
Package ‘RHRV’
September 30, 2024

Type Package

Title Heart Rate Variability Analysis of ECG Data

Version 5.0.0

Date 2024-09-19

Maintainer Leandro Rodriguez-Linares <leandro@uvigo.es>

Encoding UTF-8

URL http://rhrv.r-forge.r-project.org/

Description Allows users to import data files containing heartbeat
positions in the most broadly used formats, to remove outliers or points with unacceptable physi-
ological values present in the time series, to plot HRV data, and to perform time domain, fre-
quency domain and nonlinear HRV analysis. See Garcia et al. (2017) <DOI:10.1007/978-3-319-
65355-6>.

License GPL-2

Copyright Code for the wavelet transform is based on Brandon
Whitcher's work. See file COPYRIGHT for details

Depends R (>= 3.0.0), waveslim(>= 1.6.4), nonlinearTseries (>= 0.3.0),
lomb (>= 1.0)

Imports boot, broom, doParallel, foreach, iterators, parallel,
plotrix, PMCMRplus, segmented, stats, tibble, tidyr, writexl

Suggests tcltk, tkrplot, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.1

NeedsCompilation yes

Author Leandro Rodriguez-Linares [aut, cre],
Xose Vila [aut],
Maria Jose Lado [aut],
Arturo Mendez [aut],
Abraham Otero [aut],
Constantino Antonio Garcia [aut],
Matti Lassila [ctb]

Repository CRAN

Date/Publication 2024-09-30 19:30:02 UTC

1

http://rhrv.r-forge.r-project.org/
https://doi.org/10.1007/978-3-319-65355-6
https://doi.org/10.1007/978-3-319-65355-6

2 Contents

Contents
RHRV-package . 3
AddEpisodes . 5
AnalyzeHRbyEpisodes . 6
AnalyzePowerBandsByEpisodes . 7
AvgIntegralCorrelation . 8
BuildNIHR . 9
BuildTakens . 10
BuildTakensVector . 11
CalculateApEn . 12
CalculateCorrDim . 13
CalculateDFA . 16
CalculateEmbeddingDim . 18
CalculateEnergyInPSDBands . 20
CalculateFracDim . 21
CalculateInfDim . 22
CalculateMaxLyapunov . 25
CalculatePowerBand . 28
CalculatePSD . 30
CalculateRfromCorrelation . 32
CalculateSampleEntropy . 33
CalculateSpectrogram . 35
CalculateTimeLag . 36
CreateFreqAnalysis . 38
CreateHRVData . 39
CreateNonLinearAnalysis . 39
CreateTimeAnalysis . 40
EditNIHR . 41
EstimatePSDSlope . 42
ExtractTimeSegment . 44
FilterNIHR . 45
GenerateEpisodes . 46
getNormSpectralUnits . 47
HRVData . 48
HRVProcessedData . 49
IntegralCorrelation . 49
InterpolateNIHR . 50
ListEpisodes . 51
LoadApneaWFDB . 52
LoadBeat . 53
LoadBeatAmbit . 54
LoadBeatAscii . 54
LoadBeatEDFPlus . 55
LoadBeatPolar . 56
LoadBeatRR . 57
LoadBeatSuunto . 58
LoadBeatVector . 58

RHRV-package 3

LoadBeatWFDB . 59
LoadEpisodesAscii . 60
LoadHeaderWFDB . 61
ModifyEpisodes . 62
NonlinearityTests . 63
NonLinearNoiseReduction . 64
OverplotEpisodes . 65
PlotHR . 67
PlotNIHR . 68
PlotPowerBand . 69
PlotPSD . 71
PlotSinglePowerBand . 73
PlotSpectrogram . 75
PoincarePlot . 78
ReadFromFile . 79
RecurrencePlot . 80
RemoveEpisodes . 81
RHRVEasy . 82
RHRVEasyStats . 83
RQA . 84
SaveHRVIndices . 85
SetVerbose . 86
SplitHRbyEpisodes . 87
SplitPowerBandByEpisodes . 88
SurrogateTest . 89
Window . 90
WriteToFile . 91

Index 93

RHRV-package RHRV: An R-based software package for the heart rate variability
analysis of ECG recordings

Description

RHRV offers functions for performing power spectral analysis of heart rate data. We will use this
package for the study of several diseases, such as obstructive sleep apnoea or chronic obstructive
pulmonary disease.

Details

This is a package for developing heart rate variability studies of ECG records. Data are read from
an ascii file containing a column with beat positions in seconds. A function is included in order
to build this file from an ECG record in WFDB format (visit the site http://www.physionet.org for
more information).

4 RHRV-package

Note

An example including all the necessary steps to obtain and to
analyze by episodes the power bands of a wfdb register is
giving below:

##Reading a wfdb register and storing into a data structure:
md = CreateHRVData(Verbose = TRUE)
md = LoadBeatWFDB(md, RecordName = "register_name",
RecordPath = "register_path")

##Loading information of episodes of apnea:
md = LoadApneaWFDB(md, RecordName = "register_name",
RecordPath = "register_path", Tag = "APN")

##Generating new episodes before and after previous episodes of
apnea:
md = GenerateEpisodes(md, NewBegFrom = "Beg", NewEndFrom = "Beg",
DispBeg = -600, DispEnd = -120, OldTag = "APN",
NewTag = "PREV_APN")
md = GenerateEpisodes(md, NewBegFrom = "End", NewEndFrom = "End",
DispBeg = 120, DispEnd = 600, OldTag = "APN",
NewTag = "POST_APN")

##Calculating heart rate signal:
md = BuildNIHR(md)

##Filtering heart rate signal:
md = FilterNIHR(md)

##Interpolating heart rate signal:
md = InterpolateNIHR(md)

##Calculating spectrogram and power per band:
md = CreateFreqAnalysis(md)
md = CalculatePowerBand(md, indexFreqAnalysis = 1, size = 120,
shift = 10, sizesp = 1024)

##Plotting power per band, including episodes information:
PlotPowerBand(md, indexFreqAnalysis = 1, hr = TRUE, ymax = 2400000,
ymaxratio = 3, Tag = "all")

##Splitting power per band using episodes before and after
episodes of apnea:
PrevAPN = SplitPowerBandByEpisodes(md, indexFreqAnalysis = 1,
Tag = "PREV_APN")

AddEpisodes 5

PostAPN = SplitPowerBandByEpisodes(md, indexFreqAnalysis = 1,
Tag = "POST_APN")

##Performing Student’s t-test:
result = t.test(PrevAPN$InEpisodes$ULF, PostAPN$InEpisodes$ULF)
print(result)

Author(s)

A. Mendez, L. Rodriguez, A. Otero, C.A. Garcia, X. Vila, M. Lado

Maintainer: Leandro Rodriguez-Linares <leandro@uvigo.es>

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

AddEpisodes Adds new episodes manually

Description

Adds information of episodes manually, or annotated physiological events, and stores it into the
data structure containing the beat positions

Usage

AddEpisodes(HRVData, InitTimes, Tags, Durations, Values, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

InitTimes Vector containing init times in seconds

Tags Vector containing types of episodes

Durations Vector containing durations in seconds

Values Vector containing numerical values for episodes

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register and new episodes information

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

6 AnalyzeHRbyEpisodes

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

AnalyzeHRbyEpisodes Analyzes Heart Rate using episodes information

Description

Analyzes Heart Rate allowing to evaluate the application of a desired function inside and outside
episodes

Usage

AnalyzeHRbyEpisodes(HRVData, Tag="", func, ..., verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

Tag Type of episode

func Function to be applied to Heart Rate Data inside and outside episodes

... optional arguments to func

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns a list with two objects, that is, the values of the application of the selected function inside
and outside episodes

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

SplitHRbyEpisodes for splitting in two parts Heart Rate Data using an specific episode type

AnalyzePowerBandsByEpisodes 7

AnalyzePowerBandsByEpisodes

Analyze power band by episodes

Description

Analyzes the ULF, VLF, LF and HF bands from a given indexFreqAnalysis allowing to evaluate the
application of a desired function inside and outside each episode.

Usage

AnalyzePowerBandsByEpisodes(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
Tag = "",
verbose = NULL,
func,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.
indexFreqAnalysis

Integer value denoting which frequency analysis is going to be analyzed using
func. Default: 1

Tag Type of episode

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

func Function to be applied to each power band inside and outside episodes

... Optional arguments for func.

Value

Returns a list with two objects, that is, the values of the application of the selected function inside
("resultIn") and outside ("resultOut") episodes in the given indexFreqAnalysis. Each of these list
has another set of lists: the "ULF", "VLF", "LF" and "HF" lists.

Examples

Not run:
hrv.data = CreateHRVData()
hrv.data = SetVerbose(hrv.data, TRUE)
hrv.data = LoadBeat(hrv.data, fileType = "WFDB", "a03", RecordPath ="beatsFolder/",

annotator = "qrs")
hrv.data = LoadApneaWFDB(hrv.data, RecordName="a03",Tag="Apnea",

RecordPath="beatsFolder/")

8 AvgIntegralCorrelation

hrv.data = BuildNIHR(hrv.data)
hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)
hrv.data = CreateFreqAnalysis(hrv.data)
hrv.data = CalculatePowerBand(hrv.data , indexFreqAnalysis= 1,

type = "wavelet", wavelet = "la8",
bandtolerance = 0.01, relative = FALSE)

results = AnalyzePowerBandsByEpisodes(hrv.data,indexFreqAnalysis=1,
Tag="Apnea",func=mean)

End(Not run)

AvgIntegralCorrelation

Calculates the average of the Integral Correlations

Description

WARNING: deprecated function. The Integral correlation is calculated for every vector of the
m-dimensional space, and then the average of all these values is calculated

Usage

AvgIntegralCorrelation(HRVData, Data, m, tau, r)

Arguments

HRVData Data structure that stores the beats register and information related to it
Data Portion of HRVData to be analyzed
m Value of the dimension of the expansion of data
tau Delay of the expansion of data
r Distance for calculating correlation

Value

Returns the value of the average of IntegralCorrelations

Note

This function is used in the CalculateApEn function, which is deprecated. We suggest the use of
the CalculateSampleEntropy function instead of CalculateApEn.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

BuildNIHR 9

See Also

IntegralCorrelation

BuildNIHR Builds the instantaneous heart rate signal from a beat position array

Description

The instantaneous heart rate can be defined as the inverse of the time separation between two con-
secutive heart beats. Once the beats have been identified, and since the only valid values contribut-
ing to the heart rate signal are the corresponding to normal beats preceded by other normal beats, a
further operation should be performed for the calculation of the instantaneous heart rate.

Usage

BuildNIHR(HRVData, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register and now associated heart rate
instantaneous values also

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

10 BuildTakens

BuildTakens Build the Takens’ vectors

Description

This function builds the Takens’ vectors of the Non Interpolated RR intervals. The set of Takens’
vectors is the result of embedding the time series in a m-dimensional space. That is, the nth Takens’
vector is defined as

T [n] = {niRR[n], niRR[n+ timeLag], ..., niRR[n+m ∗ timeLag]}.

Taken’s theorem states that we can then reconstruct an equivalent dynamical system to the original
one (the dynamical system that generated the observed time series) by using the Takens’ vectors.

Usage

BuildTakens(HRVData, embeddingDim, timeLag)

Arguments

HRVData Data structure that stores the beats register and information related to it

embeddingDim Integer denoting the dimension in which we shall embed the RR series.

timeLag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

Value

A matrix containing the Takens’ vectors (one per row).

Note

This function is based on the buildTakens function from the nonlinearTseries package.

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

BuildTakensVector 11

BuildTakensVector Calculates Takens expanded vectors

Description

WARNING: deprecated function. In order to calculate de Fractal Dimension and Approximate
Entropy (or others properties of the data) a representation of the data in a space m-dimensional is
needed

Usage

BuildTakensVector(HRVData, Data, m, tau)

Arguments

HRVData Data structure that stores the beats register and information related to it

Data Portion of HRVData to be analyzed

m Value of the dimension of the expansion of data

tau Delay of the expansion of data

Value

Returns a matrix with the Expanded Data with N-(m-1)*tau rows (N is the length of the Data to be
analyzed) and m columns

Note

This function is deprecated. Please use BuildTakens instead.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

12 CalculateApEn

CalculateApEn Calculates Approximate Entropy

Description

WARNING: deprecated function. Calculates Approximate Entropy as indicated by Pincus

Usage

CalculateApEn(HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
m = 2, tau = 1,
r = 0.2, N = 1000, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the non linear analysis

m Value of the dimension of the expansion of data

tau Delay of the expansion of data

r Distance for calculating correlation

N Number of points of the portion of signal to be analyzed

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register and now associated heart rate
instantaneous values also, including the value of the Approximate Entropy

Note

This function is deprecated. We suggest the use of the CalculateSampleEntropy function instead,
which is faster.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011) S. M. Pincus, "Approximate entropy as a mea-
sure of system complexity," Mathematics 88, 2297-2301 (1991)

CalculateCorrDim 13

See Also

BuildTakensVector for expand data
IntegralCorrelation for correlation calculations
AvgIntegralCorrelation for averaging correlation calculations

CalculateCorrDim Correlation sum, correlation dimension and generalized correlation
dimension (order q >1)

Description

Functions for estimating the correlation sum and the correlation dimension of the RR time series
using phase-space reconstruction

Usage

CalculateCorrDim(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
minEmbeddingDim = NULL,
maxEmbeddingDim = NULL,
timeLag = NULL,
minRadius,
maxRadius,
pointsRadius = 20,
theilerWindow = 100,
corrOrder = 2,
doPlot = TRUE

)

EstimateCorrDim(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
regressionRange = NULL,
useEmbeddings = NULL,
doPlot = TRUE

)

PlotCorrDim(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
...

)

14 CalculateCorrDim

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis
minEmbeddingDim

Integer denoting the minimum dimension in which we shall embed the time
series

maxEmbeddingDim

Integer denoting the maximum dimension in which we shall embed the time
series. Thus, we shall estimate the correlation dimension between minEmbed-
dingDim and maxEmbeddingDim.

timeLag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

minRadius Minimum distance used to compute the correlation sum C(r)

maxRadius Maximum distance used to compute the correlation sum C(r)

pointsRadius The number of different radius where we shall estimate C(r). Thus, we will
estimate C(r) in pointsRadius between minRadius and maxRadius

theilerWindow Integer denoting the Theiler window: Two Takens’ vectors must be separated
by more than theilerWindow time steps in order to be considered neighbours.
By using a Theiler window, we exclude temporally correlated vectors from our
estimations.

corrOrder Order of the generalized correlation Dimension q. It must be greater than 1
(corrOrder>1). Default, corrOrder=2

doPlot Logical value. If TRUE (default), a plot of the correlation sum is shown
regressionRange

Vector with 2 components denoting the range where the function will perform
linear regression

useEmbeddings A numeric vector specifying which embedding dimensions should the algorithm
use to compute the correlation dimension

... Additional plot parameters.

