
Package ‘pins’
October 7, 2024

Type Package

Title Pin, Discover, and Share Resources

Version 1.4.0

Description Publish data sets, models, and other R objects, making it
easy to share them across projects and with your colleagues. You can
pin objects to a variety of ``boards'', including local folders (to
share on a networked drive or with 'DropBox'), 'Posit Connect',
'AWS S3', and more.

License Apache License (>= 2)

URL https://pins.rstudio.com/, https://github.com/rstudio/pins-r

BugReports https://github.com/rstudio/pins-r/issues

Depends R (>= 3.6)

Imports cli, digest, fs, generics, glue, httr, jsonlite, lifecycle,
magrittr, purrr (>= 1.0.0), rappdirs, rlang (>= 1.1.0), tibble,
whisker, withr (>= 2.4.3), yaml

Suggests archive, arrow, AzureStor, covr, data.table, datasets,
filelock, gitcreds, googleCloudStorageR, googledrive, httr2,
ids, knitr, Microsoft365R, mime, mockery, nanoparquet, openssl,
paws.storage, qs, R.utils, rmarkdown, rsconnect, shiny, sodium,
testthat (>= 3.1.7), webfakes (>= 1.2.0), xml2, zip

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Julia Silge [cre, aut] (<https://orcid.org/0000-0002-3671-836X>),
Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Javier Luraschi [aut],
Posit Software, PBC [cph, fnd]

1

https://pins.rstudio.com/
https://github.com/rstudio/pins-r
https://github.com/rstudio/pins-r/issues
https://orcid.org/0000-0002-3671-836X
https://orcid.org/0000-0003-4757-117X

2 board_azure

Maintainer Julia Silge <julia.silge@posit.co>

Repository CRAN

Date/Publication 2024-10-07 16:00:03 UTC

Contents
board_azure . 2
board_cache_path . 4
board_connect . 5
board_connect_url . 7
board_databricks . 8
board_folder . 9
board_gcs . 10
board_gdrive . 11
board_ms365 . 12
board_s3 . 14
board_url . 16
cache_browse . 18
pin_browse . 19
pin_delete . 19
pin_download . 20
pin_exists . 21
pin_list . 22
pin_meta . 23
pin_reactive_read . 24
pin_read . 25
pin_search . 27
pin_versions . 28
write_board_manifest . 29

Index 31

board_azure Use an Azure storage container as a board

Description

Pin data to a container in Azure storage using the AzureStor package.

Usage

board_azure(
container,
path = "",
n_processes = 10,
versioned = TRUE,
cache = NULL

)

board_azure 3

Arguments

container An azure storage container created by AzureStor::blob_container() or sim-
ilar.

path Path to the directory in the container to store pins. Will be created if it doesn’t
already exist. The equivalent of a prefix for AWS S3 storage.

n_processes Maximum number of processes used for parallel uploads/downloads.

versioned Should this board be registered with support for versions?

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

Details

You can create a board in any of the services that AzureStor supports: blob storage, file storage and
Azure Data Lake Storage Gen2 (ADLSgen2).

Blob storage is the classic storage service that is most familiar to people, but is relatively old and
inefficient. ADLSgen2 is a modern replacement API for working with blobs that is much faster
when working with directories. You should consider using this rather than the classic blob API
where possible; see the examples below.

board_azure() is powered by the AzureStor package, which is a suggested dependency of pins
(not required for pins in general). If you run into errors when deploying content to a server like
https://www.shinyapps.io or Connect, add requireNamespace("AzureStor") to your app or
document for automatic dependency discovery.

Examples

if (requireNamespace("AzureStor")) {
Public access board
url <- "https://pins.blob.core.windows.net/public-data"
container <- AzureStor::blob_container(url)
board <- board_azure(container)
board %>% pin_read("mtcars")

}

Not run:
To create a board that you can write to, you'll need to supply one
of `key`, `token`, or `sas` to AzureStor::blob_container()
First, we create a board using the classic Azure blob API
url <- "https://myaccount.blob.core.windows.net/mycontainer"
container <- AzureStor::blob_container(url, sas = "my-sas")
board <- board_azure(container, "path/to/board")
board %>% pin_write(iris)

ADLSgen2 is a modern, efficient way to access blobs
- Use 'dfs' instead of 'blob' in the account URL to use the ADLSgen2 API
- Use the 'storage_container' generic instead of the service-specific
'blob_container'
- We reuse the board created via the blob API above

https://www.shinyapps.io
https://posit.co/products/enterprise/connect/
https://docs.posit.co/connect/user/troubleshooting/#render-missing-r-package

4 board_cache_path

adls_url <- "https://myaccount.dfs.core.windows.net/mycontainer"
container <- AzureStor::storage_container(adls_url, sas = "my-sas")
board <- board_azure(container, "path/to/board")
board %>% pin_list()
board %>% pin_read("iris")

End(Not run)

board_cache_path Retrieve default cache path

Description

Retrieves the default path used to cache boards and pins. Makes use of rappdirs::user_cache_dir()
for cache folders defined by each OS. Remember that you can set the cache location for an individ-
ual board object via the cache argument.

Usage

board_cache_path(name)

Arguments

name Board name

Details

There are several environment variables available to control the location of the default pins cache:

• Use PINS_CACHE_DIR to set the cache path for only pins functions
• Use R_USER_CACHE_DIR to set the cache path for all functions that use rappdirs

On system like AWS Lambda that is read only (for example, only /tmp is writeable), set either
of these to base::tempdir(). You may also need to set environment variables like HOME and/or
R_USER_DATA_DIR to the session temporary directory.

