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buildTakens Build the Takens’ vectors

Description

This function builds the Takens’ vectors from a given time series. The set of Takens’ vectors is the
result of embedding the time series in a m-dimensional space. That is, the nth Takens’ vector is
defined as

T [n] = {time.series[n], time.series[n+ timeLag], ...time.series[n+m ∗ timeLag]}.

Taken’s theorem states that we can then reconstruct an equivalent dynamical system to the original
one (the dynamical system that generated the observed time series) by using the Takens’ vectors.

Usage

buildTakens(time.series, embedding.dim, time.lag)

Arguments

time.series The original time series.

embedding.dim Integer denoting the dimension in which we shall embed the time.series.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

Value

A matrix containing the Takens’ vectors (one per row). The resulting matrix also contains informa-
tion about the time lag and the embedding dimension used (as attributes).

Author(s)

Constantino A. Garcia and Gunther Sawitzki.

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)
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Examples

## Not run:
# Build the Takens vector for the Henon map using the x-coordinate time series
h = henon(n.sample= 3000,n.transient= 100, a = 1.4, b = 0.3,
start = c(0.73954883, 0.04772637), do.plot = FALSE)
takens = buildTakens(h$x,embedding.dim=2,time.lag=1)
# using the x-coordinate time series we are able to reconstruct
# the state space of the Henon map
plot(takens)
## End(Not run)

cliffordMap Clifford map

Description

Generates a 2-dimensional time series using the Clifford map.

Usage

cliffordMap(
a = -1.4,
b = 1.6,
cc = 1,
d = 0.7,
start = runif(2),
n.sample = 5000,
n.transient = 500,
do.plot = deprecated()

)

Arguments

a The a parameter. Default: -1.4

b The b parameter. Default: 1.6

cc The c parameter. Default: 1.0

d The d parameter. Default: 0.7

start a 2-dimensional vector indicating the starting values for the x and y Clifford
coordinates. If the starting point is not specified, it is generated randomly.

n.sample Length of the generated time series. Default: 5000 samples.

n.transient Number of transient samples that will be discarded. Default: 500 samples.

do.plot Logical value. If TRUE, a plot of the generated Clifford system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.
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Details

The Clifford map is defined as follows:

xn+1 = sin(a · yn) + c · cos(a · xn)

yn+1 = sin(b · xn) + d · cos(b · yn)

The default selection for the a b c and d parameters is known to produce a deterministic chaotic
time series.

Value

A list with two vectors named x and y containing the x-components and the y-components of the
Clifford map, respectively.

Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

See Also

henon, logisticMap, lorenz,rossler, ikedaMap, sinaiMap, gaussMap

Examples

## Not run:
clifford.map=cliffordMap(n.sample = 1000, n.transient=10,do.plot=TRUE)
# accessing the x coordinate and plotting it
plot(ts(clifford.map$x))
## End(Not run)

contourLines Obtain the contour lines of the space time plot.

Description

Obtain the contour lines of the space time plot.

Usage

contourLines(x)

Arguments

x A spaceTimePlot object.
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Value

Returns a matrix representing the contour lines of the space time plot.

See Also

spaceTimePlot

corrDim Correlation sum, correlation dimension and generalized correlation
dimension (order q >1).

Description

Functions for estimating the correlation sum and the correlation dimension of a dynamical system
from 1-dimensional time series using Takens’ vectors.

Usage

corrDim(
time.series,
min.embedding.dim = 2,
max.embedding.dim = 5,
time.lag = 1,
min.radius,
max.radius,
corr.order = 2,
n.points.radius = 5,
theiler.window = 100,
do.plot = TRUE,
number.boxes = NULL,
...

)

## S3 method for class 'corrDim'
nlOrder(x)

## S3 method for class 'corrDim'
corrMatrix(x)

## S3 method for class 'corrDim'
radius(x)

## S3 method for class 'corrDim'
embeddingDims(x)

## S3 method for class 'corrDim'
plot(
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x,
main = "Correlation Sum C(r)",
xlab = NULL,
ylab = "C(r)",
type = "b",
log = "xy",
ylim = NULL,
col = NULL,
pch = NULL,
localScalingExp = T,
add.legend = T,
cex.legend = 1,
...

)

## S3 method for class 'corrDim'
plotLocalScalingExp(
x,
main = "Correlation Dimension C(r)",
xlab = NULL,
ylab = "Local scaling exponents",
type = "b",
log = "x",
ylim = NULL,
col = NULL,
pch = NULL,
add.legend = T,
...

)

## S3 method for class 'corrDim'
estimate(
x,
regression.range = NULL,
do.plot = FALSE,
use.embeddings = NULL,
col = NULL,
pch = NULL,
fit.col = NULL,
fit.lty = 2,
fit.lwd = 2,
add.legend = T,
lty = 1,
lwd = 1,
...

)
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Arguments

time.series The original time series from which the correlation sum will be estimated.
min.embedding.dim

Integer denoting the minimum dimension in which we shall embed the time.series
(see buildTakens).

max.embedding.dim

Integer denoting the maximum dimension in which we shall embed the time.series
(see buildTakens).Thus, we shall estimate the correlation dimension between
min.embedding.dim and max.embedding.dim.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors (see buildTakens).

min.radius Minimum distance used to compute the correlation sum C(r).

max.radius Maximum distance used to compute the correlation sum C(r).

corr.order Order of the generalized correlation Dimension q. It must be greater than 1
(corr.order>1). Default, corr.order=2.

n.points.radius

The number of different radius where we shall estimate. C(r). Thus, we will
estimate C(r) in n.points.radius between min.radius and max.radius.

theiler.window Integer denoting the Theiler window: Two Takens’ vectors must be separated
by more than theiler.window time steps in order to be considered neighbours.
By using a Theiler window, we exclude temporally correlated vectors from our
estimations.

do.plot Logical value. If TRUE (default value), a plot of the correlation sum is shown.

number.boxes Number of boxes that will be used in the box assisted algorithm (see neigh-
bourSearch). If the user does not specify it, the function uses a proper number
of boxes.

... Additional plotting parameters.

x A corrDim object.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

type Type of plot (see ?plot).

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

ylim Numeric vector of length 2, giving the y coordinates range.

col Vector of colors for each of the dimensions of the plot.

pch Vector of symbols for each of the dimensions of the plot.
localScalingExp

add a plot of the local scaling exponents of the correlation sum.

add.legend add a legend to the plot?

cex.legend Magnification value for the legend.
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regression.range

Vector with 2 components denoting the range where the function will perform
linear regression.

use.embeddings A numeric vector specifying which embedding dimensions should the estimate
function use to compute the correlation dimension.

fit.col A vector of colors to plot the regression lines.

fit.lty The type of line to plot the regression lines.

fit.lwd The width of the line for the regression lines.

lty The line type of the correlation sums.

lwd The line width of the correlation sums.

Details

The correlation dimension is the most common measure of the fractal dimensionality of a geometri-
cal object embedded in a phase space. In order to estimate the correlation dimension, the correlation
sum is defined over the points from the phase space:

C(r) = {(number of points (xi, xj) verifying that distance (xi, xj) < r})/N2

However, this estimator is biased when the pairs in the sum are not statistically independent. For
example, Taken’s vectors that are close in time, are usually close in the phase space due to the
non-zero autocorrelation of the original time series. This is solved by using the so-called Theiler
window: two Takens’ vectors must be separated by, at least, the time steps specified with this
window in order to be considered neighbours. By using a Theiler window, we exclude temporally
correlated vectors from our estimations.

The correlation dimension is estimated using the slope obtained by performing a linear regression
of log 10(C(r)) V s. log 10(r). Since this dimension is supposed to be an invariant of the system,
it should not depend on the dimension of the Taken’s vectors used to estimate it. Thus, the user
should plot log 10(C(r)) V s. log 10(r) for several embedding dimensions when looking for the
correlation dimension and, if for some range log 10(C(r)) shows a similar linear behaviour in dif-
ferent embedding dimensions (i.e. parallel slopes), these slopes are an estimate of the correlation
dimension. The estimate routine allows the user to get always an estimate of the correlation di-
mension, but the user must check that there is a linear region in the correlation sum over different
dimensions. If such a region does not exist, the estimation should be discarded.

Note that the correlation sum C(r) may be interpreted as: C(r) =< p(r) >, that is: the mean
probability of finding a neighbour in a ball of radius r surrounding a point in the phase space. Thus,
it is possible to define a generalization of the correlation dimension by writing:

Cq(r) =< p(r)(q−1) >

Note that the correlation sum
C(r) = C2(r)

It is possible to determine generalized dimensions Dq using the slope obtained by performing a
linear regression of log10(Cq(r)) V s. (q − 1)log10(r). The case q=1 leads to the information
dimension, that is treated separately in this package (infDim). The considerations discussed for the
correlation dimension estimate are also valid for these generalized dimensions.
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Value

A corrDim object that consist of a list with four components named radius, embedding.dims, order
and corr.matrix. radius is a vector containing the different radius where we have evaluated C(r).
embedding.dims is a vector containing all the embedding dimensions in which we have estimated
C(r). order stores the order of the generalized correlation dimension that has been used. Finally,
corr.matrix stores all the correlation sums that have been computed. Each row stores the correlation
sum for a concrete embedding dimension whereas each colum stores the correlation sum for a
specific radius.

The nlOrder function returns the order of the correlation sum.

The corrMatrix function returns the correlations matrix storing the correlation sums that have been
computed for all the embedding dimensions.

The radius function returns the radius on which the correlation sum function has been evaluated.

The embeddingDims function returns the embedding dimensions on which the correlation sum func-
tion has been evaluated.

The plot function plots the correlation sum. It is possible to plot the the correlation sum Vs the
radius and also the local scaling exponents of the correlation sum Vs radius.

The plotLocalScalingExp function plots the local scaling exponents of the correlation sum.