Details

The correlation dimension is the most common measure of the fractal dimensionality of a geometri-
cal object embedded in a phase space. In order to estimate the correlation dimension, the correlation
sum is defined over the points from the phase space:

C(r) = {(number of points (xi, xj) verifying that distance (xi, xj) < r})/N2

However, this estimator is biased when the pairs in the sum are not statistically independent. For
example, Taken’s vectors that are close in time, are usually close in the phase space due to the
non-zero autocorrelation of the original time series. This is solved by using the so-called Theiler
window: two Takens’ vectors must be separated by, at least, the time steps specified with this
window in order to be considered neighbours. By using a Theiler window, we exclude temporally
correlated vectors from our estimations.

CalculateCorrDim 15

The correlation dimension is estimated using the slope obtained by performing a linear regression
of log 10(C(r)) V s. log 10(r). Since this dimension is supposed to be an invariant of the system,
it should not depend on the dimension of the Taken’s vectors used to estimate it. Thus, the user
should plot log 10(C(r)) V s. log 10(r) for several embedding dimensions when looking for the
correlation dimension and, if for some range log 10(C(r)) shows a similar linear behaviour in dif-
ferent embedding dimensions (i.e. parallel slopes), these slopes are an estimate of the correlation
dimension. The estimate routine allows the user to get always an estimate of the correlation di-
mension, but the user must check that there is a linear region in the correlation sum over different
dimensions. If such a region does not exist, the estimation should be discarded.

Note that the correlation sum C(r) may be interpreted as: C(r) =< p(r) >, that is: the mean
probability of finding a neighbour in a ball of radius r surrounding a point in the phase space. Thus,
it is possible to define a generalization of the correlation dimension by writing:

Cq(r) =< p(r)(q−1) >

Note that the correlation sum
C(r) = C2(r)

It is possible to determine generalized dimensions Dq using the slope obtained by performing a
linear regression of log10(Cq(r)) V s. (q − 1)log10(r). The case q=1 leads to the information di-
mension, that is treated separately in this package. The considerations discussed for the correlation
dimension estimate are also valid for these generalized dimensions.

Value

The CalculateCorrDim returns the HRVData structure containing a corrDim object storing the re-
sults of the correlation sum (see corrDim) of the RR time series.

The EstimateCorrDim function estimates the correlation dimension of the RR time series by av-
eraging the slopes of the embedding dimensions specified in the useEmbeddings parameter. The
slopes are determined by performing a linear regression over the radius’ range specified in regres-
sionRange.If doPlot is TRUE, a graphic of the regression over the data is shown. The results are
returned into the HRVData structure, under the NonLinearAnalysis list.

PlotCorrDim shows two graphics of the correlation integral: a log-log plot of the correlation sum
Vs the radius and the local slopes of log10(C(r)) V s log10(C(r)).

Note

This function is based on the timeLag function from the nonlinearTseries package.

In order to run EstimateCorrDim, it is necessary to have performed the correlation sum before with
ComputeCorrDim.

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

corrDim.

16 CalculateDFA

Examples

Not run:
...
hrv.data = CreateNonLinearAnalysis(hrv.data)
hrv.data = CalculateCorrDim(hrv.data,indexNonLinearAnalysis=1,

minEmbeddingDim=2, maxEmbeddingDim=8,timeLag=1,minRadius=1,
maxRadius=15, pointsRadius=20,theilerWindow=10,
corrOrder=2,doPlot=FALSE)

PlotCorrDim(hrv.data,indexNonLinearAnalysis=1)
hrv.data = EstimateCorrDim(hrv.data,indexNonLinearAnalysis=1,

useEmbeddings=6:8,regressionRange=c(1,10))

End(Not run)

CalculateDFA Detrended Fluctuation Analysis

Description

Performs Detrended Fluctuation Analysis (DFA) on the RR time series, a widely used technique
for detecting long range correlations in time series. These functions are able to estimate several
scaling exponents from the time series being analyzed. These scaling exponents characterize short
or long-term fluctuations, depending of the range used for regression (see details).

Usage

CalculateDFA(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
windowSizeRange = c(10, 300),
npoints = 25,
doPlot = TRUE

)

EstimateDFA(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
regressionRange = NULL,
doPlot = TRUE

)

PlotDFA(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
...

)

CalculateDFA 17

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis
windowSizeRange

Range of values for the windows size that will be used to estimate the fluctuation
function. Default: c(10,300).

npoints The number of different window sizes that will be used to estimate the Fluctua-
tion function in each zone.

doPlot logical value. If TRUE (default value), a plot of the Fluctuation function is
shown.

regressionRange

Vector with 2 components denoting the range where the function will perform
linear regression

... Additional plot parameters.

Details

The Detrended Fluctuation Analysis (DFA) has become a widely used technique for detecting long
range correlations in time series. The DFA procedure may be summarized as follows:

1. Integrate the time series to be analyzed. The time series resulting from the integration will be
referred to as the profile.

2. Divide the profile into N non-overlapping segments.

3. Calculate the local trend for each of the segments using least-square regression. Compute the
total error for each of the segments.

4. Compute the average of the total error over all segments and take its root square. By repeating
the previous steps for several segment sizes (let’s denote it by t), we obtain the so-called
Fluctuation function F (t).

5. If the data presents long-range power law correlations: F (t) ∼ tα and we may estimate using
regression.

6. Usually, when plotting log(F (t)) V s log(t) we may distinguish two linear regions. By re-
gression them separately, we obtain two scaling exponents, α1 (characterizing short-term fluc-
tuations) and α2 (characterizing long-term fluctuations).

Steps 1-4 are performed using the CalculateDFA function. In order to obtain a estimate of some
scaling exponent, the user must use the EstimateDFA function specifying the regression range (win-
dow sizes used to detrend the series). α1 is usually obtained by performing the regression in the
3 < t < 17 range wheras that α2 is obtained in the 15 < t < 65 range (However the F(t) function
must be linear in these ranges for obtaining reliable results).

Value

The CalculateDFA returns a HRVData structure containing the computations of the Fluctuation
function of the RR time series under the NonLinearAnalysis list.

18 CalculateEmbeddingDim

The EstimateDFA function estimates an scaling exponent of the RR time series by performing a
linear regression over the time steps’ range specified in regressionRange. If doPlot is TRUE, a
graphic of the regression over the data is shown. In order to run EstimateDFA, it is necessary
to have performed the Fluctuation function computations before with ComputeDFA. The results
are returned into the HRVData structure, under the NonLinearAnalysis list. Since it is possible to
estimate several scaling exponents, depending on the regression range used, the scaling exponents
are also stored into a list.

PlotDFA shows a graphic of the Fluctuation functions vs window’s sizes.

Note

This function is based on the dfa function from the nonlinearTseries package.

See Also

dfa

CalculateEmbeddingDim Estimate the proper embedding dimension for the RR time series

Description

This function determines the minimum embedding dimension from a scalar time series using the
algorithm proposed by L. Cao (see references).

Usage

CalculateEmbeddingDim(
HRVData,
numberPoints = 5000,
timeLag = 1,
maxEmbeddingDim = 15,
threshold = 0.95,
maxRelativeChange = 0.05,
doPlot = TRUE

)

Arguments

HRVData Data structure that stores the beats register and information related to it

numberPoints Number of points from the time series that will be used to estimate the embed-
ding dimension. By default, 5000 points are used.

timeLag Time lag used to build the Takens’ vectors needed to estimate the embedding
dimension (see buildTakens). Default: 1.

maxEmbeddingDim

Maximum possible embedding dimension for the time series. Default: 15.

CalculateEmbeddingDim 19

threshold Numerical value between 0 and 1. The embedding dimension is estimated using
the E1(d) function. E1(d) stops changing when d is greater than or equal to
embedding dimension, staying close to 1. This value establishes a threshold for
considering that E1(d) is close to 1. Default: 0.95

maxRelativeChange

Maximum relative change in E1(d) with respect to E1(d-1) in order to consider
that the E1 function has been stabilized and it will stop changing. Default: 0.05.

doPlot Logical value. If TRUE (default value), a plot of E1(d) and E2(d) is shown.

Details

The Cao’s algorithm uses 2 functions in order to estimate the embedding dimension from a time
series: the E1(d) and the E2(d) functions, where d denotes the dimension.

E1(d) stops changing when d is greater than or equal to the embedding dimension, staying close
to 1. On the other hand, E2(d) is used to distinguish deterministic signals from stochastic signals.
For deterministic signals, there exists some d such that E2(d)!=1. For stochastic signals, E2(d) is
approximately 1 for all the values.

Note

The current implementation of this function is fully written in R, based on the estimateEmbeddingDim
function from the nonlinearTseries package. Thus it requires heavy computations and may be quite
slow. The numberPoints parameter can be used for controlling the computational burden.

Future versions of the package will solve this issue.

References

Cao, L. Practical method for determining the minimum embedding dimension of a scalar time
series. Physica D: Nonlinear Phenomena, 110,1, pp. 43-50 (1997).

See Also

estimateEmbeddingDim.

Examples

Not run:
data(HRVProcessedData)
HRVData = HRVProcessedData
HRVData = SetVerbose(HRVData,T)
timeLag = CalculateTimeLag(HRVData,technique = "ami")
embeddingDim = CalculateEmbeddingDim(HRVData,

timeLag = timeLag,
maxEmbeddingDim = 15)

End(Not run)

20 CalculateEnergyInPSDBands

CalculateEnergyInPSDBands

CalculateSPDBandsEnergy

Description

Calculates the Energy in the bands of the Power Spectral Density (PSD).

Usage

CalculateEnergyInPSDBands(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
ULFmin = 0,
ULFmax = 0.03,
VLFmin = 0.03,
VLFmax = 0.05,
LFmin = 0.05,
LFmax = 0.15,
HFmin = 0.15,
HFmax = 0.4

)

Arguments

HRVData Data structure that stores the beats register and information related to it.
indexFreqAnalysis

An integer referencing the data structure that contains the PSD analysis.

ULFmin Lower limit ULF band used for distinguish the ULF band.

ULFmax Upper limit ULF band used for distinguish the ULF band.

VLFmin Lower limit VLF band.

VLFmax Upper limit VLF band.

LFmin Lower limit LF band.

LFmax Upper limit LF band.

HFmin Lower limit HF band.

HFmax Upper limit HF band.

Value

A vector containing the energy of the ULF, VLF, LF and HF bands in the PSD.

See Also

PlotPSD, CalculatePSD.

CalculateFracDim 21

Examples

Not run:
data(HRVData)
HRVData=BuildNIHR(HRVData)
HRVData=FilterNIHR(HRVData)
Frequency analysis requires interpolated data (except Lomb)
HRVData=InterpolateNIHR(HRVData)
HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,1,"pgram",doPlot = F)
get Energy in the default ULF, VLF and LF frequency bands.
We modify the limits for the HF band
CalculateEnergyInPSDBands(HRVData, 1, HFmin = 0.15, HFmax = 0.3)

End(Not run)

CalculateFracDim Calculates Fractal Dimension

Description

WARNING: deprecated function. Calculates Fractal Dimension as indicated by Pincus

Usage

CalculateFracDim(HRVData, indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
m = 10, tau = 3, Cra = 0.005, Crb = 0.75, N = 1000, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the non linear analysis

m Value of the dimension of the expansion of data

tau Delay of the expansion of data

Cra Minimum value of correlation for calculating Fractal Dimension

Crb Maximum value of correlation for calculating Fractal Dimension

N Number of points of the portion of signal to be analyzed

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register and now associated heart rate
instantaneous values also, including the value of the Fractal Dimension

22 CalculateInfDim

Note

This function is deprecated. We suggest the use of the CalculateCorrDim function instead, which
is faster.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011) S. M. Pincus, "Approximate entropy as a mea-
sure of system complexity," Mathematics 88, 2297-2301 (1991)

See Also

CalculateRfromCorrelation for finding r distance at which the correlation has a certain value

CalculateInfDim Information dimension of the RR time series

Description

Information dimension of the RR time series

Usage

CalculateInfDim(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
minEmbeddingDim = NULL,
maxEmbeddingDim = NULL,
timeLag = NULL,
minFixedMass = 1e-04,
maxFixedMass = 0.005,
numberFixedMassPoints = 50,
radius = 1,
increasingRadiusFactor = 1.05,
numberPoints = 500,
theilerWindow = 100,
doPlot = TRUE

)

EstimateInfDim(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),

CalculateInfDim 23

regressionRange = NULL,
useEmbeddings = NULL,
doPlot = TRUE

)

PlotInfDim(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis.
minEmbeddingDim

Integer denoting the minimum dimension in which we shall embed the time
series.

maxEmbeddingDim

Integer denoting the maximum dimension in which we shall embed the time
series. Thus, we shall estimate the correlation dimension between minEmbed-
dingDim and maxEmbeddingDim.

timeLag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

minFixedMass Minimum percentage of the total points that the algorithm shall use for the esti-
mation.

maxFixedMass Maximum percentage of the total points that the algorithm shall use for the
estimation.

numberFixedMassPoints

The number of different fixed mass fractions between minFixedMass and max-
FixedMass that the algorithm will use for estimation.

radius Initial radius for searching neighbour points in the phase space. Ideally, it should
be small enough so that the fixed mass contained in this radius is slightly greater
than the minFixedMass. However, whereas the radius is not too large (so that
the performance decreases) the choice is not critical.

increasingRadiusFactor

Numeric value. If no enough neighbours are found within radius, the radius is
increased by a factor increasingRadiusFactor until succesful. Default: 1.05.

numberPoints Number of reference points that the routine will try to use, saving computation
time.

theilerWindow Integer denoting the Theiler window: Two Takens’ vectors must be separated
by more than theilerWindow time steps in order to be considered neighbours.
By using a Theiler window, we exclude temporally correlated vectors from our
estimations.

doPlot Logical value. If TRUE (default), a plot of the correlation sum with q=1 is
shown

24 CalculateInfDim

regressionRange

Vector with 2 components denoting the range where the function will perform
linear regression

useEmbeddings A numeric vector specifying which embedding dimensions should the algorithm
use to compute the information dimension.