Examples

retrieve default cache path
board_cache_path("local")

set with env vars:
withr::with_envvar(

c("PINS_CACHE_DIR" = "/path/to/cache"),
board_cache_path("local")

)
withr::with_envvar(

c("R_USER_CACHE_DIR" = "/path/to/cache"),
board_cache_path("local")

)

board_connect 5

board_connect Use Posit Connect as board

Description

To use a Posit Connect board, you need to first authenticate. The easiest way to do so is using the
RStudio IDE and choosing Tools - Global Options - Publishing - Connect, then following the
instructions.

You can share pins with others in Posit Connect by changing the viewers of the document to specific
users or groups. This is accomplished by opening the new published pin and then changing access
under the settings tab. After you’ve shared the pin, it will be automatically available to others.

Usage

board_connect(
auth = c("auto", "manual", "envvar", "rsconnect"),
server = NULL,
account = NULL,
key = NULL,
cache = NULL,
name = "posit-connect",
versioned = TRUE,
use_cache_on_failure = is_interactive()

)

board_rsconnect(
auth = c("auto", "manual", "envvar", "rsconnect"),
server = NULL,
account = NULL,
key = NULL,
output_files = FALSE,
cache = NULL,
name = "posit-connect",
versioned = TRUE,
use_cache_on_failure = is_interactive()

)

Arguments

auth There are three ways to authenticate:
• auth = "manual" uses arguments server and key.
• auth = "envvar" uses environment variables CONNECT_API_KEY and CONNECT_SERVER.
• auth = "rsconnect" uses servers registered with the rsconnect package

(filtered by server and account, if provided)
The default, auth = "auto", automatically picks between the three options, us-
ing "manual" if server and key are provided, "envvar" if both environment
variables are set, and "rsconnect" otherwise.

6 board_connect

server For auth = "manual" or auth = 'envvar', the full url to the server, like http://server.posit.co/rsc
or https://connect.posit.co/. For auth = 'rsconnect' a host name used
to disambiguate Connect accounts, like server.posit.co or connect.posit.co.

account A user name used to disambiguate multiple Connect accounts.

key The Posit Connect API key.

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

name An optional name used identify the board. This is no longer generally needed
since you should be passing around an explicit board object.

versioned Should this board be registered with support for versions?
use_cache_on_failure

If the pin fails to download, is it OK to use the last cached version? Defaults
to is_interactive() so you’ll be robust to poor internet connectivity when
exploring interactively, but you’ll get clear errors when the code is deployed.
Note that this argument controls whether you use the cache for reading pins, but
you can’t create a board object unless you can connect to your Connect server.

output_files [Deprecated] No longer supported.

Public pins

If your Posit Connect instance allows it, you can share a pin publicly by setting the access type to
all:

board %>% pin_write(my_df, access_type = "all")

(You can also do this in Posit Connect by setting "Access" to "Anyone - no login required")

Now anyone can read your pin through board_url():

board <- board_url(c(
numbers = "https://pub.current.posit.team/public/great-numbers/"

))
board %>% pin_read("numbers")

You can find the URL of a pin with pin_browse().

See Also

Other boards: board_connect_url(), board_folder(), board_url()

Examples

Not run:
board <- board_connect()
Share the mtcars with your team
board %>% pin_write(mtcars, "mtcars")

board_connect_url 7

Download a shared dataset
board %>% pin_read("timothy/mtcars")

End(Not run)

board_connect_url Use a vector of Posit Connect vanity URLs as a board

Description

board_connect_url() lets you build up a board from individual vanity urls.

board_connect_url() is read only, and does not support versioning.

Usage

board_connect_url(
vanity_urls,
cache = NULL,
use_cache_on_failure = is_interactive(),
headers = connect_auth_headers()

)

connect_auth_headers(key = Sys.getenv("CONNECT_API_KEY"))

Arguments

vanity_urls A named character vector of Connect vanity URLs, including trailing slash. This
board is read only, and the best way to write to a pin on Connect is board_connect().

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

use_cache_on_failure

If the pin fails to download, is it ok to use the last cached version? Defaults
to is_interactive() so you’ll be robust to poor internet connectivity when
exploring interactively, but you’ll get clear errors when the code is deployed.

headers Named character vector for additional HTTP headers (such as for authentica-
tion). See connect_auth_headers() for Posit Connect support.

key The Posit Connect API key.

Details

This board is a thin wrapper around board_url() which uses connect_auth_headers() for au-
thentication via environment variable.

See Also

Other boards: board_connect(), board_folder(), board_url()

https://docs.posit.co/connect/user/content-settings/#custom-url
https://docs.posit.co/connect/user/content-settings/#custom-url

8 board_databricks

Examples

connect_auth_headers()

board <- board_connect_url(c(
my_vanity_url_pin = "https://pub.current.posit.team/public/great-numbers/"

))

board %>% pin_read("my_vanity_url_pin")

board_databricks Use a Databricks Volume as a board

Description

Pin data to a Databricks Volume

Usage

board_databricks(
folder_url,
host = NULL,
prefix = NULL,
versioned = TRUE,
cache = NULL

)

Arguments

folder_url The path to the target folder inside Unity Catalog. The path must include the cat-
alog, schema, and volume names, preceded by ’Volumes/’, like "/Volumes/my-catalog/my-schema/my-volume".

host Your Workspace Instance URL. Defaults to NULL. If NULL, it will search for this
URL in two different environment variables, in this order:

• ’DATABRICKS_HOST’
• ’CONNECT_DATABRICKS_HOST’

prefix Prefix within the folder that this board will occupy. You can use this to maintain
multiple independent pin boards within a single Databricks Volume. Make sure
to end with ’/’, to take advantage of Databricks Volume directory-like handling.

versioned Should this board be registered with support for versions?

