Paired(n, transp = 0)

pal_qual_Set2(n, transp = 0)

pal_seq_Blues(n, transp = 0)

pal_seq_BuGn(n, transp = 0)

pal_seq_BuPu(n, transp = 0)

pal_seq_GnBu(n, transp = 0)

https://CRAN.R-project.org/package=viridis
https://ethanschoonover.com/solarized/

206 palettes

pal_seq_Greens(n, transp = 0)

pal_seq_Greys(n, transp = 0)

pal_seq_Oranges(n, transp = 0)

pal_seq_OrRd(n, transp = 0)

pal_seq_PuBu(n, transp = 0)

pal_seq_PuBuGn(n, transp = 0)

pal_seq_PuRd(n, transp = 0)

pal_seq_Purples(n, transp = 0)

pal_seq_RdPu(n, transp = 0)

pal_seq_Reds(n, transp = 0)

pal_seq_YlGn(n, transp = 0)

pal_seq_YlGnBu(n, transp = 0)

pal_seq_YlOrBr(n, transp = 0)

pal_seq_YlOrRd(n, transp = 0)

pal_seq_magma(n, transp = 0)

pal_seq_inferno(n, transp = 0)

pal_seq_plasma(n, transp = 0)

pal_seq_viridis(n, transp = 0)

pal_qual(n, transp = 0)

pal_seq(n, transp = 0)

pal_div(n, transp = 0)

Arguments

cols color(s) as hexadecimal values

transp numeric between 0 and 1 (0, eg opaque, by default)

n numeric number of colors

panel 207

Details

Default color palettes are currently:

• pal_qual=pal_qual_Set2

• pal_seq=pal_seq_viridis

• pal_div=pal_div_RdBu

Value

a palette function

Note

RColorBrewer palettes are not happy when n is lower than 3 and above a given number for each
palette. If this is the case, these functions will create a color palette with colorRampPalette and
return colors even so.

Examples

pal_div_BrBG(5) %>% barplot(rep(1, 5), col=.)
pal_div_BrBG(5, 0.5) %>% barplot(rep(1, 5), col=.)

panel Family picture of shapes

Description

Plots all the outlines, side by side, from a Coo (Out, Opn or Ldk) objects.

Usage

panel(x, ...)

S3 method for class 'Out'
panel(
x,
dim,
cols,
borders,
fac,
palette = col_summer,
coo_sample = 120,
names = NULL,
cex.names = 0.6,
points = TRUE,
points.pch = 3,
points.cex = 0.2,

208 panel

points.col,
...

)

S3 method for class 'Opn'
panel(
x,
cols,
borders,
fac,
palette = col_summer,
coo_sample = 120,
names = NULL,
cex.names = 0.6,
points = TRUE,
points.pch = 3,
points.cex = 0.2,
points.col,
...

)

S3 method for class 'Ldk'
panel(
x,
cols,
borders,
fac,
palette = col_summer,
names = NULL,
cex.names = 0.6,
points = TRUE,
points.pch = 3,
points.cex = 0.2,
points.col = "#333333",
...

)

Arguments

x The Coo object to plot.

... additional arguments to feed generic plot

dim for coo_listpanel: a numeric of length 2 specifying the dimensions of the panel

cols A vector of colors for drawing the outlines. Either a single value or of length
exactly equal to the number of coordinates.

borders A vector of colors for drawing the borders. Either a single value or of length
exactly equals to the number of coordinates.

fac a factor within the $fac slot for colors

papers 209

palette a color palette
coo_sample if not NULL the number of point per shape to display (to plot quickly)
names whether to plot names or not. If TRUE uses shape names, or something for

fac_dispatcher
cex.names a cex for the names
points logical (for Ldk) whether to draw points
points.pch (for Ldk) and a pch for these points
points.cex (for Ldk) and a cex for these points
points.col (for Ldk) and a col for these points

Value

a plot

Note

If you want to reorder shapes according to a factor, use arrange.

See Also

Other Coo_graphics: inspect(), stack()

Examples

panel(mosquito, names=TRUE, cex.names=0.5)
panel(olea)
panel(bot, c(4, 10))
an illustration of the use of fac
panel(bot, fac='type', palette=col_spring, names=TRUE)

papers grindr papers for shape plots

Description

Papers on which to use drawers for building custom shape plots using the grindr approach. See
examples and vignettes.

Usage

paper(coo, ...)

paper_white(coo)

paper_grid(coo, grid = c(10, 5), cols = c("#ffa500", "#e5e5e5"), ...)

paper_chess(coo, n = 50, col = "#E5E5E5")

paper_dots(coo, pch = 20, n = 50, col = "#7F7F7F")

210 PCA

Arguments

coo a single shape or any Coo object

... more arguments to feed the plotting function within each paper function

grid numeric of length 2 to (roughly) specify the number of majors lines, and the
number of minor lines within two major ones

cols colors (hexadecimal preferred) to use for grid drawing

n numeric number of squares for the chessboard

col color (hexadecimal) to use for chessboard drawing

pch to use for dots

Value

a drawing layer

Note

This approach will (soon) replace coo_plot and friends in further versions. All comments are wel-
come.

See Also

Other grindr: drawers, layers, layers_morphospace, mosaic_engine(), pile(), plot_LDA(),
plot_NMDS(), plot_PCA()

PCA Principal component analysis on Coe objects

Description

Performs a PCA on Coe objects, using prcomp.

Usage

PCA(x, scale., center, fac)

S3 method for class 'OutCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)

S3 method for class 'OpnCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)

S3 method for class 'LdkCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)

S3 method for class 'TraCoe'

PCA 211

PCA(x, scale. = TRUE, center = TRUE, fac)

Default S3 method:
PCA(x, scale. = TRUE, center = TRUE, fac = dplyr::tibble())

as_PCA(x, fac)

Arguments

x a Coe object or an appropriate object (eg prcomp) for as_PCA

scale. logical whether to scale the input data

center logical whether to center the input data

fac any factor or data.frame to be passed to as_PCA and for use with plot.PCA

Details

By default, methods on Coe object do not scale the input data but center them. There is also a
generic method (eg for traditional morphometrics) that centers and scales data.

Value

a ’PCA’ object on which to apply plot.PCA, among others. This list has several components, most
of them inherited from the prcomp object:

1. sdev the standard deviations of the principal components (i.e., the square roots of the eigen-
values of the covariance/correlation matrix, though the calculation is actually done with the
singular values of the data matrix)

2. eig the cumulated proportion of variance along the PC axes

3. rotation the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvec-
tors). The function princomp returns this in the element loadings.

4. center, scale the centering and scaling used

5. x PCA scores (the value of the rotated data (the centred (and scaled if requested) data multi-
plied by the rotation matrix))

6. other components are inherited from the Coe object passed to PCA, eg fac, mshape, method,
baseline1 and baseline2, etc. They are documented in the corresponding *Coe file.

See Also

Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA(), MANOVA_PW(), MDS(),
MSHAPES(), NMDS(), classification_metrics()

Examples

bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
bot.p
plot(bot.p, morpho=FALSE)
plot(bot.p, 'type')

212 PCcontrib

op <- npoly(olea, 5)
op.p <- PCA(op)
op.p
plot(op.p, 1, morpho=TRUE)

wp <- fgProcrustes(wings, tol=1e-4)
wpp <- PCA(wp)
wpp
plot(wpp, 1)

"foreign prcomp"
head(iris)
iris.p <- prcomp(iris[, 1:4])
iris.p <- as_PCA(iris.p, iris[, 5])
class(iris.p)
plot(iris.p, 1)

PCcontrib Shape variation along PC axes

Description

Calculates and plots shape variation along Principal Component axes.

Usage

PCcontrib(PCA, ...)

S3 method for class 'PCA'
PCcontrib(PCA, nax, sd.r = c(-2, -1, -0.5, 0, 0.5, 1, 2), gap = 1, ...)

Arguments

PCA a PCA object

... additional parameter to pass to coo_draw

nax the range of PCs to plot (1 to 99pc total variance by default)

sd.r a single or a range of mean +/- sd values (eg: c(-1, 0, 1))

gap for combined-Coe, an adjustment variable for gap between shapes. (bug)Default
to 1 (whish should never superimpose shapes), reduce it to get a more compact
plot.

Value

(invisibly) a list with gg the ggplot object and shp the list of shapes.

perm 213

Examples

bot.p <- PCA(efourier(bot, 12))
PCcontrib(bot.p, nax=1:3)

library(ggplot2)
gg <- PCcontrib(bot.p, nax=1:8, sd.r=c(-5, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 5))
gg$gg + geom_polygon(fill="slategrey", col="black") + ggtitle("A nice title")

perm Permutes and breed Coe (and others) objects

Description

This methods applies permutations column-wise on the coe of any Coe object but relies on a func-
tion that can be used on any matrix. For a Coe object, it uses sample on every column (or row) with
(or without) replacement.

Usage

perm(x, ...)

Default S3 method:
perm(x, margin = 2, size, replace = TRUE, ...)

S3 method for class 'Coe'
perm(x, size, replace = TRUE, ...)

Arguments

x the object to permute

... useless here

margin numeric whether 1 or 2 (rows or columns)

size numeric the required size for the final object, same size by default.

replace logical, whether to use sample with replacement

Value

a Coe object of same class

See Also

Other farming: breed()

214 pile

Examples

m <- matrix(1:12, nrow=3)
m
perm(m, margin=2, size=5)
perm(m, margin=1, size=10)

bot.f <- efourier(bot, 12)
bot.m <- perm(bot.f, 80)
bot.m

pile Graphical pile of shapes

Description

Pile all shapes in the same graphical window. Useful to check their normalization in terms of size,
position, rotation, first point, etc. It is, essentially, a shortcut around paper + drawers of the grindr
family.

Usage

pile(coo, f, sample, subset, pal, paper_fun, draw_fun, transp, ...)

Default S3 method:
pile(
coo,
f,
sample,
subset,
pal = pal_qual,
paper_fun = paper,
draw_fun = draw_curves,
transp = 0,
...

)

S3 method for class 'list'
pile(
coo,
f,
sample = 64,
subset = 1000,
pal = pal_qual,
paper_fun = paper,
draw_fun = draw_curves,
transp = 0,
...

pile 215

)

S3 method for class 'array'
pile(
coo,
f,
sample = 64,
subset = 1000,
pal = pal_qual,
paper_fun = paper,
draw_fun = draw_landmarks,
transp = 0,
...

)

S3 method for class 'Out'
pile(
coo,
f,
sample = 64,
subset = 1000,
pal = pal_qual,
paper_fun = paper,
draw_fun = draw_outlines,
transp = 0,
...

)

S3 method for class 'Opn'
pile(
coo,
f,
sample = 64,
subset = 1000,
pal = pal_qual,
paper_fun = paper,
draw_fun = draw_curves,
transp = 0,
...

)

S3 method for class 'Ldk'
pile(
coo,
f,
sample = 64,
subset = 1000,
pal = pal_qual,

216 pile

paper_fun = paper,
draw_fun = draw_landmarks,
transp = 0,
...

)

Arguments

coo a single shape or any Coo object

f factor specification

sample numeric number of points to coo_sample if the number of shapes is > 1000
(default: 64). If non-numeric (eg FALSE) do not sample.

subset numeric only draw this number of (randomly chosen) shapes if the number of
shapes is > 1000 (default: 1000) If non-numeric (eg FALSE) do not sample.

pal palette among palettes (default: pal_qual)

paper_fun a papers function (default: paper)

draw_fun one of drawers for pile.list

transp numeric for transparency (default:adjusted, min:0, max=0)

... more arguments to feed the core drawer, depending on the object

Details

Large Coo are sampled, both in terms of the number of shapes and of points to drawn.

Value

a plot

Note

A variation of this plot was called stack before Momocs 1.2.5

See Also

Other grindr: drawers, layers, layers_morphospace, mosaic_engine(), papers, plot_LDA(),
plot_NMDS(), plot_PCA()

Examples

all Coo are supported with sensible defaults
pile(bot) # outlines
pile(olea, ~var, pal=pal_qual_Dark2, paper_fun=paper_grid) # curves
pile(wings) # landmarks

you can continue the pipe with compatible drawers
pile(bot, trans=0.9) %>% draw_centroid

if you are not happy with this, build your own !

pix2chc 217

eg see Momocs::pile.Out (no quotes)

my_pile <- function(x, col_labels="red", transp=0.5){
x %>% paper_chess(n=100) %>%

draw_landmarks(transp=transp) %>%
draw_labels(col=col_labels)

}
using it
wings %>% my_pile(transp=3/4)

and as gridr functions propagate, you can even continue:
wings %>% my_pile() %>% draw_centroid(col="blue", cex=5)

method on lists
bot$coo %>% pile

it can be tuned when we have a list of landmarks with:
wings$coo %>% pile(draw_fun=draw_landmarks)

or on arrays (turn for draw_landmarks)
wings$coo %>% l2a %>% #we now have an array

pile

pix2chc Convert (x; y) coordinates to chaincoded coordinates

Description

Useful to convert (x; y) coordinates to chain-coded coordinates.

Usage

pix2chc(coo)

chc2pix(chc)

Arguments

coo (x; y) coordinates passed as a matrix

chc chain coordinates

Value

a matrix or a numeric

Note

Note this function will be deprecated from Momocs when Momacs and Momit will be fully opera-
tionnal.

218 plot.LDA

References

Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer
Graphics and Image Processing, 18(3), 236-258.

See Also

chc2pix

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg(), import_jpg1(),
import_tps(), import_txt()

Other import functions: import_Conte(), import_StereoMorph_curve1(), import_jpg(), import_jpg1(),
import_tps(), import_txt()

Examples

pix2chc(shapes[1]) %T>% print %>% # from pix to chc
chc2pix() # and back

plot.LDA Plots Linear Discriminant Analysis

Description

The Momocs’ LDA plotter with many graphical options.

Usage

S3 method for class 'LDA'
plot(
x,
fac = x$fac,
xax = 1,
yax = 2,
points = TRUE,
col = "#000000",
pch = 20,
cex = 0.5,
palette = col_solarized,
center.origin = FALSE,
zoom = 1,
xlim = NULL,
ylim = NULL,
bg = par("bg"),
grid = TRUE,
nb.grids = 3,
morphospace = FALSE,
pos.shp = c("range", "full", "circle", "xy", "range_axes", "full_axes")[1],

plot.LDA 219

amp.shp = 1,
size.shp = 1,
nb.shp = 12,
nr.shp = 6,
nc.shp = 5,
rotate.shp = 0,
flipx.shp = FALSE,
flipy.shp = FALSE,
pts.shp = 60,
border.shp = col_alpha("#000000", 0.5),
lwd.shp = 1,
col.shp = col_alpha("#000000", 0.95),
stars = FALSE,
ellipses = FALSE,
conf.ellipses = 0.5,
ellipsesax = TRUE,
conf.ellipsesax = c(0.5, 0.9),
lty.ellipsesax = 1,
lwd.ellipsesax = sqrt(2),
chull = FALSE,
chull.lty = 1,
chull.filled = FALSE,
chull.filled.alpha = 0.92,
density = FALSE,
lev.density = 20,
contour = FALSE,
lev.contour = 3,
n.kde2d = 100,
delaunay = FALSE,
loadings = FALSE,
labelspoints = FALSE,
col.labelspoints = par("fg"),
cex.labelspoints = 0.6,
abbreviate.labelspoints = TRUE,
labelsgroups = TRUE,
cex.labelsgroups = 0.8,
rect.labelsgroups = FALSE,
abbreviate.labelsgroups = FALSE,
color.legend = FALSE,
axisnames = TRUE,
axisvar = TRUE,
unit = FALSE,
eigen = TRUE,
rug = TRUE,
title = substitute(x),
box = TRUE,
old.par = TRUE,
...