... Additional plot parameters.

Details

The information dimension is a particular case of the generalized correlation dimension when set-
ting the order q = 1. It is possible to demonstrate that the information dimension D1 may be defined
as: D1 = limr→0 < log p(r) > / log(r). Here, p(r) is the probability of finding a neighbour in a
neighbourhood of size r and <> is the mean value. Thus, the information dimension specifies how
the average Shannon information scales with the radius r.

In order to estimate D1, the algorithm looks for the scaling behaviour of the average radius that
contains a given portion (a "fixed-mass") of the total points in the phase space. By performing a
linear regression of log(p) V s. log(< r >) (being p the fixed-mass of the total points), an estimate
of D1 is obtained. The user should run the method for different embedding dimensions for checking
if D1 saturates.

The calculations for the information dimension are heavier than those needed for the correlation
dimension.

Value

The CalculateCorrDim returns the HRVData structure containing a infDim object storing the results
of the correlation sum (see infDim) of the RR time series.

The EstimateInfDim function estimates the information dimension of the RR time series by averag-
ing the slopes of the correlation sums with q=1. The slopes are determined by performing a linear
regression over the radius’ range specified in regressionRange.If doPlot is TRUE, a graphic of the
regression over the data is shown. The results are returned into the HRVData structure, under the
NonLinearAnalysis list.

PlotInfDim shows a graphics of the correlation sum with q=1.

Note

In order to run EstimateInfDim, it is necessary to have performed the correlation sum before with
ComputeInfDim.

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

CalculateCorrDim.

CalculateMaxLyapunov 25

CalculateMaxLyapunov Maximum lyapunov exponent

Description

Functions for estimating the maximal Lyapunov exponent of the RR time series.

Usage

CalculateMaxLyapunov(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
minEmbeddingDim = NULL,
maxEmbeddingDim = NULL,
timeLag = NULL,
radius = 2,
theilerWindow = 100,
minNeighs = 5,
minRefPoints = 500,
numberTimeSteps = 20,
doPlot = TRUE

)

EstimateMaxLyapunov(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
regressionRange = NULL,
useEmbeddings = NULL,
doPlot = TRUE

)

PlotMaxLyapunov(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis
minEmbeddingDim

Integer denoting the minimum dimension in which we shall embed the time
series

26 CalculateMaxLyapunov

maxEmbeddingDim

Integer denoting the maximum dimension in which we shall embed the time
series. Thus, we shall estimate the correlation dimension between minEmbed-
dingDim and maxEmbeddingDim.

timeLag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors. Default: timeLag = 1

radius Maximum distance in which will look for nearby trajectories. Default: radius =
2

theilerWindow Integer denoting the Theiler window: Two Takens’ vectors must be separated
by more than theilerWindow time steps in order to be considered neighbours.
By using a Theiler window, temporally correlated vectors are excluded from the
estimations. Default: theilerWindow = 100

minNeighs Minimum number of neighbours that a Takens’ vector must have to be consid-
ered a reference point. Default: minNeighs = 5

minRefPoints Number of reference points that the routine will try to use. The routine stops
when it finds minRefPoints reference points, saving computation time. Default:
minRefPoints = 500

numberTimeSteps

Integer denoting the number of time steps in which the algorithm will compute
the divergence.

doPlot Logical value. If TRUE (default value), a plot of S(t) Vs t is shown.
regressionRange

Vector with 2 components denoting the range where the function will perform
linear regression

useEmbeddings A numeric vector specifying which embedding dimensions should the algorithm
use to compute the maximal Lyapunov exponent.

... Additional plot parameters.

Details

It is a well-known fact that close trajectories diverge exponentially fast in a chaotic system. The
averaged exponent that determines the divergence rate is called the Lyapunov exponent (usually
denoted with λ). If δ(0) is the distance between two Takens’ vectors in the embedding.dim-
dimensional space, we expect that the distance after a time t between the two trajectories arising
from this two vectors fulfills:

δ(n) ∼ δ(0) · exp(λ · t)

The lyapunov exponent is estimated using the slope obtained by performing a linear regression of
S(t) = λ · t ∼ log(δ(t)/δ(0)) on t. S(t) will be estimated by averaging the divergence of several
reference points.

The user should plot S(t)V st when looking for the maximal lyapunov exponent and, if for some
temporal range S(t) shows a linear behaviour, its slope is an estimate of the maximal Lyapunov
exponent per unit of time. The estimate routine allows the user to get always an estimate of the
maximal Lyapunov exponent, but the user must check that there is a linear region in the S(t)V st.
If such a region does not exist, the estimation should be discarded. The user should also run the
method for different embedding dimensions for checking if D1 saturates.

CalculateMaxLyapunov 27

Value

The CalculateMaxLyapunov returns a HRVData structure containing the divergence computations
of the RR time series under the NonLinearAnalysis list.

The EstimateMaxLyapunov function estimates the maximum Lyapunov exponent of the RR time
series by performing a linear regression over the time steps’ range specified in regressionRange.If
doPlot is TRUE, a graphic of the regression over the data is shown. The results are returned into
the HRVData structure, under the NonLinearAnalysis list.

PlotMaxLyapunov shows a graphic of the divergence Vs time

Note

This function is based on the maxLyapunov function from the nonlinearTseries package.

In order to run EstimateMaxLyapunov, it is necessary to have performed the divergence computa-
tions before with ComputeMaxLyapunov.

References

Eckmann, Jean-Pierre and Kamphorst, S Oliffson and Ruelle, David and Ciliberto, S and others.
Liapunov exponents from time series. Physical Review A, 34-6, 4971–4979, (1986).

Rosenstein, Michael T and Collins, James J and De Luca, Carlo J.A practical method for calculating
largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65-1, 117–134,
(1993).

See Also

maxLyapunov

Examples

Not run:
...
hrv.data = CreateNonLinearAnalysis(hrv.data)
hrv.data = CalculateMaxLyapunov(hrv.data,indexNonLinearAnalysis=1,

minEmbeddingDim=5,
maxEmbeddingDim = 5,
timeLag=1,radius=10,
theilerWindow=100, doPlot=FALSE)

PlotMaxLyapunov(hrv.data,indexNonLinearAnalysis=1)
hrv.data = EstimateMaxLyapunov(hrv.data,indexNonLinearAnalysis=1,

regressionRange=c(1,10))

End(Not run)

28 CalculatePowerBand

CalculatePowerBand Calculates power per band

Description

Calculates power of the heart rate signal at ULF, VLF, LF and HF bands

Usage

CalculatePowerBand(HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
size, shift, sizesp = NULL, scale = "linear",
ULFmin = 0, ULFmax = 0.03,
VLFmin = 0.03, VLFmax = 0.05,
LFmin = 0.05, LFmax = 0.15,
HFmin = 0.15, HFmax = 0.4,
type = c("fourier", "wavelet"), wavelet = "d4",
bandtolerance = 0.01, relative = FALSE,
verbose = NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexFreqAnalysis

Reference to the data structure that will contain the variability analysis

size Size of window for calculations (seconds)

shift Displacement of window for calculations (seconds)

sizesp Points for calculation (zero padding). If the user does not specify it, the function
estimates a propper value.

ULFmin Lower limit ULF band

ULFmax Upper limit ULF band

VLFmin Lower limit VLF band

VLFmax Upper limit VLF band

LFmin Lower limit LF band

LFmax Upper limit LF band

HFmin Lower limit HF band

HFmax Upper limit HF band

scale Deprecated argument

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

type Type of analysis used to calculate the spectrogram. Possible options are "fourier"
or "wavelet"

CalculatePowerBand 29

wavelet Mother wavelet used to calculate the spectrogram when a wavelet-based analy-
sis is performed. The available wavelets are: "haar" wavelet; least asymmetric
Daubechies wavelets of width 8 ("la8"), 16 ("la16") and 20 ("la20") samples;
extremal phase Daubechies of width 4 ("d4"), 6 ("d6"), 8 ("d8") and 16 ("d16")
samples; best localized wavelets of width 14 ("bl14") and 20 (" bl20") samples;
Fejer-Korovkin wavelets of width 4 ("fk4"), 6 ("fk6"), 8 ("fk8"), 14("fk14")
and 22 ("fk22") samples; minimum bandwidth wavelets of width 4 ("mb4"), 8
("mb8"), 16 ("mb16") and 24 ("mb24"); and the biorthogonal wavelet "bs3.1"

bandtolerance Maximum error allowed when a wavelet-based analysis is performed. It can be
specified as a absolute or a relative error depending on the "relative" parameter
value

relative Logic value specifying which kind of bandtolerance shall be used (relative or
absolute). The relative tolerance takes into account the width of each of the
intervals of interest.

Value

Returns HRVData, the structure that contains beat positions register, associated heart rate instanta-
neous values, filtered heart rate signal equally spaced, and the analysis structure including spectral
power at different bands of the heart rate signal

Note

An example including all the necessary steps to obtain the power
bands of a wfdb register is giving below:

##Reading a wfdb register and storing into a data structure:
md = CreateHRVData(Verbose = TRUE)
md = LoadBeatWFDB(md, RecordName = "register_name",
RecordPath = "register_path")

##Calculating heart rate signal:
md = BuildNIHR(md)

##Filtering heart rate signal:
md = FilterNIHR(md)

##Interpolating heart rate signal:
md = InterpolateNIHR(md)

##Calculating spectrogram and power per band using fourier
analysis:
md = CreateFreqAnalysis(md)
md = CalculatePowerBand(md, indexFreqAnalysis = 1, size = 120,
shift = 10, sizesp = 1024)

30 CalculatePSD

##Calculating spectrogram and power per band using wavelet analysis:
md = CreateFreqAnalysis(md)
md = CalculatePowerBand(md, indexFreqAnalysis = 2, type="wavelet",
wavelet="la8",bandtolerance=0.0025)

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

CalculatePSD Spectral Density Estimation

Description

Estimate the Power Spectral Density (PSD) of the RR time series.

Usage

CalculatePSD(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
method = c("pgram", "ar", "lomb"),
doPlot = T,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.
indexFreqAnalysis

An integer referencing the data structure that will contain the frequency analysis.
method String specifying the method used to estimate the spectral density. Allowed

methods are "pgram" (the default), "ar" and "lomb".
doPlot Plot the periodogram?
... Further arguments to specific PSD estimation methods or PlotPSD.

Details

The "pgram" and "ar" methods use the spec.pgram and spec.ar functions. Thus, the same argu-
ments used in spec.pgram or spec.ar can be used when method is "pgram" or "ar", respectively.
The "lomb" is based in the lsp and thus it accepts the same parameters as this function.

CalculatePSD 31

Value

The CalculatePSD returns the HRVData structure containing a periodogram field storing and PSD
estimation of the RR time series. When the "pgram" and "ar" methods are used the periodogram
field is an object of class "spec". If "lomb" is used, the periodogram field is just a list. In any case
the periodogram field will contain:

• freq: vector of frequencies at which the spectral density is estimated.

• spec: spectral density estimation

• series: name of the series

• method: method used to calculate the spectrum

See Also

spectrum, PlotPSD.

Examples

Not run:
data(HRVData)
HRVData=BuildNIHR(HRVData)
HRVData=FilterNIHR(HRVData)
Frequency analysis requires interpolated data (except Lomb)
HRVData=InterpolateNIHR(HRVData)
Create a different freqAnalysis for each method
HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,1,"pgram",doPlot = F)

HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,2,"pgram",spans=9, doPlot = F)

HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,3,"ar",doPlot = F)

HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,4,"lomb",doPlot = F)
Plot the results
layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE))
PlotPSD(HRVData,1)
PlotPSD(HRVData,2)
PlotPSD(HRVData,3)
PlotPSD(HRVData,4)

End(Not run)

32 CalculateRfromCorrelation

CalculateRfromCorrelation

Calculates ra and rb from Correlation

Description

WARNING: deprecated function. Calculates ra and rb distances that verify that their correlation
values are Cra and Crb

Usage

CalculateRfromCorrelation(HRVData, Data, m, tau, Cra, Crb)

Arguments

HRVData Data structure that stores the beats register and information related to it

Data Portion of HRVData to be analyzed

m Value of the dimension of the expansion of data

tau Delay of the expansion of data

Cra Minimum value of correlation for calculating Fractal Dimension

Crb Maximum value of correlation for calculating Fractal Dimension

Value

Returns a 2 by 2 matrix containing ra and rb distance in the first row and their exact correlation
values in the second row

Note

This function is used in the CalculateFracDim function, which is deprecated. We suggest the use
of the CalculateCorrDim function instead of CalculateFracDim.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011. S. M. Pincus, "Approximate entropy as a measure of
system complexity," Mathematics 88, 2297-2301 (1991)

See Also

CalculateFracDim

CalculateSampleEntropy 33

CalculateSampleEntropy

Sample Entropy (also known as Kolgomorov-Sinai Entropy)

Description

These functions measure the complexity of the RR time series. Large values of the Sample Entropy
indicate high complexity whereas that smaller values characterize more regular signals.

Usage

CalculateSampleEntropy(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
doPlot = TRUE

)

EstimateSampleEntropy(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
regressionRange = NULL,
useEmbeddings = NULL,
doPlot = TRUE

)

PlotSampleEntropy(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it

indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis

doPlot Logical value. If TRUE (default), a plot of the correlation sum is shown

regressionRange

Vector with 2 components denoting the range where the function will perform
linear regression

useEmbeddings A numeric vector specifying which embedding dimensions should the algorithm
use to compute the sample entropy.

... Additional plot parameters.

34 CalculateSampleEntropy

Details

The sample entropy is computed using:

hq(m, r) = log(Cq(m, r)/Cq(m+ 1, r))

where m is the embedding dimension and r is the radius of the neighbourhood. When computing
the correlation dimensions we use the linear regions from the correlation sums in order to do the
estimates. Similarly, the sample entropy hq(m, r) should not change for both various m and r.

Value

The CalculateSampleEntropy returns a HRVData structure containing the sample entropy compu-
tations of the RR time series under the NonLinearAnalysis list.

The EstimateSampleEntropy function estimates the sample entropy of the RR time series by per-
forming a linear regression over the radius’ range specified in regressionRange. If doPlot is TRUE,
a graphic of the regression over the data is shown. In order to run EstimateSampleEntropy, it is nec-
essary to have performed the sample entropy computations before with ComputeSampleEntropy.
The results are returned into the HRVData structure, under the NonLinearAnalysis list.

