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cctest Tests of Independence Based on Canonical Correlations
Description

cctest estimates canonical correlations between two sets of variables, possibly after removing
effects of a third set of variables, and performs a classical multivariate test of (conditional) indepen-
dence based on Pillai’s statistic.



Usage

cctest

cctest(formula, data=NULL, df=formulal-2L], ..., tol=1e-07, stats=FALSE)

Arguments

formula

data

df

tol

stats

Details

A formula object of the form Y ~ X ~ A, where Y represents dependent variables,
X represents a second set of dependent variables or explanatory variables not
present under the null hypothesis, and A represents explanatory variables that
remain under the null hypothesis. Typically A includes at least the constant
1 to specify a model with intercepts; unlike 1m, the function never adds this
automatically.

* If stats is TRUE, the variables in formula are passed to model. frame and
model.matrix for processing. The operators and expansion rules defined
for the model part of a formula object here apply to all three parts alike.

» Simplified syntax (recommended, see Note): This is in effect if stats is
FALSE and means all symbols and operators except | and : have their reg-
ular meaning, with | used for joining terms (instead of +; see cbind) and
: for multiplying terms, valid anywhere in the expression; the latter differs
from * in that each combination of columns in the arguments contributes a
column to the result and multiplication by 0 always yields 0, even for miss-
ing values. Single-row arguments in ~, |, : are expanded to objects with
identical rows, and every factor or character variable is represented by its
full set of indicator (dummy) variables, with values of character variables
sorted by the "radix” method.

An optional list (or data frame) or environment in which the variables in formula,
df and ... are first looked for (prior to lookup in the environment in which ~ or
cctest was invoked). If stats is TRUE, this can also be an object (e.g., table)
for which an as.data. frame method exists.

An optional formula object of the form ~ A@, where A@ is a replacement of A for
the degrees of freedom computation. If not specified, this is the same as A.

Additional optional arguments. These are passed to model.frame if stats is
TRUE. In particular, subset specifies which rows of data to include, na.action
how to handle missing values, and weights is a vector of any nonnegative num-
bers that specify how many identical observations each row represents. With
the simplified formula syntax, only subset and weights are handled, and if
weights is missing or NULL, rows with missing values are given weight 0, which
has an effect similar to na.exclude.

The tolerance in the QR decomposition for detecting linear dependencies of the
matrix columns.

A logical value that determines the interpretation of formula (see above).

cctest unifies various classical statistical procedures that involve the same underlying computa-
tions, including t-tests, tests in univariate and multivariate linear models, parametric and nonpara-
metric tests for correlation, Kruskal-Wallis tests, common approximate versions of Wilcoxon rank-
sum and signed rank tests, chi-squared tests of independence, score tests of particular hypotheses
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in generalized linear models, canonical correlation analysis and linear discriminant analysis (see
Examples).

Specifically, for the matrices with ranks k and [ obtained from X and Y by subtracting from each
column its orthogonal projection on the column space of A, the function computes factorizations
XU and YV with X and Y having k and ! columns, respectively, such that both X TX =rland
Y'Y =r[,and X'Y =rDisa rectangular diagonal matrix with decreasing diagonal elements.
The scaling factor r, which should be nonzero, is the dimension of the orthogonal complement of
the column space of Aj.

The function realizes this variant of the singular value decomposition by first computing prelimi-
nary QR factorizations of the stated form (taking » = 1) without the requirement on D, and then,
in a second step, modifying these based on a standard singular value decomposition of that ma-
trix. The main work is done in a rotated coordinate system where the column space of A aligns
with the coordinate axes. The basic approach and the rank detection algorithm are inspired by the
implementations in cancor and in 1m, respectively.

The diagonal elements of D, or singular values, are the estimated canonical correlations (Hotelling
1936) of the variables represented by X and Y if these follow a linear model (X Y) = A(a 5) +
(6 €) with known A, unknown (@ ) and error terms (6 ¢) that have uncorrelated rows with
expectation zero and an identical unknown covariance matrix. In the most common case, where A
is given as a constant 1, these are the sample canonical correlations (i.e., based on simple centering)
most often presented in the literature for full column ranks k and . They are always decreasing and
between 0 and 1.