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

https://docs.databricks.com/en/sql/language-manual/sql-ref-volumes.html
https://docs.databricks.com/en/workspace/workspace-details.html#workspace-url

board_folder 9

Authentication

board_databricks() searches for an authentication token in three different places, in this order:

• ’DATABRICKS_TOKEN’ environment variable

• ’CONNECT_DATABRICKS_TOKEN’ environment variable

• OAuth Databricks token inside the RStudio API

In most cases, the authentication will be a Personal Authentication Token (’PAT’) that is saved as
the ’DATABRICKS_TOKEN’ environment variable. To obtain a ’PAT’ see: Databricks personal
access token authentication.

Details

• The functions in pins do not create a new Databricks Volume.

• board_databricks() is powered by the httr2 package, which is a suggested dependency of
pins (not required for pins in general). If you run into errors when deploying content to a
server like https://www.shinyapps.io or Connect, add requireNamespace("httr2") to
your app or document for automatic dependency discovery.

Examples

Not run:
board <- board_databricks("/Volumes/my-catalog/my-schema/my-volume")
board %>% pin_write(mtcars)
board %>% pin_read("mtcars")

A prefix allows you to have multiple independent boards in the same folder.
project_1 <- board_databricks(

folder_url = "/Volumes/my-catalog/my-schema/my-volume",
prefix = "project1/"

)
project_2 <- board_databricks(

folder_url = "/Volumes/my-catalog/my-schema/my-volume",
prefix = "project2/"

)

End(Not run)

board_folder Use a local folder as board

Description

• board_folder() creates a board inside a folder. You can use this to share files by using a
folder on a shared network drive or inside a DropBox.

• board_local() creates a board in a system data directory. It’s useful if you want to share
pins between R sessions on your computer, and you don’t care where the data lives.

https://docs.databricks.com/en/dev-tools/auth/pat.html
https://docs.databricks.com/en/dev-tools/auth/pat.html
https://www.shinyapps.io
https://posit.co/products/enterprise/connect/
https://docs.posit.co/connect/user/troubleshooting/#render-missing-r-package

10 board_gcs

• board_temp() creates a temporary board that lives in a session specific temporary directory.
It will be automatically deleted once the current R session ends. It’s useful for examples and
tests.

Usage

board_folder(path, versioned = FALSE)

board_local(versioned = FALSE)

board_temp(versioned = FALSE)

Arguments

path Path to directory to store pins. Will be created if it doesn’t already exist.

versioned Should this board be registered with support for versions?

See Also

Other boards: board_connect(), board_connect_url(), board_url()

Examples

session-specific local board
board <- board_temp()

board_gcs Use a Google Cloud Storage bucket as a board

Description

Pin data to a Google Cloud Storage bucket using the googleCloudStorageR package.

Usage

board_gcs(bucket, prefix = NULL, versioned = TRUE, cache = NULL)

Arguments

bucket Bucket name. You can only write to an existing bucket, and you can use googleCloudStorageR::gcs_get_global_bucket()
here.

prefix Prefix within this bucket that this board will occupy. You can use this to maintain
multiple independent pin boards within a single GCS bucket. Will typically end
with / to take advantage of Google Cloud Storage’s directory-like handling.

versioned Should this board be registered with support for versions?

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

board_gdrive 11

Authentication

board_gcs() is powered by the googleCloudStorageR package which provides several authenti-
cation options, as documented in its main vignette. The two main options are to create a service
account key (a JSON file) or an authentication token; you can manage either using the gargle pack-
age.

Details

• The functions in pins do not create a new bucket. You can create a new bucket from R with
googleCloudStorageR::gcs_create_bucket().

• You can pass arguments for googleCloudStorageR::gcs_upload such as predefinedAcl and
upload_type through the dots of pin_write().

• board_gcs() is powered by the googleCloudStorageR package, which is a suggested depen-
dency of pins (not required for pins in general). If you run into errors when deploying content
to a server like https://www.shinyapps.io or Connect, add requireNamespace("googleCloudStorageR")
to your app or document for automatic dependency discovery.

Examples

Not run:
board <- board_gcs("pins-testing")
board %>% pin_write(mtcars)
board %>% pin_read("mtcars")

A prefix allows you to have multiple independent boards in the same pin.
board_sales <- board_gcs("company-pins", prefix = "sales/")
board_marketing <- board_gcs("company-pins", prefix = "marketing/")
You can make the hierarchy arbitrarily deep.

Pass arguments like `predefinedAcl` through the dots of `pin_write`:
board %>% pin_write(mtcars, predefinedAcl = "publicRead")

End(Not run)

board_gdrive Use a Google Drive folder as a board

Description

Pin data to a folder in Google Drive using the googledrive package.

