
extended Rdocumentation
of function sorcering()

from package ’sorcering’

October 8, 2024

Version 1.1.0
Title SORCERING:

Soil ORganic Carbon & CN Ratio drIven Nitrogen modellinG framework
Authors Marc Scherstjanoi∗ & René Dechow⋄

∗ Thünen Institute of Forest Ecosystems, Eberswalde, Germany
⋄ Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

Maintainer Marc Scherstjanoi <marc.scherstjanoi@thuenen.de>
LazyData true
Depends R (>= 3.5.0)
License GLP (>= 2)
Imports Rcpp (>= 1.0.6)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes

Description

SORCERING can be used to model the fate of soil organic carbon (SOC) and soil organic nitrogen (SON)
and to calculate N mineralisation rates. It provides a framework that numerically solves differential
equations of SOC models based on first-order kinetics. An SOC model can be simply defined or a
predefined existing SOC model can be chosen and then run to predict the temporal development of
SOC. Beyond this, SORCERING determines the fluxes of SON and N mineralisation / immobilisation.
Basic inputs are (1) the model parameters of a given SOC model expressed as the C transfer matrix
(including information on decomposition and transfer rates between model pools), (2) either the initial
distributions of C and N among model pools as a direct input or time series of at least three C and
N measurement points with which these initial distributions can be calculated using linear regression,
and (3) time series of C and N inputs and rate modifying environmental factors. In case a predefined
SOC model is used, instead of model parameters and time series of rate modifying factors, model-
specific environmental and stand data must be passed for the calculation of decomposition and transfer
rates. Moreover, SORCERING provides the options to cover statistical uncertainties by using stochastic
repetitions for many input data and parameters as well as to perform model spin-up runs. The fourth-
order Runge-Kutta algorithm is used to numerically solve the system of differential equations.

2 sorcering

Contents

Description . 1
Contents . 2
Usage . 3
Arguments . 4
Value . 13
Package Building Information . 14
Details . 15

1 Introduction . 15

2 Output Calculation . 16
2.1 Value C . 16
2.2 Values N and Nloss . 17
2.3 Values Nmin, Nmin.sink<1>, ... , Nmin.sink<n> . 17
2.4 Value Nbalance . 18

3 Additional Features and Input Processing . 20
3.1 Estimation of Initial Soil Organic Carbon . 20
3.2 Estimation of Initial Soil Organic Nitrogen . 20
3.3 Predefined Models . 22

3.3.1 Yasso . 22
Parameters . 22
Transfer Matrix . 24
Environmental Factors . 24
Initial Pool Properties . 24
Input from Woody Litter . 24

3.3.2 RothC . 25
Parameters . 25
Transfer Matrix . 26
Environmental Factors . 26
Initial Pool Properties . 27

3.3.3 C-Tool . 29
Parameters . 30
Transfer Matrix . 30
Input Transformation . 31
Environmental Factors . 31
Initial Pool Properties . 32

Examples . 34
References . 42

sorcering 3

Usage

sorcering(A = NULL,
tsteps = "monthly",
C0 = NULL,
N0 = NULL,
Cin = NULL,
Nin = NULL,
Cin_wood = NULL,
Nin_wood = NULL,
wood_diam = NULL,
xi = NULL,
env_in = NULL,
site = NULL,
theta = NULL,
theta_unc = NULL,
theta_n_unc = 1,
meas_data = NULL,
A_sl = NULL,
C0_sl = NULL,
N0_sl = NULL,
Cin_sl = NULL,
Nin_sl = NULL,
Cin_wood_sl = NULL,
Nin_wood_sl = NULL,
wood_diam_sl = NULL,
xi_sl = NULL,
env_in_sl = NULL,
site_sl = NULL,
sitelist = NULL,
meas_data_sl = NULL,
calcN = FALSE,
calcNbalance = FALSE,
calcN0 = FALSE,
calcC0 = FALSE,
calcCN_fast_init = FALSE,
CTool_input_raw = FALSE,
RothC_Cin4C0 = FALSE,
C0_fracts = NULL,
multisite = FALSE,
pooltypes = NULL,
CN_fast_init = 40,
CN_bio = 9,
CN_spin = NULL,
CN_fast_init_sl = NULL,
CN_bio_sl = NULL,
CN_spin_sl = NULL,
init_info = FALSE,
model = "",
spinup = FALSE,
t_spin = 2,
t_spin_sl = 2)

4 sorcering

Arguments

In addition to the arguments descriptions below, Fig. 1 provides a visualisation of the list structure and
Fig. 2 provides a visualisation of the content structure of the arguments.