220 plot.LDA

)

Arguments

x an object of class "LDA", typically obtained with LDA

fac name or the column id from the $fac slot, or a formula combining colum names
from the $fac slot (cf. examples). A factor or a numeric of the same length can
also be passed on the fly.

xax the first PC axis

yax the second PC axis

points logical whether to plot points

col a color for the points (either global, for every level of the fac or for every indi-
vidual, see examples)

pch a pch for the points (either global, for every level of the fac or for every individ-
ual, see examples)

cex the size of the points

palette a palette

center.origin logical whether to center the plot onto the origin

zoom to keep your distances

xlim numeric of length two ; if provided along with ylim, the x and y lims to use

ylim numeric of length two ; if provided along with xlim, the x and y lims to use

bg color for the background

grid logical whether to draw a grid

nb.grids and how many of them

morphospace logical whether to add the morphological space

pos.shp passed to morphospace_positions, one of "range", "full", "circle", "xy",
"range_axes", "full_axes". Or directly a matrix of positions. See mor-
phospace_positions

amp.shp amplification factor for shape deformation

size.shp the size of the shapes

nb.shp (pos.shp="circle") the number of shapes on the compass

nr.shp (pos.shp="full" or "range) the number of shapes per row

nc.shp (pos.shp="full" or "range) the number of shapes per column

rotate.shp angle in radians to rotate shapes (if several methods, a vector of angles)

flipx.shp same as above, whether to apply coo_flipx

flipy.shp same as above, whether to apply coo_flipy

pts.shp the number of points fro drawing shapes

border.shp the border color of the shapes

lwd.shp the line width for these shapes

col.shp the color of the shapes

plot.LDA 221

stars logical whether to draw "stars"

ellipses logical whether to draw confidence ellipses

conf.ellipses numeric the quantile for the (bivariate gaussian) confidence ellipses

ellipsesax logical whether to draw ellipse axes
conf.ellipsesax

one or more numeric, the quantiles for the (bivariate gaussian) ellipses axes

lty.ellipsesax if yes, the lty with which to draw these axes

lwd.ellipsesax if yes, one or more numeric for the line widths

chull logical whether to draw a convex hull

chull.lty if yes, its linetype

chull.filled logical whether to add filled convex hulls
chull.filled.alpha

numeric alpha transparency

density whether to add a 2d density kernel estimation (based on kde2d)

lev.density if yes, the number of levels to plot (through image)

contour whether to add contour lines based on 2d density kernel

lev.contour if yes, the (approximate) number of lines to draw

n.kde2d the number of bins for kde2d, ie the ’smoothness’ of density kernel

delaunay logical whether to add a delaunay ’mesh’ between points

loadings logical whether to add loadings for every variables

labelspoints if TRUE rownames are used as labels, a colname from $fac can also be passed
col.labelspoints

a color for these labels, otherwise inherited from fac
cex.labelspoints

a cex for these labels
abbreviate.labelspoints

logical whether to abbreviate

labelsgroups logical whether to add labels for groups
cex.labelsgroups

ifyes, a numeric for the size of the labels
rect.labelsgroups

logical whether to add a rectangle behind groups names
abbreviate.labelsgroups

logical, whether to abbreviate group names

color.legend logical whether to add a (cheap) color legend for numeric fac

axisnames logical whether to add PC names

axisvar logical whether to draw the variance they explain

unit logical whether to add plane unit

eigen logical whether to draw a plot of the eigen values

rug logical whether to add rug to margins

222 plot.PCA

title character a name for the plot

box whether to draw a box around the plotting region

old.par whether to restore the old par. Set it to FALSE if you want to reuse the graphical
window.

... useless here, just to fit the generic plot

Details

Widely inspired by the "layers" philosophy behind graphical functions of the ade4 R package.

Value

a plot

Note

Morphospaces are deprecated so far. 99% of the code is shared with plot.PCA waiting for a general
rewriting of a multivariate plotter. See https://github.com/vbonhomme/Momocs/issues/121

See Also

LDA, plot_CV, plot_CV2, plot.PCA.

plot.PCA Plots Principal Component Analysis

Description

The Momocs’ PCA plotter with morphospaces and many graphical options.

Usage

S3 method for class 'PCA'
plot(
x,
fac,
xax = 1,
yax = 2,
points = TRUE,
col = "#000000",
pch = 20,
cex = 0.5,
palette = col_solarized,
center.origin = FALSE,
zoom = 1,
xlim = NULL,
ylim = NULL,

plot.PCA 223

bg = par("bg"),
grid = TRUE,
nb.grids = 3,
morphospace = TRUE,
pos.shp = c("range", "full", "circle", "xy", "range_axes", "full_axes")[1],
amp.shp = 1,
size.shp = 1,
nb.shp = 12,
nr.shp = 6,
nc.shp = 5,
rotate.shp = 0,
flipx.shp = FALSE,
flipy.shp = FALSE,
pts.shp = 60,
border.shp = col_alpha("#000000", 0.5),
lwd.shp = 1,
col.shp = col_alpha("#000000", 0.95),
stars = FALSE,
ellipses = FALSE,
conf.ellipses = 0.5,
ellipsesax = FALSE,
conf.ellipsesax = c(0.5, 0.9),
lty.ellipsesax = 1,
lwd.ellipsesax = sqrt(2),
chull = FALSE,
chull.lty = 1,
chull.filled = TRUE,
chull.filled.alpha = 0.92,
density = FALSE,
lev.density = 20,
contour = FALSE,
lev.contour = 3,
n.kde2d = 100,
delaunay = FALSE,
loadings = FALSE,
labelspoints = FALSE,
col.labelspoints = par("fg"),
cex.labelspoints = 0.6,
abbreviate.labelspoints = TRUE,
labelsgroups = TRUE,
cex.labelsgroups = 0.8,
rect.labelsgroups = FALSE,
abbreviate.labelsgroups = FALSE,
color.legend = FALSE,
axisnames = TRUE,
axisvar = TRUE,
unit = FALSE,
eigen = TRUE,

224 plot.PCA

rug = TRUE,
title = substitute(x),
box = TRUE,
old.par = TRUE,
...

)

Arguments

x PCA, typically obtained with PCA

fac name or the column id from the $fac slot, or a formula combining colum names
from the $fac slot (cf. examples). A factor or a numeric of the same length can
also be passed on the fly.

xax the first PC axis

yax the second PC axis

points logical whether to plot points

col a color for the points (either global, for every level of the fac or for every indi-
vidual, see examples)

pch a pch for the points (either global, for every level of the fac or for every individ-
ual, see examples)

cex the size of the points

palette a palette

center.origin logical whether to center the plot onto the origin

zoom to keep your distances

xlim numeric of length two ; if provided along with ylim, the x and y lims to use

ylim numeric of length two ; if provided along with xlim, the x and y lims to use

bg color for the background

grid logical whether to draw a grid

nb.grids and how many of them

morphospace logical whether to add the morphological space

pos.shp passed to morphospace_positions, one of "range", "full", "circle", "xy",
"range_axes", "full_axes". Or directly a matrix of positions. See mor-
phospace_positions

amp.shp amplification factor for shape deformation

size.shp the size of the shapes

nb.shp (pos.shp="circle") the number of shapes on the compass

nr.shp (pos.shp="full" or "range) the number of shapes per row

nc.shp (pos.shp="full" or "range) the number of shapes per column

rotate.shp angle in radians to rotate shapes (if several methods, a vector of angles)

flipx.shp same as above, whether to apply coo_flipx

flipy.shp same as above, whether to apply coo_flipy

plot.PCA 225

pts.shp the number of points fro drawing shapes

border.shp the border color of the shapes

lwd.shp the line width for these shapes

col.shp the color of the shapes

stars logical whether to draw "stars"

ellipses logical whether to draw confidence ellipses

conf.ellipses numeric the quantile for the (bivariate gaussian) confidence ellipses

ellipsesax logical whether to draw ellipse axes
conf.ellipsesax

one or more numeric, the quantiles for the (bivariate gaussian) ellipses axes

lty.ellipsesax if yes, the lty with which to draw these axes

lwd.ellipsesax if yes, one or more numeric for the line widths

chull logical whether to draw a convex hull

chull.lty if yes, its linetype

chull.filled logical whether to add filled convex hulls
chull.filled.alpha

numeric alpha transparency

density whether to add a 2d density kernel estimation (based on kde2d)

lev.density if yes, the number of levels to plot (through image)

contour whether to add contour lines based on 2d density kernel

lev.contour if yes, the (approximate) number of lines to draw

n.kde2d the number of bins for kde2d, ie the ’smoothness’ of density kernel

delaunay logical whether to add a delaunay ’mesh’ between points

loadings logical whether to add loadings for every variables

labelspoints if TRUE rownames are used as labels, a colname from $fac can also be passed
col.labelspoints

a color for these labels, otherwise inherited from fac
cex.labelspoints

a cex for these labels
abbreviate.labelspoints

logical whether to abbreviate

labelsgroups logical whether to add labels for groups
cex.labelsgroups

ifyes, a numeric for the size of the labels
rect.labelsgroups

logical whether to add a rectangle behind groups names
abbreviate.labelsgroups

logical, whether to abbreviate group names

color.legend logical whether to add a (cheap) color legend for numeric fac

axisnames logical whether to add PC names

226 plot.PCA

axisvar logical whether to draw the variance they explain

unit logical whether to add plane unit

eigen logical whether to draw a plot of the eigen values

rug logical whether to add rug to margins

title character a name for the plot

box whether to draw a box around the plotting region

old.par whether to restore the old par. Set it to FALSE if you want to reuse the graphical
window.

... useless here, just to fit the generic plot

Details

Widely inspired by the "layers" philosophy behind graphical functions of the ade4 R package.

Value

a plot

Note

NAs is $fac are handled quite experimentally. More importantly, as of early 2018, I plan I complete
rewrite of plot.PCA and other multivariate plotters.

See Also

plot.LDA

Examples

bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)

Morphospace options
plot(bot.p, pos.shp="full")
plot(bot.p, pos.shp="range")
plot(bot.p, pos.shp="xy")
plot(bot.p, pos.shp="circle")
plot(bot.p, pos.shp="range_axes")
plot(bot.p, pos.shp="full_axes")

plot(bot.p, morpho=FALSE)

Passing factors to plot.PCA
3 equivalent methods
plot(bot.p, "type")
plot(bot.p, 1)
plot(bot.p, ~type)

let's create a dummy factor of the correct length

plot.PCA 227

and another added to the $fac with mutate
and a numeric of the correct length
f <- factor(rep(letters[1:2], 20))
z <- factor(rep(LETTERS[1:2], 20))
bot %<>% mutate(cs=coo_centsize(.), z=z)
bp <- bot %>% efourier %>% PCA
so bp contains type, cs (numeric) and z; not f
yet f can be passed on the fly
plot(bp, f)
numeric fac are allowed
plot(bp, "cs", cex=3, color.legend=TRUE)
formula allows combinations of factors
plot(bp, ~type+z)

other morphometric approaches works the same
open curves
op <- npoly(olea, 5)
op.p <- PCA(op)
op.p
plot(op.p, ~ domes + var, morpho=TRUE) # use of formula

landmarks
wp <- fgProcrustes(wings, tol=1e-4)
wpp <- PCA(wp)
wpp
plot(wpp, 1)

Cosmetic options
window
plot(bp, 1, zoom=2)
plot(bp, zoom=0.5)
plot(bp, center.origin=FALSE, grid=FALSE)

colors
plot(bp, col="red") # globally
plot(bp, 1, col=c("#00FF00", "#0000FF")) # for every level
a color vector of the right length
plot(bp, 1, col=rep(c("#00FF00", "#0000FF"), each=20))
a color vector of the right length, mixign Rcolor names (not a good idea though)
plot(bp, 1, col=rep(c("#00FF00", "forestgreen"), each=20))

ellipses
plot(bp, 1, conf.ellipsesax=2/3)
plot(bp, 1, ellipsesax=FALSE)
plot(bp, 1, ellipsesax=TRUE, ellipses=TRUE)

stars
plot(bp, 1, stars=TRUE, ellipsesax=FALSE)

convex hulls
plot(bp, 1, chull=TRUE)
plot(bp, 1, chull.lty=3)

228 plot_CV

filled convex hulls
plot(bp, 1, chull.filled=TRUE)
plot(bp, 1, chull.filled.alpha = 0.8, chull.lty =1) # you can omit chull.filled=TRUE

density kernel
plot(bp, 1, density=TRUE, contour=TRUE, lev.contour=10)

delaunay
plot(bp, 1, delaunay=TRUE)

loadings
flower %>% PCA %>% plot(1, loadings=TRUE)

point/group labelling
plot(bp, 1, labelspoint=TRUE) # see options for abbreviations
plot(bp, 1, labelsgroup=TRUE) # see options for abbreviations

clean axes, no rug, no border, random title
plot(bp, axisvar=FALSE, axisnames=FALSE, rug=FALSE, box=FALSE, title="random")

no eigen
plot(bp, eigen=FALSE) # eigen cause troubles to graphical window
eigen may causes troubles to the graphical window. you can try old.par = TRUE

plot_CV Plots a cross-validation table as an heatmap

Description

Either with frequencies (or percentages) plus marginal sums, and values as heatmaps. Used in
Momocs for plotting cross-validation tables but may be used for any table (likely with freq=FALSE).

Usage

plot_CV(
x,
freq = FALSE,
rm0 = FALSE,
pc = FALSE,
fill = TRUE,
labels = TRUE,
axis.size = 10,
axis.x.angle = 45,
cell.size = 2.5,
signif = 2,
...

)

plot_CV 229

Default S3 method:
plot_CV(
x,
freq = FALSE,
rm0 = FALSE,
pc = FALSE,
fill = TRUE,
labels = TRUE,
axis.size = 10,
axis.x.angle = 45,
cell.size = 2.5,
signif = 2,
...

)

S3 method for class 'LDA'
plot_CV(
x,
freq = TRUE,
rm0 = TRUE,
pc = TRUE,
fill = TRUE,
labels = TRUE,
axis.size = 10,
axis.x.angle = 45,
cell.size = 2.5,
signif = 2,
...

)

Arguments

x a (cross-validation table) or an LDA object

freq logical whether to display frequencies (within an actual class) or counts

rm0 logical whether to remove zeros

pc logical whether to multiply proportion by 100, ie display percentages

fill logical whether to fill cell according to count/freq

labels logical whether to add text labels on cells

axis.size numeric to adjust axis labels

axis.x.angle numeric to rotate x-axis labels

cell.size numeric to adjust text labels on cells

signif numeric to round frequencies using signif

... useless here

230 plot_CV2

Value

a ggplot object

See Also

LDA, plot.LDA, and (pretty much the same) plot_table.

Examples

h <- hearts %>%
fgProcrustes(0.01) %>% coo_slide(ldk=2) %T>% stack %>%
efourier(6, norm=FALSE) %>% LDA(~aut)

h %>% plot_CV()
h %>% plot_CV(freq=FALSE, rm0=FALSE, fill=FALSE)
you can also customize the returned gg with some ggplot2 functions

plot_CV2 Plots a cross-correlation table

Description

Or any contingency/confusion table. A simple graphic representation based on variable width and/or
color for arrows or segments, based on the relative frequencies.

Usage

plot_CV2(x, ...)

S3 method for class 'LDA'
plot_CV2(x, ...)

S3 method for class 'table'
plot_CV2(
x,
links.FUN = arrows,
col = TRUE,
col0 = "black",
col.breaks = 5,
palette = col_heat,
lwd = TRUE,
lwd0 = 5,
gap.dots = 0.2,
pch.dots = 20,
gap.names = 0.25,
cex.names = 1,

plot_CV2 231

legend = TRUE,
...

)

Arguments

x an LDA object, a table or a squared matrix

... useless here.

links.FUN a function to draw the links: eg segments (by default), arrows, etc.

col logical whether to vary the color of the links

col0 a color for the default link (when col = FALSE)

col.breaks the number of different colors

palette a color palette, eg col_summer, col_hot, etc.

lwd logical whether to vary the width of the links

lwd0 a width for the default link (when lwd = FALSE)

gap.dots numeric to set space between the dots and the links

pch.dots a pch for the dots

gap.names numeric to set the space between the dots and the group names

cex.names a cex for the names

legend logical whether to add a legend

Value

a ggplot2 object

Note

When freq=FALSE, the fill colors are not weighted within actual classes and should not be displayed
if classes sizes are not balanced.

See Also

LDA, plot.LDA, plot_CV.

Examples

Below various table that you can try. We will use the last one for the examples.
#pure random
a <- sample(rep(letters[1:4], each=10))
b <- sample(rep(letters[1:4], each=10))
tab <- table(a, b)

veryhuge + some structure
a <- sample(rep(letters[1:10], each=10))
b <- sample(rep(letters[1:10], each=10))
tab <- table(a, b)

232 plot_devsegments

diag(tab) <- round(runif(10, 10, 20))

tab <- matrix(c(8, 3, 1, 0, 0,
2, 7, 1, 2, 3,
3, 5, 9, 1, 1,
1, 1, 2, 7, 1,
0, 9, 1, 4, 5), 5, 5, byrow=TRUE)

tab <- as.table(tab)

good prediction
tab <- matrix(c(8, 1, 1, 0, 0,

1, 7, 1, 0, 0,
1, 2, 9, 1, 0,
1, 1, 1, 7, 1,
0, 0, 0, 1, 8), 5, 5, byrow=TRUE)

tab <- as.table(tab)

plot_CV2(tab)
plot_CV2(tab, arrows) # if you prefer arrows
plot_CV2(tab, lwd=FALSE, lwd0=1, palette=col_india) # if you like india but not lwds
plot_CV2(tab, col=FALSE, col0='pink') # only lwd
plot_CV2(tab, col=FALSE, lwd0=10, cex.names=2) # if you're getting old
plot_CV2(tab, col=FALSE, lwd=FALSE) # pretty but useless
plot_CV2(tab, col.breaks=2) # if you think it's either good or bad
plot_CV2(tab, pch=NA) # if you do not like dots
plot_CV2(tab, gap.dots=0) # if you want to 'fill the gap'
plot_CV2(tab, gap.dots=1) # or not

#trilo examples
trilo.f <- efourier(trilo, 8)
trilo.l <- LDA(PCA(trilo.f), 'onto')
trilo.l
plot_CV2(trilo.l)

olea example
op <- opoly(olea, 5)
opl <- LDA(PCA(op), 'var')
plot_CV2(opl)

plot_devsegments Draws colored segments from a matrix of coordinates.

Description

Given a matrix of (x; y) coordinates, draws segments between every points defined by the row of
the matrix and uses a color to display an information.

Usage

plot_devsegments(coo, cols, lwd = 1)

plot_LDA 233

Arguments

coo A matrix of coordinates.

cols A vector of color of length = nrow(coo).

lwd The lwd to use for drawing segments.