In the case of the linear model with independent normally distributed rows and Ay = A, the ranks
k and [ equal, with probability 1, the ranks of the covariance matrices of the rows of X and Y,
respectively, or r, whichever is smaller. Under the hypothesis of independence of X and Y, given
those ranks, the joint distribution of the s squared singular values, where s is the smaller of the two
ranks, is then known and in the case r > k + [ has a probability density (Hsu 1939, Anderson 2003,
Anderson 2007) given by

tl,..., O( Ht(‘k ll 1)/2 tz_)(’l‘fkflfl)/2 H(tl _tj)7

i<j

1>t >--- >ty > 0. For s = 1 this reduces to the well-known case of a single beta dis-
2

tributed R? or equivalently an F distributed %, with the divisors in the numerator and

denominator representing the degrees of freedom, or twice the parameters of the beta distribution.

Pillai’s statistic is the sum of squares of the canonical correlations, which equals, even without
the diagonal requirement on D), the squared Frobenius norm of that matrix (or trace of DT D).
Replacing the distribution of that statistic divided by s (i.e., of the mean of squares) with beta or
gamma distributions with first or shape parameter kl/2 and expectation kl/(rs) leads to the F and
chi-squared approximations that the p-values returned by cctest are based on.

The F or beta approximation (Pillai 1954, p. 99, p. 44) is usually used with Ay = A and then
is exact if s = 1. The chi-squared approximation represents Rao’s (1948) score test (with a test
statistic that is r times Pillai’s statistic) in the model obtained after removing (or conditioning on)
the orthogonal projections on the column space of A provided that is a subset of the column space
of A; see Mardia and Kent (1991) for the case with independent identically distributed rows.

Value

A list with class htest containing the following components:
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X,y matrices X and Y of new transformed variables

xinv, yinv matrices U and V representing the inverse coordinate transformations

estimate vector of canonical correlations, i.e., the diagonal elements of D, possibly (only
if k = [ = 1) with a name indicating the direction of the correlation

statistic vector of p-values based on Pillai’s statistic and classical F (beta) and chi-squared
(gamma) approximations

df.residual the number r

method the name of the function

data.name a character string representation of formula (possibly shortened)

Note

The handling of weights differs from that in 1m unless the nonzero weights are scaled so as to
have a mean of 1. Also, to facilitate predictions for rows with zero weights (see Examples), the
square roots of the weights, used internally for scaling the data, are always computed as nonzero
numbers, even for zero weights, where they are so small that their square is still numerically zero
and hence without effect on the correlation analysis. If stats is TRUE, an of fset is subtracted from
all columns in X and Y.

The simplified formula syntax is intended to provide a simpler, more consistent behavior than the
legacy stats procedure based on terms. formula, model. frame and model.matrix. Inconsistent
or hard-to-predict behavior can result in model .matrix, in particular, from the special interpretation
of common symbols, the identification of variables by deparsed expressions, the locale-dependent
conversion of character variables to factors and the imperfect avoidance of linear dependencies
subject to options("”contrasts").

Author(s)
Robert Schlicht
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See Also

Functions cancor, anova.mlmin package stats and implementations of canonical correlation anal-
ysis in other packages such as CCP (tests only), MVar, candisc (both including tests based on Wilks’
statistic), yacca, CCA, acca, whitening.

Examples

## Artificial observations in 5-by-5 meter quadrats in a forest for
## comparing cctest analyses with equivalent 'stats' methods:
dat <- within(data.frame(row.names=1:150), {
u <- function() replicate(150, z<<-(z*69069+2"-32)%%1); z<-0
plot <- factor(u() < .5, , c("a","b")) # plot a or b
X <- as.integer(30xu() + c(1,82)[plotl) # x position on grid
y <- as.integer(30*xu() + c(1,62)[plot]) # y position on grid
ori <- factor(u()%/%.25,,c("E","N","S","W")) # orientation of slope
elev <- 40*u() + c(605,610)[plot] # elevation (in meters)
h <- 115 - .15%elev + 2*log(1/u()-1) # tree height (in meters)
h5 <= h + log(1/u()-1) # tree height 5 years earlier
h10 <- h5 + log(1/u()-1) # tree height 10 years earlier
c15 <- as.integer(h10 + log(1/u()-1) > 20) # ©0-1 coded, 15 years earlier
sapl <- as.integer(log(1/u())*.8*elev/40) # number of saplings
rm(u, z)
»
dat[1:8,]