A square matrix. Transfer matrix typical for SOC modelling. Defines number of
pools, decomposition and transfer rates. n × n elements with n = number of
pools. Diagonal values are decomposition rates [yr−1]. Off-diagonals represent
the transfer between pools [yr−1]. Only used when model is NULL.

tsteps character string indicating the type of simulation time steps. Valid options are
"annually", "monthly" (recommended) or "weekly". Ensures that the rate
modifying factors (passed through xi or used by a predefined model) are ad-
justed by dividing them by 1, 12, and 52 respectively. Furthermore ensures, that
environment-specific information (passed through env_in) takes into account
the time reference of the modelling.

C0 either vector with a length equal to the number of pools or scalar. If vector, initial
soil organic carbon per pool [tC ha−1]. If scalar, initial total soil organic carbon
[tC ha−1]. In the latter case, either model must be selected or C0_fracts must
be passed. If NULL, filled with zeros.

N0 vector with a length equal to the number of pools. Contains initial soil organic
nitrogen per pool [tN ha−1]. If NULL, filled with zeros. Only used when calcN =
TRUE and calcN0 = FALSE.

Cin either matrix with a number of columns equal to the number of pools and a
number of rows corresponding to simulation time steps (if spinup = FALSE) or
spin-up reference period (if spinup = TRUE), or list containing such matrices. If
it is a list, each element of the list is expected to represent a stochastic repetition
that covers input uncertainties. Then, the list must contain matrices of equal
dimensions. Each matrix (or the one if modelling without uncertainties) must
contain information about carbon input per pool and time step [tC ha−1]. When
CTool_input_raw = TRUE, and model = "C-Tool" or model = "C-Tool-org",
the matrix structure can have two columns (as described for CTool_input_raw).
If NULL, filled with zeros.

Nin either matrix with a number of columns equal to the number of pools and a
number of rows corresponding to simulation time steps (if spinup = FALSE)
or spin-up reference period (if spinup = TRUE), in each case in accordance
with number of rows of Cin, or list containing such matrices. If it is a list, each
element of the list is expected to represent a stochastic repetition that covers input
uncertainties. Then, the list must contain matrices of equal dimensions. Each
matrix (or the one if modelling without uncertainties) must contain information
about nitrogen input per pool and time step [tN ha−1]. When CTool_input_raw
= TRUE, and model = "C-Tool" or model = "C-Tool-org" the matrix structure
can have 2 columns (as described for CTool_input_raw). If NULL, filled with
zeros. Must contain entries > 0 where entries of Cin are > 0. Only used when
calcN = TRUE.

sorcering 5

Cin_wood list of lengths of different wood diameter classes. Each list element must be in
Cin format and represent a specific wood diameter. Furthermore, the list ele-
ments themselves can be lists and contain stochastic repetitions, as explained for
Cin. The mean diameter per class is defined in wood_diam. Only used when
model = "Yasso15" or model = "Yasso20".

Nin_wood list of lengths of different wood diameter classes. Each list element must be in
Nin format and represent a specific wood diameter. Furthermore, the list ele-
ments themselves can be lists and contain stochastic repetitions, as explained for
Nin. The mean diameter per class is defined in wood_diam. Must contain entries
of > 0 where entries of Cin_wood are > 0. Only used when calcN = TRUE. Only
used when model = "Yasso15" or model = "Yasso20".

wood_diam vector with wood diameter [cm]. The first element corresponds to the first list
element of Cin_wood and Nin_wood. If NULL, filled with zeros. Only used
when Cin_wood is specified and when either model = "Yasso15" or model
= "Yasso20". Must contain entries >= 0.

xi either matrix with a number of columns equal to the number of pools and a
number of rows corresponding to simulation time steps (if spinup = FALSE)
or spin-up reference period (if spinup = TRUE), in each case in accordance
with number of rows of Cin, or list containing such matrices. If it is a list, each
element of the list is expected to represent a stochastic repetition that covers input
uncertainties. Then, the list must contain matrices of equal dimensions. Each
matrix (or the one if modelling without uncertainties) must contain information
about time series of rate modifying factors for each model pool, built on the basis
of annual decomposition rates. If NULL, filled with ones. Only used when model
is NULL.

env_in matrix with a model-specific number of columns and a number of rows corre-
sponding to simulation time steps (if spinup = FALSE) or spin-up reference
period (if spinup = TRUE), in each case in accordance with number of rows
of Cin. Contains environment-specific information to calculate rate modifying
factors (instead of passing them with xi) and initial carbon and nitrogen distri-
butions (only RothC). When model = "RothC", it must have four columns:
atmospheric temperature (T) [◦C], precipitation (p) [mm], evapotranspiration
[mm] and a vector of zeros, ones (both originally RothC) or twos (not origi-
nally RothC) describing the soil cover, where ones indicate time steps when the
soil is vegetated, zeros when it is bare and twos when it is bare, but this only
influences the accumulated but not the maximum topsoil moisture deficit. The
latter will then be calculated as if there was soil cover. The idea behind this
is that the water content should be decisive for the microorganisms as a habitat
and transport medium, regardless of whether a plant is growing or not. When
model = "Yasso07" or model = "Yasso15" or model = "Yasso20", it must
have two columns: T [◦C] and p [mm]. When model = "C-Tool" or model =
"C-Tool-org", it has one column: T [◦C]. If NULL, filled with ones. Only used
when model is not NULL.