Value

a drawing on the last plot

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_table()

Examples

we load some data
guinness <- coo_sample(bot[9], 100)

we calculate the diff between 48 harm and one with 6 harm.
out.6 <- efourier_i(efourier(guinness, nb.h=6), nb.pts=120)

we calculate deviations, you can also try 'edm'
dev <- edm_nearest(out.6, guinness) / coo_centsize(out.6)

we prepare the color scale
d.cut <- cut(dev, breaks=20, labels=FALSE, include.lowest=TRUE)
cols <- paste0(col_summer(20)[d.cut], 'CC')

we draw the results
coo_plot(guinness, main='Guiness fitted with 6 harm.', points=FALSE)
par(xpd=NA)
plot_devsegments(out.6, cols=cols, lwd=4)
coo_draw(out.6, lty=2, points=FALSE, col=NA)
par(xpd=FALSE)

plot_LDA LDA plot using grindr layers

Description

Quickly vizualise LDA objects and build customs plots using the layers. See examples.

234 plot_LDA

Usage

plot_LDA(
x,
axes = c(1, 2),
palette = pal_qual,
points = TRUE,
points_transp = 1/4,
morphospace = FALSE,
morphospace_position = "range",
chull = TRUE,
chullfilled = FALSE,
labelgroups = FALSE,
legend = TRUE,
title = "",
center_origin = TRUE,
zoom = 0.9,
eigen = TRUE,
box = TRUE,
iftwo_layer = layer_histogram_2,
iftwo_split = FALSE,
axesnames = TRUE,
axesvar = TRUE

)

Arguments

x LDA object

axes numeric of length two to select PCs to use (c(1, 2) by default)

palette color palette to use col_summer by default

points logical whether to draw this with layer_points

points_transp numeric to feed layer_points (default:0.25)

morphospace logical whether to draw this using layer_morphospace_PCA
morphospace_position

to feed layer_morphospace_PCA (default: "range")

chull logical whether to draw this with layer_chull

chullfilled logical whether to draw this with layer_chullfilled

labelgroups logical whether to draw this with layer_labelgroups

legend logical whether to draw this with layer_legend

title character if specified, fee layer_title (default to "")

center_origin logical whether to center origin

zoom numeric zoom level for the frame (default: 0.9)

eigen logical whether to draw this using layer_eigen

box logical whether to draw this using layer_box

plot_LDA 235

iftwo_layer function (no quotes) for drawing LD1 when there are two levels. So far, one of
layer_histogram_2 (default) or layer_density_2

iftwo_split to feed split argument in layer_histogram_2 or layer_density_2

axesnames logical whether to draw this using layer_axesnames

axesvar logical whether to draw this using layer_axesvar

Value

a plot

Note

This approach will replace plot.LDA. This is part of grindr approach that may be packaged at some
point. All comments are welcome.

See Also

Other grindr: drawers, layers, layers_morphospace, mosaic_engine(), papers, pile(), plot_NMDS(),
plot_PCA()

Examples

First prepare an LDA object

Some outlines with bot
bl <- bot %>%

cheap alignement before efourier
coo_align() %>% coo_center %>% coo_slidedirection("left") %>%
add a fake column
mutate(fake=sample(letters[1:5], 40, replace=TRUE)) %>%
EFT
efourier(6, norm=FALSE) %>%
LDA
LDA(~fake)

bl %>% plot_LDA %>% layer_morphospace_LDA

Below inherited from plot_PCA and to adapt here.
#plot_PCA(bp)
#plot_PCA(bp, ~type)
#plot_PCA(bp, ~fake)

Some curves with olea
#op <- olea %>%
#mutate(s=coo_area(.)) %>%
#filter(var != "Cypre") %>%
#chop(~view) %>% lapply(opoly, 5, nb.pts=90) %>%
#combine %>% PCA
#opfacs %<>% as.character() %>% as.numeric()

#op %>% plot_PCA(title="hi there!")

236 plot_MSHAPES

Now we can play with layers
and for instance build a custom plot
it should start with plot_PCA()

#my_plot <- function(x, ...){

#x %>%
plot_PCA(...) %>%
layer_points %>%
layer_ellipsesaxes %>%
layer_rug
}

and even continue after this function
op %>% my_plot(~var, axes=c(1, 3)) %>%
layer_title("hi there!") %>%
layer_stars()

You get the idea.

plot_MSHAPES Pairwise comparison of a list of shapes

Description

"Confusion matrix" of a list of shapes. See examples.

Usage

plot_MSHAPES(x, draw_fun, size, palette)

Arguments

x a list of shapes (eg as returned by MSHAPES)

draw_fun one of draw_outline, draw_curves, draw_landmarks. When the result of MSHAPES
is passed, detected based on $Coe, otherwise default to draw_curves.

size numeric shrinking factor for shapes (and coo_template; 3/4 by default)

palette on of palettes

Value

a plot

Note

Directly inspired by Chitwood et al. (2016) in New Phytologist

plot_NMDS 237

Examples

x <- bot %>% efourier(6) %>% MSHAPES(~type)

custom colors
x %>% plot_MSHAPES(palette=pal_manual(c("darkgreen", "orange")))

also works on list of shapes, eg:
leaves <- shapes %>% slice(grep("leaf", names(shapes))) %$% coo
class(leaves)
leaves %>% plot_MSHAPES()

or
shapes %>%
subset and degrade
slice(1:12) %>% coo_sample(60) %$% # grab the coo

coo %>%
plot_MSHAPES()

plot_NMDS NMDS plot unsing grindr layers

Description

Quickly vizualise MDS and NMDS objects and build customs plots using the layers. See examples.

Usage

plot_NMDS(
x,
f = NULL,
axes = c(1, 2),
points = TRUE,
points_transp = 1/4,
chull = TRUE,
chullfilled = FALSE,
labelgroups = FALSE,
legend = TRUE,
title = "",
box = TRUE,
axesnames = TRUE,
palette = pal_qual

)

plot_MDS(
x,
f = NULL,
axes = c(1, 2),
points = TRUE,

238 plot_NMDS

points_transp = 1/4,
chull = TRUE,
chullfilled = FALSE,
labelgroups = FALSE,
legend = TRUE,
title = "",
box = TRUE,
axesnames = TRUE,
palette = pal_qual

)

Arguments

x the result of MDS or NMDS

f factor specification to feed fac_dispatcher

axes numeric of length two to select PCs to use (c(1, 2) by default)

points logical whether to draw this with layer_points

points_transp numeric to feed layer_points (default:0.25)

chull logical whether to draw this with layer_chull

chullfilled logical whether to draw this with layer_chullfilled

labelgroups logical whether to draw this with layer_labelgroups

legend logical whether to draw this with layer_legend

title character if specified, fee layer_title (default to "")

box logical whether to draw this using layer_box

axesnames logical whether to draw this using layer_axesnames

palette color palette to use col_summer by default

Value

a plot

See Also

Other grindr: drawers, layers, layers_morphospace, mosaic_engine(), papers, pile(), plot_LDA(),
plot_PCA()

Examples

First prepare an NMDS object
x <- bot %>% efourier %>% NMDS

plot_NMDS(x)
plot_NMDS(x, ~type) %>% layer_stars() %>% layer_labelpoints()

Same on MDS object
x <- bot %>% efourier %>% MDS

plot_PCA 239

plot_MDS(x)
plot_MDS(x, ~type) %>% layer_stars() %>% layer_labelpoints()

plot_PCA PCA plot using grindr layers

Description

Quickly vizualise PCA objects and friends and build customs plots using the layers. See examples.

Usage

plot_PCA(
x,
f = NULL,
axes = c(1, 2),
palette = NULL,
points = TRUE,
points_transp = 1/4,
morphospace = TRUE,
morphospace_position = "range",
chull = TRUE,
chullfilled = FALSE,
labelpoints = FALSE,
labelgroups = FALSE,
legend = TRUE,
title = "",
center_origin = TRUE,
zoom = 0.9,
eigen = TRUE,
box = TRUE,
axesnames = TRUE,
axesvar = TRUE

)

Arguments

x a PCA object

f factor specification to feed fac_dispatcher

axes numeric of length two to select PCs to use (c(1, 2) by default)

palette color palette to use col_summer by default

points logical whether to draw this with layer_points

points_transp numeric to feed layer_points (default:0.25)

morphospace logical whether to draw this using layer_morphospace_PCA

240 plot_PCA

morphospace_position

to feed layer_morphospace_PCA (default: "range")

chull logical whether to draw this with layer_chull

chullfilled logical whether to draw this with layer_chullfilled

labelpoints logical whether to draw this with layer_labelpoints

labelgroups logical whether to draw this with layer_labelgroups

legend logical whether to draw this with layer_legend

title character if specified, fee layer_title (default to "")

center_origin logical whether to center origin

zoom numeric zoom level for the frame (default: 0.9)

eigen logical whether to draw this using layer_eigen

box logical whether to draw this using layer_box

axesnames logical whether to draw this using layer_axesnames

axesvar logical whether to draw this using layer_axesvar

Value

a plot

Note

This approach will replace plot.PCA (and plot.lda in further versions. This is part of grindr
approach that may be packaged at some point. All comments are welcome.

See Also

Other grindr: drawers, layers, layers_morphospace, mosaic_engine(), papers, pile(), plot_LDA(),
plot_NMDS()

Examples

First prepare two PCA objects.

Some outlines with bot
bp <- bot %>% mutate(fake=sample(letters[1:5], 40, replace=TRUE)) %>%
efourier(6) %>% PCA
plot_PCA(bp)
plot_PCA(bp, ~type)
plot_PCA(bp, ~fake)

Some curves with olea
op <- olea %>%
mutate(s=coo_area(.)) %>%
filter(var != "Cypre") %>%
chop(~view) %>% opoly(5, nb.pts=90) %>%
combine %>% PCA
opfacs %<>% as.character() %>% as.numeric()

plot_silhouette 241

op %>% plot_PCA(title="hi there!")

Now we can play with layers
and for instance build a custom plot
it should start with plot_PCA()

my_plot <- function(x, ...){

x %>%
plot_PCA(...) %>%
layer_points %>%
layer_ellipsesaxes %>%
layer_rug

}

and even continue after this function
op %>% my_plot(~var, axes=c(1, 3)) %>%

layer_title("hi there!")

grindr allows (almost nice) tricks like highlighting:

bp %>% .layerize_PCA(~fake) %>%
layer_frame %>% layer_axes() %>%
layer_morphospace_PCA() -> x

highlight <- function(x, ..., col_F="#CCCCCC", col_T="#FC8D62FF"){
args <- list(...)
x$colors_groups <- c(col_F, col_T)
x$colors_rows <- c(col_F, col_T)[(x$f %in% args)+1]
x
}
x %>% highlight("a", "b") %>% layer_points()

You get the idea.

plot_silhouette Silhouette plot

Description

Only used, so far, after KMEDOIDS.

Usage

plot_silhouette(x, palette = pal_qual)

Arguments

x object returned by KMEDOIDS
palette one of palettes

242 plot_table

Value

a ggplot plot

Examples

olea %>% opoly(5) %>%
KMEDOIDS(4) %>%
plot_silhouette(pal_qual_solarized)

plot_table Plots confusion matrix of sample sizes within $fac

Description

An utility that plots a confusion matrix of sample size (or a barplot) for every object with a $fac.
Useful to visually how large are sample sizes, how (un)balanced are designs, etc.

Usage

plot_table(x, fac1, fac2 = fac1, rm0 = FALSE)

Arguments

x any object with a $fac slot (Coo, Coe, PCA, etc.)

fac1 the name or id of the first factor

fac2 the name of id of the second factor

rm0 logical whether to print zeros

Value

a ggplot2 object

See Also

Other plotting functions: coo_arrows(), coo_draw(), coo_listpanel(), coo_lolli(), coo_plot(),
coo_ruban(), ldk_chull(), ldk_confell(), ldk_contour(), ldk_labels(), ldk_links(), plot_devsegments()

Examples

plot_table(olea, "var")
plot_table(olea, "domes", "var")
gg <- plot_table(olea, "domes", "var", rm0 = TRUE)
gg
library(ggplot2)
gg + coord_equal()
gg + scale_fill_gradient(low="green", high = "red")
gg + coord_flip()

pProcrustes 243

pProcrustes Partial Procrustes alignment between two shapes

Description

Directly borrowed from Claude (2008), and called pPsup there.

Usage

pProcrustes(coo1, coo2)

Arguments

coo1 Configuration matrix to be superimposed onto the centered preshape of coo2.

coo2 Reference configuration matrix.

Value

a list with components

• coo1 superimposed centered preshape of coo1 onto the centered preshape of coo2

• coo2 centered preshape of coo2

• rotation rotation matrix

• DP partial Procrustes distance between coo1 and coo2

• rho trigonometric Procrustes distance.

References

Claude, J. (2008). Morphometrics with R. Analysis (p. 316). Springer.

See Also

Other procrustes functions: fProcrustes(), fgProcrustes(), fgsProcrustes()

244 Ptolemy

Ptolemy Ptolemaic ellipses and illustration of efourier

Description

Calculate and display Ptolemaic ellipses which illustrates intuitively the principle behing elliptical
Fourier analysis.

Usage

Ptolemy(
coo,
t = seq(0, 2 * pi, length = 7)[-1],
nb.h = 3,
nb.pts = 360,
palette = col_heat,
zoom = 5/4,
legend = TRUE,
...

)

Arguments

coo a matrix of (x; y) coordinates

t A vector af angles (in radians) on which to display ellipses

nb.h integer. The number of harmonics to display

nb.pts integer. The number of points to use to display shapes

palette a color palette

zoom numeric a zoom factor for coo_plot

legend logical. Whether to plot the legend box

... additional parameters to feed coo_plot

Value

a drawing on the last plot

References

This method has been inspired by the figures found in the followings papers. Kuhl FP, Giardina CR.
1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18:
236-258. Crampton JS. 1995. Elliptical Fourier shape analysis of fossil bivalves: some practical
considerations. Lethaia 28: 179-186.

rearrange_ldk 245

See Also

An intuitive explanation of elliptic Fourier analysis can be found in the Details section of the
efourier function.

exemplifying functions

Examples

cat <- shapes[4]
Ptolemy(cat, main="An EFT cat")

rearrange_ldk Rearrange, (select and reorder) landmarks to retain

Description

Helps reorder and retain landmarks by simply changing the order in which they are recorded in the
Coo objects. Note that for Out and Opn objects, this rearranges the $ldk component. For Ldk, it
rearranges the $coo directly.

Usage

rearrange_ldk(Coo, new_ldk_ids)

Arguments

Coo any appropriate Coo object (typically an Ldk) with landmarks inside

new_ldk_ids a vector of numeric with the ldk to retain and in the right order (see below)

Value

a Momocs object of same class

See Also

Other ldk/slidings methods: add_ldk(), def_ldk(), def_slidings(), get_ldk(), get_slidings(),
slidings_scheme()

Examples

Out example
hearts %>% slice(1) %T>% stack %$% ldk
hearts %>% rearrange_ldk(c(4, 1)) %>%

slice(1) %T>%stack %$% ldk

Ldk example
wings %>% slice(1) %T>% stack %$% coo
wings %>% rearrange_ldk(c(1, 3, 12:15)) %>%

slice(1) %T>% stack %$% coo

246 reLDA

reLDA "Redo" a LDA on new data

Description

Basically a wrapper around predict.lda from the package MASS. Uses a LDA model to classify new
data.

Usage

reLDA(newdata, LDA)

Default S3 method:
reLDA(newdata, LDA)

S3 method for class 'PCA'
reLDA(newdata, LDA)

S3 method for class 'Coe'
reLDA(newdata, LDA)

Arguments

newdata to use, a PCA or any Coe object

LDA a LDA object

Value

a list with components (from ?predict.lda).

• class factor of classification

• posterior posterior probabilities for the classes

• x the scores of test cases

• res data.frame of the results

• CV.tab a confusion matrix of the results

• CV.correct proportion of the diagonal of CV.tab

• newdata the data used to calculate passed to predict.lda

Note

Uses the same number of PC axis as the LDA object provided. You should probably use rePCA in
conjunction with reLDA to get ’homologous’ scores.

rename 247

Examples

We select the first 10 individuals in bot,
for whisky and beer bottles. It will be our referential.
bot1 <- slice(bot, c(1:10, 21:30))
Same thing for the other 10 individuals.
It will be our unknown dataset on which we want
to calculate classes.
bot2 <- slice(bot, c(11:20, 31:40))

We calculate efourier on these two datasets
bot1.f <- efourier(bot1, 8)
bot2.f <- efourier(bot2, 8)

Here we obtain our LDA model: first, a PCA, then a LDA
bot1.p <- PCA(bot1.f)
bot1.l <- LDA(bot1.p, "type")

we redo the same PCA since we worked with scores
bot2.p <- rePCA(bot1.p, bot2.f)

we finally "predict" with the model obtained before
bot2.l <- reLDA(bot2.p, bot1.l)
bot2.l

rename Rename columns by name

Description

Rename variables, from the $fac. See examples and dplyr::rename.

Usage

rename(.data, ...)

Arguments

.data a Coo, Coe, PCA object

... comma separated list of unquoted expressions

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

248 rePCA

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

Examples

olea
rename(olea, variety=var, domesticated=domes) # rename var column

rePCA "Redo" a PCA on a new Coe

Description

Basically reapply rotation to a new Coe object.

Usage

rePCA(PCA, Coe)

Arguments

PCA a PCA object

Coe a Coe object

Note

Quite experimental. Dimensions of the matrices and methods must match.