PlotSampleEntropy shows a graphic of the sample entropy computations.

Note

In order to run this functions, it is necessary to have used the CalculateCorrDim function.

This function is based on the sampleEntropy function from the nonlinearTseries package.

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

sampleEntropy

Examples

Not run:
...
hrv.data = CreateNonLinearAnalysis(hrv.data)
hrv.data = CalculateCorrDim(hrv.data,indexNonLinearAnalysis=1,minEmbeddingDim=2,

maxEmbeddingDim=8,timeLag=1,minRadius=1,maxRadius=15,
pointsRadius=20,theilerWindow=10,corrOrder=2,doPlot=FALSE)

hrv.data = CalculateSampleEntropy(hrv.data,indexNonLinearAnalysis=1,doPlot=FALSE)
PlotSampleEntropy(hrv.data,indexNonLinearAnalysis=1)
hrv.data = EstimateSampleEntropy(hrv.data,indexNonLinearAnalysis=1,regressionRange=c(6,10))

End(Not run)

CalculateSpectrogram 35

CalculateSpectrogram Calculates the spectrogram of a signal

Description

Calculates the spectrogram of the heart rate signal after filtering and interpolation in a window of a
certain size

Usage

CalculateSpectrogram(HRVData, size, shift, sizesp = 1024, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it
size Size of window for calculating spectrogram (seconds)
shift Displacement of window for calculating spectrogram (seconds)
sizesp Points for calculating spectrogram (zero padding)
verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns the spectrogram of the heart rate signal

Note

An example including all the necessary steps to obtain the spectrogram
of a wfdb register is giving below:

##Reading a wfdb register and storing into a data structure:
md = CreateHRVData(Verbose = TRUE)
md = LoadBeatWFDB(md, RecordName = "register_name",
RecordPath = "register_path", verbose = TRUE)

##Calculating heart rate signal:
md = BuildNIHR(md)

##Filtering heart rate signal:
md = FilterNIHR(md)

##Interpolating heart rate signal:
md = InterpolateNIHR(md)

##Calculating spectrogram:
CalculateSpectrogram(md, size = 120, shift = 10, sizesp = 1024)

36 CalculateTimeLag

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

CalculateTimeLag Estimate an appropiate time lag for the Takens’ vectors

Description

Given a time series (timeSeries), an embedding dimension (m) and a time lag (timeLag), the nth

Takens’ vector is defined as

T [n] = timeSeries[n], timeSeries[n+ timeLag], ...timeSeries[n+m ∗ timeLag].

This function estimates an appropiate time lag by using the autocorrelation or the average mutual
information (AMI) function.

Usage

CalculateTimeLag(
HRVData,
technique = c("acf", "ami"),
method = c("first.e.decay", "first.zero", "first.minimum", "first.value"),
value = 1/exp(1),
lagMax = NULL,
doPlot = TRUE,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.
technique The technique that we shall use to estimate the time lag. Allowed values are

"acf" and "ami".
method The method that we shall use to select the time lag (see the Details section).

Available methods are "first.zero", "first.e.decay", "first.minimum" and "first.value".
value Numeric value indicating the value that the autocorrelation/AMI function must

cross in order to select the time lag. It is used only with the "first.value" method.
lagMax Maximum lag at which to calculate the acf/AMI.
doPlot Logical value. If TRUE (default value), a plot of the autocorrelation/AMI func-

tion is shown.
... Additional parameters for the acf or the mutualInformation functions (see mutualInformation).

CalculateTimeLag 37

Details

A basic criteria for estimating a proper time lag is based on the following reasoning: if the time
lag used to build the Takens’ vectors is too small, the coordinates will be too highly temporally
correlated and the embedding will tend to cluster around the diagonal in the phase space. If the
time lag is chosen too large, the resulting coordinates may be almost uncorrelated and the resulting
embedding will be very complicated. Thus, the autocorrelation function can be used for estimating
an appropiate time lag of a time series. However, it must be noted that the autocorrelation is a
linear statistic, and thus it does not take into account nonlinear dynamical correlations. To take into
account nonlinear correlations the average mutual information (AMI) can be used. Independently
of the technique used to compute the correlation, the time lag can be selected in a variety of ways:

• Select the time lag where the autocorrelation/AMI function decays to 0 (first.zero method).
This method is not appropriate for the AMI function, since it only takes positive values.

• Select the time lag where the autocorrelation/AMI function decays to 1/e of its value at zero
(first.e.decay method).

• Select the time lag where the autocorrelation/AMI function reaches its first minimum (first.minimum
method).

• Select the time lag where the autocorrelation/AMI function decays to the value specified by
the user (first.value method and value parameter).

Value

The estimated time lag.

Note

If the autocorrelation/AMI function does not cross the specifiged value, an error is thrown. This may
be solved by increasing the lag.max or selecting a higher value to which the autocorrelation/AMI
function may decay.

This function is based on the timeLag function from the nonlinearTseries package.

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

timeLag,mutualInformation .

Examples

Not run:
data(HRVProcessedData)
HRVData = HRVProcessedData
HRVData = SetVerbose(HRVData,T)
timeLag = CalculateTimeLag(HRVData,technique = "ami")
embeddingDim = CalculateEmbeddingDim(HRVData,

timeLag = timeLag,
maxEmbeddingDim = 15)

38 CreateFreqAnalysis

End(Not run)

CreateFreqAnalysis Creates data analysis structure for frequency analysis calculations

Description

Creates data analysis structure that stores the information extracted from a variability analysis of
heart rate signal and joins it to HRVData as a member of a list

Usage

CreateFreqAnalysis(HRVData, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register, associated heart rate instanta-
neous values, filtered heart rate signal equally spaced, and a new analysis structure as a member of
a list

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

CreateHRVData

CreateHRVData 39

CreateHRVData Creates data structure for all the calculations

Description

Creates data structure that stores the beats register and all the information obtained from it

Usage

CreateHRVData(Verbose = FALSE)

Arguments

Verbose Boolean argument that allows to specify if the function returns additional infor-
mation

Value

Returns HRVData, the structure that will contain beat positions register, associated heart rate in-
stantaneous values, filtered heart rate signal equally spaced, and one or more analysis structures

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

CreateFreqAnalysis, CreateTimeAnalysis, CreateNonLinearAnalysis

CreateNonLinearAnalysis

Creates data analysis structure for non linear analysis calculations

Description

Creates data analysis structure that stores the information extracted from a non linear analysis of
ECG signal and joins it to HRVData as a member of a list

Usage

CreateNonLinearAnalysis(HRVData, verbose=NULL)

40 CreateTimeAnalysis

Arguments

HRVData Data structure that stores the beats register and information related to it

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register, associated heart rate instanta-
neous values, filtered heart rate signal equally spaced, and a new analysis structure as a member of
a list

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

CreateHRVData

CreateTimeAnalysis Creates data analysis structure for time analysis calculations

Description

Creates data analysis structure that stores the information extracted from a time analysis of ECG
signal and joins it to HRVData as a member of a list

Usage

CreateTimeAnalysis(HRVData, size=300, numofbins=NULL, interval=7.8125, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

size Size of window (seconds)

numofbins Number of bins in histogram. If it is not specified, the interval parameter is used
(default)

interval Width of bins in histogram (milliseconds)

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

EditNIHR 41

Value

Returns HRVData, the structure that contains beat positions register, associated heart rate instanta-
neous values, filtered heart rate signal equally spaced, and a new analysis structure as a member of
a list

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

CreateHRVData

EditNIHR Manually edition of non-interpolated instantaneous heart rate

Description

Plots non-interpolated instantaneous heart rate for manual removing of outliers

Usage

EditNIHR(HRVData, scale = 1, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

scale Allows scaling for small screens

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns Data, the structure that contains beat positions register, and manually edited associated
heart rate instantaneous values

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

42 EstimatePSDSlope

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

EstimatePSDSlope Estimate the slope of the Power Spectral Density (PSD).

Description

Estimate the slope of the Power Spectral Density (PSD) of the RR time series.

Usage

EstimatePSDSlope(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
regressionRange = NULL,
doPlot = T,
main = "PSD power law",
xlab = "Frequency (Hz)",
ylab = "Spectrum",
pch = NULL,
log = "xy",
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.
indexFreqAnalysis

An integer referencing the periodogram that will be used for estimating the spec-
tral index.

indexNonLinearAnalysis

An integer referencing the structure that will store the resulting estimations.
regressionRange

Range of frequencies in which the regression will be performed. Default is c(1e-
4, 1e-2) Hz.

doPlot Plot the periodogram and the least-squares fit?

main Title for the plot.

xlab Title for the x axis.

ylab Title for the y axis.

pch Symbol for the plotting points.

EstimatePSDSlope 43

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic
(default).

... Other arguments for the plotting function.

Details

The power spectrum of most physiological signals fulfils S(f) = Cf−β (1/f spectrum). This
function estimates the β exponent, which is usually referred to as the spectral index.

Value

The EstimatePSDSlope returns the HRVData structure containing a PSDSlope field storing the spec-
tral index and the proper Hurst exponent.

Note

It should be noted that the PSD must be estimated prior to the use of this function. We do not
recommend the use of the AR spectrum when estimating the spectral index.

References

Voss, Andreas, et al. "Methods derived from nonlinear dynamics for analysing heart rate variabil-
ity." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 367.1887 (2009): 277-296.

Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in
temporal physiological signals. Physiological measurement, 23(1), R1.

See Also

spectrum,lsp, CalculatePSD.

Examples

Not run:
data(HRVProcessedData)
use other name for convenience
HRVData=HRVProcessedData
Estimate the periodogram
HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,1,"pgram",doPlot = T,log="xy")
HRVData=CreateNonLinearAnalysis(HRVData)
HRVData=SetVerbose(HRVData,T)
HRVData=EstimatePSDSlope(HRVData,1,1,

regressionRange=c(5e-4,1e-2))

End(Not run)

44 ExtractTimeSegment

ExtractTimeSegment Time windows of HR record

Description

Extracts a temporal subset between the times starttime and endtime.

Usage

ExtractTimeSegment(HRVData, starttime, endtime)

Arguments

HRVData Data structure that stores the beats register and information related to it. This
function calls Window to perform the extraction.

starttime The start time of the period of interest.

endtime The end time of the period of interest.

Details

If the HRVData contains episodes, beats or RR time series, these will be also extracted into the new
HRV structure. On the other hand, all the analysis stored in the original structure will be lost.

Value

A new HRVData structure containing the temporal data within the specified range.

Author(s)

Leandro Rodriguez-Linares

Examples

Not run:
data(HRVProcessedData)
Rename for convenience
HRVData <- HRVProcessedData
PlotNIHR(HRVData)
newHRVData <- ExtractTimeSegment(HRVData,2000,4000)
PlotNIHR(newHRVData)

End(Not run)

FilterNIHR 45

FilterNIHR Artefact filter based in an adaptive threshold

Description

An algorithm that uses adaptive thresholds for rejecting those beats different from the given thresh-
old more than a certain value. The rule for beat acceptation or rejection is to compare with previous,
following and with the updated mean. We apply also a comparison with acceptable physiological
values (default values 25 and 200 bpm).

Usage

FilterNIHR(HRVData, long=50, last=13, minbpm=25, maxbpm=200, mini=NULL,
maxi=NULL, fixed=NULL, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

long Number of beats to calculate the updated mean

last Initial threshold

minbpm Minimum physiologically acceptable value for HR

maxbpm Maximum physiologically acceptable value for HR

mini Deprecated argument maintained for compatibility

maxi Deprecated argument maintained for compatibility

fixed Deprecated argument maintained for compatibility

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register, associated heart rate instanta-
neous values also, and now filtered heart rate signal

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

X. Vila, F. Palacios, J. Presedo, M. Fernandez-Delgado, P. Felix, S. Barro, "Time-Frequency anal-
ysis of heart-rate variability," IEEE Eng. Med. Biol. Magazine 16, 119-125 (1997) L. Rodriguez-
Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source tool for heart
rate variability spectral analysis", Computer Methods and Programs in Biomedicine 103, 39-50,
doi:10.1016/j.cmpb.2010.05.012 (2011)

46 GenerateEpisodes

GenerateEpisodes Creates new episodes from old ones

Description

Creates new episodes, or annotated physiological events, from existing ones and stores them into
the data structure containing the beat positions

Usage

GenerateEpisodes(HRVData, NewBegFrom, NewEndFrom, DispBeg, DispEnd,
OldTag = "", NewTag = "", verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

NewBegFrom Source of new beginning of episodes ("Beg" for indicating the beginning as the
beginning of the old episode, "End" for end)

NewEndFrom Source of new end of episodes ("Beg" for indicating the end as the beginning of
the old episode, "End" for end)

DispBeg Absolute displacement from the beginning for new episodes in seconds

DispEnd Absolute displacement from the end for new episodes in seconds

OldTag Tag of old episodes

NewTag Tag for new episodes (if empty, copies OldTag)

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register and new episodes information

Note

##Example of arguments for creating episodes displaced one
minute before old ones:
##NewBegFrom = "Beg", NewEndFrom = "End", DispBeg = -60,
DispEnd = -60
##Example of arguments for creating episodes just after previous
ones of 1 minute length:
##NewBegFrom = "End", NewEndFrom = "End", DispBeg = 0,
DispEnd = 60

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

getNormSpectralUnits 47

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

getNormSpectralUnits Normalized Spectral Units

Description

Calculates the spectrogram bands in normalized units

Usage

getNormSpectralUnits(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
VLFnormalization = T

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexFreqAnalysis

Reference to the data structure that contains the spectrogram analysis
VLFnormalization

Logical value. If TRUE (default), the function normalizes LF and HF power
series by its sum. If FALSE, the function computes VLF, LF and HF power
series by its sum.

Details

The default behaviour of this function computes the normalized power time series in the LF and HF
bands following the Task Force recommendations:

normalized_LF = LF_power/(total_power − V LF_power − ULF_power)

normalized_HF = HF_power/(total_power − V LF_power − ULF_power)

If VLFnormalization is set to FALSE, the functions computes:

normalized_V LF = V LF_power/(total_power − ULF_power)

normalized_LF = LF_power/(total_power − ULF_power)

normalized_HF = HF_power/(total_power − ULF_power)

The resulting time series are returned in a list. Note that before using this function, the spectrogram
should be computed with the CalculatePowerBand function.

48 HRVData

Value

The getNormSpectralUnits returns a list storing the resulting normalized power-band series. Note
that this list is not stored in the HRVData structure.