6 sorcering

site vector of model-specific length. Contains site-specific information to calculate
rate modifying factors (instead of passing them with xi) and initial distributions.
When model = "RothC", it must be of length four: sample depth [mm], clay
content [%], black sand status (0 or 1, 0 if unknown or if black sand method
is not desired) and CN ratio (0 if unknown, but then either C0 and N0 must be
passed or calcC0 = TRUE and calcN0 = TRUE, information on CN ratio given
in site always takes precedence over internally calculated CN ratios). When
model = "C-Tool" or model = "C-Tool-org", it must be of length one: clay
content [%]. Only used when model = "RothC" or model = "C-Tool" or model
= "C-Tool-org".

theta either vector with model parameters for predefined models or matrix with rows
of such parameters. If it is a matrix, each row is expected to represent a stochastic
repetition that covers input uncertainties. If uncertainties are defined by another
argument, e.g. Cin or Nin, these determine the number of stochastic repetitions
and not theta. Then, if theta is a matrix, a parameter vector is randomly drawn
for each uncertainty loop. Each vector (or row of matrix) must be of length 7
when model = "RothC", of length 10 when model = "C-Tool" or model =
"C-Tool-org", of length 21 when model = "Yasso07" and of length 30 when
model = "Yasso15" or model = "Yasso20". If NULL, model-specific standard
parameters are used instead. Only used when model is not NULL. See section
3.3 for details and standard parameters used.

theta_unc either number or vector of percentage values. If it is a vector, the same model-
specific lengths as described for theta must be used. When used, model param-
eters modified by taking from the normal distribution around given values (either
from theta or predefined values) with a standard deviation of theta_unc. This
will be repeated as many times as defined in theta_n_unc or as defined by un-
certainty dimensions of a carbon or nitrogen input argument (e.g. Cin) and lead
to unique model results and output list elements. Only used when model is not
NULL and theta is not a matrix.

theta_n_unc number of stochastic repetitions when model parameters for predefined models
should be determined from a random distribution. Only used when the number
of stochastic repetitions is not defined by another argument (e.g. Cin). Only
used when model is not NULL, theta_unc is not NULL and theta is not a
matrix.

meas_data matrix with a number of rows equal to the number of measurement points. The
first column defines the time of measurement, the metric of which is based on
simulation time steps. The second row must contain values of measured soil
organic carbon stock. The third row must contain values of measured soil organic
nitrogen and is only used when calcN0 = TRUE. Only used when calcC0 =
TRUE.

A_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in A format. Only used when multisite = TRUE and model
is NULL. When multisite = TRUE, A can be passed instead of A_sl to have the
same argument for all sites.

sorcering 7

C0_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in C0 format. Only used when multisite = TRUE.

N0_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in N0 format. Only used when multisite = TRUE, calcN =
TRUE and calcN0 = FALSE.

Cin_sl list with a length of number of sites to simulate. Each list element represents
a site and must be in Cin format, which can also contain uncertainties. Thus,
Cin_sl can either be a list of different sites each containing lists of different
uncertainty representations each with matrices of carbon input as described for
Cin, or it can simply be a list of different sites each containing such matrices.
Only used when multisite = TRUE.

Nin_sl list with a length of number of sites to simulate. Each list element represents
a site and must be in Nin format, which can also contain uncertainties. Thus,
Nin_sl can either be a list of different sites each containing lists of different
uncertainty representations each with matrices of carbon input as described for
Nin, or it can simply be a list of different sites each containing such matrices.
Only used when multisite = TRUE. Must contain entries > 0 where entries of
Cin_sl are > 0.

Cin_wood_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in Cin_wood format, which can also contain uncertainties. Thus,
Cin_wood_sl can either be a list of different sites each containing lists of differ-
ent wood diameter representations, which in turn each contain lists of different
uncertainty representations, each with matrices of carbon input as described for
Cin, or it can simply be a list of different sites each containing lists of different
wood diameter representations each containing such matrices. Only used when
multisite = TRUE and either model = "Yasso15" or model = "Yasso20".