Examples

b <- filter(bot, type=="beer")
w <- filter(bot, type=="whisky")

bf <- efourier(b, 8)
bp <- PCA(bf)

wf <- efourier(w, 8)

and we use the "beer" PCA on the whisky coefficients
wp <- rePCA(bp, wf)

plot(wp)

plot(bp, eig=FALSE)
points(wp$x[, 1:2], col="red", pch=4)

rescale 249

rescale Rescale coordinates from pixels to real length units

Description

Most of the time, (x, y) coordinates are recorded in pixels. If we want to have them in mm, cm, etc.
we need to convert them and to rescale them. This functions does the job for the two cases: i) either
an homogeneous rescaling factor, e.g. if all pictures were taken using the very same magnification
or ii) with various magnifications. More in the Details section

Usage

rescale(x, scaling_factor, scale_mapping, magnification_col, ...)

Arguments

x any Coo object

scaling_factor numeric an homogeneous scaling factor. If all you (x, y) coordinates have the
same scale

scale_mapping either a data.frame or a path to read such a data.frame. It MUST contain three
columns in that order: magnification found in $fac, column "magnification_col",
pixels, real length unit. Column names do not matter but must be specified, as
read.table reads with header=TRUE Every different magnification level found in
$fac, column "magnification_col" must have its row.

magnification_col

the name or id of the $fac column to look for magnification levels for every
image

... additional arguments (besides header=TRUE) to pass to read.table if ’scale_mapping’
is a path

Details

The i) case above is straightforward, if 1cm is 500pix long on all your pictures, just call rescale(your_Coo,
scaling_factor=1/500) and all coordinates will be in cm.

The ii) second case is more subtle. First you need to code in your Coo object, in the fac slot, a
column named, say "mag", for magnification. Imagine you have 4 magnifications: 0.5, 1, 2 and 5,
we have to indicate for each magnification, how many pixels stands for how many units in the real
world.

This information is passed as a data.frame, built externally or in R, that must look like this:

mag pix cm
0.5 1304 10
1 921 10
2 816 5
5 1020 5

250 rfourier

.

We have to do that because, for optical reasons, the ratio pix/real_unit, is not a linear function of
the magnification.

All shapes will be centered to apply (the single or the different) scaling_factor.

Value

a Momocs object of same class

Note

This function is simple but quite complex to detail. Feel free to contact me should you have any
problem with it. You can just access its code (type rescale) and reply it yourself.

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

rfourier Radii variation Fourier transform (equally spaced radii)

Description

rfourier computes radii variation Fourier analysis from a matrix or a list of coordinates where
points are equally spaced radii.

Usage

rfourier(x, ...)

Default S3 method:
rfourier(x, nb.h, smooth.it = 0, norm = FALSE, ...)

S3 method for class 'Out'
rfourier(x, nb.h = 40, smooth.it = 0, norm = TRUE, thres = pi/90, ...)

S3 method for class 'list'
rfourier(x, ...)

Arguments

x A list or matrix of coordinates or an Out object

... useless here

nb.h integer. The number of harmonics to use. If missing, 12 is used on shapes; 99
percent of harmonic power on Out objects, both with messages.

rfourier 251

smooth.it integer. The number of smoothing iterations to perform.

norm logical. Whether to scale the outlines so that the mean length of the radii used
equals 1.

thres numeric a tolerance to feed is_equallyspacedradii

Details

see the JSS paper for the maths behind. The methods for Out objects tests if coordinates have
equally spaced radii using is_equallyspacedradii. A message is printed if this is not the case.

Value

A list with following components:

• an vector of a1−>n harmonic coefficients

• bn vector of b1−>n harmonic coefficients

• ao ao harmonic coefficient.

• r vector of radii lengths.

Note

Silent message and progress bars (if any) with options("verbose"=FALSE).

Directly borrowed for Claude (2008), and called fourier1 there.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other rfourier: rfourier_i(), rfourier_shape()

Examples

data(bot)
coo <- coo_center(bot[1]) # centering is almost mandatory for rfourier family
coo_plot(coo)
rf <- rfourier(coo, 12)
rf
rfi <- rfourier_i(rf)
coo_draw(rfi, border='red', col=NA)

Out method
bot %>% rfourier()

252 rfourier_i

rfourier_i Inverse radii variation Fourier transform

Description

rfourier_i uses the inverse radii variation (equally spaced radii) transformation to calculate a
shape, when given a list with Fourier coefficients, typically obtained computed with rfourier.

Usage

rfourier_i(rf, nb.h, nb.pts = 120)

Arguments

rf A list with ao, an and bn components, typically as returned by rfourier.

nb.h integer. The number of harmonics to calculate/use.

nb.pts integer. The number of points to calculate.

Details

See the JSS paper for the maths behind.

Value

A list with components:

x vector of x-coordinates.

y vector of y-coordinates.

angle vector of angles used.

r vector of radii calculated.

Note

Directly borrowed for Claude (2008), and called ifourier1 there.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other rfourier: rfourier(), rfourier_shape()

rfourier_shape 253

Examples

data(bot)
coo <- coo_center(bot[1]) # centering is almost mandatory for rfourier family
coo_plot(coo)
rf <- rfourier(coo, 12)
rf
rfi <- rfourier_i(rf)
coo_draw(rfi, border='red', col=NA)

rfourier_shape Calculates and draw ’rfourier’ shapes.

Description

rfourier_shape calculates a ’Fourier radii variation shape’ given Fourier coefficients (see Details)
or can generate some ’rfourier’ shapes.

Usage

rfourier_shape(an, bn, nb.h, nb.pts = 80, alpha = 2, plot = TRUE)

Arguments

an numeric. The an Fourier coefficients on which to calculate a shape.

bn numeric. The bn Fourier coefficients on which to calculate a shape.

nb.h integer. The number of harmonics to use.

nb.pts integer. The number of points to calculate.

alpha numeric. The power coefficient associated with the (usually decreasing) ampli-
tude of the Fourier coefficients (see Details).

plot logical. Whether to plot or not the shape.

Details

rfourier_shape can be used by specifying nb.h and alpha. The coefficients are then sampled
in an uniform distribution (−π;π) and this amplitude is then divided by harmonicrankalpha. If
alpha is lower than 1, consecutive coefficients will thus increase. See rfourier for the mathematical
background.

Value

A matrix of (x; y) coordinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

254 rm_asym

See Also

Other rfourier: rfourier(), rfourier_i()

Examples

data(bot)
rf <- rfourier(bot[1], 24)
rfourier_shape(rfan, rfbn) # equivalent to rfourier_i(rf)
rfourier_shape() # not very interesting

rfourier_shape(nb.h=12) # better
rfourier_shape(nb.h=6, alpha=0.4, nb.pts=500)

Butterflies of the vignette' cover
panel(Out(a2l(replicate(100,
rfourier_shape(nb.h=6, alpha=0.4, nb.pts=200, plot=FALSE)))))

rm_asym Removes asymmetric and symmetric variation on OutCoe objects

Description

Only for those obtained with efourier, otherwise a message is returned. rm_asym sets all B and C
coefficients to 0; rm_sym sets all A and D coefficients to 0.

Usage

rm_asym(OutCoe)

Default S3 method:
rm_asym(OutCoe)

S3 method for class 'OutCoe'
rm_asym(OutCoe)

rm_sym(OutCoe)

Default S3 method:
rm_sym(OutCoe)

S3 method for class 'OutCoe'
rm_sym(OutCoe)

Arguments

OutCoe an OutCoe object

rm_harm 255

Value

an OutCoe object

References

Below: the first mention, and two applications.
#’

• Iwata, H., Niikura, S., Matsuura, S., Takano, Y., & Ukai, Y. (1998). Evaluation of variation
of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic
Fourier descriptors. Euphytica, 102, 143-149.

• Iwata, H., Nesumi, H., Ninomiya, S., Takano, Y., & Ukai, Y. (2002). The Evaluation of
Genotype x Environment Interactions of Citrus Leaf Morphology Using Image Analysis and
Elliptic Fourier Descriptors. Breeding Science, 52(2), 89-94. doi:10.1270/jsbbs.52.89

• Yoshioka, Y., Iwata, H., Ohsawa, R., & Ninomiya, S. (2004). Analysis of petal shape variation
of Primula sieboldii by elliptic fourier descriptors and principal component analysis. Annals
of Botany, 94(5), 657-64. doi:10.1093/aob/mch190

See Also

symmetry and the note there.

Examples

botf <- efourier(bot, 12)
botSym <- rm_asym(botf)
boxplot(botSym)
botSymp <- PCA(botSym)
plot(botSymp)
plot(botSymp, amp.shp=5)

Asymmetric only
botAsym <- rm_sym(botf)
boxplot(botAsym)
botAsymp <- PCA(botAsym)
plot(botAsymp)
strange shapes because the original shape was mainly symmetric and would need its
symmetric (eg its average) for a proper reconstruction. Should only be used like that:
plot(botAsymp, morpho=FALSE)

rm_harm Removes harmonics from Coe objects

Description

Useful to drop harmonics on Coe objects. Should only work for Fourier-based approached since it
looks for [A-D][1-drop] pattern.

256 rm_missing

Usage

rm_harm(x, drop = 1)

Arguments

x Coe object

drop numeric number of harmonics to drop

Value

a Momocs object of same class

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_missing(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

Examples

data(bot)
bf <- efourier(bot)
colnames(rm_harm(bf, 1)$coe)

rm_missing Remove shapes with missing data in fac

Description

Any row (or within a given column if by is specified) containing NA in $fac and the corresponding
shapes in $coo, lines in $coe or other objects will also be dropped.

Usage

rm_missing(x, by)

Arguments

x the object on which to NA

by which column of the $fac should objects have complete views

Value

a Momocs object of same class

rm_uncomplete 257

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_uncomplete(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

Examples

botfactype[3] <- NA
botfacfake[9] <- NA

bot %>% length()
bot %>% rm_missing() %>% length
bot %>% rm_missing("fake") %>% length()

rm_uncomplete Remove shapes with incomplete slices

Description

Imagine you take three views of every object you study. Then, you can slice, filter or chop your
entire dataset, do morphometrics on it, then want to combine it. But if you have forgotten one view,
or if it was impossible to obtain, for one or more objects, combine will not work. This function
helps you to remove those ugly ducklings. See examples

Usage

rm_uncomplete(x, id, by)

Arguments

x the object on which to remove uncomplete "by"

id of the objects, within the $fac slot

by which column of the $fac should objects have complete views

Value

a Momocs object of same class

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rw_fac(), sample_frac(),
sample_n(), select(), slice(), subsetize()

258 rw_fac

Examples

we load olea
data(olea)
we select the var Aglan since it is the only one complete
ol <- filter(olea, var == "Aglan")
everything seems fine
table(ol$view, ol$ind)
indeed
rm_uncomplete(ol, id="ind", by="view")

we mess the ol object by removing a single shape
ol.pb <- slice(ol, -1)
table(ol.pb$view, ol.pb$ind)
the counterpart has been removed with a notice
ol.ok <- rm_uncomplete(ol.pb, "ind", "view")
now you can combine them
table(ol.ok$view, ol.ok$ind)

rw_fac Renames levels on Momocs objects

Description

rw_fac stands for ’rewriting rule’. Typically useful to correct typos at the import, or merge some
levels within covariates. Drops levels silently.

Usage

rw_fac(x, fac, from, to)

Arguments

x any Momocs object

fac the id of the name of the $fac column to look for (fac_dispatcher not yet sup-
ported)

from which level(s) should be renamed; passed as a single or several characters

to which name should be used to rename this/these levels

Value

a Momocs object of the same class

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), sample_frac(),
sample_n(), select(), slice(), subsetize()

sample_frac 259

Examples

single renaming
rw_fac(bot, "type", "whisky", "agua_de_fuego")$type # 1 instead of "type" is fine too
several renaming
bot2 <- mutate(bot, fake=factor(rep(letters[1:4], 10)))
rw_fac(bot2, "fake", c("a", "e"), "ae")$fake

sample_frac Sample a fraction of shapes

Description

Sample a fraction of shapes from a Momocs object. See examples and ?dplyr::sample_n.

Usage

sample_frac(tbl, size, replace, fac, ...)

Arguments

tbl a Momocs object (Coo, Coe)

size numeric (0 < numeric <= 1) the fraction of shapes to select

replace logical whether sample should be done with ot without replacement

fac a column name if a $fac is defined; size is then applied within levels of this
factor

... additional arguments to dplyr::sample_frac and to maintain generic compatibil-
ity

Value

a Momocs object of same class

Note

the resulting fraction is rounded with ceiling.

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_n(), select(), slice(), subsetize()

260 sample_n

Examples

samples 50% of the bottles no matter their type
sample_frac(bot, 0.5)
80% bottles of beer and of whisky
table(sample_frac(bot, 0.8, fac="type")$fac)
bootstrap the same number of bootles of each type but with replacement
table(names(sample_frac(bot, 1, replace=TRUE)))

sample_n Sample n shapes

Description

Sample n shapes from a Momocs object. See examples and ?dplyr::sample_n.

Usage

sample_n(tbl, size, replace, fac, ...)

Arguments

tbl a Momocs object (Coo, Coe)
size numeric how many shapes should we sample
replace logical whether sample should be done with ot without replacement
fac a column name if a $fac is defined; size is then applied within levels of this

factor
... additional arguments to dplyr::sample_n and to maintain generic compatibility

Value

a Momocs object of same class

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), select(), slice(), subsetize()

Examples

samples 5 bottles no matter their type
sample_n(bot, 5)
5 bottles of beer and of whisky
table(sample_n(bot, 5, fac="type")$type)
many repetitions
table(names(sample_n(bot, 400, replace=TRUE)))

scree 261

scree How many axes to retain this much of variance or trace ?

Description

A set of functions around PCA/LDA eigen/trace. scree calculates their proportion and cumulated
proportion; scree_min returns the minimal number of axis to use to retain a given proportion;
scree_plot displays a screeplot.

Usage

scree(x, nax)

S3 method for class 'PCA'
scree(x, nax)

S3 method for class 'LDA'
scree(x, nax)

scree_min(x, prop)

scree_plot(x, nax)

Arguments

x a PCA object

nax numeric range of axes to consider. All by default for scree_min, display until
0.99 for scree_plot

prop numeric how many axes are enough to gather this proportion of variance. De-
fault to 1, all axes are returned defaut to 1: all axis are returned

Value

scree returns a data.frame, scree_min a numeric, scree_plot a ggplot.

Examples

On PCA
bp <- PCA(efourier(bot))
scree(bp)
scree_min(bp, 0.99)
scree_min(bp, 1)

scree_plot(bp)
scree_plot(bp, 1:5)

on LDA, it uses svd
bl <- LDA(PCA(opoly(olea)), "var")

262 select

scree(bl)

select Select columns by name

Description

Select variables by name, from the $fac. Selected variables can also be renamed on the fly. See
examples and ?dplyr::select.

Usage

select(.data, ...)

Arguments

.data a Coo, Coe, PCA object

... comma separated list of unquoted expressions

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), slice(), subsetize()

Examples

olea
select(olea, var, view) # drops domes and ind
select(olea, variety=var, domesticated_status=domes, view)
combine with filter with magrittr pipes
only dorsal views, and 'var' and 'domes' columns
filter(olea, view=="VD") %>% select(var, domes)
head(olea$fac)
select some columns
select(olea, domes, view)
remove some columns
select(olea, -ind)
rename on the fly and select some columns
select(olea, foo=domes)

sfourier 263

sfourier Radii variation Fourier transform (equally spaced curvilinear ab-
scissa)

Description

sfourier computes radii variation Fourier analysis from a matrix or a list of coordinates where
points are equally spaced aong the curvilinear abscissa.

Usage

sfourier(x, nb.h)

Default S3 method:
sfourier(x, nb.h)

S3 method for class 'Out'
sfourier(x, nb.h)

S3 method for class 'list'
sfourier(x, nb.h)

Arguments

x A list or matrix of coordinates or an Out object

nb.h integer. The number of harmonics to use. If missing, 12 is used on shapes; 99
percent of harmonic power on Out objects, both with messages.

Value

A list with following components:

• an vector of a1−>n harmonic coefficients

• bn vector of b1−>n harmonic coefficients

• ao ao harmonic coefficient

• r vector of radii lengths

Note

The implementation is still quite experimental (as of Dec. 2016)

References

Renaud S, Michaux JR (2003): Adaptive latitudinal trends in the mandible shape of Apodemus
wood mice. J Biogeogr 30:1617-1628.

264 sfourier_i

See Also

Other sfourier: sfourier_i(), sfourier_shape()

Examples

molars[4] %>%
coo_center %>% coo_scale %>% coo_interpolate(1080) %>%
coo_slidedirection("right") %>%

coo_sample(360) %T>% coo_plot(zoom=2) %>%
sfourier(16) %>%
sfourier_i() %>%
coo_draw(bor="red", points=TRUE)

sfourier_i Inverse radii variation Fourier transform

Description

sfourier_i uses the inverse radii variation (equally spaced curvilinear abscissa) transformation
to calculate a shape, when given a list with Fourier coefficients, typically obtained computed with
sfourier.

Usage

sfourier_i(rf, nb.h, nb.pts = 120, dtheta = FALSE)

Arguments

rf A list with ao, an and bn components, typically as returned by sfourier.

nb.h integer. The number of harmonics to calculate/use.

nb.pts integer. The number of points to calculate.

dtheta logical. Whether to use the dtheta correction method. FALSE by default. When
TRUE, tries to correct the angular difference between reconstructed points; oth-
erwise equal angles are used.