References

Camm, A. J., et al. "Heart rate variability: standards of measurement, physiological interpretation
and clinical use. Task Force of the European Society of Cardiology and the North American Society
of Pacing and Electrophysiology." Circulation 93.5 (1996): 1043-1065.

Examples

Not run:
load some data...
data(HRVProcessedData)
hd = HRVProcessedData
Perform some spectral analysis and normalize the results
hd = CreateFreqAnalysis(hd)
hd = CalculatePowerBand(hd,indexFreqAnalysis = 1,shift=30,size=60)
normUnits = getNormSpectralUnits(hd)
plot the normalized time series
par(mfrow=c(2,1))
plot(normUnits$Time, normUnits$LF, xlab="Time", ylab="normalized LF",

main="normalized LF",type="l")
plot(normUnits$Time, normUnits$HF, xlab="Time", ylab="normalized HF",

main="normalized HF",type="l")
par(mfrow=c(1,1))

End(Not run)

HRVData HRVData

Description

HRVData structure containing the occurrence times of the hearbeats of patient suffering from para-
plegia and hypertension. The subject from whom the HR was obtained is a patient suffering from
paraplegia and hypertension (systolic blood pressure above 200 mmHg). During the recording, he
is supplied with prostaglandin E1 (a vasodilator that is rarely employed) and systolic blood pres-
sure fell to 100 mmHg for over an hour. Then, the blood pressure was slowly recovering until 150
mmHg, more or less

Usage

data(HRVData)

HRVProcessedData 49

Format

A HRVData structure containing the occurrence times of the heartbeats

See Also

HRVProcessedData

HRVProcessedData HRVProcessedData

Description

HRV data containing the heart rhythm of patient suffering from paraplegia and hypertension. The
subject from whom the HR was obtained is a patient suffering from paraplegia and hypertension
(systolic blood pressure above 200 mmHg). During the recording, he is supplied with prostaglandin
E1 (a vasodilator that is rarely employed) and systolic blood pressure fell to 100 mmHg for over an
hour. Then, the blood pressure was slowly recovering until 150 mmHg, more or less

Usage

data(HRVProcessedData)

Format

A HRVData structure containing the interpolated and filtered HR series

See Also

HRVData

IntegralCorrelation Calculates the Integral Correlation

Description

WARNING: deprecated function. The Integral correlation is calculated for every vector of the
m-dimensional space

Usage

IntegralCorrelation(HRVData, Data, m, tau, r)

50 InterpolateNIHR

Arguments

HRVData Data structure that stores the beats register and information related to it

Data Portion of HRVData to be analyzed

m Value of the dimension of the expansion of data

tau Delay of the expansion of data

r Distance for calculating correlation

Value

Returns the value of the average of IntegralCorrelations

Note

This function is used in the CalculateApEn function, which is deprecated. We suggest the use of
the CalculateSampleEntropy function instead of CalculateApEn.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

BuildTakensVector

InterpolateNIHR Linear or Spline interpolator for build the sample heart rate signal

Description

An algorithm to obtain a heart rate signal with equally spaced values at a certain sampling frequency

Usage

InterpolateNIHR(HRVData, freqhr = 4, method = c("linear", "spline"), verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

freqhr Sampling frequency

method "linear" interpolation or "spline" monotone interpolation

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

ListEpisodes 51

Value

Returns HRVData, the structure that contains beat positions register, associated heart rate instanta-
neous values also, and filtered heart rate signal equally spaced

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

ListEpisodes Episodes listing

Description

Lists episodes included in a RHRV record

Usage

ListEpisodes(HRVData, TimeHMS = FALSE)

Arguments

HRVData Data structure that stores the beats register and information related to it

TimeHMS Boolean argument to print times in H:M:S format

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

52 LoadApneaWFDB

LoadApneaWFDB Loads apnea episodes for WFDB record

Description

Loads the information of apnea episodes and stores it into the data structure containing the beat
positions and other related information

Usage

LoadApneaWFDB(HRVData, RecordName, RecordPath = ".", Tag = "APNEA",
verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The WFDB file to be used

RecordPath The path of the WFDB file

Tag to include APNEA episodes

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register and other related information
and apnea episodes information

Note

An example including all the steps to download a record from Physionet and load its content and
the Apnea annotations is included below:

dirorig <- "http://www.physionet.org/physiobank/database/apnea-ecg/"
files <- c("a01.hea", "a01.apn", "a01.qrs")
filesorig <- paste(dirorig, files, sep = "")
for (i in 1:length(files))
download.file(filesorig[i], files[i])
hrv.data <- CreateHRVData()
hrv.data <- LoadBeatWFDB(hrv.data, "a01")
hrv.data <- LoadApneaWFDB(hrv.data, "a01")

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

LoadBeat 53

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

LoadBeat Builds an array of beats positions from different type of files

Description

Reads the specific file with data of beat positions and stores the values in a data structure

Usage

LoadBeat(fileType, HRVData, Recordname, RecordPath = ".",
annotator = "qrs", scale = 1, datetime = "1/1/1900 0:0:0",
annotationType = "QRS", verbose = NULL)

Arguments

fileType The format of the file to be used: WFDB, Ascii, RR, Polar, Suunto, EDFPlus,
Ambit

HRVData Data structure that stores the beats register and information related to it
Recordname The file to be used
RecordPath The path of the file
annotator The extension of the file, only if we are working with a WFDB file
scale 1 if beat positions in seconds or 0.001 if beat positions in milliseconds, only if

we are working with a RR or an Ascii file
datetime Date and time (DD/MM/YYYY HH:MM:SS), only if we are working with a RR

or an Ascii file
annotationType The type of annotation wished, only if we are working with an EDF+ file
verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

I. Garcia

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

54 LoadBeatAscii

LoadBeatAmbit Imports data from a record in Suunto Ambit XML format

Description

Reads a Suunto Ambit XML file with data of beat positions and stores the values in a data structure

Usage

LoadBeatAmbit(HRVData, RecordName, RecordPath = ".", verbose = NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The Suunto Ambit XML file to be read

RecordPath The path of the file

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

Matti Lassila

References

L. Rodriguez-Linares, X. Vila, A. Mendez, M. Lado, D. Olivieri, "RHRV: An R-based software
package for heart rate variability analysis of ECG recordings," 3rd Iberian Conference in Systems
and Information Technologies (CISTI 2008), Proceedings I, 565-573, ISBN: 978-84-612-4476-8
(2008)

LoadBeatAscii Builds an array of beats positions from an ascii file

Description

Reads an ascii file with data of beat positions and stores the values in a data structure. A segment
of a file can be loaded making use of the "starttime" and "endtime" arguments.

Usage

LoadBeatAscii(HRVData, RecordName, RecordPath=".", scale = 1, starttime=NULL,
endtime=NULL, datetime = "1/1/1900 0:0:0", verbose = NULL)

LoadBeatEDFPlus 55

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName Ascii file containing the beats to be loaded

RecordPath The path of the file

scale 1 if beat positions in seconds or 0.001 if beat positions in milliseconds

starttime Beginning of the segment of file to load

endtime End of the segment of file to load

datetime Date and time (DD/MM/YYYY HH:MM:SS)

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Loads beats positions into the structure that contains RHRV information. The file containing the
heartbeats positions must be a single column file with no headers. Each line should denote the
occurrence time of each heartbeat. An example of a valid file could be the following:
0
0.3280001
0.7159996
1.124
1.5
1.88
(...)

Author(s)

A. Mendez, L. Rodriguez, A. Otero, C.A. Garcia, X. Vila, M. Lado

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

LoadBeatEDFPlus Imports data from a record in EDF+ format

Description

Basically, this algorithm reads the annotation file for the ECG register, and stores the information
obtained in a data structure.

Usage

LoadBeatEDFPlus(HRVData, RecordName, RecordPath = ".",
annotationType ="QRS", verbose = NULL)

56 LoadBeatPolar

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The EDF+ file to be used

RecordPath The path of the file

annotationType The type of annotation wished

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

I. Garcia

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

LoadBeatPolar Imports data from a record in Polar format

Description

Reads a Polar file with data of beat positions and stores the values in a data structure

Usage

LoadBeatPolar(HRVData, RecordName, RecordPath=".", verbose = NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The Polar file to be used

RecordPath The path of the file

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

I. Garcia

LoadBeatRR 57

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

LoadBeatRR Builds an array of beats positions from an ascii file

Description

Reads an ascii file containing RR values, i.e. distances between two successive beats.

Usage

LoadBeatRR(HRVData, RecordName, RecordPath=".", scale = 1,
datetime = "1/1/1900 0:0:0", verbose = NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The Ascii file to be used

RecordPath The path of the file

scale 1 if beat positions in seconds or 0.001 if beat positions in milliseconds

datetime Date and time (DD/MM/YYYY HH:MM:SS)

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

I. Garcia

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

58 LoadBeatVector

LoadBeatSuunto Imports data from a record in Suunto format

Description

Reads a Suunto file with data of beat positions and stores the values in a data structure

Usage

LoadBeatSuunto(HRVData, RecordName, RecordPath = ".", verbose = NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The Suunto file to be read

RecordPath The path of the file

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

I. Garcia

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

LoadBeatVector Loads beats positions from an R vector

Description

Stores the beat positions from an R vector under the HRVData data structure.

Usage

LoadBeatVector(HRVData, beatPositions, scale = 1, datetime = "1/1/1900 0:0:0")

LoadBeatWFDB 59

Arguments

HRVData Data structure that stores the beats recording and information related to it

beatPositions Numeric vector with the heartbeats occurrence’s times since the beginning of
the recording. See scale parameter to specify the units

scale Numeric value identifying the temporal units in which the beat positions are
specified: 1 if beat positions is specified in seconds, 0.001 if beat positions in
milliseconds, etc.

datetime Date and time (DD/MM/YYYY HH:MM:SS) of the beginning of the recording

Value

A HRVData structure containing the heartbeat positions from the beatPositions vector.

Examples

Not run:
hd = CreateHRVData()
hd = LoadBeatVector(hd,

c(0.000, 0.328, 0.715, 0.124, 1.50,1.880, 2.268, 2.656))
hd = BuildNIHR(hd)
... continue analyzing the recording

End(Not run)

LoadBeatWFDB Imports data from a record in WFDB format

Description

Basically, this algorithm reads the annotation file for the ECG register, and stores the information
obtained in a data structure.

Usage

LoadBeatWFDB(HRVData, RecordName, RecordPath = ".", annotator = "qrs",
verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The WFDB file to be used

RecordPath The path of the file

annotator The extension of the file

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

60 LoadEpisodesAscii

Value

Returns HRVData, the structure that contains beat positions register

Author(s)

I. Garcia

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

LoadEpisodesAscii Loads episodes file

Description

Loads the information of episodes, or annotated physiological events, and stores it into the data
structure containing the beat positions

Usage

LoadEpisodesAscii(HRVData, FileName, RecordPath=".", Tag="", InitTime="0:0:0",
verbose=NULL,header = TRUE)

Arguments

HRVData Data structure that stores the beats register and information related to it

FileName The episodes file to be used

RecordPath The path of the file

Tag Type of episode

InitTime Time (HH:MM:SS)

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

header Logical value. If TRUE, then the first line of the file is skipped. Default: TRUE.

Value

Returns HRVData, the structure that contains beat positions register and episodes information

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

LoadHeaderWFDB 61

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

LoadHeaderWFDB Imports header information from a record in wfdb format

Description

Reads the header file for the ECG register, and stores the information obtained in a data structure

Usage

LoadHeaderWFDB(HRVData, RecordName, RecordPath = ".", verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

RecordName The ECG file to be used

RecordPath The path of the ECG file

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns Data, the structure that contains beat positions register and data extracted from header file

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

62 ModifyEpisodes

ModifyEpisodes Modifies values of episodes

Description

This function allow users to modify the parameters that define episodes: Tags, InitTimes, Durations
and Values.

Episodes can be selected by Tags or Indexes (or both) and more than one episodes’ characteristics
can be modified within the same call.

When modifying more than one episode, vectors of new parameters are recycled.

After the modification has been made, duplicate episodes are removed and they are reordered by
increasing InitTimes.

Usage

ModifyEpisodes(HRVData, Tags=NULL, Indexes=NULL, NewInitTimes=NULL,
NewTags=NULL, NewDurations=NULL ,NewValues=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

Tags Vector containing types of episodes to remove

Indexes Vector containing indexes of episodes to remove (see ListEpisodes())

NewInitTimes Vector containing new init times in seconds

NewTags Vector containing new tags for episodes

NewDurations Vector containing new durations in seconds

NewValues Vector containing new numerical values for episodes

Value

Returns HRVData, the structure that contains beat positions register and new episodes information

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

NonlinearityTests 63

NonlinearityTests Nonlinearity tests

Description

Nonlinearity tests

Usage

NonlinearityTests(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis)

)

Arguments

HRVData Structure containing the RR time series.

indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis

Details

This function runs a set of nonlinearity tests on the RR time series implemented in other R packages
including:

• Teraesvirta’s neural metwork test for nonlinearity (terasvirta.test).

• White neural metwork test for nonlinearity (white.test).

• Keenan’s one-degree test for nonlinearity (Keenan.test).

• Perform the McLeod-Li test for conditional heteroscedascity (ARCH). (McLeod.Li.test).

• Perform the Tsay’s test for quadratic nonlinearity in a time series. (Tsay.test).

• Perform the Likelihood ratio test for threshold nonlinearity. (tlrt).

Value

A HRVData structure containing a NonlinearityTests field storing the results of each of the tests.
The NonlinearityTests list is stored under the NonLinearAnalysis structure.

64 NonLinearNoiseReduction

NonLinearNoiseReduction

Nonlinear noise reduction

Description

Function for denoising the RR time series using nonlinear analysis techniques.

Usage

NonLinearNoiseReduction(
HRVData,
embeddingDim = NULL,
radius = NULL,
ECGsamplingFreq = NULL

)

Arguments

HRVData Data structure that stores the beats register and information related to it

embeddingDim Integer denoting the dimension in which we shall embed the RR time series.

radius The radius used to looking for neighbours in the phase space (see details). If the
radius is not specified, a radius depending on the resolution of the RR time series
is used. The resolution depends on the ECGsamplingFreq parameter. When
selecting the radius it must be taken into account that the RR series is specified
in milliseconds.