Usage

board_gdrive(path, versioned = TRUE, cache = NULL)

https://code.markedmondson.me/googleCloudStorageR/articles/googleCloudStorageR.html
https://gargle.r-lib.org/
https://www.shinyapps.io
https://posit.co/products/enterprise/connect/
https://docs.posit.co/connect/user/troubleshooting/#render-missing-r-package

12 board_ms365

Arguments

path Path to existing directory on Google Drive to store pins. Can be given as an
actual path like "path/to/folder" (character), a file id or URL marked with
googledrive::as_id(), or a googledrive::dribble.

versioned Should this board be registered with support for versions?

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

Details

• The functions in pins do not create a new Google Drive folder. You can create a new folder
from R with googledrive::drive_mkdir(), and then set the sharing for your folder with
googledrive::drive_share().

• If you have problems with authentication to Google Drive, learn more at googledrive::drive_auth().

• board_gdrive() is powered by the googledrive package, which is a suggested dependency of
pins (not required for pins in general). If you run into errors when deploying content to a server
like https://www.shinyapps.io or Connect, add requireNamespace("googledrive") to
your app or document for automatic dependency discovery.

Examples

Not run:
board <- board_gdrive("folder-for-my-pins")
board %>% pin_write(1:10, "great-integers", type = "json")
board %>% pin_read("great-integers")

End(Not run)

board_ms365 Use a OneDrive or Sharepoint document library as a board

Description

Pin data to a folder in Onedrive or a SharePoint Online document library using the Microsoft365R
package.

Usage

board_ms365(
drive,
path,
versioned = TRUE,
cache = NULL,
delete_by_item = FALSE

)

https://www.shinyapps.io
https://posit.co/products/enterprise/connect/
https://docs.posit.co/connect/user/troubleshooting/#render-missing-r-package

board_ms365 13

Arguments

drive A OneDrive or SharePoint document library object, of class Microsoft365R::ms_drive.

path Path to directory to store pins. This can be either a string containing the path-
name like "path/to/board", or a Microsoft365R::ms_drive_item object
pointing to the board path.

versioned Should this board be registered with support for versions?

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

delete_by_item Whether to handle folder deletions on an item-by-item basis, rather than deleting
the entire folder at once. You may need to set this to TRUE for a board in Share-
Point Online or OneDrive for Business, due to document protection policies that
prohibit deleting non-empty folders.

Details

Sharing a board in OneDrive (personal or business) is a bit complicated, as OneDrive normally
allows only the person who owns the drive to access files and folders. First, the drive owner
has to set the board folder as shared with other users, using either the OneDrive web interface
or Microsoft365R’s ms_drive_item$create_share_link() method. The other users then call
board_ms365 with a drive item object in the path argument, pointing to the shared folder. See the
examples below.

Sharing a board in SharePoint Online is much more straightforward, assuming all users have ac-
cess to the document library: in this case, everyone can use the same call board_ms365(doclib,
"path/to/board"). If you want to share a board with users outside your team, follow the same
steps for sharing a board in OneDrive.

board_ms365() is powered by the Microsoft365R package, which is a suggested dependency of
pins (not required for pins in general). If you run into errors when deploying content to a server like
https://www.shinyapps.io or Connect, add requireNamespace("Microsoft365R") to your
app or document for automatic dependency discovery.

Examples

Not run:
A board in your personal OneDrive
od <- Microsoft365R::get_personal_onedrive()
board <- board_ms365(od, "myboard")
board %>% pin_write(iris)

A board in OneDrive for Business
odb <- Microsoft365R::get_business_onedrive(tenant = "mytenant")
board <- board_ms365(odb, "myproject/board")

A board in a SharePoint Online document library
sp <- Microsoft365R::get_sharepoint_site("my site", tenant = "mytenant")
doclib <- sp$get_drive()
board <- board_ms365(doclib, "general/project1/board")

https://www.shinyapps.io
https://posit.co/products/enterprise/connect/
https://docs.posit.co/connect/user/troubleshooting/#render-missing-r-package

14 board_s3

Sharing a board in OneDrive:
First, create the board on the drive owner's side
board <- board_ms365(od, "myboard")

Next, let other users write to the folder
- set the expiry to NULL if you want the folder to be permanently available
od$get_item("myboard")$create_share_link("edit", expiry="30 days")

On the recipient's side: find the shared folder item, then pass it to board_ms365
shared_items <- od$list_shared_items()
board_folder <- shared_items$remoteItem[[which(shared_items$name == "myboard")]]
board <- board_ms365(od, board_folder)

End(Not run)

board_s3 Use an S3 bucket as a board

Description

Pin data to an S3 bucket, such as on Amazon’s S3 service or MinIO, using the paws.storage package.

Usage

board_s3(
bucket,
prefix = NULL,
versioned = TRUE,
access_key = NULL,
secret_access_key = NULL,
session_token = NULL,
credential_expiration = NULL,
profile = NULL,
region = NULL,
endpoint = NULL,
cache = NULL

)

Arguments

bucket Bucket name. You can only write to an existing bucket.

prefix Prefix within this bucket that this board will occupy. You can use this to maintain
multiple independent pin boards within a single S3 bucket. Will typically end
with / to take advantage of S3’s directory-like handling.

versioned Should this board be registered with support for versions?
access_key, secret_access_key, session_token, credential_expiration

Manually control authentication. See documentation below for details.

board_s3 15

profile Role to use from AWS shared credentials/config file.

region AWS region. If not specified, will be read from AWS_REGION, or AWS config
file.

endpoint Endpoint to use; usually generated automatically for AWS from region. For
MinIO, use the full URL (including scheme like https://) of your MinIO end-
point.