Value

A list with components:

x vector of x-coordinates.

y vector of y-coordinates.

angle vector of angles used.

r vector of radii calculated.

sfourier_shape 265

References

Renaud S, Pale JRM, Michaux JR (2003): Adaptive latitudinal trends in the mandible shape of
Apodemus wood mice. J Biogeogr 30:1617-1628.

See Also

Other sfourier: sfourier(), sfourier_shape()

Examples

coo <- coo_center(bot[1]) # centering is almost mandatory for sfourier family
coo_plot(coo)
rf <- sfourier(coo, 12)
rf
rfi <- sfourier_i(rf)
coo_draw(rfi, border='red', col=NA)

sfourier_shape Calculates and draw ’sfourier’ shapes.

Description

sfourier_shape calculates a ’Fourier radii variation shape’ given Fourier coefficients (see Details)
or can generate some ’sfourier’ shapes.

Usage

sfourier_shape(an, bn, nb.h, nb.pts = 80, alpha = 2, plot = TRUE)

Arguments

an numeric. The an Fourier coefficients on which to calculate a shape.

bn numeric. The bn Fourier coefficients on which to calculate a shape.

nb.h integer. The number of harmonics to use.

nb.pts integer. The number of points to calculate.

alpha numeric. The power coefficient associated with the (usually decreasing) ampli-
tude of the Fourier coefficients (see Details).

plot logical. Whether to plot or not the shape.

Details

sfourier_shape can be used by specifying nb.h and alpha. The coefficients are then sampled
in an uniform distribution (−π;π) and this amplitude is then divided by harmonicrankalpha. If
alpha is lower than 1, consecutive coefficients will thus increase. See sfourier for the mathematical
background.

266 shapes

Value

A matrix of (x; y) coordinates.

References

Renaud S, Pale JRM, Michaux JR (2003): Adaptive latitudinal trends in the mandible shape of
Apodemus wood mice. J Biogeogr 30:1617-1628.

See Also

Other sfourier: sfourier(), sfourier_i()

Examples

rf <- sfourier(bot[1], 24)
sfourier_shape(rfan, rfbn) # equivalent to sfourier_i(rf)
sfourier_shape() # not very interesting

sfourier_shape(nb.h=12) # better
sfourier_shape(nb.h=6, alpha=0.4, nb.pts=500)

Butterflies of the vignette' cover
panel(Out(a2l(replicate(100,
sfourier_shape(nb.h=6, alpha=0.4, nb.pts=200, plot=FALSE)))))

shapes Data: Outline coordinates of various shapes

Description

Data: Outline coordinates of various shapes

Format

An Out object with the outline coordinates of some various shapes.

Source

Borrowed default shapes from (c) Adobe Photoshop. Do not send me to jail.

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, mouse,
nsfishes, oak, olea, trilo, wings

slice 267

slice Subset based on positions

Description

Select rows by position, based on $fac. See examples and ?dplyr::slice.

Usage

slice(.data, ...)

Arguments

.data a Coo, Coe, PCA object

... logical conditions

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), subsetize()

Examples

olea
slice(olea, 1) # if you only want the coordinates, try bot[1]
slice(olea, 1:20)
slice(olea, 21:30)

268 stack

slidings_scheme Extracts partitions of sliding coordinates

Description

Helper function that deduces (likely to be a reminder) partition scheme from $slidings of Ldk
objects.

Usage

slidings_scheme(Coo)

Arguments

Coo an Ldk object

Value

a list with two components: n the number of partition; id their position. Or a NULL if no slidings
are defined

See Also

Other ldk/slidings methods: add_ldk(), def_ldk(), def_slidings(), get_ldk(), get_slidings(),
rearrange_ldk()

Examples

no slidings defined a NULL is returned with a message
slidings_scheme(wings)

slidings defined
slidings_scheme(chaff)

stack Family picture of shapes

Description

Plots all the outlines, on the same graph, from a Coo (Out, Opn or Ldk) object.

stack 269

Usage

S3 method for class 'Coo'
stack(
x,
cols,
borders,
fac,
palette = col_summer,
coo_sample = 120,
points = FALSE,
first.point = TRUE,
centroid = TRUE,
ldk = TRUE,
ldk_pch = 3,
ldk_col = "#FF000055",
ldk_cex = 0.5,
ldk_links = FALSE,
ldk_confell = FALSE,
ldk_contour = FALSE,
ldk_chull = FALSE,
ldk_labels = FALSE,
xy.axis = TRUE,
title = substitute(x),
...

)

S3 method for class 'Ldk'
stack(
x,
cols,
borders,
first.point = TRUE,
centroid = TRUE,
ldk = TRUE,
ldk_pch = 20,
ldk_col = col_alpha("#000000", 0.5),
ldk_cex = 0.3,
meanshape = FALSE,
meanshape_col = "#FF0000",
ldk_links = FALSE,
ldk_confell = FALSE,
ldk_contour = FALSE,
ldk_chull = FALSE,
ldk_labels = FALSE,
slidings = TRUE,
slidings_pch = "",
xy.axis = TRUE,
title = substitute(x),

270 stack

...
)

Arguments

x The Coo object to plot.

cols A vector of colors for drawing the outlines. Either a single value or of length
exactly equals to the number of coordinates.

borders A vector of colors for drawing the borders. Either a single value or of length
exactly equals to the number of coordinates.

fac a factor within the $fac slot for colors

palette a color palette to use when fac is provided

coo_sample if not NULL the number of point per shape to display (to plot quickly)

points logical whether to draw or not points

first.point logical whether to draw or not the first point

centroid logical whether to draw or not the centroid

ldk logical. Whether to display landmarks (if any).

ldk_pch pch for these landmarks

ldk_col color for these landmarks

ldk_cex cex for these landmarks

ldk_links logical whether to draw links (of the mean shape)

ldk_confell logical whether to draw conf ellipses

ldk_contour logical whether to draw contour lines

ldk_chull logical whether to draw convex hull

ldk_labels logical whether to draw landmark labels

xy.axis whether to draw or not the x and y axes

title a title for the plot. The name of the Coo by default

... further arguments to be passed to coo_plot

meanshape logical whether to add meanshape related stuff (below)

meanshape_col a color for everything meanshape

slidings logical whether to draw slidings semi landmarks

slidings_pch pch for semi landmarks

Value

a plot

See Also

Other Coo_graphics: inspect(), panel()

subsetize 271

Examples

stack(bot)
bot.f <- efourier(bot, 12)
stack(bot.f)
stack(mosquito, borders='#1A1A1A22', first.point=FALSE)
stack(hearts)
stack(hearts, ldk=FALSE)
stack(hearts, borders='#1A1A1A22', ldk=TRUE, ldk_col=col_summer(4), ldk_pch=20)
stack(hearts, fac="aut", palette=col_sari)

chaffal <- fgProcrustes(chaff)
stack(chaffal, slidings=FALSE)
stack(chaffal, meanshape=TRUE, meanshape_col="blue")

subsetize Subsetize various Momocs objects

Description

Subsetize is a wrapper around dplyr’s verbs and should NOT be used directly.

Usage

subsetize(x, subset, ...)

Arguments

x a Coo or a Coe object.

subset logical taken from the $fac slot, or indices. See examples.

... useless here but maintains consistence with the generic subset.

Value

a subsetted object of same class

See Also

Other handling functions: arrange(), at_least(), chop(), combine(), dissolve(), fac_dispatcher(),
filter(), mutate(), rename(), rescale(), rm_harm(), rm_missing(), rm_uncomplete(), rw_fac(),
sample_frac(), sample_n(), select(), slice()

Examples

Do not use subset directly

272 symmetry

symmetry Calcuates symmetry indices on OutCoe objects

Description

For OutCoe objects obtained with efourier, calculates several indices on the matrix of coefficients:
AD, the sum of absolute values of harmonic coefficients A and D; BC same thing for B and C; amp
the sum of the absolute value of all harmonic coefficients and sym which is the ratio of AD over amp.
See references below for more details.

Usage

symmetry(OutCoe)

Arguments

OutCoe efourier objects

Value

a matrix with 4 colums described above.

Note

What we call symmetry here is bilateral symmetry. By comparing coefficients resulting from
efourier, with AD responsible for amplitude of the Fourier functions, and BC for their phase, it
results in the plane and for fitted/reconstructed shapes that symmetry. As long as your shapes are
aligned along their bilateral symmetry axis, you can use the approach coined by Iwata et al., and
here implemented in Momocs.

References

Below: the first mention, and two applications.
#’

• Iwata, H., Niikura, S., Matsuura, S., Takano, Y., & Ukai, Y. (1998). Evaluation of variation
of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic
Fourier descriptors. Euphytica, 102, 143-149.

• Iwata, H., Nesumi, H., Ninomiya, S., Takano, Y., & Ukai, Y. (2002). The Evaluation of
Genotype x Environment Interactions of Citrus Leaf Morphology Using Image Analysis and
Elliptic Fourier Descriptors. Breeding Science, 52(2), 89-94. doi:10.1270/jsbbs.52.89

• Yoshioka, Y., Iwata, H., Ohsawa, R., & Ninomiya, S. (2004). Analysis of petal shape variation
of Primula sieboldii by elliptic fourier descriptors and principal component analysis. Annals
of Botany, 94(5), 657-64. doi:10.1093/aob/mch190

See Also

rm_asym and rm_sym.

tfourier 273

Examples

bot.f <- efourier(bot, 12)
res <- symmetry(bot.f)
hist(res[, 'sym'])

tfourier Tangent angle Fourier transform

Description

tfourier computes tangent angle Fourier analysis from a matrix or a list of coordinates.

Usage

tfourier(x, ...)

Default S3 method:
tfourier(x, nb.h, smooth.it = 0, norm = FALSE, ...)

S3 method for class 'Out'
tfourier(x, nb.h = 40, smooth.it = 0, norm = TRUE, ...)

S3 method for class 'list'
tfourier(x, ...)

Arguments

x A list or matrix of coordinates or an Out

... useless here

nb.h integer. The number of harmonics to use. If missing, 12 is used on shapes; 99
percent of harmonic power on Out objects, both with messages.

smooth.it integer. The number of smoothing iterations to perform

norm logical. Whether to scale and register new coordinates so that the first point
used is sent on the origin.

Value

A list with the following components:

• ao ao harmonic coefficient

• an vector of a1−>n harmonic coefficients

• bn vector of b1−>n harmonic coefficients

• phi vector of variation of the tangent angle

• t vector of distance along the perimeter expressed in radians

• perimeter numeric. The perimeter of the outline

274 tfourier_i

• thetao numeric. The first tangent angle

• x1 The x-coordinate of the first point

• y1 The y-coordinate of the first point.

Note

Silent message and progress bars (if any) with options("verbose"=FALSE).

Directly borrowed for Claude (2008), and called fourier2 there.

References

Zahn CT, Roskies RZ. 1972. Fourier Descriptors for Plane Closed Curves. IEEE Transactions on
Computers C-21: 269-281.

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other tfourier: tfourier_i(), tfourier_shape()

Examples

coo <- bot[1]
coo_plot(coo)
tf <- tfourier(coo, 12)
tf
tfi <- tfourier_i(tf)
coo_draw(tfi, border='red', col=NA) # the outline is not closed...
coo_draw(tfourier_i(tf, force2close=TRUE), border='blue', col=NA) # we force it to close.

tfourier_i Inverse tangent angle Fourier transform

Description

tfourier_i uses the inverse tangent angle Fourier transformation to calculate a shape, when given
a list with Fourier coefficients, typically obtained computed with tfourier.

Usage

tfourier_i(
tf,
nb.h,
nb.pts = 120,
force2close = FALSE,
rescale = TRUE,
perim = 2 * pi,
thetao = 0

)

tfourier_i 275

Arguments

tf a list with ao, an and bn components, typically as returned by tfourier

nb.h integer. The number of harmonics to calculate/use

nb.pts integer. The number of points to calculate

force2close logical. Whether to force the outlines calculated to close (see coo_force2close).

rescale logical. Whether to rescale the points calculated so that their perimeter equals
perim.

perim The perimeter length to rescale shapes.

thetao numeric. Radius angle to the reference (in radians)

Details

See tfourier for the mathematical background.

Value

A list with components:

x vector of x-coordinates.

y vector of y-coordinates.

phi vector of interpolated changes on the tangent angle.

angle vector of position on the perimeter (in radians).

Note

Directly borrowed for Claude (2008), and called ifourier2 there.

References

Zahn CT, Roskies RZ. 1972. Fourier Descriptors for Plane Closed Curves. IEEE Transactions on
Computers C-21: 269-281.

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other tfourier: tfourier(), tfourier_shape()

Examples

tfourier(bot[1], 24)
tfourier_shape()

276 tfourier_shape

tfourier_shape Calculates and draws ’tfourier’ shapes.

Description

tfourier_shape calculates a ’Fourier tangent angle shape’ given Fourier coefficients (see Details)
or can generate some ’tfourier’ shapes.

Usage

tfourier_shape(an, bn, ao = 0, nb.h, nb.pts = 80, alpha = 2, plot = TRUE)

Arguments

an numeric. The an Fourier coefficients on which to calculate a shape.

bn numeric. The bn Fourier coefficients on which to calculate a shape.

ao ao Harmonic coefficient.

nb.h integer. The number of harmonics to use.

nb.pts integer. The number of points to calculate.

alpha numeric. The power coefficient associated with the (usually decreasing) ampli-
tude of the Fourier coefficients (see Details).

plot logical. Whether to plot or not the shape.

Value

A matrix of (x; y) coordinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other tfourier: tfourier(), tfourier_i()

Examples

tf <- tfourier(bot[1], 24)
tfourier_shape(tfan, tfbn) # equivalent to rfourier_i(rf)
tfourier_shape()
tfourier_shape(nb.h=6, alpha=0.4, nb.pts=500)
panel(Out(a2l(replicate(100,
coo_force2close(tfourier_shape(nb.h=6, alpha=2, nb.pts=200, plot=FALSE)))))) # biological shapes

tie_jpg_txt 277

tie_jpg_txt Binds .jpg outlines from .txt landmarks taken on them

Description

Given a list of files (lf) that includes matching filenames with .jpg (black masks) and .txt (landmark
positions on them as .txt), returns an Out with $ldk defined. Typically be useful if you use ImageJ
to define landmarks on your outlines.

Usage

tie_jpg_txt(lf)

Arguments

lf a list of filenames

Value

an Out object

Note

Not optimized (images are read twice). Please do not hesitate to contact me should you have a
particular case or need something.

See Also

Other babel functions: lf_structure()

tps2d Thin Plate Splines for 2D data

Description

tps2d is the core function for Thin Plate Splines. It is used internally for all TPS graphical func-
tions.tps_apply is the very same function but with arguments properly named (I maintain tps2d as
it is for historical reasons) when we want a apply a trasnformation grid.

Usage

tps2d(grid0, fr, to)

tps_apply(fr, to, new)

278 tps_arr

Arguments

grid0 a matrix of coordinates on which to calculate deformations

fr the reference shape

to the target shape

new the shape on which to apply the shp1->shp2 calibrated tps trasnformation

Value

a shape.

See Also

Other thin plate splines: tps_arr(), tps_grid(), tps_iso(), tps_raw()

Examples

shapes <- shapes %>%
coo_scale() %>% coo_center() %>%
coo_slidedirection("up") %>%
coo_sample(64)

leaf1 <- shapes[14]
leaf2 <- shapes[15]

tps grid on the two leafs2
tps_grid(leaf1, leaf2)
apply the (leaf1 -> leaf2) tps trasnformation onto leaf1
(that thus get closer to leaf2)
tps_apply(leaf1, leaf2, leaf1) %>% coo_draw(bor="purple")

tps_arr Deformation ’vector field’ using Thin Plate Splines

Description

tps_arr(ows) calculates deformations between two configurations and illustrate them using arrows.

Usage

tps_arr(
fr,
to,
amp = 1,
grid = TRUE,
over = 1.2,
palette = col_summer,

tps_arr 279

arr.nb = 200,
arr.levels = 100,
arr.len = 0.1,
arr.ang = 20,
arr.lwd = 0.75,
arr.col = "grey50",
poly = TRUE,
shp = TRUE,
shp.col = rep(NA, 2),
shp.border = col_qual(2),
shp.lwd = c(2, 2),
shp.lty = c(1, 1),
legend = TRUE,
legend.text,
...

)

Arguments

fr the reference (x; y) coordinates

to the target (x; y) coordinates

amp an amplification factor of differences between fr and to

grid whether to calculate and plot changes across the graphical window TRUE or just
within the starting shape (FALSE)

over numeric that indicates how much the thin plate splines extends over the shapes

palette a color palette such those included in Momocs or produced with colorRamp-
Palette

arr.nb numeric The number of arrows to calculate

arr.levels numeric. The number of levels for the color of arrows

arr.len numeric for the length of arrows

arr.ang numeric for the angle for arrows’ heads

arr.lwd numeric for the lwd for drawing arrows

arr.col if palette is not used the color for arrows

poly whether to draw polygons (for outlines) or points (for landmarks)

shp logical. whether to draw shapes

shp.col two colors for filling the shapes

shp.border two colors for drawing the borders

shp.lwd two lwd for drawing shapes

shp.lty two lty fro drawing the shapes

legend logical whether to plot a legend

legend.text some text for the legend

... additional arguments to feed coo_draw

280 tps_grid

Value

Nothing.