The estimate function estimates the correlation dimension of the corr.dim object by averaging the
slopes of the embedding dimensions specified in the use.embeddings parameter. The slopes are
determined by performing a linear regression over the radius’ range specified in regression.range.If
do.plot is TRUE, a graphic of the regression over the data is shown.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

Examples

## Not run:
x=lorenz(sigma=10, rho = 28, beta =8/3, start = c(-10, -11, 47),
time = seq(0, 70, by = 0.01), do.plot = FALSE)$x
cd=corrDim(time.series=x,min.embedding.dim=3,max.embedding.dim=6,

time.lag=10,min.radius=1e-3,max.radius=50,
n.points.radius=100,theiler.window=100,
number.boxes=100,do.plot=F)

plot(cd,type="l")
plotLocalScalingExp(cd,cex=0.5,xlim=c(1e-1,5))
cd.est = estimate(cd,regression.range=c(0.2,2))
cat("expected: 2.05 --- estimate: ",cd.est,"\n")

## End(Not run)
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corrMatrix Returns the correlation sums stored in the corrDim object

Description

Returns the correlation sums stored in the corrDim object

Usage

corrMatrix(x)

Arguments

x A corrDim object.

Value

The corrMatrix function returns the correlations matrix storing the correlation sums that have been
computed for all the embedding dimensions.

See Also

corrDim

dfa Detrended Fluctuation Analysis

Description

Functions for performing Detrended Fluctuation Analysis (DFA), a widely used technique for de-
tecting long range correlations in time series. These functions are able to estimate several scaling
exponents from the time series being analyzed. These scaling exponents characterize short or long-
term fluctuations, depending of the range used for regression (see details).

Usage

dfa(
time.series,
window.size.range = c(10, 300),
npoints = 20,
do.plot = TRUE,
...

)

## S3 method for class 'dfa'
windowSizes(x)
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## S3 method for class 'dfa'
fluctuationFunction(x)

## S3 method for class 'dfa'
plot(
x,
main = "Detrended Fluctuation Analysis",
xlab = "Window size: t",
ylab = "Fluctuation function: F(t)",
log = "xy",
...

)

## S3 method for class 'dfa'
estimate(
x,
regression.range = NULL,
do.plot = FALSE,
fit.col = 2,
fit.lty = 1,
fit.lwd = 1,
add.legend = TRUE,
...

)

Arguments

time.series The original time series to be analyzed.
window.size.range

Range of values for the windows size that will be used to estimate the fluctuation
function. Default: c(10,300).

npoints The number of different window sizes that will be used to estimate the Fluctua-
tion function in each zone.

do.plot logical value. If TRUE (default value), a plot of the Fluctuation function is
shown.

... Additional graphical parameters.

x A dfa object.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

regression.range

Vector with 2 components denoting the range where the function will perform
linear regression.
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fit.col A colors to plot the regression line.

fit.lty The type of line to plot the regression line.

fit.lwd The width of the line for the regression line.

add.legend add a legend with the resulting estmation to the plot?

Details

The Detrended Fluctuation Analysis (DFA) has become a widely used technique for detecting long
range correlations in time series. The DFA procedure may be summarized as follows:

1. Integrate the time series to be analyzed. The time series resulting from the integration will be
referred to as the profile.

2. Divide the profile into N non-overlapping segments.

3. Calculate the local trend for each of the segments using least-square regression. Compute the
total error for each ofi the segments.

4. Compute the average of the total error over all segments and take its root square. By repeating
the previous steps for several segment sizes (let’s denote it by t), we obtain the so-called
Fluctuation function F (t).

5. If the data presents long-range power law correlations: F (t) ∼ tα and we may estimate using
regression.

6. Usually, when plotting log(F (t)) V s log(t) we may distinguish two linear regions. By re-
gressing them separately, we obtain two scaling exponents, α1 (characterizing short-term fluc-
tuations) and α2 (characterizing long-term fluctuations).

Steps 1-4 are performed using the dfa function. In order to obtain a estimate of some scaling
exponent, the user must use the estimate function specifying the regression range (window sizes
used to detrend the series).

Value

A dfa object.

The windowSizes function returns the windows sizes used to detrend the time series.

The fluctuationFunction function returns the fluctuation function obtained in the DFA represented
by the dfa object.

Author(s)

Constantino A. Garcia

References

Penzel, Thomas, et al. "Comparison of detrended fluctuation analysis and spectral analysis for
heart rate variability in sleep and sleep apnea." Biomedical Engineering, IEEE Transactions on
50.10 (2003): 1143-1151.
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Examples

## Not run:
white.noise = rnorm(5000)

dfa.analysis = dfa(time.series = white.noise, npoints = 10,
window.size.range=c(10,1000), do.plot=FALSE)

white.estimation = estimate(dfa.analysis,do.plot=TRUE)
cat("Theorical: 0.5---Estimated: ",white.estimation ,"\n")

library(fArma)
fgn = as.numeric(fArma::fgnSim(n = 2000, H = 0.75))
dfa.analysis = dfa(time.series = fgn, npoints = 30,

window.size.range=c(10,1000),
do.plot=FALSE)

fgn.estimation = estimate(dfa.analysis, do.plot = TRUE,
fit.col="blue",fit.lwd=2,fit.lty=2,
main="Fitting DFA to fGn")

cat("Theorical: 0.75---Estimated: ",fgn.estimation ,"\n")

fbm = as.numeric(fArma::fbmSim(n = 2000, H = 0.25))
dfa.analysis = dfa(time.series = fbm, npoints = 50,

window.size.range=c(10,300),
do.plot=FALSE)

fbm.estimation = estimate(dfa.analysis,do.plot = TRUE,
add.legend=F, main="DFA of fBm")

cat("Theorical: 1.25 ---Estimated: ",fbm.estimation ,"\n")

## End(Not run)

divergence Returns the rate of divergence of close trajectories needed for the max-
imum Lyapunov exponent estimation.

Description

Returns the rate of divergence of close trajectories needed for the maximum Lyapunov exponent
estimation.

Usage

divergence(x)

Arguments

x A maxLyapunov object.
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Value

A numeric matrix representing the time in which the divergence of close trajectories was computed.
Each row represents an embedding dimension whereas that each column represents an specific
moment of time.

See Also

maxLyapunov

divTime Returns the time in which the divergence of close trajectories was com-
puted in order to estimate the maximum Lyapunov exponent.

Description

Returns the time in which the divergence of close trajectories was computed in order to estimate the
maximum Lyapunov exponent.

Usage

divTime(x)

Arguments

x A maxLyapunov object.

Value

A numeric vector representing the time in which the divergence of close trajectories was computed.

See Also

maxLyapunov

embeddingDims Get the embedding dimensions used for compute a chaotic invariant.

Description

Get the embedding dimensions used for compute a chaotic invariant.

Usage

embeddingDims(x)
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Arguments

x An object containing all the information needed for the estimate.

Value

A numeric vector with the embedding dimensions used for compute a chaotic invariant.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

estimate Estimate several chaotic invariants using linear regression

Description

Several chaotic invariants are estimated by using linear regression. This function provides a com-
mon interface for the estimate of all these parameters (see corrDim, dfa and maxLyapunov for
examples).

Usage

estimate(x, regression.range, do.plot, ...)

Arguments

x An object containing all the information needed for the estimate.
regression.range

Range of values on the x-axis on which the regression is performed.

do.plot Logical value. If TRUE (default value), a plot of the regression is shown.

... Additional parameters.

Value

An estimate of the proper chaotic invariant.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)
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estimateEmbeddingDim Estimate the embedding dimension

Description

This function determines the minimum embedding dimension from a scalar time series using the
algorithm proposed by L. Cao (see references).

Usage

estimateEmbeddingDim(
time.series,
number.points = length(time.series),
time.lag = 1,
max.embedding.dim = 15,
threshold = 0.95,
max.relative.change = 0.1,
do.plot = TRUE,
main = "Computing the embedding dimension",
xlab = "dimension (d)",
ylab = "E1(d) & E2(d)",
ylim = NULL,
xlim = NULL,
std.noise

)

Arguments

time.series The original time series.

number.points Number of points from the time series that will be used to estimate the embed-
ding dimension. By default, all the points in the time series are used.

time.lag Time lag used to build the Takens’ vectors needed to estimate the embedding
dimension (see buildTakens). Default: 1.

max.embedding.dim

Maximum possible embedding dimension for the time series. Default: 15.

threshold Numerical value between 0 and 1. The embedding dimension is estimated using
the E1(d) function. E1(d) stops changing when d is greater than or equal to
embedding dimension, staying close to 1. This value establishes a threshold for
considering that E1(d) is close to 1. Default: 0.95

max.relative.change

Maximum relative change in E1(d) with respect to E1(d-1) in order to consider
that the E1 function has been stabilized and it will stop changing. Default: 0.01.

do.plot Logical value. If TRUE (default value), a plot of E1(d) and E2(d) is shown.

main Title for the plot.

xlab Title for the x axis.
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ylab Title for the y axis.

ylim numeric vectors of length 2, giving the y coordinates range.

xlim numeric vectors of length 2, giving the x coordinates range.

std.noise numeric value that permits to add a small amount of noise to the original series
to avoid the appearance of false neighbours due to discretizacion errors. This
also prevents the method to fail with periodic signals (in which neighbours at a
distance of 0 appear). By default, a small amount of noise is always added. Use
0 not to add noise.

Details

The Cao’s algorithm uses 2 functions in order to estimate the embedding dimension from a time
series: the E1(d) and the E2(d) functions, where d denotes the dimension.

E1(d) stops changing when d is greater than or equal to the embedding dimension, staying close
to 1. On the other hand, E2(d) is used to distinguish deterministic signals from stochastic signals.
For deterministic signals, there exist some d such that E2(d)!=1. For stochastic signals, E2(d) is
approximately 1 for all the values.

This function uses the Arya and Mount’s C++ ANN library for nearest neighbour search (For
more information on the ANN library please visit http://www.cs.umd.edu/~mount/ANN/). The R
wrapper is a modified version of the RANN package code by Samuel E. Kemp and Gregory Jefferis.

If no suitable embedding dimension can be found within the provided range, the function will return
NA.

Note

In the current version of the package, the automatic detection of stochastic signals has not been
implemented yet.