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

Authentication

board_s3() is powered by the paws package which provides a wide range of authentication options,
as documented at https://github.com/paws-r/paws/blob/main/docs/credentials.md. In
brief, there are four main options that are tried in order:

• The access_key and secret_access_key arguments to this function. If you have a tempo-
rary session token, you’ll also need to supply session_token and credential_expiration.
(Not recommended since your secret_access_key will be recorded in .Rhistory)

• The AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY env vars. (And AWS_SESSION_TOKEN
and AWS_CREDENTIAL_EXPIRATION env vars if you have a temporary session token)

• The AWS shared credential file, ~/.aws/credentials:

[profile-name]
aws_access_key_id=your AWS access key
aws_secret_access_key=your AWS secret key

The "default" profile will be used if you don’t supply the access key and secret access key as
described above. Otherwise you can use the profile argument to use a profile of your choice.

• Automatic authentication from EC2 instance or container IAM role.

See the paws documentation for more unusual options including getting credentials from a com-
mand line process, picking a role when running inside an EC2 instance, using a role from another
profile, and using multifactor authentication.

Details

• The functions in pins do not create a new bucket. You can create a new bucket from R with
paws.

• Some functions like pin_list() will work for an S3 board, but don’t return useful output.

• You can pass arguments for paws.storage::s3_put_object such as Tagging and ServerSideEncryption
through the dots of pin_write(). (Note that these are separate from pin_write() arguments
like tags.)

• board_s3() is powered by the paws.storage package, which is a suggested dependency of pins
(not required for pins in general). If you run into errors when deploying content to a server
like https://www.shinyapps.io or Connect, add requireNamespace("paws.storage") to
your app or document for automatic dependency discovery.

https://github.com/paws-r/paws/blob/main/docs/credentials.md
https://www.shinyapps.io
https://posit.co/products/enterprise/connect/
https://docs.posit.co/connect/user/troubleshooting/#render-missing-r-package

16 board_url

Examples

Not run:
board <- board_s3("pins-test-hadley", region = "us-east-2")
board %>% pin_write(mtcars)
board %>% pin_read("mtcars")

A prefix allows you to have multiple independent boards in the same pin.
board_sales <- board_s3("company-pins", prefix = "sales/")
board_marketing <- board_s3("company-pins", prefix = "marketing/")
You can make the hierarchy arbitrarily deep.

Pass S3 arguments like `Tagging` through the dots of `pin_write`:
board %>% pin_write(mtcars, Tagging = "key1=value1&key2=value2")

End(Not run)

board_url Use a vector of URLs as a board

Description

board_url() lets you build up a board from individual urls or a manifest file.

board_url() is read only.

Usage

board_url(
urls,
cache = NULL,
use_cache_on_failure = is_interactive(),
headers = NULL

)

Arguments

urls Identify available pins being served at a URL or set of URLs (see details):

• Unnamed string: URL to a manifest file.
• Named character vector: URLs to specific pins (does not support version-

ing).
• Named list: URLs to pin version directories (supports versioning).

cache Cache path. Every board requires a local cache to avoid downloading files mul-
tiple times. The default stores in a standard cache location for your operating
system, but you can override if needed.

board_url 17

use_cache_on_failure

If the pin fails to download, is it ok to use the last cached version? Defaults
to is_interactive() so you’ll be robust to poor internet connectivity when
exploring interactively, but you’ll get clear errors when the code is deployed.

headers Named character vector for additional HTTP headers (such as for authentica-
tion). See connect_auth_headers() for Posit Connect support.

Details

The way board_url() works depends on the type of the urls argument:

• Unnamed character scalar, i.e. a single URL to a manifest file: If the URL ends in a /,
board_url() will look for a _pins.yaml manifest. If the manifest file parses to a named list,
versioning is supported. If it parses to a named character vector, the board will not support
versioning.

• Named character vector of URLs: If the URLs end in a /, board_url() will look for a
data.txt that provides metadata for the associated pin. The easiest way to generate this file
is to upload a pin version directory created by board_folder(). Versioning is not supported.

• Named list, where the values are character vectors of URLs and each element of the vector
refers to a version of the particular pin: If a URL ends in a /, board_url() will look for a
data.txt that provides metadata. Versioning is supported.

Using a vector of URLs can be useful because pin_download() and pin_read() will be cached;
they’ll only re-download the data if it’s changed from the last time you downloaded it (using the
tools of HTTP caching). You’ll also be protected from the vagaries of the internet; if a fresh down-
load fails, you’ll get the previously cached result with a warning.

Using a manifest file can be useful because you can serve a board of pins and allow collaborators
to access the board straight from a URL, without worrying about board-level storage details. Some
examples are provided in vignette("using-board-url").

Authentication for board_url()

The headers argument allows you to pass authentication details or other HTTP headers to the
board, such as for a Posit Connect vanity URL that is not public (see board_connect_url()) or a
private GitHub repo.

gh_pat_auth <- c(
Authorization = paste("token", "github_pat_XXXX")

)
board <- board_url(
"https://raw.githubusercontent.com/username/repo/main/path/to/pins",
headers = gh_pat_auth

)

board %>% pin_list()

See Also

Other boards: board_connect(), board_connect_url(), board_folder()

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

18 cache_browse

Examples

github_raw <- function(x) paste0("https://raw.githubusercontent.com/", x)

with a named vector of URLs to specific pins:
b1 <- board_url(c(

files = github_raw("rstudio/pins-r/main/tests/testthat/pin-files/"),
rds = github_raw("rstudio/pins-r/main/tests/testthat/pin-rds/"),
raw = github_raw("rstudio/pins-r/main/tests/testthat/pin-files/first.txt")

))

b1 %>% pin_read("rds")
b1 %>% pin_browse("rds", local = TRUE)

b1 %>% pin_download("files")
b1 %>% pin_download("raw")

with a manifest file:
b2 <- board_url(github_raw("rstudio/pins-r/main/tests/testthat/pin-board/"))
b2 %>% pin_list()
b2 %>% pin_versions("y")

cache_browse Cache management

Description

Most boards maintain a local cache so that if you’re reading a pin that hasn’t changed since the last
time you read it, it can be rapidly retrieved from a local cache. These functions help you manage
that cache.