See Also

Other thin plate splines: tps2d(), tps_grid(), tps_iso(), tps_raw()

Examples

botF <- efourier(bot)
x <- MSHAPES(botF, 'type', nb.pts=80)$shp
fr <- x$beer
to <- x$whisky
tps_arr(fr, to, arr.nb=200, palette=col_sari, amp=3)
tps_arr(fr, to, arr.nb=200, palette=col_sari, amp=3, grid=FALSE)

tps_grid Deformation grids using Thin Plate Splines

Description

tps_grid calculates and plots deformation grids between two configurations.

Usage

tps_grid(
fr,
to,
amp = 1,
over = 1.2,
grid.size = 15,
grid.col = "grey80",
poly = TRUE,
shp = TRUE,
shp.col = rep(NA, 2),
shp.border = col_qual(2),
shp.lwd = c(1, 1),
shp.lty = c(1, 1),
legend = TRUE,
legend.text,
...

)

tps_iso 281

Arguments

fr the reference (x; y) coordinates

to the target (x; y) coordinates

amp an amplification factor of differences between fr and to

over numeric that indicates how much the thin plate splines extends over the shapes

grid.size numeric to specify the number of grid cells on the longer axis on the outlines

grid.col color for drawing the grid

poly whether to draw polygons (for outlines) or points (for landmarks)

shp logical. Whether to draw shapes

shp.col Two colors for filling the shapes

shp.border Two colors for drawing the borders

shp.lwd Two lwd for drawing shapes

shp.lty Two lty fro drawing the shapes

legend logical whether to plot a legend

legend.text some text for the legend

... additional arguments to feed coo_draw

Value

Nothing

See Also

Other thin plate splines: tps2d(), tps_arr(), tps_iso(), tps_raw()

Examples

botF <- efourier(bot)
x <- MSHAPES(botF, 'type', nb.pts=80)$shp
fr <- x$beer
to <- x$whisky
tps_grid(fr, to, amp=3, grid.size=10)

tps_iso Deformation isolines using Thin Plate Splines.

Description

tps_iso calculates deformations between two configurations and map them with or without iso-
lines.

282 tps_iso

Usage

tps_iso(
fr,
to,
amp = 1,
grid = FALSE,
over = 1.2,
palette = col_spring,
iso.nb = 1000,
iso.levels = 12,
cont = TRUE,
cont.col = "black",
poly = TRUE,
shp = TRUE,
shp.border = col_qual(2),
shp.lwd = c(2, 2),
shp.lty = c(1, 1),
legend = TRUE,
legend.text,
...

)

Arguments

fr The reference (x; y) coordinates
to The target (x; y) coordinates
amp An amplification factor of differences between fr and to

grid whether to calculate and plot changes across the graphical window TRUE or just
within the starting shape (FALSE)

over A numeric that indicates how much the thin plate splines extends over the
shapes

palette A color palette such those included in Momocs or produced with colorRamp-
Palette

iso.nb A numeric. The number of points to use for the calculation of deformation
iso.levels numeric. The number of levels for mapping the deformations
cont logical. Whether to draw contour lines
cont.col A color for drawing the contour lines
poly whether to draw polygons (for outlines) or points (for landmarks)
shp logical. Whether to draw shapes
shp.border Two colors for drawing the borders
shp.lwd Two lwd for drawing shapes
shp.lty Two lty fro drawing the shapes
legend logical whether to plot a legend
legend.text some text for the legend
... additional arguments to feed coo_draw

tps_raw 283

Value

No returned value

See Also

Other thin plate splines: tps2d(), tps_arr(), tps_grid(), tps_raw()

Examples

botF <- efourier(bot)
x <- MSHAPES(botF, 'type', nb.pts=80)$shp
fr <- x$beer
to <- x$whisky
tps_iso(fr, to, iso.nb=200, amp=3)
tps_iso(fr, to, iso.nb=200, amp=3, grid=TRUE)

tps_raw Vanilla Thin Plate Splines

Description

tps_raw calculates deformation grids and returns position of sampled points on it.

Usage

tps_raw(fr, to, amp = 1, over = 1.2, grid.size = 15)

Arguments

fr the reference (x; y) coordinates

to the target (x; y) coordinates

amp an amplification factor of differences between fr and to

over numeric that indicates how much the thin plate splines extends over the shapes

grid.size numeric to specify the number of grid cells on the longer axis on the outlines

Value

a list with two components: grid the xy coordinates of sampled points along the grid; dim the
dimension of the grid.

See Also

Other thin plate splines: tps2d(), tps_arr(), tps_grid(), tps_iso()

284 TraCoe

Examples

ms <- MSHAPES(efourier(bot, 10), "type")
b <- msshpbeer
w <- msshpwhisky
g <- tps_raw(b, w)
ldk_plot(g$grid)

a wavy plot
ldk_plot(g$grid, pch=NA)
cols_ids <- 1:g$dim[1]
for (i in 1:g$dim[2]) lines(g$grid[cols_ids + (i-1)*g$dim[1],])

TraCoe Traditional morphometrics class

Description

Defines the builder for traditional measurement class in Momocs. Is is intended to ease calculations,
data handling and multivariate statistics just ad the other Momocs’ classes

Usage

TraCoe(coe = matrix(), fac = dplyr::tibble())

Arguments

coe a matrix of measurements

fac a data.frame for covariates

Value

a list of class TraCoe

See Also

Other classes: Coe(), Coo(), Ldk(), Opn(), OpnCoe(), Out(), OutCoe()

Examples

let's (more or less) rebuild the flower dataset
fl <- TraCoe(iris[, 1:4], dplyr::tibble(sp=iris$Species))
fl %>% PCA() %>% plot("sp")

trilo 285

trilo Data: Outline coordinates of cephalic outlines of trilobite

Description

Data: Outline coordinates of cephalic outlines of trilobite

Format

A Out object 64 coordinates of 50 cephalic outlines from different ontogenetic stages of trilobite.

Source

Arranged from: https://folk.universitetetioslo.no/ (used to be in ohammer website but
seems to be deprecated now). The original data included 51 outlines and 5 ontogenetic stages, but
one of them has just a single outline thas has been removed.

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, mouse,
nsfishes, oak, olea, shapes, wings

verify Validates Coo objects

Description

No validation for S3 objects, so this method is a (cheap) attempt at checking Coo objects, Out, Opn
and Ldk objects.

Usage

verify(Coo)

Arguments

Coo any Coo object

Details

Implemented before all morphometric methods and handling verbs. To see what is checked, try eg
Momocs:::verify.Coo

Value

a Coo object.

https://folk.universitetetioslo.no/

286 which_out

Examples

verify(bot)
bot[12] <- NA
you would not use try, but here we cope with R CMD CHECK standards
plop <- try(verify(bot), silent=TRUE)
class(plop)

verify(hearts)
hearts$ldk[[4]] <- c(1, 2)
same remark
plop2 <- try(verify(hearts), silent=TRUE)
class(plop2)

which_out Identify outliers

Description

A simple wrapper around dnorm that helps identify outliers. In particular, it may be useful on Coe
object (in this case a PCA is first calculated) and also on Ldk for detecting possible outliers on
freshly digitized/imported datasets.

Usage

which_out(x, conf, nax, ...)

Arguments

x object, either Coe or a numeric on which to search for outliers

conf confidence for dnorm (1e-3 by default)

nax number of axes to retain (only for Coe), if <1 retain enough axes to retain this
proportion of the variance

... additional parameters to be passed to PCA (only for Coe)

Value

a vector of indices

Note

experimental. dnorm parameters used are median(x), sd(x)

wings 287

Examples

on a numeric
x <- rnorm(10)
x[4] <- 99
which_out(x)

on a Coe
bf <- bot %>% efourier(6)
bf$coe[c(1, 6), 1] <- 5
which_out(bf)

on Ldk
w_no <- w_ok <- wings
w_no$coo[[2]][1, 1] <- 2
w_no$coo[[6]][2, 2] <- 2
which_out(w_ok, conf=1e-12) # with low conf, no outliers
which_out(w_no, conf=1e-12) # as expected

a way to illustrate, filter outliers
conf has been chosen deliberately low to show some outliers
x_f <- bot %>% efourier
x_p <- PCA(x_f)
which are outliers (conf is ridiculously low here)
which_out(x_p$x[, 1], 0.5)
cols <- rep("black", nrow(x_p$x))
outliers <- which_out(x_p$x[, 1], 0.5)
cols[outliers] <- "red"
plot(x_p, col=cols)
remove them for Coe, rePCA, replot
x_f %>% slice(-outliers) %>% PCA %>% plot

or directly with which_out.Coe
which relies on a PCA
outliers <- x_f %>% which_out(0.5, nax=0.95) %>% na.omit()
x_f %>% slice(-outliers) %>% PCA %>% plot

wings Data: Landmarks coordinates of mosquito wings

Description

Data: Landmarks coordinates of mosquito wings

Format

A Ldk object containing 18 (x; y) landmarks from 127 mosquito wings, from

Source

Rohlf and Slice 1990.

288 wings

See Also

Other datasets: apodemus, bot, chaff, charring, flower, hearts, molars, mosquito, mouse,
nsfishes, oak, olea, shapes, trilo

Index

∗ Coe_graphics
boxplot.OutCoe, 13
hcontrib, 153

∗ Coo_graphics
inspect, 162
panel, 207
stack, 268

∗ aligning functions
coo_align, 41
coo_aligncalliper, 42
coo_alignminradius, 43
coo_alignxax, 44

∗ babel functions
lf_structure, 179
tie_jpg_txt, 277

∗ baselining functions
coo_baseline, 48
coo_bookstein, 49

∗ bezier functions
bezier, 11
bezier_i, 12

∗ bridges functions
as_df, 9
bridges, 16
complex, 38
export, 141

∗ calibration
calibrate_deviations, 17
calibrate_harmonicpower, 20
calibrate_r2, 22
calibrate_reconstructions, 24

∗ calliper functions
coo_calliper, 51

∗ centroid functions
coo_centdist, 52
coo_centpos, 54
coo_centsize, 55

∗ classes
Coe, 30

Coo, 39
Ldk, 173
Opn, 199
OpnCoe, 200
Out, 203
OutCoe, 204
TraCoe, 284

∗ coo_ descriptors
coo_angle_edges, 45
coo_angle_tangent, 46
coo_area, 47
coo_boundingbox, 50
coo_chull, 56
coo_circularity, 57
coo_convexity, 60
coo_eccentricity, 65
coo_elongation, 66
coo_length, 76
coo_lw, 80
coo_rectangularity, 87
coo_rectilinearity, 88
coo_scalars, 97
coo_solidity, 108
coo_tac, 109
coo_width, 118

∗ coo_ intersect
coo_intersect_angle, 71
coo_intersect_segment, 72

∗ coo_ utilities
coo_align, 41
coo_aligncalliper, 42
coo_alignminradius, 43
coo_alignxax, 44
coo_baseline, 48
coo_bookstein, 49
coo_boundingbox, 50
coo_calliper, 51
coo_centdist, 52
coo_center, 53

289

290 INDEX

coo_centpos, 54
coo_close, 59
coo_down, 61
coo_dxy, 64
coo_extract, 67
coo_flipx, 68
coo_force2close, 69
coo_interpolate, 70
coo_is_closed, 73
coo_jitter, 74
coo_left, 75
coo_likely_clockwise, 77
coo_nb, 81
coo_perim, 83
coo_range, 86
coo_rev, 89
coo_right, 90
coo_rotate, 91
coo_rotatecenter, 92
coo_sample, 94
coo_sample_prop, 96
coo_samplerr, 95
coo_scale, 98
coo_shearx, 100
coo_slice, 101
coo_slide, 102
coo_slidedirection, 104
coo_slidegap, 105
coo_smooth, 106
coo_smoothcurve, 107
coo_template, 110
coo_trans, 111
coo_trim, 112
coo_trimbottom, 113
coo_trimtop, 114
coo_untiltx, 116
coo_up, 117
is_equallyspacedradii, 164

∗ coo_trimming functions
coo_trim, 112
coo_trimbottom, 113
coo_trimtop, 114

∗ coo_utilities
coo_centsize, 55

∗ datasets
apodemus, 8
bot, 13
chaff, 26

charring, 26
flower, 147
hearts, 154
molars, 187
mosquito, 192
mouse, 192
nsfishes, 197
oak, 198
olea, 198
shapes, 266
trilo, 285
wings, 287

∗ dfourier
dfourier, 124
dfourier_i, 126
dfourier_shape, 127

∗ efourier
efourier, 136
efourier_i, 138
efourier_shape, 140

∗ exemplifying functions
coo_dxy, 64

∗ farming
breed, 15
perm, 213

∗ grindr
drawers, 129
layers, 167
layers_morphospace, 170
mosaic_engine, 189
papers, 209
pile, 214
plot_LDA, 233
plot_NMDS, 237
plot_PCA, 239

∗ handling functions
arrange, 8
at_least, 10
chop, 27
combine, 37
dissolve, 128
fac_dispatcher, 142
filter, 146
mutate, 194
rename, 247
rescale, 249
rm_harm, 255
rm_missing, 256

INDEX 291

rm_uncomplete, 257
rw_fac, 258
sample_frac, 259
sample_n, 260
select, 262
slice, 267
subsetize, 271

∗ import functions
import_Conte, 155
import_jpg, 156
import_jpg1, 158
import_StereoMorph_curve1, 159
import_tps, 160
import_txt, 161
pix2chc, 217

∗ ldk helpers
def_links, 123
ldk_check, 174
links_all, 180
links_delaunay, 181

∗ ldk plotters
ldk_chull, 175
ldk_confell, 176
ldk_contour, 177
ldk_labels, 178
ldk_links, 179

∗ ldk/slidings methods
add_ldk, 7
def_ldk, 120
def_slidings, 123
get_ldk, 150
get_slidings, 152
rearrange_ldk, 245
slidings_scheme, 268

∗ multivariate
classification_metrics, 28
CLUST, 29
KMEANS, 165
KMEDOIDS, 166
LDA, 172
MANOVA, 182
MANOVA_PW, 183
MDS, 185
MSHAPES, 193
NMDS, 195
PCA, 210

∗ opening functions
coo_down, 61

coo_left, 75
coo_right, 90
coo_up, 117

∗ perimeter functions
coo_perim, 83

∗ plotting functions
coo_arrows, 48
coo_draw, 62
coo_listpanel, 78
coo_lolli, 79
coo_plot, 84
coo_ruban, 93
ldk_chull, 175
ldk_confell, 176
ldk_contour, 177
ldk_labels, 178
ldk_links, 179
plot_devsegments, 232
plot_table, 242

∗ polynomials
npoly, 196
opoly, 201
opoly_i, 202

∗ premodern
coo_truss, 115
measure, 186

∗ procrustes functions
fgProcrustes, 143
fgsProcrustes, 145
fProcrustes, 148
pProcrustes, 243

∗ rfourier
rfourier, 250
rfourier_i, 252
rfourier_shape, 253

∗ rotation functions
coo_rotate, 91
coo_rotatecenter, 92

∗ sampling functions
coo_extract, 67
coo_interpolate, 70
coo_sample, 94
coo_sample_prop, 96
coo_samplerr, 95

∗ scaling functions
coo_scale, 98
coo_template, 110

∗ sfourier

292 INDEX

sfourier, 263
sfourier_i, 264
sfourier_shape, 265

∗ slicing functions
coo_slice, 101

∗ sliding functions
coo_slide, 102
coo_slidedirection, 104
coo_slidegap, 105

∗ smoothing functions
coo_smooth, 106
coo_smoothcurve, 107

∗ tfourier
tfourier, 273
tfourier_i, 274
tfourier_shape, 276

∗ thin plate splines
tps2d, 277
tps_arr, 278
tps_grid, 280
tps_iso, 281
tps_raw, 283

∗ transforming functions
coo_flipx, 68
coo_shearx, 100

a2l (bridges), 16
a2m (bridges), 16
add_ldk, 7, 120, 124, 150, 152, 245, 268
apodemus, 8, 13, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288
arrange, 8, 11, 27, 37, 78, 129, 143, 146, 194,

209, 248, 250, 256–260, 262, 267,
271

arrows, 48, 231
as_df, 9, 17, 38, 142
as_PCA (PCA), 210
at_least, 9, 10, 27, 37, 129, 143, 146, 194,

248, 250, 256–260, 262, 267, 271

bezier, 11, 12
bezier_i, 12, 12
bot, 8, 13, 26, 147, 154, 187, 192, 197, 198,

266, 285, 288
boxplot, 200, 204
boxplot.Coe (boxplot.OutCoe), 13
boxplot.OutCoe, 13, 154
boxplot.PCA, 14
breed, 15, 213

bridges, 10, 16, 38, 142

calibrate_deviations, 17, 22, 23, 25
calibrate_deviations_dfourier

(calibrate_deviations), 17
calibrate_deviations_efourier

(calibrate_deviations), 17
calibrate_deviations_npoly

(calibrate_deviations), 17
calibrate_deviations_opoly

(calibrate_deviations), 17
calibrate_deviations_rfourier

(calibrate_deviations), 17
calibrate_deviations_sfourier

(calibrate_deviations), 17
calibrate_deviations_tfourier

(calibrate_deviations), 17
calibrate_harmonicpower, 20, 20, 23, 25
calibrate_harmonicpower_dfourier