Author(s)

Constantino A. Garcia

References

Cao, L. Practical method for determining the minimum embedding dimension of a scalar time
series. Physica D: Nonlinear Phenomena, 110,1, pp. 43-50 (1997).

Arya S. and Mount D. M. (1993), Approximate nearest neighbor searching, Proc. 4th Ann. ACM-
SIAM Symposium on Discrete Algorithms (SODA’93), 271-280.

Arya S., Mount D. M., Netanyahu N. S., Silverman R. and Wu A. Y (1998), An optimal algorithm
for approximate nearest neighbor searching, Journal of the ACM, 45, 891-923.

Examples

## Not run:
h = henon(do.plot=FALSE)
dimension = estimateEmbeddingDim(h$x, time.lag=1, max.embedding.dim=6,

threshold=0.9, do.plot=TRUE)

http://www.cs.umd.edu/~mount/ANN/


FFTsurrogate 19

## End(Not run)

FFTsurrogate Generate surrogate data using the Fourier transform

Description

Generates surrogate samples from the original time series.

Usage

FFTsurrogate(time.series, n.samples = 1)

Arguments

time.series The original time.series from which the surrogate data is generated.
n.samples The number of surrogate data sets to generate,

Details

This function uses the phase randomization procedure for generating the surrogated data. This
algorithm generates surrogate data with the same mean and autocorrelation function (and thus, the
same power spectrum because of the Wiener-Khinchin theorem) as the original time series.

The phase randomization algorithm is often used when the null hypothesis being tested consist
on the assumption that the time.series data comes from a stationary linear stochastic process with
Gaussian inputs. The phase randomization preserves the Gaussian distribution.

Value

A matrix containing the generated surrogate data (one time series per row).

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

Examples

## Not run:
# generate 20 surrogate sets using as original time series
# an arma(1,1) simulation
time.series = arima.sim(list(order = c(1,0,1), ar = 0.6, ma = 0.5), n = 200)
surrogate = FFTsurrogate(time.series, 20)

## End(Not run)
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findAllNeighbours neighbour search

Description

This function finds all the neighbours of all the vectors from Takens’ vector array. The neighbours
are found using a box assisted algorithm that creates a wrapped grid of a given number of boxes per
dimension.

Usage

findAllNeighbours(takens, radius, number.boxes = NULL)

Arguments

takens The matrix containing all the Takens’ vectors (see buildTakens).

radius Distance in which the algorithm will search for neighbours.

number.boxes Integer denoting the number of boxes per dimension that will be used to con-
struct a wrapped grid (see Schreiber). If the user does not specify a number of
boxes, this function estimates a proper number.

Value

A list in which the n-th position contains another list with all the neighbours of the n-th Takens’
vector. If the list is empty, that means that there is no neighbour of the n-th Takens’ vector in the
given radius.

Author(s)

Constantino A. Garcia

References

Schreiber, T. Efficient neighbor searching in nonlinear time series analysis. Int. J. Bifurcation and
Chaos, 5, p. 349, (1995).

See Also

neighbourSearch.

Examples

## Not run:
# Find all the neighbours Takens' vectors build from the Henon time
# series. The size of the neighbourhood is set to 0.1.
h=henon(start = c(0.63954883, 0.04772637), do.plot = FALSE)
takens = buildTakens(h$x,embedding.dim=2,time.lag=1)
neighbours=findAllNeighbours(takens,0.1)
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## End(Not run)

fixedMass fixed mass

Description

fixed mass

Usage

fixedMass(x)

Arguments

x A infDim object.

Value

A numeric vector representing the fixed mass vector used in the information dimension algorithm
represented by the infDim object.

See Also

infDim

fluctuationFunction Returns the fluctuation function obtained in a DFA and represented by
a dfa object.

Description

Returns the fluctuation function obtained in a DFA and represented by a dfa object.

Usage

fluctuationFunction(x)

Arguments

x A dfa object.

Value

The fluctuationFunction function returns the fluctuation function used obtained in the DFA.
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See Also

dfa

gaussMap Gauss map

Description

Generates a 1-dimensional time series using the Gauss map

Usage

gaussMap(
a = 4.9,
b = -0.58,
start = runif(1, min = -0.5, max = 0.5),
n.sample = 5000,
n.transient = 500,
do.plot = deprecated()

)

Arguments

a The a parameter. Default: 4.9

b The b parameter. Default: -0.58

start A numeric value indicating the starting value for the time series. If the starting
point is not specified, it is generated randomly.

n.sample Length of the generated time series. Default: 5000 samples.

n.transient Number of transient samples that will be discarded. Default: 500 samples.

do.plot Logical value. If TRUE, a plot of the generated Gauss system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.

Details

The Gauss map is defined as follows:

xn+1 = exp(−a · (xn)
2) + b

The default selection for both a and b parameters is known to produce a deterministic chaotic time
series.

Value

A vector containing the values of the time series that has been generated.
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Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

References

Chaos and nonlinear dynamics: an introduction for scientists and engineers, by Robert C. Hilborn,
2nd Ed., Oxford, Univ. Press, New York, 2004.

See Also

henon, logisticMap, lorenz,rossler, ikedaMap, cliffordMap, sinaiMap

getContourLines Obtain the contour lines of the space time plot.

Description

Obtain the contour lines of the space time plot.

Usage

getContourLines(x)

Arguments

x A spaceTimePlot object.

See Also

spaceTimePlot



24 henon

henon Henon map

Description

Generates a 2-dimensional time series using the Henon map.

Usage

henon(
start = runif(min = -0.5, max = 0.5, n = 2),
a = 1.4,
b = 0.3,
n.sample = 5000,
n.transient = 500,
do.plot = deprecated()

)

Arguments

start A 2-dimensional vector indicating the starting values for the x and y Henon
coordinates. If the starting point is not specified, it is generated randomly.

a The a parameter. Default: 1.4.

b The b parameter. Default: 0.3.

n.sample Length of the generated time series. Default: 5000 samples.

n.transient Number of transient samples that will be discarded. Default: 500 samples.

do.plot Logical value. If TRUE, a plot of the generated Henon system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.

Details

The Henon map is defined as follows:

xn = 1− a · x2
n−1 + yn−1

yn = b · xn−1

The default selection for both a and b parameters (a=1.4 and b=0.3) is known to produce a deter-
ministic chaotic time series.

Value

A list with two vectors named x and y containing the x-components and the y-components of the
Henon map, respectively.
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Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

References

Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and
engineering (Studies in Nonlinearity)

See Also

logisticMap, lorenz, rossler,ikedaMap, cliffordMap, sinaiMap, gaussMap

Examples

## Not run:
henon.map=henon(n.sample = 1000, n.transient=10,do.plot=TRUE,

start=c(-0.006423277,-0.473545134))
# accessing the x coordinate and plotting it
plot(ts(henon.map$x))

## End(Not run)

ikedaMap Ikeda map

Description

Generates a time series using the Ikeda map

Usage

ikedaMap(
a = 0.85,
b = 0.9,
cc = 7.7,
k = 0.4,
start = runif(2),
n.sample = 5000,
n.transient = 500,
do.plot = deprecated()

)
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Arguments

a The a parameter. Default: 0.85.

b The b parameter. Default: 0.9.

cc The c parameter. Default: 7.7.

k The k parameter. Default: 0.4.

start a 2-dimensional numeric vector indicating the starting value for the time series.
If the starting point is not specified, it is generated randomly.

n.sample Length of the generated time series. Default: 5000 samples.

n.transient Number of transient samples that will be discarded. Default: 500 samples.

do.plot Logical value. If TRUE, a plot of the generated ikeda system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.

Details

The Ikeda map is defined as follows:

zn+1 = a+ b · zn · exp(ik − ic

(1 + |zn−1|2)
)

The default selection for the a, b, c and k parameters is known to produce a deterministic chaotic
time series.

Value

a list with 2 vectors named x and y the x-components and the y-components of the Ikeda map,
respectively.

Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

References

Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and
engineering (Studies in Nonlinearity)

See Also

henon, logisticMap, lorenz,rossler, cliffordMap, sinaiMap, gaussMap
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Examples

## Not run:
ikeda.map=ikedaMap(n.sample = 1000, n.transient=10, do.plot=TRUE)

## End(Not run)

infDim Information dimension

Description

Functions for estimating the information dimension of a dynamical system from 1-dimensional time
series using Takens’ vectors

Usage

infDim(
time.series,
min.embedding.dim = 2,
max.embedding.dim = min.embedding.dim,
time.lag = 1,
min.fixed.mass,
max.fixed.mass,
number.fixed.mass.points = 10,
radius,
increasing.radius.factor = sqrt(2),
number.boxes = NULL,
number.reference.vectors = 5000,
theiler.window = 1,
kMax = 1000,
do.plot = TRUE,
...

)

## S3 method for class 'infDim'
fixedMass(x)

## S3 method for class 'infDim'
logRadius(x)

## S3 method for class 'infDim'
embeddingDims(x)

## S3 method for class 'infDim'
estimate(
x,
regression.range = NULL,
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do.plot = TRUE,
use.embeddings = NULL,
col = NULL,
pch = NULL,
fit.col = NULL,
fit.lty = 2,
fit.lwd = 2,
add.legend = T,
lty = 1,
lwd = 1,
...

)

## S3 method for class 'infDim'
plot(
x,
main = "Information Dimension",
xlab = "fixed mass (p)",
ylab = "<log10(radius)>",
type = "b",
log = "x",
ylim = NULL,
col = NULL,
pch = NULL,
localScalingExp = T,
add.legend = T,
...

)

## S3 method for class 'infDim'
plotLocalScalingExp(
x,
main = "Local scaling exponents d1(p)",
xlab = "fixed mass p",
ylab = "1/d1(p)",
type = "b",
log = "x",
ylim = NULL,
col = NULL,
pch = NULL,
add.legend = T,
...