• cache_browse(): open the cache directory for interactive exploration.

• cache_info(): report how much disk space each board’s cache uses.

• cache_prune(): delete pin versions that you haven’t used for days (you’ll be asked to confirm
before the deletion happens).

In general, there’s no real harm to deleting the cached pins, as they’ll be re-downloaded as needed.
The one exception is legacy_local() which mistakenly stored its pinned data in the cache direc-
tory; do not touch this directory.

Usage

cache_browse()

cache_info()

cache_prune(days = 30)

pin_browse 19

Arguments

days Number of days to preserve cached data; any pin versions older than days will
be removed.

pin_browse Browse source of a pin

Description

pin_browse() navigates you to the home of a pin, either on the internet or on your local file system.

Usage

pin_browse(board, name, version = NULL, local = FALSE)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

name Pin name.

version Retrieve a specific version of a pin. Use pin_versions() to find out which
versions are available and when they were created.

local If TRUE, will open the local copy of the pin; otherwise will show you the home
of the pin on the internet.

Examples

board <- board_temp(versioned = TRUE)
board %>% pin_write(1:10, "x")
board %>% pin_write(1:11, "x")
board %>% pin_write(1:12, "x")

board %>% pin_browse("x", local = TRUE)

pin_delete Delete a pin

Description

Delete a pin (or pins), removing it from the board

Usage

pin_delete(board, names, ...)

20 pin_download

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

names The names of one or more pins to delete

... Additional arguments passed on to methods for a specific board.

Examples

board <- board_temp()
board %>% pin_write(1:5, "x")
board %>% pin_write(mtcars)
board %>% pin_write(runif(1e6), "y")
board %>% pin_list()

board %>% pin_delete(c("x", "y"))
board %>% pin_list()

pin_download Upload and download files to and from a board

Description

This is a lower-level interface than pin_read() and pin_write() that you can use to pin any file,
as opposed to any R object. The path returned by pin_download() is a read-only path to a cached
file: you should never attempt to modify this file.

Usage

pin_download(board, name, version = NULL, hash = NULL, ...)

pin_upload(
board,
paths,
name = NULL,
...,
title = NULL,
description = NULL,
metadata = NULL,
tags = NULL,
urls = NULL

)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

name Pin name.

pin_exists 21

version Retrieve a specific version of a pin. Use pin_versions() to find out which
versions are available and when they were created.

hash Specify a hash to verify that you get exactly the dataset that you expect. You
can find the hash of an existing pin by looking for pin_hash in pin_meta().

... Additional arguments passed on to methods for a specific board.

paths A character vector of file paths to upload to board.

title A title for the pin; most important for shared boards so that others can understand
what the pin contains. If omitted, a brief description of the contents will be
automatically generated.

description A detailed description of the pin contents.

metadata A list containing additional metadata to store with the pin. When retrieving
the pin, this will be stored in the user key, to avoid potential clashes with the
metadata that pins itself uses.

tags A character vector of tags for the pin; most important for discoverability on
shared boards.

urls A character vector of URLs for more info on the pin, such as a link to a wiki or
other documentation.

Value

pin_download() returns a character vector of file paths; pin_upload() returns the fully qualified
name of the new pin, invisibly.

Examples

board <- board_temp()

board %>% pin_upload(system.file("CITATION"))
path <- board %>% pin_download("CITATION")
path
readLines(path)[1:5]

pin_exists Determine if a pin exists

Description

Determine if a pin exists

Usage

pin_exists(board, name, ...)

22 pin_list

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

name Pin name.

... Additional arguments passed on to methods for a specific board.

pin_list List all pins

Description

List names of all pins in a board. This is a low-level function; use pin_search() to get more data
about each pin in a convenient form.

Usage

pin_list(board, ...)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

... Other arguments passed on to methods

Value

A character vector

Examples

board <- board_temp()

board %>% pin_write(1:5, "x")
board %>% pin_write(letters, "y")
board %>% pin_write(runif(20), "z")

board %>% pin_list()

pin_meta 23

pin_meta Retrieve metadata for a pin

Description

Pin metadata comes from three sources:

• Standard metadata added by pin_upload()/pin_write(). This includes:

– $name - the pin’s name.
– $file - names of files stored in the pin.
– $file_size - size of each file.
– $pin_hash - hash of pin contents.
– $type - type of pin: "rds", "csv", etc
– $title - pin title
– $description - pin description
– $tags - pin tags
– $urls - URLs for more info on pin
– $created - date this (version of the pin) was created
– $api_version - API version used by pin

• Metadata supplied by the user, stored in $user. This is untouched from what is supplied in
pin_write()/pin_upload() except for being converted to and from to YAML.

• Local metadata generated when caching the pin, stored in $local. This includes information
like the version of the pin, and the path its local cache.