Nin_wood_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in Nin_wood format, which can also contain uncertainties. Thus,
Nin_wood_sl can either be a list of different sites each containing lists of differ-
ent wood diameter representations, which in turn each contain lists of different
uncertainty representations, each with matrices of carbon input as described for
Nin, or it can simply be a list of different sites each containing lists of different
wood diameter representations each containing such matrices. Only used when
multisite = TRUE and either model = "Yasso15" or model = "Yasso20".
Must contain entries > 0 where entries of Cin_wood_sl are > 0.

wood_diam_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in wood_diam format. Only used when multisite = TRUE and
when either model = "Yasso15" or model = "Yasso20".

xi_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in xi format, which can also contain uncertainties. In the latter
case, the site list must include uncertainty lists. Only used when multisite =
TRUE and model is NULL.

env_in_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in env_in format. Only used when multisite = TRUE.

8 sorcering

site_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in site format. Only used when multisite = TRUE.

sitelist list with names of sites to simulate. Only used when multisite = TRUE.

meas_data_sl list with a length of number of sites to simulate. Each list element represents
a site and must be in meas_data format. Consequently, it is only used when
calcC0 = TRUE and the third row of each list element is only used when calcN0
= TRUE. Only used when multisite = TRUE.

calcN logical indicating whether soil organic nitrogen should be modeled.

calcNbalance logical indicating whether the balance of nitrogen cycling should be calculated.

calcN0 logical indicating whether the initial amount of nitrogen should be calculated
(instead of passing N0). Then, the information in meas_data is used to determine
initial states using linear regression.

calcC0 logical indicating whether the initial amount of carbon should be calculated (in-
stead of passing C0). Then, the information in meas_data is used to determine
initial states using linear regression.

calcCN_fast_init logical indicating whether to calculate the initial CN ratio for fast pools (using
Cin and Nin) or whether CN_fast_init should be used.

CTool_input_raw logical defining of which type Cin and Nin are when modelling with C-Tool.
If true, Cin and Nin can only have two columns, one for the topsoil and one
for the subsoil, and SORCERING is applying the C-Tool-specific distribution to
model pools. If false (default) Cin and Nin must have six columns, one per
model pool. Only used when model = "C-Tool" or model = "C-Tool-org".

RothC_Cin4C0 logical defining whether the SOC input should be used for the calculation of
initial SOC. If false the standard RothC ratio for agricultural soils of DPM to
RPM of 0.59 to 0.41 is used. Only used when model = "RothC" and calcC0 =
TRUE.

C0_fracts numerical vector of a length equal to the number of pools. Contains initial frac-
tions of SOC in pools, the sum of which must be 1. Only used when calcC0 =
TRUE.

multisite logical indicating whether multiple sites should be calculated with one program
call. Then, t_spin, C0, N0, Cin, Nin, Cin_wood, Nin_wood, wood_diam, env_in,
site_in, xi and meas_data must be of list type and replaced with t_spin_sl,
C0_sl, N0_sl, Cin_sl, Nin_sl, Cin_wood_sl, Nin_wood_sl, wood_diam_sl,
env_in_sl, site_in_sl, xi_sl and meas_data_sl, respectively. A, CN_bio
and CN_fast_init can be given as single variables or in list form of A_sl,
CN_bio_sl and CN_fast_init_sl, respectively.

sorcering 9

pooltypes integer vector with a length equal to the number of pools. Contains information
necessary for the calculation of N0. Allowed values are 1-6. 1: topsoil fast pool,
2: topsoil bio or humus pool, 3: topsoil chemically stable or inert pool, 4: subsoil
fast pool, 5: subsoil bio or humus pool, 6: subsoil chemically stable or inert
pool. Predefined values are (1,1,2,2,3) when model = "RothC", (1,2,3,4,5,6)
when model = "C-Tool" or model = "C-Tool-org", (1,1,1,2,3) when model
= "Yasso07" or model = "Yasso15" or model = "Yasso20". Only used when
calcN = TRUE and calcN0 = TRUE.

CN_fast_init number that defines the initial CN ratio for fast pools (pooltypes = 1 or 4).
Only used when Nin (or Nin_sl) and Cin (or Cin_sl) do not provide enough
information for the estimation of initial nitrogen. The user will be informed
about it when init_info = TRUE. Only used when calcN = TRUE and calcN0
= TRUE.

CN_bio number that defines the initial CN ratio for slow pools (pooltypes = 2 or 5).
Only used when calcN = TRUE and calcN0 = TRUE.

CN_spin vector with a length equal to the number of pools. Defines the initial CN ratios
for spin-up runs. For the case where the spinup starts from bare ground without
soil organic components, the CN ratios of the pools must be defined. Since the
CN ratios would then only be influenced by external inputs, the CN ratios for
slow target pools without input would exceptionally be defined by the CN ratios
of fast source pools due to a lack of alternatives. To prevent this, it is necessary
to define initial CN ratios for spin-up runs in that case. Only used when calcN
= TRUE and spinup = TRUE and for elements of which that of C0 (and N0) are
zero.