)

Arguments

time.series The original time series from which the information dimension will be esti-
mated.
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min.embedding.dim

Integer denoting the minimum dimension in which we shall embed the time.series
(see buildTakens).

max.embedding.dim

Integer denoting the maximum dimension in which we shall embed the time.series
(see buildTakens).Thus, we shall estimate the information dimension between
min.embedding.dim and max.embedding.dim.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors (see buildTakens).

min.fixed.mass Minimum percentage of the total points that the algorithm shall use for the esti-
mation.

max.fixed.mass Maximum percentage of the total points that the algorithm shall use for the
estimation.

number.fixed.mass.points

The number of different fixed mass fractions between min.fixed.mass and max.fixed.mass
that the algorithm will use for estimation.

radius Initial radius for searching neighbour points in the phase space. Ideally, it should
be small enough so that the fixed mass contained in this radius is slightly greater
than the min.fixed.mass. However, whereas the radius is not too large (so that
the performance decreases) the choice is not critical.

increasing.radius.factor

Numeric value. If no enough neighbours are found within radius, the radius is
increased by a factor increasing.radius.factor until succesful. Default: sqrt(2) =
1.414214.

number.boxes Number of boxes that will be used in the box assisted algorithm (see neigh-
bourSearch).

number.reference.vectors

Number of reference points that the routine will try to use, saving computation
time.

theiler.window Integer denoting the Theiler window: Two Takens’ vectors must be separated
by more than theiler.window time steps in order to be considered neighbours.
By using a Theiler window, we exclude temporally correlated vectors from our
estimations.

kMax Maximum number of neighbours used for achieving p with all the points from
the time series (see Details).

do.plot Logical value. If TRUE (default value), a plot of the correlation sum is shown.

... Additional graphical parameters.

x A infDim object.
regression.range

Vector with 2 components denoting the range where the function will perform
linear regression.

use.embeddings A numeric vector specifying which embedding dimensions should be used to
compute the information dimension.

col Vector of colors for each of the dimensions of the plot.
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pch Vector of symbols for each of the dimensions of the plot.

fit.col A vector of colors to plot the regression lines.

fit.lty The type of line to plot the regression lines.

fit.lwd The width of the line for the regression lines.

add.legend add a legend to the plot?

lty The line type of the <log10(radius)> functions.

lwd The line width of the <log10(radius)> functions.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

type Type of plot (see ?plot).

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

ylim Numeric vector of length 2, giving the y coordinates range.
localScalingExp

add a plot of the local information dimension scaling exponents?

Details

The information dimension is a particular case of the generalized correlation dimension when set-
ting the order q = 1. It is possible to demonstrate that the information dimension D1 may be defined
as: D1 = limr→0 < log p(r) > / log(r). Here, p(r) is the probability of finding a neighbour in a
neighbourhood of size r and <> is the mean value. Thus, the information dimension specifies how
the average Shannon information scales with the radius r. The user should compute the information
dimension for different embedding dimensions for checking if D1 saturates.

In order to estimate D1, the algorithm looks for the scaling behaviour of the the average radius that
contains a given portion (a "fixed-mass") of the total points in the phase space. By performing a
linear regression of log(p) V s. log(< r >) (being p the fixed-mass of the total points), an estimate
of D1 is obtained.

The algorithm also introduces a variation of p for achieving a better performance: for small values
of p, all the points in the time series (N ) are considered for obtaining p = n/N . Above a maximum
number of neighbours kMax, the algorithm obtains p by decreasing the number of points considerd
from the time series M < N . Thus p = kMax/M .

Even with these improvements, the calculations for the information dimension are heavier than
those needed for the correlation dimension.

Value

A infDim object that consist of a list with two components: log.radius and fixed.mass. log.radius
contains the average log10(radius) in which the fixed.mass can be found.

The fixedMass function returns the fixed mass vector used in the information dimension algorithm.

The logRadius function returns the average log(radius) computed on the information dimension
algorithm.
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The embeddingDims function returns the embeddings in which the information dimension was com-
puted

The ’estimate’ function estimates the information dimension of the ’infDim’ object by by averag-
ing the slopes of the embedding dimensions specified in the use.embeddings parameter. The slopes
are determined by performing a linear regression over the fixed mass’ range specified in ’regres-
sion.range’. If do.plot is TRUE, a graphic of the regression over the data is shown.

The ’plot’ function plots the computations performed for the information dimension estimate: a
graphic of <log10(radius)> Vs fixed mass. Additionally, the inverse of the local scaling exponents
can be plotted.

The plotLocalScalingExp function plots the inverse of the local scaling exponentes of the informa-
tion dimension (for reasons of numerical stability).

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

corrDim.

Examples

## Not run:
x=henon(n.sample= 3000,n.transient= 100, a = 1.4, b = 0.3,

start = c(0.8253681, 0.6955566), do.plot = FALSE)$x

leps = infDim(x,min.embedding.dim=2,max.embedding.dim = 5,
time.lag=1, min.fixed.mass=0.04, max.fixed.mass=0.2,
number.fixed.mass.points=100, radius =0.001,
increasing.radius.factor = sqrt(2), number.boxes=100,
number.reference.vectors=100, theiler.window = 10,
kMax = 100,do.plot=FALSE)

plot(leps,type="l")
colors2=c("#999999", "#E69F00", "#56B4E9", "#009E73",

"#F0E442", "#0072B2", "#D55E00")
id.estimation = estimate(leps,do.plot=TRUE,use.embeddings = 3:5,

fit.lwd=2,fit.col=1,
col=colors2)

cat("Henon---> expected: 1.24 predicted: ", id.estimation ,"\n")

## End(Not run)
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keenanTest Keenan’s test

Description

Keenan’s test: test for nonlinearity against the null hypothesis that the time series follows some AR
process.

Usage

keenanTest(time.series, ...)

Arguments

time.series The original time.series.

... Additional arguments for the ar function.

Value

A list containing the results of the test, including:

• test.stat: the F-squared test statistic

• df1 and df2: the degrees of freedom of the test statistic.

• p.value.

• order: order of the AR process used for testing.

References

Keenan, D. M. (1985), A Tukey nonadditivity-type test for time series Nonlinearity, Biometrika,
72, 39-44.

See Also

nonlinearityTest, tsayTest, mcleodLiTest,thresholdTest
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logisticMap Logistic map

Description

Generates a time series using the logistic map.

Usage

logisticMap(
r = 4,
start = runif(n = 1, min = 0, max = 1),
n.sample = 5000,
n.transient = 500,
do.plot = deprecated()

)

Arguments

r The r parameter. Default: 4

start A numeric value indicating the starting value for the time series. If the starting
point is not specified, it is generated randomly.

n.sample Length of the generated time series. Default: 5000 samples.

n.transient Number of transient samples that will be discarded. Default: 500 samples.

do.plot Logical value. If TRUE, a plot of the generated logistic system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.

Details

The logistic map is defined as follows:

xn = r · xn−1 · (1− xn−1)

The default selection for the r parameter is known to produce a deterministic chaotic time series.

Value

A vector containing the values of the time series that has been generated.

Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia
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References

Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and
engineering (Studies in Nonlinearity)

See Also

henon, lorenz, rossler, ikedaMap,cliffordMap, sinaiMap, gaussMap

Examples

## Not run:
log.map=logisticMap(n.sample = 1000, n.transient=10,do.plot=TRUE)

## End(Not run)

logRadius Obtain the the average log(radius) computed on the information di-
mension algorithm.

Description

Obtain the the average log(radius) computed on the information dimension algorithm.

Usage

logRadius(x)

Arguments

x A infDim object.

Value

A numeric vector representing the average log(radius) computed on the information dimension
algorithm represented by the infDim object.

See Also

infDim
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lorenz Lorenz system

Description

Generates a 3-dimensional time series using the Lorenz equations.

Usage

lorenz(
sigma = 10,
beta = 8/3,
rho = 28,
start = c(-13, -14, 47),
time = seq(0, 50, by = 0.01),
do.plot = deprecated()

)

Arguments

sigma The σ parameter. Default: 10.

beta The β parameter. Default: 8/3.

rho The ρ parameter. Default: 28.

start A 3-dimensional numeric vector indicating the starting point for the time series.
Default: c(-13, -14, 47).

time The temporal interval at which the system will be generated. Default: time=seq(0,50,by
= 0.01).

do.plot Logical value. If TRUE, a plot of the generated Lorenz system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.

Details

The Lorenz system is a system of ordinary differential equations defined as:

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = −βz + xy

The default selection for the system parameters (σ = 10, ρ = 28, β = 8/3) is known to produce a
deterministic chaotic time series.

Value

A list with four vectors named time, x, y and z containing the time, the x-components, the y-
components and the z-components of the Lorenz system, respectively.
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Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

References

Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and
engineering (Studies in Nonlinearity)

See Also

henon, logisticMap, rossler,ikedaMap, cliffordMap, sinaiMap, gaussMap

Examples

## Not run:
lor=lorenz(time=seq(0,30,by = 0.01))
# plotting the x-component
plot(lor$time,lor$x,type="l")

## End(Not run)

maxLyapunov Maximum lyapunov exponent

Description

Functions for estimating the maximal Lyapunov exponent of a dynamical system from 1-dimensional
time series using Takens’ vectors.

Usage

maxLyapunov(
time.series,
min.embedding.dim = 2,
max.embedding.dim = min.embedding.dim,
time.lag = 1,
radius,
theiler.window = 1,
min.neighs = 5,
min.ref.points = 500,
max.time.steps = 10,
number.boxes = NULL,
sampling.period = 1,
do.plot = TRUE,
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...
)

## S3 method for class 'maxLyapunov'
divTime(x)

## S3 method for class 'maxLyapunov'
embeddingDims(x)

## S3 method for class 'maxLyapunov'
divergence(x)

## S3 method for class 'maxLyapunov'
plot(
x,
main = "Estimating maximal Lyapunov exponent",
xlab = "time t",
ylab = "S(t)",
type = "p",
col = NULL,
pch = NULL,
add.legend = T,
...

)

## S3 method for class 'maxLyapunov'
estimate(
x,
regression.range = NULL,
do.plot = FALSE,
use.embeddings = NULL,
main = "Estimating maximal Lyapunov exponent",
xlab = "time t",
ylab = "S(t)",
type = "p",
col = NULL,
pch = NULL,
ylim = NULL,
fit.col = NULL,
fit.lty = 2,
fit.lwd = 2,
add.legend = T,
...