Usage

pin_meta(board, name, version = NULL, ...)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

name Pin name.

version Retrieve a specific version of a pin. Use pin_versions() to find out which
versions are available and when they were created.

... Additional arguments passed on to methods for a specific board.

Value

A list.

24 pin_reactive_read

Examples

b <- board_temp()
b %>% pin_write(head(mtcars), "mtcars", metadata = list("Hadley" = TRUE))

Get the pin
b %>% pin_read("mtcars")
Get its metadata
b %>% pin_meta("mtcars")
Get path to underlying data
b %>% pin_download("mtcars")

Use tags instead
b %>% pin_write(tail(mtcars), "mtcars", tags = c("fuel-efficiency", "automotive"))
b %>% pin_meta("mtcars")

pin_reactive_read Wrap a pin in a reactive expression

Description

pin_reactive_read() and pin_reactive_download() wrap the results of pin_read() and pin_download()
into a Shiny reactive. This allows you to use pinned data within your app, and have the results au-
tomatically recompute when the pin is modified.

Usage

pin_reactive_read(board, name, interval = 5000)

pin_reactive_download(board, name, interval = 5000)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

name Pin name.

interval Approximate number of milliseconds to wait between re-downloading the pin
metadata to check if anything has changed.

Examples

if (FALSE) {
library(shiny)
ui <- fluidPage(

tableOutput("table")
)

server <- function(input, output, session) {

pin_read 25

board <- board_local()
data <- pin_reactive_read(board, "shiny", interval = 1000)
output$table <- renderTable(data())

}
shinyApp(ui, server)

}

pin_read Read and write objects to and from a board

Description

Use pin_write() to pin an object to board, and pin_read() to retrieve it.

Usage

pin_read(board, name, version = NULL, hash = NULL, ...)

pin_write(
board,
x,
name = NULL,
...,
type = NULL,
title = NULL,
description = NULL,
metadata = NULL,
versioned = NULL,
tags = NULL,
urls = NULL,
force_identical_write = FALSE

)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

name Pin name.

version Retrieve a specific version of a pin. Use pin_versions() to find out which
versions are available and when they were created.

hash Specify a hash to verify that you get exactly the dataset that you expect. You
can find the hash of an existing pin by looking for pin_hash in pin_meta().

... Additional arguments passed on to methods for a specific board.

x An object (typically a data frame) to pin.

26 pin_read

type File type used to save x to disk. Must be one of "csv", "json", "rds", "parquet",
"arrow", or "qs". If not supplied, will use JSON for bare lists and RDS for
everything else. Be aware that CSV and JSON are plain text formats, while
RDS, Parquet, Arrow, and qs are binary formats.

title A title for the pin; most important for shared boards so that others can understand
what the pin contains. If omitted, a brief description of the contents will be
automatically generated.

description A detailed description of the pin contents.

metadata A list containing additional metadata to store with the pin. When retrieving
the pin, this will be stored in the user key, to avoid potential clashes with the
metadata that pins itself uses.

versioned Should the pin be versioned? The default, NULL, will use the default for board

tags A character vector of tags for the pin; most important for discoverability on
shared boards.

urls A character vector of URLs for more info on the pin, such as a link to a wiki or
other documentation.

force_identical_write

Store the pin even if the pin contents are identical to the last version (compared
using the hash). Only the pin contents are compared, not the pin metadata.
Defaults to FALSE.

Details

pin_write() takes care of the details of serialising an R object to disk, controlled by the type
argument. See pin_download()/pin_upload() if you want to perform the serialisation yourself
and work just with files.

Value

pin_read() returns an R object read from the pin; pin_write() returns the fully qualified name
of the new pin, invisibly.

Examples

b <- board_temp(versioned = TRUE)

b %>% pin_write(1:10, "x", description = "10 numbers")
b

b %>% pin_meta("x")
b %>% pin_read("x")

Add a new version
b %>% pin_write(2:11, "x")
b %>% pin_read("x")

Retrieve an older version
b %>% pin_versions("x")
b %>% pin_read("x", version = .Last.value$version[[1]])

https://CRAN.R-project.org/package=qs

pin_search 27

(Normally you'd specify the version with a string, but since the
version includes the date-time I can't do that in an example)

pin_search Search for pins

Description

The underlying search method depends on the board, but most will search for text in the pin name
and title.

Usage

pin_search(board, search = NULL, ...)

Arguments

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

search A string to search for in pin name and title. Use NULL to return all pins.

... Additional arguments passed on to methods.

Value

A data frame that summarises the metadata for each pin. Key attributes (name, type, description,
created, and file_size) are pulled out into columns; everything else can be found in the meta
list-column.

Examples

board <- board_temp()

board %>% pin_write(1:5, "x", title = "Some numbers")
board %>% pin_write(letters[c(1, 5, 10, 15, 21)], "y", title = "My favourite letters")
board %>% pin_write(runif(20), "z", title = "Random numbers")

board %>% pin_search()
board %>% pin_search("number")
board %>% pin_search("letters")

28 pin_versions

pin_versions List, delete, and prune pin versions

Description

• pin_versions() lists available versions a pin.

• pin_versions_prune() deletes old versions.

• pin_version_delete() deletes a single version.

Usage

pin_versions(board, name, ...)

pin_version_delete(board, name, version, ...)

pin_versions_prune(board, name, n = NULL, days = NULL, ...)