CN_fast_init_sl list with a length of number of sites to simulate. Each list element repre-
sents a site and must be in CN_fast_init format. Only used when calcN =
TRUE, multisite = TRUE and calcN0 = TRUE. When multisite = TRUE,
CN_fast_init can be passed instead of CN_fast_init_sl to have the same ar-
gument for all sites.

CN_bio_sl list with a length of number of sites to simulate. Each list element represents a
site and must be in CN_bio format. Only used when calcN = TRUE, multisite
= TRUE and calcN0 = TRUE. When multisite = TRUE, CN_bio can be passed
instead of CN_bio_sl to have the same argument for all sites.

CN_spin_sl list of vectors that defines the initial CN ratios for spin-up runs. Each list element
represents a site and must be in CN_spin format. Only used when multisite
= TRUE, calcN = TRUE and spinup = TRUE and for elements of which that of
N0_sl are zero. When multisite = TRUE, CN_spin can be passed instead of
CN_spin_sl to have the same argument for all sites.

init_info logical indicating whether additional information about the calculation of initial
carbon, initial nitrogen, and CN ratio should be printed out during the simula-
tions. Only used when calcC0 = TRUE or calcN0 = TRUE.

10 sorcering

model character string specifying a predefined soil organic carbon model to use.
Valid options are "Yasso07", "Yasso15", "Yasso20", "RothC", "C-Tool" or
"C-Tool-org". When not NULL, xi and A are calculated by SORCERING, and
env_in must be specified. Additionally, theta can be specified to not use stan-
dard model parameters. (see section 3.3). If calcN0 = TRUE and pooltypes =
NULL model-specific standard values for pooltypes are used.

spinup logical indicating whether the simulations should run in spin-up mode. Then,
from all time-depending input (Cin, Nin, xi, env_in and site list derivates) ran-
dom years (drawn each time step when tsteps = "weekly", each twelfth time
step when tsteps = "monthly" and each fifty-second time step when tsteps
= "weekly") are taken and t_spin defines the length of the spin-up. If mod-
elling multiple sites, t_spin_sl allows for varying spin-up times. The length of
the time-depending input is independent of the spin-up length.

t_spin integer number of spin-up time steps.

t_spin_sl list with a length of number of sites to simulate or integer number of spin-up time
steps. If list, each list element represents a site and must be in t_spin format. If
integer number, applied to all sites. Only used when multisite = TRUE.

sorcering 11

List argument List level 3
represents

List level 2
represents

List level 1
represents

List level 1 elements
are in format
of argument

CN_bio

wood_diam

A

meas_data

CN_fast_init

t_spin

C0

N0

env_in

site
sites

uncertainties

xi_sl

Nin_sl

Cin_sl

xi

Nin

Cin

xi*

Nin*

Cin*

xi*

Nin*

Cin*sites uncertainties

sites

wood diameters

wood diameters

uncertainties
Cin_wood

Nin_wood

Cin_wood_sl

Nin_wood_sl

Cin*

Nin*

Cin*

Nin*

uncertainties

wood diameters

wood diameters

sites

sites

A_sl

CN_fast_init_sl

CN_bio_sl

CN_spin_sl

site_sl

wood_diam_sl

t_spin_sl

C0_sl

meas_data_sl

env_in_sl

N0_sl

CN_spin

Figure 1: List structure of SORCERING arguments. The arguments listed can either include uncertainties (orange structure
path) or not (blue structure path). Arguments marked with an asterisk refer to those in matrix format.

12 sorcering

Initial Values Environment
SORCERING

Transfer Matrix

Time Reference C & N Input

env_in

theta_unc

theta

model

N0

CN_spin

C0

A

Cin

calcCN_fast_init

meas_data

calcC0

calcN0

pooltypes

RothC_Cin4C0

C0_fracts

CN_bio

CN_fast_init

Nin

Cin_wood

Nin_wood

wood_diam

CTool_input_raw

theta_n_unc

t_spin

tsteps

xi

site

Figure 2: Content structure of SORCERING arguments. Arguments with grey frames depend on using predefined models.
Black arrows indicate direct definitions or direct influences. Blue arrows indicate indirect influences that are based on
internal function calculations or definitions and can serve as an alternative to the direct definitions.

sorcering 13

Value

sorcering() returns either a list of carbon and nitrogen output values or, when multisite = TRUE,
a list broken down by site with result lists for each site. When uncertainties are modeled (as can be
defined by passing e.g. Cin, Nin, xi or theta), the output is even extended to include another list
dimension that covers these uncertainties. The lowest output list-level contains the following compo-
nents:

C matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_sl, when spinup =
FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number of
columns equal to the number of pools. Contains soil organic carbon [tC ha−1].

N matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_sl, when spinup =
FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number of
columns equal to the number of pools. Contains soil organic nitrogen [tN ha−1].
Only generated when calcN = TRUE.

Nloss matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_sl, when spinup =
FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number of
columns equal to the number of pools. Contains nitrogen losses [tN ha−1]. Pos-
itive values indicate that nitrogen was lost in the pools between this and the pre-
vious time steps (taking nitrogen decomposition and input into account). Only
generated when calcN = TRUE.

Nmin matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_sl, when spinup
= FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a num-
ber of columns equal to the number of pools. Contains nitrogen mineralisation
[tN ha−1]. If values are negative, nitrogen immobilisation exceeds mineralisa-
tion. Only generated when calcN = TRUE.

Nmin.sink.1,
...,
Nmin.sink.n

matrices with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_sl, when spinup =
FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and a number of
columns equal to the number of pools n. Contain pool-specific nitrogen miner-
alisation sinks [tN ha−1] (from the pool according to variable index [1, ..., n] to
the pool according to column number). If the sink is the pool itself (index equals
column number) the amount of decomposition is recorded. Only generated when
calcN = TRUE.

Nbalance matrix with a number of rows corresponding to simulation time steps (number
of rows of Cin or number of rows of matrix elements in Cin_sl, when spinup
= FALSE), or to t_spin resp. t_spin_sl, when spinup = TRUE) and three
columns. Contains information on overall N changes in the soil between two
time steps (first column) and information on total system N balance calculated
based on total Nloss (second column) and based on total Nmin (third column)
[tN ha−1]. Only generated when calcN = TRUE and calcNbalance = TRUE.

14 sorcering

Package Building Information

The SORCERING code was written in C++ using the R packages Rcpp (Eddelbuettel et al. 2021a) and
RcppArmadillo (Eddelbuettel et al. 2021b).

sorcering 15

Details

1 Introduction

SORCERING is a general model framework to describe soil organic carbon (SOC) dynamics and soil
organic nitrogen (SON) dynamics based on models of first-order kinetics. It can be applied to any
given SOC first-order kinetics model. The approach has already been successfully tested to describe
SOC dynamics of Yasso (Tuomi et al. 2009, Viskari et al. 2020; 2022), RothC (Coleman and Jenkinson
1996) and C-Tool (Taghizadeh-Toosi et al. 2014). Moreover, it additionally offers the possibility of
modelling N immobilisation and mineralisation by enhancing given SOC models by an additional N
module. SORCERING was created using the C++ interface Rcpp (Eddelbuettel et al. 2021a) and can
handle multiple sites and multiple stochastic representations with just one function call. This makes
SORCERING a computationally efficient SOC and SON modelling tool.

In the following a description of each output value (see section ’Value’) is given, details of the optional
calculation of initial SOC and SON are presented, and predefined existing models and their functions
are described.

16 sorcering

2 Output Calculation

2.1 Value C

SORCERING calculates SOC applying a given SOC model for every simulation time step defined by
passing tsteps and the number of rows of Cin (or number of rows of matrix elements in Cin_sl).
SOC models applied here are defined by a number of pools, each characterised by specific decompo-
sition and turnover rates. The underlying equation of first-order kinetics defines the change of SOC
concentration in time as:

dC(t)
dt

=Cin(t)+Ae(t) ·C(t) (1)

The boundary condition Cin(t) and the initial condition C(0) must be defined beforehand (by passing
Cin and C0, or by calculating with SORCERING-specific functions). Ae(t) is composed of transfer matrix
A (as passed with A or provided by model) and the model-specific generated rate modifying factor series
xi(t) (as passed with xi or calculated for a predefined model):

Ae(t) =
(
AT · xi(t)

)T

= A ·diag(xi(t)) (2)

with superscript T denoting transposed matrices. Eq. 1 is valid for scalar values of A, C, xi and Cin, as
well as for a square matrix A with side length of number of SOC pools n and related one dimensional
vectors C, xi and Cin with length n. Each element of C, xi and Cin and each row and column of A
thus stands for a specific pool. Off-diagonal elements of A describe SOC fluxes and diagonal elements
describe SOC decomposition. Analytical solutions of eq. 1 are exponential functions and can be very
complex with A containing many off-diagonals, i.e. SOC transfer between many pool pairs. Therefore,
numerical solutions are an efficient way to solve the resulting complex equation system. In SORCERING,
this equation system is solved by applying the fourth-order Runge-Kutta method:

C(t) =C(t −1)+
1
6
(K1 +2K2 +2K3 +K4) (3)

with

K1 =Cin(t −1)+A ·diag(xi(t −1)) ·C(t −1)