)

Arguments

time.series The original time series from which the maximal Lyapunov exponent will be
estimated.
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min.embedding.dim

Integer denoting the minimum dimension in which we shall embed the time.series
(see buildTakens).

max.embedding.dim

Integer denoting the maximum dimension in which we shall embed the time.series
(see buildTakens).Thus, we shall estimate the Lyapunov exponent between min.embedding.dim
and max.embedding.dim.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors (see buildTakens).

radius Maximum distance in which will look for nearby trajectories.

theiler.window Integer denoting the Theiler window: Two Takens’ vectors must be separated
by more than theiler.window time steps in order to be considered neighbours.
By using a Theiler window, we exclude temporally correlated vectors from our
estimations.

min.neighs Minimum number of neighbours that a Takens’ vector must have to be consid-
ered a reference point.

min.ref.points Number of reference points that the routine will try to use. The routine stops
when it finds min.ref.points reference points, saving computation time.

max.time.steps Integer denoting the number of time steps marking the end of the linear region.

number.boxes Number of boxes that will be used in the box assisted algorithm (see neigh-
bourSearch).

sampling.period

Sampling period of the time series. When dealing with a discrete system, the
sampling.period should be set to 1.

do.plot Logical value. If TRUE (default value), a plot of S(t) Vs t is shown.

... Additional plotting parameters.

x A maxLyapunov object.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

type Type of plot (see ?plot).

col Vector of colors for each of the dimensions of the plot.

pch Vector of symbols for each of the dimensions of the plot.

add.legend add a legend to the plot?
regression.range

Vector with 2 components denoting the range where the function will perform
linear regression.

use.embeddings A numeric vector specifying which embedding dimensions should the estimate
function use to compute the Lyapunov exponent.

ylim Numeric vector of length 2, giving the y coordinates range.

fit.col A vector of colors to plot the regression lines.

fit.lty The type of line to plot the regression lines.

fit.lwd The width of the line for the regression lines.
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Details

It is a well-known fact that close trajectories diverge exponentially fast in a chaotic system. The
averaged exponent that determines the divergence rate is called the Lyapunov exponent (usually
denoted with λ). If δ(0) is the distance between two Takens’ vectors in the embedding.dim-
dimensional space, we expect that the distance after a time t between the two trajectories arising
from this two vectors fulfills:

δ(n) ∼ δ(0) · exp(λ · t)

The lyapunov exponent is estimated using the slope obtained by performing a linear regression of
S(t) = λ · t ∼ log(δ(t)/δ(0)) on t. S(t) will be estimated by averaging the divergence of several
reference points.

The user should plot S(t)V st when looking for the maximal lyapunov exponent and, if for some
temporal range S(t) shows a linear behaviour, its slope is an estimate of the maximal Lyapunov
exponent per unit of time. The estimate routine allows the user to get always an estimate of the
maximal Lyapunov exponent, but the user must check that there is a linear region in the S(t)V st.
If such a region does not exist, the estimation should be discarded. The computations should be
performed for several embedding dimensions in order to check that the Lyapunov exponent does
not depend on the embedding dimension.

Value

A list with three components named time and s.function. time is a vector containing the tem-
poral interval where the system evolves. It ranges from 0 to max.time.steps · sampling.period.
s.function is a matrix containing the values of the S(t) for each t in the time vector(the columns)
and each embedding dimension (the rows).

The divTime function returns the time in which the divergence of close trajectories was computed.

The embeddingDims function returns the embeddings in which the divergence of close trajectories
was computed

The divergence function returns the rate of divergence of close trajectories needed for the maximum
Lyapunov exponent estimation.

In order to obtain an estimation of the Lyapunov exponent the user can use the estimate function.
The estimate function allows the user to obtain an estimation of the maximal Lyapunov exponent
by averaging the slopes of the embedding dimensions specified in the use.embeddings parameter.
The slopes are determined by performing a linear regression over the radius’ range specified in
regression.range

Author(s)

Constantino A. Garcia

References

Eckmann, Jean-Pierre and Kamphorst, S Oliffson and Ruelle, David and Ciliberto, S and others.
Liapunov exponents from time series. Physical Review A, 34-6, 4971–4979, (1986).

Rosenstein, Michael T and Collins, James J and De Luca, Carlo J.A practical method for calculating
largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65-1, 117–134,
(1993).
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Examples

## Not run:
## Henon System
h=henon(n.sample= 5000,n.transient= 100, a = 1.4, b = 0.3,

start = c(0.63954883, 0.04772637), do.plot = FALSE)
my.ts=h$x
ml=maxLyapunov(time.series=my.ts,

min.embedding.dim=2,
max.embedding.dim=5,
time.lag=1,
radius=0.001,theiler.window=4,
min.neighs=2,min.ref.points=500,
max.time.steps=40,do.plot=FALSE)

plot(ml)
ml.estimation = estimate(ml,regression.range = c(0,15),

use.embeddings=4:5,
do.plot = TRUE)

# The max Lyapunov exponent of the Henon system is 0.41
cat("expected: ",0.41," calculated: ",ml.estimation,"\n")

## Rossler system
r=rossler(a=0.15,b=0.2,w=10,start=c(0,0,0), time=seq(0,1000,0.1),

do.plot=FALSE)
my.ts=r$x
use.cols = c("#999999","#E69F00","#56B4E9")
ml=maxLyapunov(time.series=my.ts,min.embedding.dim=5,max.embedding.dim = 7,

time.lag=12,radius=0.1,theiler.window=50,
min.neighs=5,min.ref.points=length(r),
max.time.steps=300,number.boxes=NULL,
sampling.period=0.1,do.plot=TRUE,
col=use.cols)

# The max Lyapunov exponent of the Rossler system is 0.09
ml.est=estimate(ml,col=use.cols,do.plot=T,

fit.lty=1,
fit.lwd=5)

cat("expected: ",0.090," calculated: ",ml.est,"\n")

## End(Not run)

mcleodLiTest McLeod-Li test

Description

McLeod-Li test for conditional heteroscedascity (ARCH).

Usage

mcleodLiTest(time.series, lag.max)
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Arguments

time.series The original time.series.

lag.max Maximum number of lags for which to test for conditional heteroscedascity.

Value

A list containing the p.values for each of the Ljung-Box tests computed using lags ranging from 1
to lag.max.

References

Tsay, Ruey S., and Rong Chen. Nonlinear time series analysis. Vol. 891. John Wiley & Sons, 2018.

See Also

nonlinearityTest, keenanTest, tsayTest, thresholdTest

mutualInformation Average Mutual Information (AMI)

Description

Functions for estimating the Average Mutual Information (AMI) of a time series.

Usage

mutualInformation(
time.series,
lag.max = NULL,
n.partitions = NULL,
units = c("Nats", "Bits", "Bans"),
do.plot = TRUE,
...

)

## S3 method for class 'mutualInf'
plot(
x,
main = "Average Mutual Information (AMI)",
xlab = "Time lag",
ylab = NULL,
type = "h",
...

)

## S3 method for class 'mutualInf'
as.numeric(x, ...)



42 mutualInformation

## S3 method for class 'mutualInf'
x[i]

## S3 method for class 'mutualInf'
x[[i]]

Arguments

time.series The observed time series.

lag.max Largest lag at which to calculate the AMI.

n.partitions Number of bins used to compute the probability distribution of the time series.

units The units for the mutual information. Allowed units are "Nats", "Bits" or "Bans"
(somethings called Hartleys). Default is "Nats".

do.plot Logical value. If TRUE, the AMI is plotted

... Further arguments for the plotting function.

x A mutualInf object.

main Title for the plot.

xlab Title for the x axis.

ylab Title for the y axis.

type Type of plot to be drawn.

i Indices specifying elements to extract.

Details

The Average Mutual Information (AMI) measures how much one random variable tells us about
another. In the context of time series analysis, AMI helps to quantify the amount of knowledge
gained about the value of x(t+ τ) when observing x(t).

To measure the AMI iof a time series, we create a histogram of the data using bins. Let pi the
probability that the signal has a value inside the ith bin, and let pij(τ) be the probability that x(t) is
in bin i ans x(t+ τ) is in bin j. Then, AMI for time delay τ is defined as

AMI(τ) =
∑
i,j

pij log(
pij
pipj

)

Depending on the base of the logarithm used to define AMI, the AMI is measured in bits (base 2,
also called shannons), nats (base e) or bans (base 10, also called hartleys).

Value

A mutualInf object that consist of a list containing all the relevant information of the AMI compu-
tation: time.lag, mutual.information, units and n.partitions.

Author(s)

Constantino A. Garcia
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References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press) H. Abar-
banel: Analysis of observed chaotic data (Springer, 1996).

See Also

timeLag

Examples

## Not run:
sx = sinaiMap(a=0.3,n.sample=5000,start=c(0.23489,0.8923),do.plot=FALSE)$x
mutinf = mutualInformation(sx, n.partitions = 20, units = "Bits")
## End(Not run)

neighbourSearch neighbour search

Description

This function finds all the neighbours of a given Takens’ vector. The neighbours are found using a
box assisted algorithm that creates a wrapped grid with a given number of boxes per dimension.

Usage

neighbourSearch(takens, positionTakens, radius, number.boxes = NULL)

Arguments

takens The matrix containing all the Takens’ vectors (see buildTakens).

positionTakens Integer denoting the Takens’ vector whose neighbours will be searched.

radius Distance in which the algorithm will search for neighbours.

number.boxes Integer denoting the number of boxes per dimension that will be used to con-
struct a wrapped grid (see Schreiber). If the user does not specify a number of
boxes, this function estimates a proper number.

Value

A containing all the neighbours of the positionTakens-th Takens’ vector. If the list is empty, that
means that there is no neighbour of the positionTakens-th Takens’ vector in the given radius.

Author(s)

Constantino A. Garcia
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References

Schreiber, T. Efficient neighbor searching in nonlinear time series analysis. Int. J. Bifurcation and
Chaos, 5, p. 349, (1995).