Arguments

board, name A pair of board and pin name. For modern boards, use board %>% pin_versions(name).
For backward compatibility with the legacy API, you can also use pin_versions(name)
or pin_version(name, board).

... Additional arguments passed on to methods for a specific board.

version Version identifier.

n, days Pick one of n or days to choose how many versions to keep. n = 3 will keep the
last three versions, days = 14 will keep all the versions created in the 14 days.
Regardless of what values you set, pin_versions_prune() will never delete
the most recent version.

Value

A data frame with at least a version column. Some boards may provided additional data.

Examples

board <- board_temp(versioned = TRUE)

board %>% pin_write(data.frame(x = 1:5), name = "df")
board %>% pin_write(data.frame(x = 2:6), name = "df")
board %>% pin_write(data.frame(x = 3:7), name = "df")

pin_read() returns the latest version by default
board %>% pin_read("df")

but you can return earlier versions if needed
board %>% pin_versions("df")

write_board_manifest 29

ver <- pin_versions(board, "df")$version[[1]]
board %>% pin_read("df", version = ver)

delete all versions created more than 30 days ago
board %>% pin_versions_prune("df", days = 30)

write_board_manifest Write board manifest file to board’s root directory

Description

A board manifest file records all the pins, along with their versions, stored on a board. This can
be useful for a board built using, for example, board_folder() or board_s3(), then served as a
website, such that others can consume using board_url(). The manifest file is not versioned like
a pin is, and this function will overwrite any existing _pins.yaml file on your board. It is your
responsibility as the user to keep the manifest up to date.

Some examples are provided in vignette("using-board-url").

Usage

write_board_manifest(board, ...)

Arguments

board A pin board that is not read-only.

... Additional arguments passed on to methods for a specific board.

Details

This function is not supported for read-only boards. It is called for the side-effect of writing a
manifest file, _pins.yaml, to the root directory of the board. (This will not work in the unlikely
event that you attempt to create a pin called "_pins.yaml".)

The behavior of the legacy API (for example, pin_find()) is unspecified once you have written a
board manifest file to a board’s root directory. We recommend you only use write_board_manifest()
with modern boards.

Value

The board, invisibly

Examples

board <- board_temp()
pin_write(board, mtcars, "mtcars-csv", type = "csv")
pin_write(board, mtcars, "mtcars-json", type = "json")

write_board_manifest(board)

30 write_board_manifest

see the manifest's format:
fs::path(board$path, "_pins.yaml") %>% readLines() %>% cat(sep = "\n")

if you write another pin, the manifest file is out of date:
pin_write(board, 1:10, "nice-numbers", type = "json")

you decide when to update the manifest:
write_board_manifest(board)

Index

∗ boards
board_connect, 5
board_connect_url, 7
board_folder, 9
board_url, 16

AzureStor::blob_container(), 3

base::tempdir(), 4
board_azure, 2
board_cache_path, 4
board_connect, 5, 7, 10, 17
board_connect(), 7, 19, 20, 22–25, 27
board_connect_url, 6, 7, 10, 17
board_connect_url(), 17
board_databricks, 8
board_folder, 6, 7, 9, 17
board_folder(), 17, 19, 20, 22–25, 27, 29
board_gcs, 10
board_gdrive, 11
board_local (board_folder), 9
board_ms365, 12
board_rsconnect (board_connect), 5
board_s3, 14
board_s3(), 29
board_temp (board_folder), 9
board_url, 6, 7, 10, 16
board_url(), 6, 7, 19, 20, 22–25, 27, 29

cache_browse, 18
cache_info (cache_browse), 18
cache_prune (cache_browse), 18
connect_auth_headers

(board_connect_url), 7
connect_auth_headers(), 7, 17

googleCloudStorageR::gcs_create_bucket(),
11

googleCloudStorageR::gcs_get_global_bucket(),
10

googleCloudStorageR::gcs_upload, 11
googledrive::as_id(), 12
googledrive::dribble, 12
googledrive::drive_auth(), 12
googledrive::drive_mkdir(), 12
googledrive::drive_share(), 12

legacy_local(), 18

manifest file, 16, 17
Microsoft365R::ms_drive, 13
Microsoft365R::ms_drive_item, 13

paws, 15
paws.storage::s3_put_object, 15
pin_browse, 19
pin_browse(), 6
pin_delete, 19
pin_download, 20
pin_download(), 17, 24, 26
pin_exists, 21
pin_find(), 29
pin_list, 22
pin_list(), 15
pin_meta, 23
pin_meta(), 21, 25
pin_reactive_download

(pin_reactive_read), 24
pin_reactive_read, 24
pin_read, 25
pin_read(), 17, 24
pin_search, 27
pin_search(), 22
pin_upload (pin_download), 20
pin_upload(), 23, 26
pin_version_delete (pin_versions), 28
pin_versions, 28
pin_versions(), 19, 21, 23, 25
pin_versions_prune (pin_versions), 28
pin_write (pin_read), 25

31

32 INDEX

pin_write(), 15, 23

rappdirs::user_cache_dir(), 4

write_board_manifest, 29

	board_azure
	board_cache_path
	board_connect
	board_connect_url
	board_databricks
	board_folder
	board_gcs
	board_gdrive
	board_ms365
	board_s3
	board_url
	cache_browse
	pin_browse
	pin_delete
	pin_download
	pin_exists
	pin_list
	pin_meta
	pin_reactive_read
	pin_read
	pin_search
	pin_versions
	write_board_manifest
	Index