ECGsamplingFreq

The sampling frequency of the ECG from which the RR time series was derived.
Although it is not necessary, if it is provided it may improve the noise reduction.
If the ECGsamplingFreq is not supplied, the sampling frequency is derived from
the RR data.

Details

This function takes the RR time series and denoises it. The denoising is achieved by averaging each
Takens’ vector in an m-dimensional space with his neighbours (time lag=1). Each neighbourhood
is specified with balls of a given radius (max norm is used).

Value

A HRVData structure containing the denoised RR time series.

Note

This function is based on the nonLinearNoiseReduction function from the nonlinearTseries pack-
age.

OverplotEpisodes 65

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

nonLinearNoiseReduction

OverplotEpisodes OverplotEpisodes

Description

Add episodic information to the current plot

Usage

OverplotEpisodes(
HRVData,
Tags = NULL,
Indexes = NULL,
epColorPalette = NULL,
eplim,
lty = 2,
markEpisodes = T,
ymark,
showEpLegend = T,
epLegendCoords = NULL,
Tag = NULL,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.

Tags List of tags to specify which episodes, as apnoea or oxygen desaturation, are
included in the plot. Tags="all" plots all episodes present in the data.

Indexes List of indexes of episodes (see ListEpisodes) to specify which episodes are
included in the plot. Indexes="all" plots all episodes present in the data.

epColorPalette Vector specifying the color of each of the episodes that will be plotted. The
length of epColorPalette should be equal or greater than the number of different
episodes to be plotted.

eplim Two-component vector specifying the y-range (min,max) for the vertical lines
limiting each episode.

lty The line type for the vertical lines limiting each episode.

markEpisodes Boolean specyfing if a horizontal mark should be included for each of the episodes.

66 OverplotEpisodes

ymark Two-component vector specifying the y-range (min,max) for the horizontal marks.
Only used if markEpisodes = TRUE.

showEpLegend Boolean argument. If TRUE, a legend of the episodes is included.

epLegendCoords Two-component vector specifiying the coordinates where the legend should be
placed. By defaul, the legend is placed on top of the plot.

Tag Deprecated argument maintained for compatibility, use Tags instead.

... Other graphical parameters for the vertical lines limiting each episode. See
plot.default.

Examples

Not run:
Read file "a03" from the physionet apnea-ecg database
library(RHRV)
HRVData <- CreateHRVData()
HRVData <- LoadBeatWFDB(HRVData,RecordName="test_files/WFDB/a03")
HRVData <- LoadApneaWFDB(HRVData,RecordName="test_files/WFDB/a03")
Add other type of episode for a more complete example (this episode does
not have any physiological meaning)
HRVData <- AddEpisodes(HRVData,InitTimes=c(4500),Durations=c(1000),

Tags="Other", Values = 1)
HRVData <- BuildNIHR(HRVData)
HRVData <- FilterNIHR(HRVData)
HRVData <- InterpolateNIHR(HRVData)

PlotHR(HRVData)
OverplotEpisodes(HRVData,ymark=c(150,151),eplim=c(20,150))

Change some default parameters
PlotHR(HRVData)
OverplotEpisodes(HRVData,ymark=c(150,151),eplim=c(20,150),

epLegendCoords=c(25000,150), lty=5,
epColorPalette=c("blue","green"))

Use episodic information with the spectrogram... In order to obtain a proper
representation of the episodes we need to avoid the use of the spectrogram
legend
sp <- PlotSpectrogram(HRVData, size=600, shift=60, freqRange=c(0,0.05),

showLegend=F);
OverplotEpisodes(HRVData, markEpisodes=T, ymark=c(0.04,0.0401),

eplim=c(0,0.04), Tags="APNEA",
epColorPalette = c("white"), lwd=3)

End(Not run)

PlotHR 67

PlotHR Simple plot of interpolated heart rate

Description

Plots in a simple way the interpolated instantaneous heart rate signal.

Usage

PlotHR(
HRVData,
Tags = NULL,
Indexes = NULL,
main = "Interpolated instantaneous heart rate",
xlab = "time (sec.)",
ylab = "HR (beats/min.)",
type = "l",
ylim = NULL,
Tag = NULL,
verbose = NULL,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.

Tags List of tags to specify which episodes, as apnoea or oxygen desaturation, are
included in the plot. Tags="all" plots all episodes present in the data.

Indexes List of indexes of episodes (see ListEpisodes) to specify which episodes are
included in the plot. Indexes="all" plots all episodes present in the data.

main A main title for the plot.

xlab A label for the x axis.

ylab a label for the y axis

type 1-character string giving the type of plot desired. See plot.default.

ylim The y limits of the plot.

Tag Deprecated argument maintained for compatibility, use Tags instead.

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

... Other graphical parameters. See plot.default.

Details

PlotHR

68 PlotNIHR

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila, C.A. Garcia

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

PlotNIHR Simple plot of non-interpolated heart rate

Description

Plots in a simple way the non-interpolated instantaneous heart rate signal

Usage

PlotNIHR(
HRVData,
Tags = NULL,
Indexes = NULL,
main = "Non-interpolated instantaneous heart rate",
xlab = "time (sec.)",
ylab = "HR (beats/min.)",
type = "l",
ylim = NULL,
Tag = NULL,
verbose = NULL,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it
Tags List of tags to specify which episodes, as apnoea or oxygen desaturation, are

included in the plot. Tags="all" plots all episodes present in the data.
Indexes List of indexes to specify which episodes (see ListEpisodes), are included in the

plot. Indexes="all" plots all episodes present in the data.
main A main title for the plot.
xlab A label for the x axis.
ylab a label for the y axis
type 1-character string giving the type of plot desired. See plot.default.
ylim The y limits of the plot.
Tag Deprecated argument maintained for compatibility, use Tags instead.
verbose Deprecated argument maintained for compatibility, use SetVerbose() instead
... Other graphical parameters. See plot.default.

PlotPowerBand 69

Details

PlotNIHR

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila, C.A. Garcia

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

PlotPowerBand Plots power determined by CalculatePowerBand function

Description

Plots the power of the heart rate signal at different bands of physiological interest.

Usage

PlotPowerBand(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
normalized = FALSE,
hr = FALSE,
ymax = NULL,
ymaxratio = NULL,
ymaxnorm = 1,
Tags = NULL,
Indexes = NULL,
Tag = NULL,
verbose = NULL

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexFreqAnalysis

Numeric parameter used to reference a particular frequency analysis

normalized Plots normalized powers if TRUE

hr Plots heart rate signal if TRUE

ymax Maximum value for y axis (unnormalized plots)

ymaxratio Maximum value for y axis in LF/HF band (normalized and unnormalized plots)

70 PlotPowerBand

ymaxnorm Maximum value for y axis (normalized plots)

Tags List of tags to specify which episodes, as apnoea or oxygen desaturation, are
included in the plot. Tags = "all" plots all episodes present in the data.

Indexes List of indexes to specify which episodes (see ListEpisodes), are included in the
plot. Indexes = "all" plots all episodes present in the data.

Tag Deprecated argument, use Tags instead

verbose Deprecated argument maintained for compatibility, use setVerbose() instead

Details

PlotPowerBand

Note

See PlotSinglePowerBand for a more flexible function for plotting power bands.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, L., A.J. Mendez, M.J. Lado, D.N. Olivieri, X.A. Vila, and I. Gomez-Conde,
"An open source tool for heart rate variability spectral analysis", Computer Methods and Programs
in Biomedicine 103(1):39-50, july 2011.

See Also

CalculatePowerBand for power calculation and PlotSinglePowerBand

Examples

Not run:
Reading a wfdb register and storing into a data structure:
md = CreateHRVData(Verbose = TRUE)
md = LoadBeatWFDB(md, RecordName = "register_name",

RecordPath = "register_path")

Calculating heart rate signal:md = BuildNIHR(md)

Filtering heart rate signal:
md = FilterNIHR(md)
Interpolating heart rate signal:
md = InterpolateNIHR(md)
Calculating spectrogram and power per band:
md = CreateFreqAnalysis(md)
md = CalculatePowerBand(md, indexFreqAnalysis = 1, size = 120,

shift = 10, sizesp = 1024)
Plotting Power per Band
PlotPowerBand(md, hr = TRUE, ymax = 700000, ymaxratio = 4)

PlotPSD 71

End(Not run)

PlotPSD Plot Spectral Density Estimation

Description

Plot the PSD estimate of the RR time series distinguishing the different frequency bands with dif-
ferent colurs.

Usage

PlotPSD(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
ULFmin = 0,
ULFmax = 0.03,
VLFmin = 0.03,
VLFmax = 0.05,
LFmin = 0.05,
LFmax = 0.15,
HFmin = 0.15,
HFmax = 0.4,
log = "y",
type = "l",
xlab = "Frequency (Hz) ",
ylab = "Spectrum",
main = NULL,
xlim = c(min(ULFmin, ULFmax, VLFmin, VLFmax, LFmin, LFmax, HFmin, HFmax), max(ULFmin,

ULFmax, VLFmin, VLFmax, LFmin, LFmax, HFmin, HFmax)),
ylim = NULL,
addLegend = TRUE,
addSigLevel = TRUE,
usePalette = c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442"),
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it.
indexFreqAnalysis

An integer referencing the data structure that contains the PSD analysis.

ULFmin Lower limit ULF band used for distinguish the ULF band.

ULFmax Upper limit ULF band used for distinguish the ULF band.

VLFmin Lower limit VLF band.

72 PlotPSD

VLFmax Upper limit VLF band.

LFmin Lower limit LF band.

LFmax Upper limit LF band.

HFmin Lower limit HF band.

HFmax Upper limit HF band.

log a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.
Default: "y".

type 1-character string giving the type of plot desired. See plot.default.

xlab a label for the x axis. See plot.default.

ylab a label for the y axis. See plot.default.

main a main title for the plot. See plot.default.

xlim the x limits (x1, x2) of the plot. See plot.default.

ylim the y limits of the plot.

addLegend add a simple legend? Default: True.

addSigLevel Logical value (only used with the lomb method). If true an horizontal line lim-
iting the significance level is included (Powers > sig.level can be considered
significant peaks). See lsp.

usePalette A new palette of colors for plotting the frequency bands.

... graphical parameters. See plot.default.

See Also

spectrum, lsp, CalculatePSD.

Examples

Not run:
data(HRVData)
HRVData=BuildNIHR(HRVData)
HRVData=FilterNIHR(HRVData)
Frequency analysis requires interpolated data (except Lomb)
HRVData=InterpolateNIHR(HRVData)
Create a different freqAnalysis for each method
HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,1,"pgram",doPlot = F)

HRVData=CalculatePSD(HRVData,2,"pgram",spans=9,doPlot = F)

HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,3,"ar",doPlot = F)

HRVData=CreateFreqAnalysis(HRVData)
HRVData=CalculatePSD(HRVData,4,"lomb",doPlot = F)
Plot the results
layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE))

PlotSinglePowerBand 73

PlotPSD(HRVData,1)
PlotPSD(HRVData,2)
PlotPSD(HRVData,3)
PlotPSD(HRVData,4)

End(Not run)

PlotSinglePowerBand PlotSinglePowerBand

Description

Plots a concrete power band computed by the CalculatePowerBand function

Usage

PlotSinglePowerBand(
HRVData,
indexFreqAnalysis = length(HRVData$FreqAnalysis),
band = c("LF", "HF", "ULF", "VLF", "LF/HF"),
normalized = FALSE,
main = paste(band, "Power Band"),
xlab = "Time",
ylab = paste("Power in", band),
type = "l",
Tags = NULL,
Indexes = NULL,
eplim = NULL,
epColorPalette = NULL,
markEpisodes = TRUE,
ymark = NULL,
showEpLegend = TRUE,
epLegendCoords = NULL,
Tag = NULL,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexFreqAnalysis

Numeric parameter used to reference a particular frequency analysis

band The frequency band to be plotted. Allowd bands are "ULF", "VLF", "LF" (de-
fault), "HF" and "LF/HF")

normalized Plots normalized powers if TRUE

main A main title for the plot.

74 PlotSinglePowerBand

xlab A label for the x axis.

ylab A label for the y axis

type 1-character string giving the type of plot desired. See plot.default.

Tags List of tags to specify which episodes, as apnoea or oxygen desaturation, are
included in the plot. Tags="all" plots all episodes present in the data.

Indexes List of indexes of episodes (see ListEpisodes) to specify which episodes are
included in the plot. Indexes="all" plots all episodes present in the data.

eplim Two-component vector specifying the y-range (min,max) for the vertical lines
limiting each episode.

epColorPalette Vector specifying the color of each of the episodes that will be plotted. The
length of colorPalette should be equal or greater than the number of different
episodes to be plotted.

markEpisodes Boolean specyfing if a horizontal mark should be included for each of the episodes.

ymark Two-component vector specifying the y-range (min,max) for the horizontal marks.
Only used if markEpisodes = TRUE.

showEpLegend Boolean argument. If TRUE, a legend of the episodes is included.

epLegendCoords Two-component vector specifiying the coordinates where the legend should be
placed. By defaul, the legend is placed on top of the plot.

Tag Deprecated argument maintained for compatibility, use Tags instead

... Other graphical parameters for plotting the power band. See plot.default.

See Also

CalculatePowerBand for power calculation

Examples

Not run:

Read file "a03" from the physionet apnea-ecg database
library(RHRV)
HRVData <- CreateHRVData()
HRVData <- LoadBeatWFDB(HRVData,RecordName="test_files/WFDB/a03")
HRVData <- LoadApneaWFDB(HRVData,RecordName="test_files/WFDB/a03")
Calculating heart rate signal:
HRVData <- BuildNIHR(HRVData)

Filtering heart rate signal:
HRVData <- FilterNIHR(HRVData)

Interpolating heart rate signal:
HRVData = InterpolateNIHR(HRVData)

HRVData = CreateFreqAnalysis(HRVData)
HRVData = CalculatePowerBand(HRVData, indexFreqAnalysis = 1,

size = 300, shift = 60, sizesp = 1024)

PlotSpectrogram 75

layout(matrix(1:4, nrow = 2))
PlotSinglePowerBand(HRVData, 1, "VLF", Tags = "APNEA", epColorPalette = "red",

epLegendCoords = c(2000,7500))
PlotSinglePowerBand(HRVData, 1, "LF", Tags = "APNEA", epColorPalette = "red",

eplim = c(0,6000),
markEpisodes = F, showEpLegend = FALSE)

PlotSinglePowerBand(HRVData, 1, "HF", Tags = "APNEA", epColorPalette = "red",
epLegendCoords = c(2000,1700))

PlotSinglePowerBand(HRVData, 1, "LF/HF", Tags = "APNEA", epColorPalette = "red",
eplim = c(0,20),
markEpisodes = F, showEpLegend = FALSE)

Reset layout
par(mfrow = c(1,1))

End(Not run)

PlotSpectrogram Calculates and Plots spectrogram

Description

Plots spectrogram of the heart rate signal as calculated by CalculateSpectrogram() function

Usage

PlotSpectrogram(
HRVData,
size,
shift,
sizesp = NULL,
freqRange = NULL,
scale = "linear",
verbose = NULL,
showLegend = TRUE,
Tags = NULL,
Indexes = NULL,
eplim = NULL,
epColorPalette = NULL,
markEpisodes = TRUE,
ymark = NULL,
showEpLegend = TRUE,
epLegendCoords = NULL,
main = "Spectrogram of the HR series",
xlab = "Time (sec.)",
ylab = "Frequency (Hz.)",
ylim = freqRange,
Tag = NULL,
...