See Also

findAllNeighbours.

nlOrder Get the order of the nonlinear chaotic invariant.

Description

Get the order of the nonlinear chaotic invariant.

Usage

nlOrder(x)

Arguments

x An object containing all the information needed for the estimate of the chaotic
invariant.

Value

A numeric vector with the radius of the neighborhoods used for the computations of a chaotic
invariant.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

corrDim, sampleEntropy
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nonlinearityTest Nonlinearity test

Description

Nonlinearity test

Usage

nonlinearityTest(time.series, verbose = TRUE)

Arguments

time.series The original time.series from which the surrogate data is generated.

verbose Logical value. If TRUE, a summary of each of the tests is shown.

Details

This function runs a set of nonlinearity tests implemented by this and other R packages, including:

• Teraesvirta’s neural metwork test for nonlinearity (terasvirta.test).

• White neural metwork test for nonlinearity (white.test).

• Keenan’s one-degree test for nonlinearity (keenanTest).

• Perform the McLeod-Li test for conditional heteroscedascity (ARCH). (mcleodLiTest).

• Perform the Tsay’s test for quadratic nonlinearity in a time series. (tsayTest).

• Perform the Likelihood ratio test for threshold nonlinearity. (thresholdTest).

Value

A list containing the results of each of the tests.

See Also

keenanTest, tsayTest, mcleodLiTest,thresholdTest
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nonLinearNoiseReduction

Nonlinear noise reduction

Description

Function for denoising a given time series using nonlinear analysis techniques.

Usage

nonLinearNoiseReduction(time.series, embedding.dim, radius)

Arguments

time.series The original time series to denoise.

embedding.dim Integer denoting the dimension in which we shall embed the time.series.

radius The radius used to looking for neighbours in the phase space (see details).

Details

This function takes a given time series and denoises it. The denoising is achieved by averaging each
Takens’ vector in an m-dimensional space with his neighbours (time lag=1). Each neighbourhood
is specified with balls of a given radius (max norm is used).

Value

A vector containing the denoised time series.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)



nonLinearPrediction 47

nonLinearPrediction Nonlinear time series prediction

Description

Function for predicting futures values of a given time series using previous values and nonlinear
analysis techniques.

Usage

nonLinearPrediction(
time.series,
embedding.dim,
time.lag,
prediction.step,
radius,
radius.increment

)

Arguments

time.series Previous values of the time series that the algorithm will use to make the predic-
tion.

embedding.dim Integer denoting the dimension in which we shall embed the time.series.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

prediction.step

Integer denoting the number of time steps ahead for the forecasting.

radius The radius used to looking for neighbours in the phase space (see details).
radius.increment

The increment used when no neighbours are found (see details).

Details

Using time.series measurements, an embedding in embedding.dim-dimensional phase space with
time lag time.lag is used to predict the value following the given time series after prediction.steps
sample steps. This is done by finding all the neighbours of the last Takens’ vector in a radius of size
radius (the max norm is used). If no neighbours are found within a distance radius, the neighbour-
hood size is increased until succesful using radius.increment(radius = radius + radius.increment).

Value

The predicted value prediction.step time steps ahead.

Author(s)

Constantino A. Garcia
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References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

Examples

## Not run:
h=henon(n.sample=5000,start=c(0.324,-0.8233))
predic=nonLinearPrediction(time.series=h$x[10:2000],embedding.dim=2,

time.lag=1,
prediction.step=3,radius=0.03,
radius.increment=0.03/2)

cat("real value: ",h$x[2003],"Vs Forecast:",predic)

## End(Not run)

plotLocalScalingExp Plot local scaling exponents

Description

Plots the local scaling exponents of the correlation sum or the average Shannon information (when
computing information dimension).

Usage

plotLocalScalingExp(x, ...)

Arguments

x An object containing all the information needed for the estimate of the chaotic
invariant.

... Additional graphical parameters.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)



poincareMap 49

poincareMap Poincare map

Description

Computes the Poincare map of the reconstructed trajectories in the phase-space.

The Poincare map is a classical dynamical system technique that replaces the n-th dimensional
trajectory in the phase space with an (n-1)-th order discrete-time called the Poincare map. The
points of the Poincare map are the intersection of the trajectories in the phase-space with a certain
Hyper-plane.

Usage

poincareMap(
time.series = NULL,
embedding.dim = 2,
time.lag = 1,
takens = NULL,
normal.hiperplane.vector = NULL,
hiperplane.point

)

Arguments

time.series The original time series from which the phase-space reconstruction is done.

embedding.dim Integer denoting the dimension in which we shall embed the time.series.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

takens Instead of specifying the time.series, the embedding.dim and the time.lag, the
user may specify directly the Takens’ vectors.

normal.hiperplane.vector

The normal vector of the hyperplane that will be used to compute the Poincare
map. If the vector is not specifyed the program choses the vector (0,0,...,1).

hiperplane.point

A point on the hyperplane (an hyperplane is defined with a point and a normal
vector).

Details

This function computes the Poincare map taking the Takens’ vectors as the continuous trajectory
in the phase space. The takens param has been included so that the user may specify the real
phase-space instead of using the phase-space reconstruction (see examples).
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Value

Since there are three different Poincare maps, an R list is returned storing all the information related
which all of these maps:

• The positive Poincare map is formed by all the intersections with the hyperplane in positive
direction (defined by the normal vector). The pm.pos returns the points of the map whereas
that pm.pos.time returns the number of time steps since the beginning where the intersections
occurred. Note that these time steps probably won’t be integers since the algorithm uses an
interpolation procedure for calculating the intersection with the hyperplane.

• Similarly we define a negative Poincare map (pm.neg and pm.neg.time).

• Finally, we may define a two-side Poincare map that stores all the intersections (no matter the
direction of the intersection) (pm and pm.time).

Author(s)

Constantino A. Garcia

References

Parker, T. S., L. O. Chua, and T. S. Parker (1989). Practical numerical algorithms for chaotic
systems. Springer New York

Examples

## Not run:
r=rossler(a = 0.2, b = 0.2, w = 5.7, start=c(-2, -10, 0.2),
time=seq(0,300,by = 0.01), do.plot=FALSE)
takens=cbind(r$x,r$y,r$z)
# calculate poincare sections
pm=poincareMap(takens = takens,normal.hiperplane.vector = c(0,1,0),
hiperplane.point=c(0,0,0) )

if (requireNamespace("rgl", quietly = TRUE)) {
rgl::plot3d(takens,size=0.7)
rgl::points3d(pm$pm,col="red")

}

## End(Not run)

radius Get the radius of the neighborhoods used for the computations of a
chaotic invariant.

Description

Get the radius of the neighborhoods used for the computations of a chaotic invariant.

Usage

radius(x)
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Arguments

x An object containing all the information needed for the estimate of the chaotic
invariant.

Value

A numeric vector with the radius of the neighborhoods used for the computations of a chaotic
invariant.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

recurrencePlot Recurrence Plot

Description

Plot the recurrence matrix.

Usage

recurrencePlot(
takens = NULL,
time.series,
embedding.dim,
time.lag,
radius,
...

)

Arguments

takens Instead of specifying the time.series, the embedding.dim and the time.lag, the
user may specify directly the Takens’ vectors.

time.series The original time series from which the phase-space reconstruction is performed.

embedding.dim Integer denoting the dimension in which we shall embed the time.series.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

radius Maximum distance between two phase-space points to be considered a recur-
rence.

... Additional plotting parameters.
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Details

WARNING: This function is computationally very expensive. Use with caution.

Author(s)

Constantino A. Garcia

References

Zbilut, J. P. and C. L. Webber. Recurrence quantification analysis. Wiley Encyclopedia of Biomed-
ical Engineering (2006).

rossler Rossler system

Description

Generates a 3-dimensional time series using the Rossler equations.

Usage

rossler(
a = 0.2,
b = 0.2,
w = 5.7,
start = c(-2, -10, 0.2),
time = seq(0, 50, by = 0.01),
do.plot = deprecated()

)

Arguments

a The a parameter. Default:0.2.

b The b parameter. Default: 0.2.

w The w parameter. Default: 5.7.

start A 3-dimensional numeric vector indicating the starting point for the time series.
Default: c(-2, -10, 0.2).

time The temporal interval at which the system will be generated. Default: time=seq(0,50,by
= 0.01).

do.plot Logical value. If TRUE, a plot of the generated Lorenz system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.
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Details

The Rossler system is a system of ordinary differential equations defined as:

ẋ = −(y + z)

ẏ = x+ a · y

ż = b+ z ∗ (x− w)

The default selection for the system parameters (a = 0.2, b = 0.2, w = 5.7) is known to produce a
deterministic chaotic time series.

Value

A list with four vectors named time, x, y and z containing the time, the x-components, the y-
components and the z-components of the Rossler system, respectively.

Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

References

Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and
engineering (Studies in Nonlinearity)

See Also

henon, logisticMap, rossler,ikedaMap, cliffordMap, sinaiMap, gaussMap

Examples

## Not run:
r.ts = rossler(time=seq(0,30,by = 0.01))

## End(Not run)
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rqa Recurrence Quantification Analysis (RQA)

Description

The Recurrence Quantification Analysis (RQA) is an advanced technique for the nonlinear analysis
that allows to quantify the number and duration of the recurrences in the phase space.

Usage

rqa(
takens = NULL,
time.series = NULL,
embedding.dim = 2,
time.lag = 1,
radius,
lmin = 2,
vmin = 2,
distanceToBorder = 2,
save.RM = TRUE,
do.plot = FALSE,
...

)

Arguments

takens Instead of specifying the time.series, the embedding.dim and the time.lag, the
user may specify directly the Takens’ vectors.

time.series The original time series from which the phase-space reconstruction is performed.

embedding.dim Integer denoting the dimension in which we shall embed the time.series.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

radius Maximum distance between two phase-space points to be considered a recur-
rence.

lmin Minimal length of a diagonal line to be considered in the RQA. Default lmin =
2.

vmin Minimal length of a vertical line to be considered in the RQA. Default vmin = 2.
distanceToBorder

In order to avoid border effects, the distanceToBorder points near the border of
the recurrence matrix are ignored when computing the RQA parameters. De-
fault, distanceToBorder = 2.

save.RM Logical value. If TRUE, the recurrence matrix is stored as a sparse matrix. Note
that computing the recurrences in matrix form can be computationally expen-
sive.
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do.plot Logical. If TRUE, the recurrence plot is shown. However, plotting the recur-
rence matrix is computationally expensive. Use with caution.