## t-tests:
cctest(h~plot~1, dat)
t.test(h~plot, dat, var.equal=TRUE)
summary (lm(Ch~plot, dat))
cctest(h-20~1~0, dat)
t.test(dat$h, mu=20)
t.test(h~1, dat, mu=20)
cctest(h-h5~1~0, dat)
t.test(dat$h, dat$h5, paired=TRUE)
t.test(Pair(h,h5)~1, dat)

## Test for correlation:
cctest(h~elev~1, dat)
cor.test(~htelev, dat)

## One-way analysis of variance:
cctest(h~ori~1, dat)
anova(lm(h~ori, dat))

## F-tests in linear models:
cctest(h~ori~1|elev, dat)
cctest(h~ori~1+elev, dat, stats=TRUE)
anova(lm(h~1+elev, dat), lm(h~ori+elev, dat))
cctest(h-h5~(h5-h10): (1|x|x*2)~0, dat, subset=1:50)
summary (Im(h-h5~0+I(h5-h10)+I(h5-h10): (x+I(x*2)), dat, subset=1:50))

## Test in multivariate linear model based on Pillai's statistic:
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cctest(h|h5|h10~x|y~1|elev, dat)
cctest(h+th5+h10~x+y~1+elev, dat, stats=TRUE)
anova(lm(cbind(h,h5,h10)~elev, dat), lm(cbind(h,h5,h10)~elev+x+y, dat))

## Test based on Spearman's rank correlation coefficient:
cctest(rank(h)~rank(elev)~1, dat)
cor.test(~h+elev, dat, method="spearman", exact=FALSE)

## Kruskal-Wallis and Wilcoxon rank-sum tests:
cctest(rank(h)~ori~1, dat)

kruskal.test(h~ori, dat)
cctest(rank(h)~plot~1, dat)

wilcox.test(h~plot, dat, exact=FALSE, correct=FALSE)

## Wilcoxon signed rank test:

cctest(rank(abs(h-h5))~sign(h-h5)~0, subset(dat, h-h5 != 0))

#dat|> within(d<-h-h5)|> subset(d|@)|> with(rank(abs(d))~sign(d)~0@)|> cctest()
wilcox.test(h-h5 ~ 1, dat, exact=FALSE, correct=FALSE)

## Chi-squared test of independence:

cctest(ori~plot~1, dat, ~0)

cctest(ori~plot~1, as.data.frame(xtabs(~ori+plot,dat)), df=~0, weights=Freq)
summary (xtabs(~ori+plot, dat, drop.unused.levels=TRUE))
chisq.test(dat$ori, dat$plot, correct=FALSE)

## Score test in logistic regression (logit model, ...~1 only):
cctest(c15~x|y~1, dat, ~0@)
anova(glm(c15~1, binomial, dat, epsilon=1e-12),
glm(c15~1+x+y, binomial, dat), test="Rao")

## Score test in multinomial logit model (...~1 only):
cctest(ori~x|y~1, dat, ~@)
with(expand.grid(stringsAsFactors=FALSE,i=row.names(dat), j=levels(dat$ori)),
anova(glm(ori==j ~ j+x+y, poisson, dat[i,], epsilon=1e-12),
glm(ori==j ~ jx(x+y), poisson, dat[i,]), test="Rao"))

## Absolute values of (partial) correlation coefficients:
cctest(h~elev~1, dat)$est
cor(dat$h, dat$elev)
cctest(h~elev~1|x|y, dat)$est
cov2cor(estVar(Im(cbind(h,elev)~1+x+y, dat)))
cctest(h~x|y|elev~1, dat)$est”2
summary (Im(h~1+x+y+elev, dat))$r.squared