)

76 PlotSpectrogram

Arguments

HRVData Data structure that stores the beats register and information related to it

size Size of window for calculating spectrogram (seconds)

shift Displacement of window for calculating spectrogram (seconds)

sizesp Points for calculation (zero padding). If the user does not specify it, the function
estimates a propper value.

freqRange Vector with two components specifying the frequency range that the program
should plot. If the user does not specify it, the function uses the whole frequency
range. It is possible to specify the frequency range using the ylim parameter.

scale Scale used to plot spectrogram, linear or logarithmic

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

showLegend Logical argument. If true, a legend of the color map is shown (default is TRUE)

Tags List of tags to specify which episodes, as apnoea or oxygen desaturation, are
included in the plot. Tags="all" plots all episodes present in the data.

Indexes List of indexes of episodes (see ListEpisodes()) to specify which episodes are
included in the plot. Indexes="all" plots all episodes present in the data.

eplim Two-component vector specifying the y-range (min,max) for the vertical lines
limiting each episode.

epColorPalette Vector specifying the color of each of the episodes that will be plotted. The
length of colorPalette should be equal or greater than the number of different
episodes to be plotted.

markEpisodes Boolean specyfing if a horizontal mark should be included for each of the episodes.

ymark Two-component vector specifying the y-range (min,max) for the horizontal marks.
Only used if markEpisodes = TRUE.

showEpLegend Boolean argument. If TRUE, a legend of the episodes is included.

epLegendCoords Two-component vector specifiying the coordinates where the legend should be
placed. By defaul, the legend is placed on top of the plot.

main A main title for the plot.

xlab A label for the x axis.

ylab A label for the y axis

ylim Numeric vectors of length 2, giving the x and y coordinates range. If freqRange
is specified, ylim is overwriten by it because of backward compatibility.

Tag Deprecated argument maintained for compatibility, use Tags instead.

... Other graphical parameters. See filled.contour.

Details

PlotSpectrogram

Note

PlotSpectrogram with showLegend = TRUE uses the layout function and so is restricted to a full
page display. Select showLegend = FALSE in order to use the layout function.

PlotSpectrogram 77

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila. C.A. Garcia

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

CalculateSpectrogram for spectrogram calculation

Examples

Not run:

Read file "a03" from the physionet apnea-ecg database
library(RHRV)
HRVData <- CreateHRVData()
HRVData <- LoadBeatWFDB(HRVData,RecordName="test_files/WFDB/a03")
HRVData <- LoadApneaWFDB(HRVData,RecordName="test_files/WFDB/a03")
Add other type of episode for a more complete example (this episode does
not have any physiological meaning)
HRVData <- AddEpisodes(HRVData,InitTimes=c(4500),Durations=c(1000),

Tags="Other", Values = 1)
Calculating heart rate signal:
HRVData <- BuildNIHR(HRVData)

Filtering heart rate signal:
HRVData <- FilterNIHR(HRVData)

Interpolating heart rate signal:
HRVData = InterpolateNIHR(HRVData)

Calculating and Plotting Spectrogram
spctr <- PlotSpectrogram(HRVData, size = 120, shift = 10, sizesp = 1024,

freqRange=c(0,0.14), color.palette = topo.colors)

spctr <- PlotSpectrogram(HRVData,size=120, shift=60, Tags="all",
ylim=c(0,0.1),
showLegend=T,
eplim = c(0,0.06),
epColorPalette=c("skyblue","white"),
showEpLegend = T,
epLegendCoords = c(15000,0.08),
ymark=c(0.001,0.002))

End(Not run)

78 PoincarePlot

PoincarePlot Poincare Plot

Description

The Poincare plot is a graphical representation of the dependance between successive RR intervals
obtained by plotting the RRj+τ as a function of RRj . This dependance is often quantified by fitting
an ellipse to the plot. In this way, two parameters are obtained: SD1 and SD2. SD1 characterizes
short-term variability whereas that SD2 characterizes long-term variability.

Usage

PoincarePlot(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
timeLag = 1,
confidenceEstimation = FALSE,
confidence = 0.95,
doPlot = FALSE,
main = "Poincare plot",
xlab = "RR[n]",
ylab = paste0("RR[n+", timeLag, "]"),
pch = 1,
cex = 0.3,
type = "p",
xlim = NULL,
ylim = NULL,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis

timeLag Integer denoting the number of time steps that will be use to construct the de-
pendance relation: RRj+timeLag as a function of RRj .

confidenceEstimation

Logical value. If TRUE, the covariance matrix is used for fitting the ellipse and
computing the SD1 and SD2 parameters (see details). Default: FALSE.

confidence The confidence used for plotting the confidence ellipse.

doPlot Logical value. If TRUE (default), the PoincarePlot is shown.

main An overall title for the Poincare plot.

xlab A title for the x axis.

ylab A title for the y axis.

ReadFromFile 79

pch Plotting character (symbol to use).

cex Character (or symbol) expansion.

type What type of plot should be drawn. See plot.default.

xlim x coordinates range. If not specified, a proper x range is selected.

ylim y coordinates range. If not specified, a proper y range is selected.

... Additional parameters for the Poincare plot figure.

Details

In the HRV literature, when timeLag = 1, the SD1 and SD2 parameters are computed using time
domain measures. This is the default approach in this function if timeLag=1. This function also
allows the user to fit a ellipse by computing the covariance matrix of (RRj ,RRj+τ) (by setting
confidenceEstimation = TRUE). In most cases, both approaches yield similar results.

Value

A HRVData structure containing a PoincarePlot field storing the SD1 and SD2 parameters. The
PoincarePlot field is stored under the NonLinearAnalysis list.

Examples

Not run:
data(HRVProcessedData)
rename for convenience
hd = HRVProcessedData
hd = CreateNonLinearAnalysis(hd)
hd = PoincarePlot(hd, doPlot = T)

End(Not run)

ReadFromFile Reads data structure from file

Description

Reads the data structure containing beat positions and all derived calculations from file

Usage

ReadFromFile(name, verbose=FALSE)

Arguments

name The name of the file to be used (without the .hrv extension)

verbose Logical value that sets the verbose mode on or off

80 RecurrencePlot

Value

Returns the HRVData structure previously stored in the given file.

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

RecurrencePlot Recurrence Plot

Description

Plot the recurrence matrix of the RR time series.

Usage

RecurrencePlot(
HRVData,
numberPoints = 1000,
embeddingDim = NULL,
timeLag = NULL,
radius = 1,
...

)

Arguments

HRVData Data structure that stores the beats register and information related to it

numberPoints Number of points from the RR time series to be used in the RQA computation.
Default: 1000 heartbeats.

embeddingDim Integer denoting the dimension in which we shall embed the RR time series.

timeLag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

radius Maximum distance between two phase-space points to be considered a recur-
rence.

... Additional plotting parameters.

Details

WARNING: This function is computationally very expensive. Use with caution.

RemoveEpisodes 81

Note

This function is based on the recurrencePlot function from the nonlinearTseries package.

References

Zbilut, J. P. and C. L. Webber. Recurrence quantification analysis. Wiley Encyclopedia of Biomed-
ical Engineering (2006).

See Also

recurrencePlot, RQA

RemoveEpisodes Remove episodes by indexes or tags

Description

Removes episodes from the data. Episodes can be specified using indexes or tags

Usage

RemoveEpisodes(HRVData, Tags = NULL, Indexes = NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

Tags Vector containing types of episodes to remove

Indexes Vector containing indexes of episodes to remove (see ListEpisodes())

Value

Returns HRVData, without the removed episodes

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

82 RHRVEasy

RHRVEasy Run a full HRV analysis including indices computation and statistical
analysis

Description

Run a full HRV analysis including indices computation and statistical analysis

Usage

RHRVEasy(
folders,
correctionMethod = c("bonferroni", "holm", "hochberg", "hommel", "BH", "BY", "fdr",

"none"),
verbose = FALSE,
format = "RR",
typeAnalysis = c("fourier", "wavelet"),
significance = 0.05,
nonLinear = FALSE,
doRQA = FALSE,
nJobs = 1,
saveHRVIndicesInPath = NULL,
...

)

Arguments

folders A character vector with the paths to the folders containing the HRV files. Each
folder should contain the HRV files of a group.

correctionMethod

The method to correct for multiple comparisons. Can be one of "bonferroni",
"holm", "hochberg", "hommel", "BH", "BY", "fdr" and "none". Default is "bon-
ferroni".

verbose Logical. If TRUE, the function will show a progress bar and print additional
information to the console.

format The format of the HRV files. Can be one of "WFDB", "Ascii", "RR", "Polar",
"Suunto", "EDFPlus" and "Ambit".

typeAnalysis The type of frequency analysis to perform. Can be one of "fourier" or "wavelet".

significance The significance level to use in the statistical analysis. By default, it is set to
0.05.

nonLinear Logical. If TRUE, the function will compute non-linear indices. It should be
noted that this process is computationally expensive.

doRQA Logical. If TRUE, the function will compute Recurrence Quantification Analy-
sis (RQA) indices. This parameter is ignored if ‘nonLinear‘ is set to FALSE.It
should be noted that this process is computationally expensive.

RHRVEasyStats 83

nJobs The number of parallel jobs to use. ‘nJobs <= 0‘ uses all cores available. By
default, it is set to 1.

saveHRVIndicesInPath

The path where the HRV indices will be saved as an excel file. If NULL, the
indices will not be saved. See [SaveHRVIndices()] for more details.

... Additional arguments for the HRV analysis. For further details, see the ‘RHRV‘
package.

Value

An object of class ‘RHRVEasyResult‘ containing the HRV indices (slot ‘$HRVIndices‘) and the
statistical analysis results (slot ‘$stats‘)

RHRVEasyStats Rerun the statistical analysis from a previous ‘RHRVEasy()‘ call

Description

Rerun the statistical analysis from a previous ‘RHRVEasy()‘ call

Usage

RHRVEasyStats(
RHRVEasyResultObject,
correctionMethod = c("bonferroni", "holm", "hochberg", "hommel", "BH", "BY", "fdr",

"none"),
significance = 0.05

)

Arguments

RHRVEasyResultObject

An object of class ‘RHRVEasyResult‘ as returned by ‘RHRVEasy()‘
correctionMethod

The method to correct for multiple comparisons. Can be one of "bonferroni",
"holm", "hochberg", "hommel", "BH", "BY", "fdr" and "none". Default is "bon-
ferroni".

significance The significance level to use in the statistical analysis. By default, it is set to
0.05.

Value

An object of class ‘RHRVEasyResult‘ containing the HRV indices (slot ‘$HRVIndices‘) and the
statistical analysis results (slot ‘$stats‘)

See Also

[RHRVEasy()]

84 RQA

RQA Recurrence Quantification Analysis (RQA)

Description

The Recurrence Quantification Analysis (RQA) is an advanced technique for the nonlinear analysis
that allows to quantify the number and duration of the recurrences in the phase space. This function
computes the RQA of the RR time series.

Usage

RQA(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
numberPoints = NULL,
embeddingDim = NULL,
timeLag = NULL,
radius = 1,
lmin = 2,
vmin = 2,
distanceToBorder = 2,
doPlot = FALSE

)

Arguments

HRVData Data structure that stores the beats register and information related to it
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis

numberPoints Number of points from the RR time series to be used in the RQA computation.
If the number of points is not specified, the whole RR time series is used.

embeddingDim Integer denoting the dimension in which we shall embed the RR time series.

timeLag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

radius Maximum distance between two phase-space points to be considered a recur-
rence.

lmin Minimal length of a diagonal line to be considered in the RQA. Default lmin =
2.

vmin Minimal length of a vertical line to be considered in the RQA. Default vmin = 2.
distanceToBorder

In order to avoid border effects, the distanceToBorder points near the border of
the recurrence matrix are ignored when computing the RQA parameters. De-
fault, distanceToBorder = 2.

doPlot Logical. If TRUE, the recurrence plot is shown. However, plotting the recur-
rence matrix is computationally expensive. Use with caution.

SaveHRVIndices 85

Value

A HRVData structure that stores an rqa field under the NonLinearAnalysis list. The rqa field consist
of a list with the most important RQA parameters:

• REC: Recurrence. Percentage of recurrence points in a Recurrence Plot.

• DET: Determinism. Percentage of recurrence points that form diagonal lines.

• LAM: Percentage of recurrent points that form vertical lines.

• RATIO: Ratio between DET and RR.

• Lmax: Length of the longest diagonal line.

• Lmean: Mean length of the diagonal lines. The main diagonal is not taken into account.

• DIV: Inverse of Lmax.

• Vmax: Longest vertical line.

• Vmean: Average length of the vertical lines. This parameter is also referred to as the Trapping
time.

• ENTR: Shannon entropy of the diagonal line lengths distribution

• TREND: Trend of the number of recurrent points depending on the distance to the main diag-
onal

• diagonalHistogram: Histogram of the length of the diagonals.

• recurrenceRate: Number of recurrent points depending on the distance to the main diagonal.

Note

This function is based on the rqa function from the nonlinearTseries package.

References

Zbilut, J. P. and C. L. Webber. Recurrence quantification analysis. Wiley Encyclopedia of Biomed-
ical Engineering (2006).