(calibrate_harmonicpower), 20
calibrate_harmonicpower_efourier

(calibrate_harmonicpower), 20
calibrate_harmonicpower_rfourier

(calibrate_harmonicpower), 20
calibrate_harmonicpower_sfourier

(calibrate_harmonicpower), 20
calibrate_harmonicpower_tfourier

(calibrate_harmonicpower), 20
calibrate_r2, 20, 22, 22, 25
calibrate_r2_npoly (calibrate_r2), 22
calibrate_r2_opoly (calibrate_r2), 22
calibrate_reconstructions, 20, 22, 23, 24
calibrate_reconstructions_dfourier

(calibrate_reconstructions), 24
calibrate_reconstructions_efourier

(calibrate_reconstructions), 24
calibrate_reconstructions_npoly

(calibrate_reconstructions), 24
calibrate_reconstructions_opoly

(calibrate_reconstructions), 24
calibrate_reconstructions_rfourier

(calibrate_reconstructions), 24
calibrate_reconstructions_sfourier

(calibrate_reconstructions), 24
calibrate_reconstructions_tfourier

(calibrate_reconstructions), 24
ceiling, 259
chaff, 8, 13, 26, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288

INDEX 293

charring, 8, 13, 26, 26, 147, 154, 187, 192,
197, 198, 266, 285, 288

chc2pix, 218
chc2pix (pix2chc), 217
chop, 9, 11, 27, 37, 129, 143, 146, 194, 248,

250, 256–260, 262, 267, 271
chull, 56, 175
classification_metrics, 28, 30, 165, 166,

173, 183–185, 193, 195, 211
CLUST, 28, 29, 165, 166, 173, 183–185, 193,

195, 211
cluster::pam, 166
Coe, 13, 15, 29, 30, 32, 33, 39, 137, 141, 151,

154, 166, 172, 174, 182, 183, 185,
195, 199, 200, 204, 210, 211, 213,
246, 248, 271, 284, 286

coeff_rearrange, 32
coeff_sel, 33
coeff_split, 34
col_alpha (col_transp), 36
col_autumn (color_palettes), 34
col_black (color_palettes), 34
col_bw (color_palettes), 34
col_cold (color_palettes), 34
col_gallus (color_palettes), 34
col_grey (color_palettes), 34
col_heat (color_palettes), 34
col_hot, 231
col_hot (color_palettes), 34
col_india (color_palettes), 34
col_qual (color_palettes), 34
col_sari (color_palettes), 34
col_solarized (color_palettes), 34
col_spring (color_palettes), 34
col_summer, 231
col_summer (color_palettes), 34
col_summer2 (color_palettes), 34
col_transp, 36
color_palettes, 34
colorRampPalette, 207, 279, 282
combine, 9, 11, 27, 37, 129, 143, 146, 194,

248, 250, 256–260, 262, 267, 271
complex, 10, 17, 38, 142
Coo, 31, 39, 41–44, 49, 50, 53–56, 59, 61,

67–74, 76, 77, 81, 87, 89–92, 95,
99–107, 111–117, 162, 164, 173,
174, 191, 199, 200, 203, 204, 207,
210, 216, 249, 268, 284, 285

coo2cpx (complex), 38
coo_align, 41, 42–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_aligncalliper, 41, 42, 43, 44, 49–54,
59, 60, 62, 64, 67–70, 73, 74, 76, 78,
81, 83, 87, 90–92, 94, 95, 97,
99–101, 103–107, 111–114, 116,
118, 137, 164

coo_alignminradius, 41, 42, 43, 44, 49–54,
59, 60, 62, 64, 67–70, 73, 74, 76, 78,
81, 83, 87, 90–92, 94, 95, 97,
99–101, 103–107, 111–114, 116,
118, 164

coo_alignxax, 41–43, 44, 49–54, 59, 60, 62,
64, 67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_angle_edges, 45, 46, 47, 51, 57, 58, 61,
65, 66, 77, 81, 88, 89, 98, 108, 109,
119

coo_angle_tangent, 45, 46, 47, 51, 57, 58,
61, 65, 66, 77, 81, 88, 89, 98, 108,
109, 119

coo_area, 45, 46, 47, 51, 57, 58, 61, 65, 66,
77, 81, 88, 89, 98, 108, 109, 119,
149, 186

coo_arrows, 48, 63, 79, 80, 86, 93, 175–179,
233, 242

coo_baseline, 41–44, 48, 50–54, 59, 60, 62,
64, 67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_bookstein, 41–44, 49, 49, 51–54, 59, 60,
62, 64, 67–70, 73, 74, 76, 78, 81, 83,
87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164

coo_boundingbox, 41–47, 49, 50, 50, 51–54,
57–62, 64–70, 73, 74, 76–78, 81, 83,
87–92, 94, 95, 97–101, 103–109,
111–114, 116, 118, 119, 164

coo_calliper, 41–44, 49–51, 51, 52–54, 59,
60, 62, 64, 67–70, 73, 74, 76, 78, 81,
83, 87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164

coo_centdist, 41–44, 49–51, 52, 53–55, 59,
60, 62, 64, 67–70, 73, 74, 76, 78, 81,

294 INDEX

83, 87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164

coo_center, 41–44, 49–52, 53, 54, 59, 60, 62,
64, 67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_centpos, 41–44, 49–53, 54, 55, 59, 60,
62, 64, 67–70, 73, 74, 76, 78, 81, 83,
87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164

coo_centre (coo_center), 53
coo_centsize, 52, 54, 55, 77
coo_check, 55
coo_chull, 45–47, 51, 56, 58, 61, 65, 66, 77,

81, 88, 89, 98, 108, 109, 119, 149,
175

coo_chull_onion (coo_chull), 56
coo_circularity, 45–47, 51, 57, 57, 61, 65,

66, 77, 81, 88, 89, 98, 108, 109, 119
coo_circularityharalick

(coo_circularity), 57
coo_circularitynorm (coo_circularity),

57
coo_close, 41–44, 49–54, 59, 59, 62, 64,

67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_convexity, 45–47, 51, 57, 58, 60, 65, 66,
77, 81, 88, 89, 98, 108, 109, 119

coo_diffrange (coo_range), 86
coo_down, 41–44, 49–54, 59, 60, 61, 64,

67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_draw, 48, 62, 79, 80, 86, 93, 154,
175–179, 212, 233, 242, 279, 281,
282

coo_draw_rads, 63
coo_dxy, 41–44, 49–54, 59, 60, 62, 64, 67–70,

73, 74, 76, 78, 81, 83, 87, 90–92, 94,
95, 97, 99–101, 103–107, 111–114,
116, 118, 164

coo_eccentricity, 45–47, 51, 57, 58, 61, 65,
66, 77, 81, 88, 89, 98, 108, 109, 119

coo_eccentricityboundingbox, 65
coo_eccentricityboundingbox

(coo_eccentricity), 65
coo_eccentricityeigen

(coo_eccentricity), 65
coo_elongation, 45–47, 51, 57, 58, 61, 65,

66, 77, 81, 88, 89, 98, 108, 109, 119
coo_extract, 41–44, 49–54, 59, 60, 62, 64,

67, 68–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_flipx, 41–44, 49–54, 59, 60, 62, 64, 67,
68, 69, 70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_flipy (coo_flipx), 68
coo_force2close, 41–44, 49–54, 59, 60, 62,

64, 67, 68, 69, 70, 73, 74, 76, 78, 81,
84, 87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164,
275

coo_interpolate, 19, 41–44, 49–54, 59, 60,
62, 64, 67–69, 70, 73, 74, 76, 78, 81,
84, 87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164

coo_intersect_angle, 71, 72, 121
coo_intersect_direction, 71, 121
coo_intersect_direction

(coo_intersect_angle), 71
coo_intersect_segment, 71, 72
coo_is_closed, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_jitter, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_ldk, 75
coo_left, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 75, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103–107,
111–114, 116, 118, 164

coo_length, 45–47, 51, 55, 57, 58, 61, 65, 66,
76, 81, 88, 89, 98, 108, 109, 119

coo_likely_anticlockwise
(coo_likely_clockwise), 77

coo_likely_clockwise, 41–44, 49–54, 59,
60, 62, 64, 67–70, 73, 74, 76, 77, 81,
84, 87, 90–92, 94, 95, 97, 99–101,
103–107, 111–114, 116, 118, 164

coo_listpanel, 48, 63, 78, 80, 86, 93, 110,

INDEX 295

175–179, 208, 233, 242
coo_lolli, 48, 63, 79, 79, 86, 93, 175–179,

233, 242
coo_lw, 45–47, 51, 57, 58, 61, 65, 66, 77, 80,

88, 89, 98, 108, 109, 119
coo_nb, 41–44, 49–54, 59, 60, 62, 64, 67–70,

73, 74, 76, 78, 81, 84, 87, 90–92, 94,
95, 97, 99–101, 103, 104, 106, 107,
111–114, 116, 118, 164

coo_oscillo, 82
coo_perim, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 83, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 111–114, 116, 118, 164

coo_perimcum (coo_perim), 83
coo_perimpts (coo_perim), 83
coo_plot, 48, 62, 63, 79, 80, 84, 93, 133, 162,

175–179, 210, 233, 242, 244, 270
coo_range, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 86,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 111–114, 116, 118, 164

coo_range_enlarge (coo_range), 86
coo_rectangularity, 45–47, 51, 57, 58, 61,

65, 66, 77, 81, 87, 89, 98, 108, 109,
119

coo_rectilinearity, 45–47, 51, 57, 58, 61,
65, 66, 77, 81, 88, 88, 97, 98, 108,
109, 119

coo_rev, 41–44, 49–54, 59, 60, 62, 64, 67–70,
73, 74, 76, 78, 81, 84, 87, 89, 91, 92,
94, 95, 97, 99–101, 103, 104, 106,
107, 111–114, 116, 118, 164

coo_right, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87, 90,
90, 91, 92, 94, 95, 97, 99–101, 103,
104, 106, 107, 111–114, 116, 118,
164

coo_rotate, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87, 90,
91, 91, 92, 94, 95, 97, 99–101, 103,
104, 106, 107, 111–114, 116, 118,
164

coo_rotatecenter, 41–44, 49–54, 59, 60, 62,
64, 67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 92, 94, 95, 97, 99–101, 103,
104, 106, 107, 111–114, 116, 118,
164

coo_ruban, 48, 63, 79, 80, 86, 93, 175–179,
233, 242

coo_sample, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95–97, 99–101, 103, 104,
106, 107, 111–114, 116, 118, 144,
164, 174, 191, 216

coo_sample_prop, 41–44, 49–54, 59, 60, 62,
64, 67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 96, 99–101, 103, 104,
106, 107, 111–114, 116, 118, 164

coo_samplerr, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 111–114, 116, 118, 164

coo_scalars, 45–47, 51, 57, 58, 61, 65, 66,
77, 81, 88, 89, 97, 108, 109, 119

coo_scale, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 98, 100, 101, 103,
104, 106, 107, 111–114, 116, 118,
164

coo_scalex (coo_scale), 98
coo_scaley (coo_scale), 98
coo_shearx, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99, 100, 101, 103,
104, 106, 107, 111–114, 116, 118,
164

coo_sheary (coo_shearx), 100
coo_slice, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99, 100, 101, 103,
104, 106, 107, 111–114, 116, 118,
121, 122, 164

coo_slide, 41–44, 49–54, 59, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 102,
104–107, 111–114, 116, 118, 121,
137, 165

coo_slidedirection, 41–44, 49–54, 59, 60,
62, 64, 67–70, 73, 74, 76, 78, 81, 84,
87, 90–92, 94, 95, 97, 99–101, 103,
104, 105–107, 111–114, 116, 118,
137, 165

coo_slidegap, 41–44, 49–54, 59–62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,

296 INDEX

105, 107, 111–114, 116–118, 165
coo_smooth, 41–44, 49–54, 59, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 106, 107, 111–114, 116, 118,
165

coo_smoothcurve, 41–44, 49–54, 59, 60, 62,
64, 67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 107, 111–114, 116, 118,
165

coo_solidity, 45–47, 51, 57, 58, 61, 65, 66,
77, 81, 88, 89, 98, 108, 109, 119

coo_tac, 45–47, 51, 57, 58, 61, 65, 66, 77, 81,
88, 89, 98, 108, 109, 119

coo_tangle (coo_angle_tangent), 46
coo_template, 41–44, 49–54, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 110, 112–114, 116, 118,
165, 171, 191, 236

coo_template_relatively, 191
coo_template_relatively (coo_template),

110
coo_trans, 41–44, 49–54, 60, 62, 64, 67–70,

73, 74, 76, 78, 81, 84, 87, 90–92, 94,
95, 97, 99–101, 103, 104, 106, 107,
111, 111, 113, 114, 116, 118, 165

coo_trim, 41–44, 49–54, 60, 62, 64, 67–70,
73, 74, 76, 78, 81, 84, 87, 90–92, 94,
95, 97, 99–101, 103, 104, 106, 107,
111, 112, 112, 113, 114, 116, 118,
165

coo_trimbottom, 41–44, 49–54, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 111–113, 113, 114, 116,
118, 165

coo_trimtop, 41–44, 49–54, 60, 62, 64,
67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 111–113, 114, 116, 118,
165

coo_truss, 115, 119, 186
coo_unclose, 59
coo_unclose (coo_close), 59
coo_untilt (coo_untiltx), 116
coo_untiltx, 41–44, 49–54, 60, 62, 64,

67–70, 73, 74, 76, 78, 81, 84, 87,
90–92, 94, 95, 97, 99–101, 103, 104,
106, 107, 111–114, 116, 118, 165

coo_up, 41–44, 49–54, 60, 62, 64, 67–70, 73,
74, 76, 78, 81, 84, 87, 90–92, 94, 95,
97, 99–101, 103–107, 111–114, 116,
117, 165

coo_width, 45–47, 51, 57, 58, 61, 65, 66, 77,
81, 88, 89, 98, 108, 109, 118

cpx2coo (complex), 38

d, 119, 186
d2m (bridges), 16
data.frame, 179
def_ldk, 7, 120, 124, 150, 152, 245, 268
def_ldk_angle, 121
def_ldk_direction (def_ldk_angle), 121
def_ldk_tips, 121, 122
def_links, 123, 174, 181
def_slidings, 7, 120, 123, 150, 152, 245, 268
density, 170
dfourier, 20, 124, 126–128
dfourier_i, 125, 126, 128
dfourier_shape, 125, 127, 127
dissolve, 9, 11, 27, 37, 128, 143, 146, 194,

248, 250, 256–260, 262, 267, 271
dist, 29, 134–136
dnorm, 286
dplyr::rename, 247
dplyr::tibble(), 10
draw_axes (drawers), 129
draw_centroid (drawers), 129
draw_curve (drawers), 129
draw_curves, 236
draw_curves (drawers), 129
draw_firstpoint (drawers), 129
draw_labels (drawers), 129
draw_landmarks, 236
draw_landmarks (drawers), 129
draw_lines (drawers), 129
draw_links (drawers), 129
draw_outline, 236
draw_outline (drawers), 129
draw_outlines (drawers), 129
draw_points (drawers), 129
draw_polygon (drawers), 129
draw_ticks (drawers), 129
draw_title (drawers), 129

INDEX 297

drawers, 129, 170, 171, 191, 209, 210, 216,
235, 238, 240

ed, 119, 133, 134–136
edi, 134
edm, 134, 135, 136
edm_nearest, 19, 134, 135, 135
efourier, 20, 33, 34, 136, 137–141, 203, 245,

254, 272
efourier_i, 138, 138, 141
efourier_norm, 137
efourier_norm (efourier), 136
efourier_shape, 128, 138, 139, 140
export, 10, 17, 38, 141

fac_dispatcher, 9, 11, 27, 29, 30, 37, 129,
142, 146, 191, 193, 194, 209, 238,
239, 248, 250, 256–260, 262, 267,
271

fgProcrustes, 137, 143, 145, 148, 173, 243
fgsProcrustes, 144, 145, 148, 243
filter, 9, 11, 27, 37, 129, 143, 146, 194, 248,

250, 256–260, 262, 267, 271
flip_PCaxes, 147
flower, 8, 13, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288
fProcrustes, 144, 145, 148, 243

get_chull_area, 149
get_chull_volume (get_chull_area), 149
get_ldk, 7, 119, 120, 124, 150, 152, 245, 268
get_pairs, 74, 151
get_slidings, 7, 120, 124, 150, 152, 245, 268

harm_pow, 152
hclust, 29
hcontrib, 14, 153
hearts, 8, 13, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288
hist, 170

image, 221, 225
img_plot, 155, 159
img_plot0 (img_plot), 155
import_Conte, 155, 157–162, 180, 218
import_jpg, 156, 156, 158–162, 180, 218
import_jpg1, 155–157, 158, 160–162, 180,

218

import_StereoMorph_curve
(import_StereoMorph_curve1),
159

import_StereoMorph_curve1, 156, 157, 159,
159, 161, 162, 218

import_StereoMorph_ldk
(import_StereoMorph_curve1),
159

import_StereoMorph_ldk1
(import_StereoMorph_curve1),
159

import_tps, 156, 157, 159, 160, 160, 161,
162, 180, 218

import_txt, 156, 157, 159–161, 161, 180, 218
inspect, 162, 209, 270
iris, 147
is, 163
is_Coe (is), 163
is_Coo (is), 163
is_equallyspacedradii, 41–44, 49–54, 60,