## Canonical correlations:
cctest(h|h5|h10~x|y~1, dat)$est
cancor(dat[c("x","y")]1,dat[c("h","”h5","h10")]1)$cor

## Linear discriminant analysis:
with(cctest(h|h5[h10~ori~1, dat, ~ori), y / sqrt(1-estimate”2)[col(y)I)[1:7,]
#predict (MASS: :1da(ori~h+h5+h10,dat))$x[1:7,]

## Correspondence analysis:
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cctest(ori~plot~1, as.data.frame(xtabs(~ori+plot,dat)), ~0, weights=Freq)[1:2]
#MASS: :corresp(~plot+ori, dat, nf=2)

## Prediction in multivariate linear model:
with(cctest(h|h5|h10~1|x|y~0, dat, weights=plot=="a"),
x %*% diag(estimate,ncol(x),ncol(y)) %*% yinv)[1:7,]
predict(lm(cbind(h,h5,h10)~1+x+y, dat, subset=plot=="a"), dat)[1:7,]

## Other constructions:
cctest(ave(h,plot,FUN=rank)~ori~plot, aggregate(h~ori+plot,dat,mean))
friedman.test(h~ori|plot, aggregate(h~ori+plot,dat,mean))
cctest(ori:sum(Freq)/Freq-1~1~0, as.data.frame(xtabs(~ori,dat)),
weights=if(all(Freq)) Freq*2/sum(Freq)/c(.2,.3,.4,.1) else stop())
chisq.test(xtabs(~ori,dat), p=c(.2,.3,.4,.1))
with(cctest({h|h5|h10;0;0;0} ~ {h|h5|h10;diag(3)} ~ {1]|0*x;0;0;0},
c(dat, *{"=rbind), ~ {h|h5|h10;diag(3)} | {1]0*x;0;0;0}),
list(estimate/(s<-sqrt((1-estimate”2)*df.residual)), t(xinvxs)))
prcomp(~h+h5+h10@, dat)

## Not run:
## Handling of additional arguments and edge cases:
cctest(1:150~ori=="E" |ori=="W"~1, c(dat, :"=":7,7|"="|"))

anova(lm(1:150~ori=="E" |ori=="W", dat))
cctest(h~h10~0, dat, offset=h5, stats=TRUE)
cctest(h-h5~h10-h5~0, dat)
anova(lm(h~@+offset(h5), dat), 1m(h~0+I(h10-h5)+offset(h5), dat))
cctest(h~x~1, dat, weights=sapl/mean(sapllsapl!=01))
anova(lm(h~1, dat, weights=sapl), lm(h~1+x, dat, weights=sapl))
cctest(sqrt(h-17)~elev~1, dat[1:5,]1)[1:2]
cctest(sqrt(h-17)~elev~1, dat[1:5,], stats=TRUE, na.action=na.exclude)[1:2]
scale(resid(Im(cbind(elev,sqrt(h-17))~1, dat[1:5,],
na.action=na.exclude)), FALSE)

cctest(c15~h~1, dat, tol=0.999*sqrt(1-cctest(h~1~0,dat)$est*2))
summary (1m(c15~h, dat, tol=0.999*sqrt(1-cctest(h~1~0,dat)$est*2)))
cctest(c15~h~1, dat, tol=1.001*sqrt(1-cctest(h~1~0,dat)$est*2))

summary (Im(c15~h, dat, tol=1.001*sqrt(1-cctest(h~1~0,dat)$est*2)))
cctest (NULL~NULL~NULL)
cctest(0~0~0)

anova(lm(0~0), 1m(0~0+0))
cctest(1~0~0)

anova(lm(1~0), 1m(1~0+0))
cctest(1~1~0)

anova(lm(1~0), 1Im(1~0+1))
cctest(1~1~0, dat, stats=TRUE)
cctest(h”0~1~0, dat)

anova(lm(h*0~0, dat), 1lm(h*@~0+1, dat))
## End(Not run)
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