... Additional plotting parameters.

Value

A rqa object that consist of a list with the most important RQA parameters:

• recurrence.matrix: A sparse symmetric matrix containing the recurrences of the phase space.

• REC: Recurrence. Percentage of recurrence points in a Recurrence Plot.

• DET: Determinism. Percentage of recurrence points that form diagonal lines.

• LAM: Percentage of recurrent points that form vertical lines.

• RATIO: Ratio between DET and RR.

• Lmax: Length of the longest diagonal line.

• Lmean: Mean length of the diagonal lines. The main diagonal is not taken into account.

• DIV: Inverse of Lmax.

• Vmax: Longest vertical line.

• Vmean: Average length of the vertical lines. This parameter is also referred to as the Trapping
time.

• ENTR: Shannon entropy of the diagonal line lengths distribution

• TREND: Trend of the number of recurrent points depending on the distance to the main diag-
onal

• diagonalHistogram: Histogram of the length of the diagonals.

• recurrenceRate: Number of recurrent points depending on the distance to the main diagonal.

Author(s)

Constantino A. Garcia and Gunther Sawitzki

References

Zbilut, J. P. and C. L. Webber. Recurrence quantification analysis. Wiley Encyclopedia of Biomed-
ical Engineering (2006).

Examples

## Not run:
rossler.ts = rossler(time=seq(0, 10, by = 0.01),do.plot=FALSE)$x
rqa.analysis=rqa(time.series = rossler.ts, embedding.dim=2, time.lag=1,

radius=1.2,lmin=2,do.plot=FALSE,distanceToBorder=2)
plot(rqa.analysis)

## End(Not run)
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sampleEntropy Sample Entropy (also known as Kolgomorov-Sinai Entropy)

Description

The Sample Entropy measures the complexity of a time series. Large values of the Sample Entropy
indicate high complexity whereas that smaller values characterize more regular signals.

Usage

sampleEntropy(corrDim.object, do.plot = TRUE, ...)

## S3 method for class 'sampleEntropy'
sampleEntropyFunction(x)

## S3 method for class 'sampleEntropy'
nlOrder(x)

## S3 method for class 'sampleEntropy'
radius(x)

## S3 method for class 'sampleEntropy'
embeddingDims(x)

## S3 method for class 'sampleEntropy'
plot(
x,
main = NULL,
xlab = NULL,
ylab = NULL,
type = "l",
col = NULL,
pch = NULL,
ylim = NULL,
log = "x",
add.legend = T,
...

)

## S3 method for class 'sampleEntropy'
estimate(
x,
regression.range = NULL,
do.plot = TRUE,
use.embeddings = NULL,
fit.col = NULL,
fit.lty = 2,
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fit.lwd = 2,
add.legend = T,
...

)

Arguments

corrDim.object A corrDim object from which the Sample Entropy of the time series character-
ized by corrDim shall be estimated.

do.plot do.plot Logical value. If TRUE (default value), a plot of the sample entropy is
shown.

... Additional plotting arguments.

x A sampleEntropy object.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

type Type of plot (see ?plot).

col Vector of colors for each of the dimensions of the plot.

pch Vector of symbols for each of the dimensions of the plot

ylim Numeric vector of length 2, giving the y coordinates range..

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

add.legend add a legend to the plot?
regression.range

Vector with 2 components denoting the range where the function will perform
linear regression.

use.embeddings A numeric vector specifying which embedding dimensions should the estimate
function use to compute the sample entropy.

fit.col A vector of colors to plot the regression lines.

fit.lty The type of line to plot the regression lines.

fit.lwd The width of the line for the regression lines.

Details

The sample entropy is computed using:

hq(m, r) = log(Cq(m, r)/Cq(m+ 1, r))

where m is the embedding dimension and r is the radius of the neighbourhood. When computing
the correlation dimensions we use the linear regions from the correlation sums in order to do the
estimates. Similarly, the sample entropy hq(m, r) should not change for both various m and r.

For each embedding dimension the sample entropy is estimated by averaging

hq(m, r) = log(Cq(m, r)/Cq(m+ 1, r))

over the range specified by regression range in the estimate function.
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Value

A sampleEntropy object that contains a list storing the sample entropy (sample.entropy), the em-
bedding dimensions (embedding.dims) and radius (radius) for which the sample entropy has been
computed, and the order of the sample entropy (entr.order). The sample entropy is stored as a matrix
in which each row contains the computations for a given embedding dimension and each column
stores the computations for a given radius.

The sampleEntropyFunction returns the sample entropy function hq(m, r) used for the compu-
tations. The sample entropy function is represented by a matrix. Each row represents a given
embedding dimension whereas that each column representes a different radius.

The nlOrder function returns the order of the sample entropy.

The radius function returns the radius on which the sample entropy function has been evaluated.

The embeddingDims function returns the embedding dimensions on which the sample entropy func-
tion has been evaluated.

The plot function shows the graphics for the sample entropy.

The estimate function returns a vector storing the sample entropy estimate for each embedding
dimension.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

Examples

## Not run:
x=henon(n.sample = 15000, n.transient = 100, a = 1.4, b = 0.3,

start = c(0.78,0.8165), do.plot = FALSE)$x

cd=corrDim(time.series=x,
min.embedding.dim=2,max.embedding.dim=9,
corr.order=2,time.lag=1,
min.radius=0.05,max.radius=1,
n.points.radius=100,
theiler.window=20,
do.plot=TRUE)

use.col = c("#999999", "#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")

se=sampleEntropy(cd,do.plot=TRUE,col=use.col,
type="l",xlim=c(0.1,1),
add.legend=T)

se.est = estimate(se,
regression.range = c(0.4,0.6),
use.embeddings = 6:9,col=use.col,type="b")

print(se.est)
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cat("Expected K2 = ",0.325," Estimated = ",mean(se.est),"\n")

## End(Not run)

sampleEntropyFunction Returns the sample entropy function h_q(m, r) used for the computa-
tions of the sample entropy.

Description

Returns the sample entropy function hq(m, r) used for the computations of the sample entropy.

Usage

sampleEntropyFunction(x)

Arguments

x A sampleEntropy object.

Value

A numeric matrix representing the sample entropy function hq(m, r) obtained in #’ the sample
entropy computations represented by the sampleEntropy object.

See Also

sampleEntropy

sinaiMap Sinai map

Description

Generates a 2-dimensional time series using the Sinai map.

Usage

sinaiMap(
a = 0.1,
start = runif(2),
n.sample = 5000,
n.transient = 500,
do.plot = deprecated()

)
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Arguments

a The a parameter. Default: 0.1

start A 2-dimensional vector indicating the starting values for the x and y Sinai coor-
dinates. If the starting point is not specified, it is generated randomly.

n.sample Length of the generated time series. Default: 5000 samples.

n.transient Number of transient samples that will be discarded. Default: 500 samples.

do.plot Logical value. If TRUE, a plot of the generated Sinai system is shown. Before
version 0.2.11, default value was TRUE; versions 0.2.11 and later use FALSE
as default.

Details

The Sinai map is defined as follows:

xn+1 = (xn + yn + a · cos(2 · pi · yn))mod1

yn+1 = (xn + 2 · yn)mod1

The default selection for the a parameter is known to produce a deterministic chaotic time series.

Value

A list with two vectors named x and y containing the x-components and the y-components of the
Sinai map, respectively.

Note

Some initial values may lead to an unstable system that will tend to infinity.

Author(s)

Constantino A. Garcia

References

Mcsharry, P. E. and P. R. Ruffino (2003). Asymptotic angular stability in nonlinear systems: rotation
numbers and winding numbers. Dynamical Systems 18(3), 191-200.

See Also

henon, logisticMap, lorenz,rossler, ikedaMap, cliffordMap, gaussMap

Examples

## Not run:
sinai.map = sinaiMap(n.sample = 1000, n.transient=10,do.plot=TRUE)
# accessing the x coordinate and plotting it
plot(ts(sinai.map$x))

## End(Not run)
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spaceTimePlot Space Time plot

Description

The space time separation is a broadly-used method of detecting non-stationarity and temporal
correlations in the time series being analyzed. The space time separation plot is also used to select
a proper Theiler window by selecting a temporal separation enough to saturate the contour lines.

Usage

spaceTimePlot(
takens = NULL,
time.series = NULL,
embedding.dim = 2,
time.lag = 1,
max.radius = NULL,
time.step = 1,
number.time.steps = NULL,
numberPercentages = 10,
do.plot = TRUE,
...

)

## S3 method for class 'spaceTimePlot'
contourLines(x)

## S3 method for class 'spaceTimePlot'
getContourLines(x)

## S3 method for class 'spaceTimePlot'
plot(
x,
main = "Space time separation plot",
xlab = NULL,
ylab = NULL,
type = "l",
ylim = NULL,
col = NULL,
pch = NULL,
add.legend = TRUE,
...

)

Arguments

takens Instead of specifying the time.series, the embedding.dim and the time.lag, the
user may specify directly the Takens’ vectors.
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time.series The original time series being analyzed.

embedding.dim Integer denoting the dimension in which we shall embed the time series.

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

max.radius Maximum neighbourhood radius in which the algorithm will look for finding
neighbours. This parameter may be used to avoid heavy computations. If the
user does not specify a radius, the algorithm estimates it.

time.step Integer denoting the number of discrete steps between two calculations of the
space time plot.

number.time.steps

Integer denoting the number of temporal jumps in steps of time.step in which
we want to compute the space time plot.

numberPercentages

Number of contour lines to be computed. Each contour line represent a concrete
percentage of points (see Details).

do.plot Logical. If TRUE, the time space plot is shown.