K2 =Cin(t −1)+A ·diag
(

xi(t −1)+ xi(t)
2

)
·
(

C(t −1)+
K1

2

)

K3 =Cin(t −1)+A ·diag
(

xi(t −1)+ xi(t)
2

)
·
(

C(t −1)+
K2

2

)

K4 =Cin(t −1)+A ·diag(xi(t)) · (C(t −1)+K3) (4)

sorcering 17

2.2 Values N and Nloss

As an extension to SOC modelling, SORCERING allows the modelling of SON coupled to the modelling
of SOC. Its implementation is based on the following simplifying assumptions: (1) Nitrogen transfer
and turnover rates are equal to carbon decomposition and transfer rates. (2) There is no N limitation
in the soil, i.e. mineral N is always available for N immobilisation processes. (3) CN ratios of single
pools are only affected by external inputs of C and N. The transfer of organic matter among pools does
not affect CN ratios. As for SOC, the development of SON depends on boundary and initial conditions:
Nin(t) and N(0) (passed with Nin and N0, or calculated with SORCERING-specific functions).

Given the input-considered SOC losses

Closs =C(t −1)+Cin(t −1)−C(t) (5)

and the input-considered NOC losses

Nloss = N(t −1)+Nin(t −1)−N(t) (6)

between time points t and t −1, and assuming equal C and N decomposition rates

Closs

C(t)
=

Nloss

N(t)
(7)

the amount of SON at each simulation time step is then calculated pool-wise as:

N(t) =
N(t −1)+Nin(t −1)(

Closs
C(t) +1

) (8)

2.3 Values Nmin, Nmin.sink<1>, ... , Nmin.sink<n>

Along with modelling SON, further quantities such as mineralisation rates are determined. In the fol-
lowing mineralisation is mentioned as if it includes mineralisation (positive values) and immobilisation
(negative values). In contrast to nitrogen losses (eq. 6), mineralisation rates contain information about
sources and sinks of SON. Pool-specific N mineralisation Nmin.sink ⟨ j⟩ and N mineralisation Nmin
are related as follows:

Nmin j(t) =
n

∑
p=1

Nmin.sink ⟨ j⟩p (t) (9)

for each simulation time point t, each pool j = 1, ...,n and each pool p = 1, ...,n and n total pools. Or in
other words, the row sum of Nmin.sink ⟨ j⟩ at one simulation time point equals the jth column of Nmin
at that time point. Mineralisation rates and sinks are read from a mineralisation rates matrix Nmin.mat:

Nmin1(t), ...,Nminn(t) =
n

∑
i=1

Nmin.mati,1(t), ...,
n

∑
i=1

Nmin.mati,n(t) (10)

18 sorcering

Nmin.sink ⟨ j⟩1 (t), ...,Nmin.sink ⟨ j⟩n (t) = Nmin.mat j,1(t), ...,Nmin.mat j,n(t) (11)

and using the fourth-order Runge-Kutta Method Nmin.mat at time point t is calculated as follows:

Nmin.mat(t) =−1
6
(Kn1 +2Kn2 +2Kn3 +Kn4) (12)

with

Kn1 =(A ·diag(xi(t −1) ·C(t −1)))T ·diag
(

1
CN(t)

)

Kn2 =

(
A ·diag

(
xi(t −1)+ xi(t)

2
·
(

C(t −1)+
K1

2

)))T

·diag
(

1
CN(t)

)

Kn3 =

(
A ·diag

(
xi(t −1)+ xi(t)

2
·
(

C(t −1)+
K2

2

)))T

·diag
(

1
CN(t)

)

Kn4 =(A ·diag(xi(t) · (C(t −1)+K3)))
T ·diag

(
1

CN(t)

)
(13)

and superscript T denoting transposed matrices and

CN(t) =

{
C(t)
N(t) , ∀N(t)> 0
n.c., otherwise

(14)

and K1 - K3 taken from eq. system (4). Note that Kn1..4 are matrices and K1..3 are vectors.

As changes in SON must match the sums of all mineralisation paths, the sums over soil pools of Nloss
and Nmin, respectively, must be approximately equal for all simulation time points:

∑n
p=1 Nlossp(t)≈ ∑n

p=1 Nminp(t) (15)

A verification of this relation is given by Nbalance (see below).

2.4 Value Nbalance

The overall N change between two time steps is calculated as:

∆N(t) =
n

∑
p=1

Np(t −1)−
n

∑
p=1

Np(t) (16)

The total system N balance serves as a verification output. Both of the following equations should
always give results close to zero:

Nbal1(t) =
n

∑
p=1

Ninp(t −1)+∆N(t)−
n

∑
p=1

Nlossp(t)≈ 0 (17)

sorcering 19

Nbal2(t) =
n

∑
p=1

Ninp(t −1)+∆N(t)−
n

∑
p=1

Nminp(t)≈ 0 (18)

∆N(t) is saved in the first column, Nbal1(t) in the second and Nbal2(t) in the third column of Nbalance.