62, 64, 67–70, 73, 74, 76, 78, 81, 84,
87, 90–92, 94, 95, 97, 99–101, 103,
104, 106, 107, 111–114, 116, 118,
164, 251

is_fac (is), 163
is_LDA (is), 163
is_Ldk (is), 163
is_ldk (is), 163
is_LdkCoe (is), 163
is_links (is), 163
is_open (coo_is_closed), 73
is_Opn (is), 163
is_OpnCoe (is), 163
is_Out (is), 163
is_OutCoe (is), 163
is_PCA (is), 163
is_shp (is), 163
is_slidings (is), 163
is_TraCoe (is), 163

jitter, 74

KMEANS, 28, 30, 165, 166, 173, 183–185, 193,
195, 211

kmeans, 165
KMEDOIDS, 28, 30, 165, 166, 173, 183–185,

193, 195, 211, 241

l2a, 174

298 INDEX

l2a (bridges), 16
l2m (bridges), 16
layer_axes (layers), 167
layer_axesnames, 235, 238, 240
layer_axesnames (layers), 167
layer_axesvar, 235, 240
layer_axesvar (layers), 167
layer_box, 234, 238, 240
layer_box (layers), 167
layer_chull, 234, 238, 240
layer_chull (layers), 167
layer_chullfilled, 234, 238, 240
layer_chullfilled (layers), 167
layer_delaunay (layers), 167
layer_density (layers), 167
layer_density_2, 235
layer_density_2 (layers), 167
layer_eigen, 234, 240
layer_eigen (layers), 167
layer_ellipses (layers), 167
layer_ellipsesaxes (layers), 167
layer_ellipsesfilled (layers), 167
layer_frame (layers), 167
layer_fullframe (layers), 167
layer_grid (layers), 167
layer_histogram_2, 235
layer_histogram_2 (layers), 167
layer_labelgroups, 234, 238, 240
layer_labelgroups (layers), 167
layer_labelpoints, 240
layer_labelpoints (layers), 167
layer_legend, 234, 238, 240
layer_legend (layers), 167
layer_morphospace_LDA

(layers_morphospace), 170
layer_morphospace_PCA, 234, 239, 240
layer_morphospace_PCA

(layers_morphospace), 170
layer_points, 234, 238, 239
layer_points (layers), 167
layer_rug (layers), 167
layer_stars (layers), 167
layer_ticks (layers), 167
layer_title, 234, 238, 240
layer_title (layers), 167
layers, 133, 167, 171, 191, 210, 216, 233,

235, 237–240
layers_morphospace, 133, 170, 170, 191,

210, 216, 235, 238, 240
LDA, 28, 30, 151, 165, 166, 171, 172, 183–185,

193, 195, 211, 218, 220, 222, 230,
231, 233, 234, 246

Ldk, 26, 31, 39, 94, 124, 144, 150, 152, 160,
162, 173, 174, 179, 198–200, 204,
207, 268, 284–287

ldk_check, 123, 174, 181
ldk_chull, 48, 63, 79, 80, 86, 93, 175,

176–179, 233, 242
ldk_confell, 48, 63, 79, 80, 86, 93, 175, 176,

177–179, 233, 242
ldk_contour, 48, 63, 79, 80, 86, 93, 175, 176,

177, 178, 179, 233, 242
ldk_labels, 48, 63, 79, 80, 86, 93, 175–177,

178, 179, 233, 242
ldk_links, 48, 63, 79, 80, 86, 93, 175–178,

179, 181, 233, 242
ldk_plot (coo_plot), 84
LdkCoe (Ldk), 173
lf_structure, 39, 159, 160, 179, 180, 277
lines, 85
links_all, 123, 174, 180, 181
links_delaunay, 123, 174, 181, 181
list.files, 158, 159, 180
lm, 196, 200, 201
locator, 157, 158

m2a (bridges), 16
m2d (bridges), 16
m2l (bridges), 16
m2ll (bridges), 16
MANOVA, 28, 30, 165, 166, 173, 182, 183–185,

193, 195, 211
manova, 182, 184
MANOVA_PW, 28, 30, 165, 166, 173, 183, 183,

185, 193, 195, 211
MASS::lda, 172
MDS, 28, 30, 165, 166, 173, 183, 184, 185, 193,

195, 211, 237, 238
mean, 193
measure, 115, 119, 186
median, 193
molars, 8, 13, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288
Momocs, 187
Momocs-package (Momocs), 187
morphospace_positions, 171, 188, 220, 224
mosaic (mosaic_engine), 189

INDEX 299

mosaic_engine, 133, 170, 171, 189, 210, 216,
235, 238, 240

mosquito, 8, 13, 26, 147, 154, 187, 192, 192,
197, 198, 266, 285, 288

mouse, 8, 13, 26, 147, 154, 187, 192, 192, 197,
198, 266, 285, 288

MSHAPES, 28, 30, 123, 165, 166, 173, 183–185,
193, 195, 211, 236

mutate, 9, 11, 27, 37, 129, 143, 146, 194, 248,
250, 256–260, 262, 267, 271

NMDS, 28, 30, 165, 166, 173, 183–185, 193,
195, 211, 237, 238

npoly, 22, 196, 199, 202, 203
npoly_i (opoly_i), 202
nsfishes, 8, 13, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288

oak, 8, 13, 26, 147, 154, 187, 192, 197, 198,
198, 266, 285, 288

olea, 8, 13, 26, 147, 154, 187, 192, 197, 198,
198, 266, 285, 288

Opn, 31, 39, 50, 61, 62, 76, 90, 94, 96, 97, 101,
117, 118, 121, 122, 127, 144, 150,
160, 162, 174, 179, 196, 198, 199,
199, 200, 201, 204, 207, 268, 284,
285

OpnCoe, 30, 31, 39, 174, 197, 199, 200, 202,
204, 284

opoly, 22, 197, 201, 202, 203
opoly_i, 197, 202, 202
Out, 8, 13, 26, 31, 39, 50, 61, 62, 76, 90, 94,

96, 97, 117, 118, 121, 144, 150, 154,
157, 162, 174, 179, 187, 192, 197,
199, 200, 203, 204, 207, 266, 268,
284, 285

OutCoe, 30–32, 39, 174, 199, 200, 204, 204,
272, 284

pal (palettes), 205
pal_alpha (palettes), 205
pal_div (palettes), 205
pal_div_BrBG (palettes), 205
pal_div_PiYG (palettes), 205
pal_div_PRGn (palettes), 205
pal_div_PuOr (palettes), 205
pal_div_RdBu (palettes), 205
pal_div_RdYlBu (palettes), 205
pal_manual (palettes), 205

pal_qual (palettes), 205
pal_qual_Dark2 (palettes), 205
pal_qual_Paired (palettes), 205
pal_qual_Set2 (palettes), 205
pal_qual_solarized (palettes), 205
pal_seq (palettes), 205
pal_seq_Blues (palettes), 205
pal_seq_BuGn (palettes), 205
pal_seq_BuPu (palettes), 205
pal_seq_GnBu (palettes), 205
pal_seq_Greens (palettes), 205
pal_seq_grey (palettes), 205
pal_seq_Greys (palettes), 205
pal_seq_inferno (palettes), 205
pal_seq_magma (palettes), 205
pal_seq_Oranges (palettes), 205
pal_seq_OrRd (palettes), 205
pal_seq_plasma (palettes), 205
pal_seq_PuBu (palettes), 205
pal_seq_PuBuGn (palettes), 205
pal_seq_PuRd (palettes), 205
pal_seq_Purples (palettes), 205
pal_seq_RdPu (palettes), 205
pal_seq_Reds (palettes), 205
pal_seq_viridis (palettes), 205
pal_seq_YlGn (palettes), 205
pal_seq_YlGnBu (palettes), 205
pal_seq_YlOrBr (palettes), 205
pal_seq_YlOrRd (palettes), 205
palette, 209, 220, 224
palette (palettes), 205
Palettes (color_palettes), 34
palettes, 30, 191, 205, 216, 236, 241
panel, 162, 189, 207, 270
panel.Coo, 78
paper (papers), 209
paper_chess (papers), 209
paper_dots (papers), 209
paper_grid (papers), 209
paper_white (papers), 209
papers, 133, 170, 171, 191, 209, 216, 235,

238, 240
par, 222, 226
PCA, 14, 28–30, 141, 151, 163, 165, 166, 171,

173, 182–185, 193, 195, 210, 222,
224, 239, 246, 248, 261

PCcontrib, 212
perm, 15, 213

300 INDEX

pile, 133, 170, 171, 191, 210, 214, 235, 238,
240

pix2chc, 156, 157, 159–162, 217
plot, 84
plot.LDA, 172, 218, 226, 230, 231, 235
plot.PCA, 189, 211, 222, 222, 240
plot_CV, 222, 228, 231
plot_CV2, 222, 230
plot_devsegments, 48, 63, 79, 80, 86, 93,

175–179, 232, 242
plot_LDA, 133, 170, 171, 191, 210, 216, 233,

238, 240
plot_MDS (plot_NMDS), 237
plot_MSHAPES, 236
plot_NMDS, 133, 170, 171, 191, 210, 216, 235,

237, 240
plot_PCA, 133, 146, 169–171, 191, 210, 216,

235, 238, 239
plot_silhouette, 241
plot_table, 48, 63, 79, 80, 86, 93, 175–179,

230, 233, 242
points, 80, 85
polygon, 85
pProcrustes, 144, 145, 148, 243
prcomp, 210, 211
Ptolemy, 244

read.table, 158, 161, 162
readLines, 161
rearrange_ldk, 7, 120, 124, 150, 152, 245,

268
reLDA, 246
rename, 9, 11, 27, 37, 129, 143, 146, 194, 247,

250, 256–260, 262, 267, 271
rePCA, 246, 248
rescale, 9, 11, 27, 37, 55, 77, 129, 143, 146,

194, 248, 249, 256–260, 262, 267,
271

rfourier, 20, 33, 34, 250, 252–254
rfourier_i, 251, 252, 254
rfourier_shape, 251, 252, 253
rm_asym, 254, 272
rm_harm, 9, 11, 27, 37, 129, 143, 146, 194,

248, 250, 255, 257–260, 262, 267,
271

rm_missing, 9, 11, 27, 37, 129, 143, 146, 194,
248, 250, 256, 256, 257–260, 262,
267, 271

rm_sym, 272

rm_sym (rm_asym), 254
rm_uncomplete, 9, 11, 27, 37, 129, 143, 146,

194, 248, 250, 256, 257, 257,
258–260, 262, 267, 271

rnorm, 15
rug, 170
rw_fac, 9, 11, 27, 37, 129, 143, 146, 194, 248,

250, 256, 257, 258, 259, 260, 262,
267, 271

sample, 213
sample_frac, 9, 11, 23, 27, 37, 129, 143, 146,

194, 248, 250, 256–258, 259, 260,
262, 267, 271

sample_n, 9, 11, 23, 27, 37, 129, 143, 146,
194, 248, 250, 256–259, 260, 262,
267, 271

scree, 10, 172, 261
scree_min, 29
scree_min (scree), 261
scree_plot (scree), 261
segments, 63, 80, 179, 231
select, 9, 11, 27, 37, 129, 143, 146, 194, 248,

250, 256–260, 262, 267, 271
sfourier, 263, 264–266
sfourier_i, 264, 264, 266
sfourier_shape, 264, 265, 265
shapes, 8, 13, 26, 147, 154, 187, 192, 197,

198, 266, 285, 288
signif, 229
slice, 9, 11, 27, 37, 129, 143, 146, 194, 248,

250, 256–260, 262, 267, 271
slidings_scheme, 7, 120, 124, 150, 152, 245,

268
stack, 137, 162, 173, 199, 203, 209, 268
stats::bw.nrd0, 170
stats::cmdscale, 185
stats::dist, 185
subsetize, 9, 11, 27, 37, 129, 143, 146, 194,

248, 250, 256–260, 262, 267, 271
summary.manova, 182
symmetry, 255, 272

text, 133, 169, 178
tfourier, 20, 33, 34, 46, 273, 274–276
tfourier_i, 274, 274, 276
tfourier_shape, 274, 275, 276
tie_jpg_txt, 180, 277
tps2coo (import_tps), 160

INDEX 301

tps2d, 277, 280, 281, 283
tps_apply (tps2d), 277
tps_arr, 278, 278, 281, 283
tps_grid, 278, 280, 280, 283
tps_iso, 278, 280, 281, 281, 283
tps_raw, 278, 280, 281, 283, 283
TraCoe, 31, 39, 174, 186, 199, 200, 204, 284
trilo, 8, 13, 26, 147, 154, 187, 192, 197, 198,

266, 285, 288

vegan::metaMDS, 185, 195
vegan::vegdist, 195
verify, 285

which_out, 286
wings, 8, 13, 26, 147, 154, 187, 192, 197, 198,

266, 285, 287
write.table, 141

	add_ldk
	apodemus
	arrange
	as_df
	at_least
	bezier
	bezier_i
	bot
	boxplot.OutCoe
	boxplot.PCA
	breed
	bridges
	calibrate_deviations
	calibrate_harmonicpower
	calibrate_r2
	calibrate_reconstructions
	chaff
	charring
	chop
	classification_metrics
	CLUST
	Coe
	coeff_rearrange
	coeff_sel
	coeff_split
	color_palettes
	col_transp
	combine
	complex
	Coo
	coo_align
	coo_aligncalliper
	coo_alignminradius
	coo_alignxax
	coo_angle_edges
	coo_angle_tangent
	coo_area
	coo_arrows
	coo_baseline
	coo_bookstein
	coo_boundingbox
	coo_calliper
	coo_centdist
	coo_center
	coo_centpos
	coo_centsize
	coo_check
	coo_chull
	coo_circularity
	coo_close
	coo_convexity
	coo_down
	coo_draw
	coo_draw_rads
	coo_dxy
	coo_eccentricity
	coo_elongation
	coo_extract
	coo_flipx
	coo_force2close
	coo_interpolate
	coo_intersect_angle
	coo_intersect_segment
	coo_is_closed
	coo_jitter
	coo_ldk
	coo_left
	coo_length
	coo_likely_clockwise
	coo_listpanel
	coo_lolli
	coo_lw
	coo_nb
	coo_oscillo
	coo_perim
	coo_plot
	coo_range
	coo_rectangularity
	coo_rectilinearity
	coo_rev
	coo_right
	coo_rotate
	coo_rotatecenter
	coo_ruban
	coo_sample
	coo_samplerr
	coo_sample_prop
	coo_scalars
	coo_scale
	coo_shearx
	coo_slice
	coo_slide
	coo_slidedirection
	coo_slidegap
	coo_smooth
	coo_smoothcurve
	coo_solidity
	coo_tac
	coo_template
	coo_trans
	coo_trim
	coo_trimbottom
	coo_trimtop
	coo_truss
	coo_untiltx
	coo_up
	coo_width
	d
	def_ldk
	def_ldk_angle
	def_ldk_tips
	def_links
	def_slidings
	dfourier
	dfourier_i
	dfourier_shape
	dissolve
	drawers
	ed
	edi
	edm
	edm_nearest
	efourier
	efourier_i
	efourier_shape
	export
	fac_dispatcher
	fgProcrustes
	fgsProcrustes
	filter
	flip_PCaxes
	flower
	fProcrustes
	get_chull_area
	get_ldk
	get_pairs
	get_slidings
	harm_pow
	hcontrib
	hearts
	img_plot
	import_Conte
	import_jpg
	import_jpg1
	import_StereoMorph_curve1
	import_tps
	import_txt
	inspect
	is
	is_equallyspacedradii
	KMEANS
	KMEDOIDS
	layers
	layers_morphospace
	LDA
	Ldk
	ldk_check
	ldk_chull
	ldk_confell
	ldk_contour
	ldk_labels
	ldk_links
	lf_structure
	links_all
	links_delaunay
	MANOVA
	MANOVA_PW
	MDS
	measure
	molars
	Momocs
	morphospace_positions
	mosaic_engine
	mosquito
	mouse
	MSHAPES
	mutate
	NMDS
	npoly
	nsfishes
	oak
	olea
	Opn
	OpnCoe
	opoly
	opoly_i
	Out
	OutCoe
	palettes
	panel
	papers
	PCA
	PCcontrib
	perm
	pile
	pix2chc
	plot.LDA
	plot.PCA
	plot_CV
	plot_CV2
	plot_devsegments
	plot_LDA
	plot_MSHAPES
	plot_NMDS
	plot_PCA
	plot_silhouette
	plot_table
	pProcrustes
	Ptolemy
	rearrange_ldk
	reLDA
	rename
	rePCA
	rescale
	rfourier
	rfourier_i
	rfourier_shape
	rm_asym
	rm_harm
	rm_missing
	rm_uncomplete
	rw_fac
	sample_frac
	sample_n
	scree
	select
	sfourier
	sfourier_i
	sfourier_shape
	shapes
	slice
	slidings_scheme
	stack
	subsetize
	symmetry
	tfourier
	tfourier_i
	tfourier_shape
	tie_jpg_txt
	tps2d
	tps_arr
	tps_grid
	tps_iso
	tps_raw
	TraCoe
	trilo
	verify
	which_out
	wings
	Index