... Additional plotting parameters.

x A spaceTimePlot object.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

type Type of plot (see ?plot).

ylim Numeric vector of length 2, giving the y coordinates range.

col Vector of colors for each of the percentages of the plot.

pch Vector of symbols for each of the percentages of the plot.

add.legend add a legend to the plot?

Details

Each contour line of the space time plot indicate the distance you have to go (y-axis) to find a given
fraction of neighbour pairs, depending on their temporal separation (x-axis).

WARNING: The parameter number.time.steps should be used with caution since this method per-
forms heavy computations.

Value

A timeSpacePlot object that consist, essentially, of a matrix storing the values for each contour line.
Each row stores the value for a given percentage of points. Each column stores the value of the
radius you have to go to find a given fraction of neighbour pairs (the rows), depending on their
temporal separation (the colums). This matrix can be accessed by using the contourlines method.

The contourLines function returns the contour lines of the space time plot.
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Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

Examples

## Not run:
tak = buildTakens(sin(2*pi*0.005*(0:5000)),2,1)
stp.test = spaceTimePlot(takens=tak,number.time.steps=400,do.plot=TRUE)

## End(Not run)

surrogateTest Surrogate data testing

Description

Surrogate data testing

Usage

surrogateTest(
time.series,
significance = 0.05,
one.sided = FALSE,
alternative = c("smaller", "larger"),
K = 1,
FUN,
verbose = TRUE,
do.plot = TRUE,
xlab = "Values of the statistic",
ylab = "",
main = "Surrogate data testing",
...

)

Arguments

time.series The original time.series from which the surrogate data is generated.

significance Significance of the test

one.sided Logical value. If TRUE, the routine runs a one-side test. If FALSE, a two-side
test is applied (default).
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alternative Specifies the concrete type of one-side test that should be performed: If the
the user wants to test if the statistic from the original data is smaller (alterna-
tive="smaller") or larger (alternative="larger") than the expected value under
the null hypothesis.

K Integer controlling the number of surrogates to be generated (see details).

FUN The function that computes the discriminating statistic that shall be used for
testing.

verbose Logical value. If TRUE, a brief summary of the test is shown.

do.plot Logical value. If TRUE, a graphical representation of the statistic value for both
surrogates and original data is shown.

xlab a title for the x axis.

ylab a title for the y axis.

main an overall title for the plot.

... Additional arguments for the FUN function.

Details

This function tests the null hypothesis (H0) stating that the series is a gaussian linear process. The
test is performed by generating several surrogate data according to H0 and comparing the values
of a discriminating statistic between both original data and the surrogate data. If the value of the
statistic is significantly different for the original series than for the surrogate set, the null hypothesis
is rejected and nonlinearity assumed.

To test with a significance level of α if the statistic from the original data is smaller than the expected
value under the null hypothesis (a one-side test), K/α − 1 surrogates are generated. The null
hypothesis is then rejected if the statistic from the data has one of the K smallest values. For a
two-sided test, 2K/α − 1 surrogates are generated. The null hypothesis is rejected if the statistic
from the data gives one of the K smallest or largest values.

The surrogate data is generated by using a phase randomization procedure.

Value

A list containing the values of the statistic for the surrogates (surrogates.statistics field) and the
value for the original time series (data.statistic)

Author(s)

Constantino A. Garcia

References

SCHREIBER, Thomas; SCHMITZ, Andreas. Surrogate time series. Physica D: Nonlinear Phe-
nomena, 2000, vol. 142, no 3, p. 346-382.
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Examples

## Not run:
lx = lorenz(do.plot=F)$x
sdt = surrogateTest(time.series = lx,significance = 0.05,

K=5, one.sided = FALSE, FUN=timeAsymmetry)

## End(Not run)

thresholdTest Threshold nonlinearity test

Description

Computes the likelihood ratio test for threshold nonlinearity with H0 being an AR process and H1
a TAR model.

Usage

thresholdTest(
time.series,
p,
d = 1,
lower.percent = 0.25,
upper.percent = 0.75

)

Arguments

time.series The original time.series.

p The order of the AR process.

d Delay used for the threshold value in the TAR process.

lower.percent The threshold value is searched over an interval defined by lower.percent and
upper.percent of the time series values. This defines the lower percent.

upper.percent The threshold value is searched over an interval defined by lower.percent and
upper.percent of the time series values. This defines the upper percent.

Value

A list containing

• p.value: p-value of the test

• test.statistic: Likelihood ratio test statistic.

• percentiles: Since the search for the threshold parameter may occur in a narrower interval than
the one specified by the user, the effective lower and upper percents are returned here.
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Note

Adapted from the tlrt function of the TSA package.

Author(s)

Kung-Sik Chan

References

Chan, K.S. (1990). Percentage points of likelihood ratio tests for threshold autoregression. Journal
of Royal Statistical Society, B 53, 3, 691-696.

See Also

nonlinearityTest, keenanTest, tsayTest, mcleodLiTest

timeAsymmetry Time Reversibility statistic

Description

Time Reversibility statistic

Usage

timeAsymmetry(time.series)

Arguments

time.series The time series used to compute the statistic.

Details

The time simmetry statistic measures the asymmetry of a time series under time reversal by calcu-
lating:

E[sn · s2n+1]− E[s2n · sn+1]

. Since linear stochastic series are symmetric under time reversal, this statistic may be used for
testing the assertion that the data was generated from a stationary linear stochastic process or not.

Value

The time simmetry statistic.

Author(s)

Constantino A. Garcia
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References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press, second
edition, section 7.1.3)

timeAsymmetry2 Time Reversibility statistic

Description

Time Reversibility statistic

Usage

timeAsymmetry2(time.series, tau)

Arguments

time.series The time series used to compute the statistic

tau Time delay used to compute the third order statistic.

Details

The time simmetry statistic measures the asymmetry of a time series under time reversal by imple-
menting the third order statistic:

E[sn − sn−τ )
3]

. Since linear stochastic series are symmetric under time reversal, this statistic may be used for
testing the assertion that the data was generated from a stationary linear stochastic process or not.

Value

The time simmetry statistic for the delays specified with tau.

Author(s)

Constantino A. Garcia

See Also

timeAsymmetry
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timeLag Estimate an appropiate time lag for the Takens’ vectors

Description

Given a time series (time.series), an embedding dimension (m) and a time lag (timeLag), the nth

Takens’ vector is defined as

T [n] = {time.series[n], time.series[n+ timeLag], ...time.series[n+m ∗ timeLag]}.

This function estimates an appropiate time lag by using the autocorrelation function or the average
mutual information .

Usage

timeLag(
time.series,
technique = c("acf", "ami"),
selection.method = c("first.e.decay", "first.zero", "first.minimum", "first.value"),
value = 1/exp(1),
lag.max = NULL,
do.plot = TRUE,
main = NULL,
...

)

Arguments

time.series The original time series.

technique The technique that we shall use to estimate the time lag (see the Details section).
Allowed values are "acf" and "ami".

selection.method

Method used for selecting a concrete time lag. Available methods are "first.zero",
"first.e.decay" (default), "first.minimum" and "first.value".

value Numeric value indicating the value that the autocorrelation/AMI function must
cross in order to select the time lag. It is used only with the "first.value" selection
method.

lag.max Maximum lag at which to calculate the acf/AMI.

do.plot Logical value. If TRUE (default value), a plot of the autocorrelation/AMI func-
tion is shown.

main A title for the plot.

... Additional parameters for the acf or the mutualInformation.
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Details

A basic criteria for estimating a proper time lag is based on the following reasoning: if the time
lag used to build the Takens’ vectors is too small, the coordinates will be too highly temporally
correlated and the embedding will tend to cluster around the diagonal in the phase space. If the
time lag is chosen too large, the resulting coordinates may be almost uncorrelated and the resulting
embedding will be very complicated. Thus, the autocorrelation function can be used for estimating
an appropiate time lag of a time series. However, it must be noted that the autocorrelation is a
linear statistic, and thus it does not take into account nonlinear dynamical correlations. To take into
account nonlinear correlations the average mutual information (AMI) can be used. Independently
of the technique used to compute the correlation, the time lag can be selected in a variety of ways:

• Select the time lag where the autocorrelation/AMI function decays to 0 (first.zero selection
method). This method is not appropriate for the AMI function, since it only takes positive
values.

• Select the time lag where the autocorrelation/AMI function decays to 1/e of its value at zero
(first.e.decay selection method).

• Select the time lag where the autocorrelation/AMI function reaches its first minimum (first.minimum
selection method).

• Select the time lag where the autocorrelation/AMI function decays to the value specified by
the user (first.value selection method and value parameter).

Value

The estimated time lag.

Note

If the autocorrelation/AMI function does not cross the specifiged value, an error is thrown. This may
be solved by increasing the lag.max or selecting a higher value to which the autocorrelation/AMI
function may decay.

Author(s)

Constantino A. Garcia

References

H. Kantz and T. Schreiber: Nonlinear Time series Analysis (Cambridge university press)

See Also

mutualInformation

Examples

## Not run:
sx = sinaiMap(a=0.3,n.sample=5000,start=c(0.23489,0.8923),do.plot=FALSE)$x
timeLag(sx, technique="ami",

n.partitions = 20, units = "Bits")
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timeLag(sx, technique="acf")
## End(Not run)

tsayTest Tsay’s test

Description

Tsay’s test: test for nonlinearity against the null hypothesis that the time series follows some AR
process. This is a generalization of Keenan’s test.

Usage

tsayTest(time.series, order)

Arguments

time.series The original time.series.

order Order used for the AR model.

Value

A list containing the results of the test, including:

• test.stat: the F-squared test statistic

• p.value.

• order: order of the AR process used for testing.

References

Tsay, R. S. (1986), Nonlinearity test for time series, Biometrika, 73, 461-466.

See Also

nonlinearityTest, keenanTest, mcleodLiTest,thresholdTest
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windowSizes Returns the window sizes used for DFA in a dfa object.

Description

Returns the window sizes used for DFA in a dfa object.

Usage

windowSizes(x)

Arguments

x A dfa object.

Value

The windowSizes function returns the windows sizes used to detrend the time series in the DFA.

See Also

dfa
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