See Also

rqa, RecurrencePlot

SaveHRVIndices Save the HRV indices as an excel file

Description

Save the HRV indices as an excel file

86 SetVerbose

Usage

SaveHRVIndices(
RHRVEasyResultObject,
saveHRVIndicesInPath = ".",
filename = NULL

)

Arguments

RHRVEasyResultObject

An object of class ‘RHRVEasyResult‘ as returned by ‘RHRVEasy()‘
saveHRVIndicesInPath

The path where the HRV indices will be saved as an excel file. The name of the
file is automatically created based on the groups being compared.

filename Filename of the excel file. If not provided, the name of the file is built using the
names of the groups being compared.

SetVerbose Sets verbose mode on or off

Description

Sets verbose mode on or off, verbose is a boolean component of the data structure HRVData that
allows to specify if all the functions return additional information

Usage

SetVerbose(HRVData, Verbose)

Arguments

HRVData Data structure that stores the beats register and information related to it

Verbose Boolean argument that allows to specify if the function returns additional infor-
mation

Value

Returns HRVData, the structure that will contain beat positions register, associated heart rate in-
stantaneous values, filtered heart rate signal equally spaced, and one or more analysis structures

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

SplitHRbyEpisodes 87

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

SplitHRbyEpisodes Splits Heart Rate Data using Episodes information

Description

Splits Heart Rate Data in two parts using an specific episode type: data inside episodes and data
outside episodes

Usage

SplitHRbyEpisodes(HRVData, Tag = "", verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

Tag Type of episode

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns a list with two vectors that is, the values of Heart Rate Data inside and outside episodes

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

AnalyzeHRbyEpisodes for processing Heart Rate Data using an specific episode type

88 SplitPowerBandByEpisodes

SplitPowerBandByEpisodes

Splits Power Per Band using Episodes information

Description

Splits Power per Band in two lists using an specific episode type: data inside episodes and data
outside episodes

Usage

SplitPowerBandByEpisodes(HRVData, indexFreqAnalysis =
length(HRVData$FreqAnalysis), Tag = "",
verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

indexFreqAnalysis

Reference to the data structure that will contain the variability analysis

Tag Type of episode

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

Value

Returns a list with two lists: InEpisodes and OutEpisodes, both lists include ULF, VLF, LF and HF
bands

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open
sourcetool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

See Also

CalculatePowerBand for power calculation

SurrogateTest 89

SurrogateTest Surrogate data testing

Description

Surrogate data testing

Usage

SurrogateTest(
HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
significance = 0.05,
oneSided = FALSE,
alternative = c("smaller", "larger"),
K = 1,
useFunction,
xlab = "Values of the statistic",
ylab = "",
main = "Surrogate data testing on the RR intervals",
doPlot = TRUE,
...

)

Arguments

HRVData Structure containing the RR time series.
indexNonLinearAnalysis

Reference to the data structure that will contain the nonlinear analysis
significance Significance of the test.
oneSided Logical value. If TRUE, the routine runs a one-side test. If FALSE, a two-side

test is applied (default).
alternative Specifies the concrete type of one-side test that should be performed: If the

the user wants to test if the statistic from the original data is smaller (alterna-
tive="smaller") or larger (alternative="larger") than the expected value under
the null hypothesis.

K Integer controlling the number of surrogates to be generated (see details).
useFunction The function that computes the discriminating statistic that shall be used for

testing.
xlab a title for the x axis.
ylab a title for the y axis.
main an overall title for the plot.
doPlot Logical value. If TRUE, a graphical representation of the statistic value for both

surrogates and original data is shown.
... Additional arguments for the useFunction function.

90 Window

Details

This function tests the null hypothesis (H0) stating that the series is a gaussian linear process. The
test is performed by generating several surrogate data according to H0 and comparing the values
of a discriminating statistic between both original data and the surrogate data. If the value of the
statistic is significantly different for the original series than for the surrogate set, the null hypothesis
is rejected and nonlinearity assumed.

To test with a significance level of α if the statistic from the original data is smaller than the expected
value under the null hypothesis (a one-side test), K/α − 1 surrogates are generated. The null
hypothesis is then rejected if the statistic from the data has one of the K smallest values. For a
two-sided test, 2K/α − 1 surrogates are generated. The null hypothesis is rejected if the statistic
from the data gives one of the K smallest or largest values.

The surrogate data is generated by using a phase randomization procedure.

Value

A HRVData structure containing a SurrogateTest field storing the statistics computed for the set
(surrogates.statistics field) and the RR time series (data.statistic field). The SurrogateTest list is
stored under the NonLinearAnalysis structure.

References

SCHREIBER, Thomas; SCHMITZ, Andreas. Surrogate time series. Physica D: Nonlinear Phe-
nomena, 2000, vol. 142, no 3, p. 346-382.

Examples

Not run:
data(HRVProcessedData)
rename for convenience
HRVData = HRVProcessedData
Select a small window that looks stationary
HRVData = Window(HRVData,start = 0, end=800)
HRVData = CreateNonLinearAnalysis(HRVData)
HRVData = SetVerbose(HRVData,TRUE)
HRVData = SurrogateTest(HRVData, indexNonLinearAnalysis = 1,

significance = 0.05, oneSided = FALSE,
K = 5, useFunction = timeAsymmetry2)

End(Not run)

Window Time windows of RR intervals

Description

Extracts a temporal subset between the times start and end.

WriteToFile 91

Usage

Window(HRVData, start, end)

Arguments

HRVData Data structure that stores the beats register and information related to it.

start The start time of the period of interest.

end The end time of the period of interest.

Details

If the HRVData episodes, beats or RR time series, these will be also extracted into the new HRV
structure. On the other hand, all the analysis stored in the original structure will be lost.

Value

A new HRVData structure containing the subset of RR intervals within the specified range.

Examples

Not run:
data(HRVProcessedData)
Rename for convenience
HRVData <- HRVProcessedData
PlotNIHR(HRVData)
newHRVData <- Window(HRVData,2000,4000)
PlotNIHR(newHRVData)

End(Not run)

WriteToFile Writes data structure to a file

Description

Writes the data structure containing beat positions and all derived calculations to a file

Usage

WriteToFile(HRVData, name, overwrite = TRUE, verbose=NULL)

Arguments

HRVData Data structure that stores the beats register and information related to it

name The name of the file to be used

overwrite Boolean argument for indicating what to do if the file already exists

verbose Deprecated argument maintained for compatibility, use SetVerbose() instead

92 WriteToFile

Author(s)

M. Lado, A. Mendez, D. Olivieri, L. Rodriguez, X. Vila

References

L. Rodriguez-Linares, A. Mendez, M. Lado, D. Olivieri, X. Vila, I. Gomez-Conde, "An open source
tool for heart rate variability spectral analysis", Computer Methods and Programs in Biomedicine
103, 39-50, doi:10.1016/j.cmpb.2010.05.012 (2011)

Index

∗ Episodes
ListEpisodes, 51
RemoveEpisodes, 81

∗ IO
LoadApneaWFDB, 52
LoadBeat, 53
LoadBeatAmbit, 54
LoadBeatAscii, 54
LoadBeatEDFPlus, 55
LoadBeatPolar, 56
LoadBeatRR, 57
LoadBeatSuunto, 58
LoadBeatWFDB, 59
LoadEpisodesAscii, 60
LoadHeaderWFDB, 61
ReadFromFile, 79
WriteToFile, 91

∗ Indexes
RemoveEpisodes, 81

∗ Tags
ListEpisodes, 51
RemoveEpisodes, 81

∗ aplot
PlotHR, 67
PlotNIHR, 68

∗ connection
LoadApneaWFDB, 52
LoadBeat, 53
LoadBeatAmbit, 54
LoadBeatAscii, 54
LoadBeatEDFPlus, 55
LoadBeatPolar, 56
LoadBeatRR, 57
LoadBeatSuunto, 58
LoadBeatWFDB, 59
LoadEpisodesAscii, 60
LoadHeaderWFDB, 61
ReadFromFile, 79
WriteToFile, 91

∗ datasets
HRVData, 48
HRVProcessedData, 49

∗ hplot
PlotPowerBand, 69
PlotSpectrogram, 75

∗ iplot
EditNIHR, 41

∗ misc
AddEpisodes, 5
AnalyzeHRbyEpisodes, 6
AvgIntegralCorrelation, 8
BuildNIHR, 9
BuildTakensVector, 11
CalculateApEn, 12
CalculateFracDim, 21
CalculatePowerBand, 28
CalculateRfromCorrelation, 32
CalculateSpectrogram, 35
CreateFreqAnalysis, 38
CreateHRVData, 39
CreateNonLinearAnalysis, 39
CreateTimeAnalysis, 40
FilterNIHR, 45
GenerateEpisodes, 46
IntegralCorrelation, 49
InterpolateNIHR, 50
ModifyEpisodes, 62
SetVerbose, 86
SplitHRbyEpisodes, 87
SplitPowerBandByEpisodes, 88

∗ package
RHRV-package, 3

AddEpisodes, 5
AnalyzeHRbyEpisodes, 6, 87
AnalyzePowerBandsByEpisodes, 7
AvgIntegralCorrelation, 8, 13

BuildNIHR, 9

93

94 INDEX

BuildTakens, 10, 11
buildTakens, 10, 18
BuildTakensVector, 11, 13, 50

CalculateApEn, 8, 12, 50
CalculateCorrDim, 13, 22, 24, 32
CalculateDFA, 16
CalculateEmbeddingDim, 18
CalculateEnergyInPSDBands, 20
CalculateFracDim, 21, 32
CalculateInfDim, 22
CalculateMaxLyapunov, 25
CalculatePowerBand, 28, 70, 74, 88
CalculatePSD, 20, 30, 43, 72
CalculateRfromCorrelation, 22, 32
CalculateSampleEntropy, 8, 12, 33, 50
CalculateSpectrogram, 35, 77
CalculateTimeLag, 36
corrDim, 15
CreateFreqAnalysis, 38, 39
CreateHRVData, 38, 39, 40, 41
CreateNonLinearAnalysis, 39, 39
CreateTimeAnalysis, 39, 40

dfa, 18

EditNIHR, 41
EstimateCorrDim (CalculateCorrDim), 13
EstimateDFA (CalculateDFA), 16
estimateEmbeddingDim, 19
EstimateInfDim (CalculateInfDim), 22
EstimateMaxLyapunov

(CalculateMaxLyapunov), 25
EstimatePSDSlope, 42
EstimateSampleEntropy

(CalculateSampleEntropy), 33
ExtractTimeSegment, 44

filled.contour, 76
FilterNIHR, 45

GenerateEpisodes, 46
getNormSpectralUnits, 47

HRVData, 48, 49
HRVProcessedData, 49, 49

infDim, 24
IntegralCorrelation, 9, 13, 49
InterpolateNIHR, 50

Keenan.test, 63

ListEpisodes, 51, 65, 67, 74
LoadApneaWFDB, 52
LoadBeat, 53
LoadBeatAmbit, 54
LoadBeatAscii, 54
LoadBeatEDFPlus, 55
LoadBeatPolar, 56
LoadBeatRR, 57
LoadBeatSuunto, 58
LoadBeatVector, 58
LoadBeatWFDB, 59
LoadEpisodesAscii, 60
LoadHeaderWFDB, 61
lsp, 30, 43, 72

maxLyapunov, 27
McLeod.Li.test, 63
ModifyEpisodes, 62
mutualInformation, 36, 37

NonlinearityTests, 63
NonLinearNoiseReduction, 64
nonLinearNoiseReduction, 64, 65

OverplotEpisodes, 65

plot.default, 66–68, 72, 74, 79
PlotCorrDim (CalculateCorrDim), 13
PlotDFA (CalculateDFA), 16
PlotHR, 67
PlotInfDim (CalculateInfDim), 22
PlotMaxLyapunov (CalculateMaxLyapunov),

25
PlotNIHR, 68
PlotPowerBand, 69
PlotPSD, 20, 30, 31, 71
PlotSampleEntropy

(CalculateSampleEntropy), 33
PlotSinglePowerBand, 70, 73
PlotSpectrogram, 75
PoincarePlot, 78

ReadFromFile, 79
RecurrencePlot, 80, 85
recurrencePlot, 81
RemoveEpisodes, 81
RHRV (RHRV-package), 3
RHRV-package, 3

INDEX 95

RHRVEasy, 82
RHRVEasyStats, 83
RQA, 81, 84
rqa, 85

sampleEntropy, 34
SaveHRVIndices, 85
SetVerbose, 86
spec.ar, 30
spec.pgram, 30
spectrum, 31, 43, 72
SplitHRbyEpisodes, 6, 87
SplitPowerBandByEpisodes, 88
SurrogateTest, 89

terasvirta.test, 63
timeLag, 15, 37
tlrt, 63
Tsay.test, 63

white.test, 63
Window, 90
WriteToFile, 91

	RHRV-package
	AddEpisodes
	AnalyzeHRbyEpisodes
	AnalyzePowerBandsByEpisodes
	AvgIntegralCorrelation
	BuildNIHR
	BuildTakens
	BuildTakensVector
	CalculateApEn
	CalculateCorrDim
	CalculateDFA
	CalculateEmbeddingDim
	CalculateEnergyInPSDBands
	CalculateFracDim
	CalculateInfDim
	CalculateMaxLyapunov
	CalculatePowerBand
	CalculatePSD
	CalculateRfromCorrelation
	CalculateSampleEntropy
	CalculateSpectrogram
	CalculateTimeLag
	CreateFreqAnalysis
	CreateHRVData
	CreateNonLinearAnalysis
	CreateTimeAnalysis
	EditNIHR
	EstimatePSDSlope
	ExtractTimeSegment
	FilterNIHR
	GenerateEpisodes
	getNormSpectralUnits
	HRVData
	HRVProcessedData
	IntegralCorrelation
	InterpolateNIHR
	ListEpisodes
	LoadApneaWFDB
	LoadBeat
	LoadBeatAmbit
	LoadBeatAscii
	LoadBeatEDFPlus
	LoadBeatPolar
	LoadBeatRR
	LoadBeatSuunto
	LoadBeatVector
	LoadBeatWFDB
	LoadEpisodesAscii
	LoadHeaderWFDB
	ModifyEpisodes
	NonlinearityTests
	NonLinearNoiseReduction
	OverplotEpisodes
	PlotHR
	PlotNIHR
	PlotPowerBand
	PlotPSD
	PlotSinglePowerBand
	PlotSpectrogram
	PoincarePlot
	ReadFromFile
	RecurrencePlot
	RemoveEpisodes
	RHRVEasy
	RHRVEasyStats
	RQA
	SaveHRVIndices
	SetVerbose
	SplitHRbyEpisodes
	SplitPowerBandByEpisodes
	SurrogateTest
	Window
	WriteToFile
	Index