20 sorcering

3 Additional Features and Input Processing

3.1 Estimation of Initial Soil Organic Carbon

If there is no initial SOC data, total initial SOC ΣC(0)est can be estimated if there are more than two
SOC measurement points (passed with meas_data) and the model is called with calcC0 = TRUE. Then,
ΣC(0)est is the intercept value (at the first time point) of the linear regression line through measured
SOC data. In order to derive the initial SOC for each model pool, information about the initial SOC
shares among pools C0 f racts is required. It can be passed with C0_fracts) or, when a predefined SOC
model is used, the model’s standard fractions are taken (see section 3.3). The initial SOC distribution
among the pools is then calculated with:

C(0)n
p=1 = ΣC(0)est ·C0 f racts,p (1)

with n being the number of SOC pools.

3.2 Estimation of Initial Soil Organic Nitrogen

If there is no initial SON data, similarly to SOC, total initial SON ΣN(0)est can be estimated if there are
more than two SON measurement points (passed with meas_data) and the model is called with calcN0
= TRUE. Likewise, ΣN(0)est is the intercept value (at the first time point) of the linear regression line
through measured SON data. To estimate the initial pool distribution of SON the model used must be
classified into fast, slow and resistant pools (either via pooltypes or automatically when a predefined
SOC model is used). Then, the initial SON in fast pools is calculated as:

N f ast(0) =
C f ast(0)

CN f ast(0)
(2)

If calcCN_fast_init = FALSE (default), the initial CN ratio of fast pools CN f ast(0) is defined in
CN_fast_init (40 by default). If calcCN_fast_init = TRUE, CN f ast(0) is estimated from organic
inputs, or more specifically, it is thought to be typically the result of the direct input of organic C and
N into these pools. Consequently, this method assumes that there has been similar management or
natural input in the past, and the organic input during the simulation is used to estimate the initial CN
ratio:

CN f ast(0) =
tin,last

∑
t=tin, f irst

CNin(t) ·weight(t) (3)

However, not each input should have the same impact. Therefore, higher weights for early inputs and
for higher amounts of inputs are used:

sorcering 21

weight(t) =
weightt(t) ·weightc(t)

∑
tin,last
T=tin, f irst

(weightt(T) ·weightc(T))
(4)

trivially with

tin,last

∑
t=tin, f irst

weight(t) = 1 (5)

and with mass weight defined as:

weightc(t) =
Cin(t)

∑
tin,last
t=tin, f irst

Cin(t)
(6)

and temporal weight defined as:

weightt(t) =
1
t2 (7)

If the sum of total carbon input during the simulation is smaller than the initial SOC, it is assumed
that calculating the CN ratio from the inputs alone would lead to unrealistic results. As a solution,
the missing amount of carbon is placed at the beginning of the Cin vector and CN_fast_init at the
beginning of the CNfast vector for the calculations of equations 3 and 6. The user will be informed
about those events when init_info = TRUE.

The initial amount of SON in slow and resistant pools Nslow(0) and Nres(0) are calculated as follows:

Nslow(0) =
Cslow(0)

CNslow(0)
(8)

Nres(0) =
ΣC(0)

ΣCN(0)est
−
(
N f ast(0)+Nslow(0)

)
(9)

with CNslow initially starting with the given value of CN_bio (9 by default). If unrealistic values result
out of the calculation, i.e. Nres(0) < 0 or CNres(0) =

Cres(0)
Nres(0)

> 100, CNslow(0) iteratively gets raised
by 0.1 and eqs. 8 and 9 are iteratively repeated until realistic results are achieved. Assuming higher
CN values in resistant pools than in slow pools, if CNres(0) is smaller than CNslow(0), CNslow(0) iter-
atively gets lowered by 0.1 and eqs. 8 and 9 are iteratively repeated until CNres(0) is not smaller than
CNslow(0). Initial total CN ratio CN(0) is calculated as follows:

ΣCN(0)est =
ΣC(0)est

ΣN(0)est
(10)

and Ci(0) and Ni(0) being the intercept values by applying linear regressions through measured SOC
and SON values, respectively. One should note that ΣC(0) may not be the same as ΣC(0)est and there-
fore use the estimated SOC for the measured data-based calculation of N(0).

22 sorcering

3.3 Predefined Models

SORCERING can be run using existing predefined SOC models. The information about the transfer
matrix and the rate modifying factors, which are formerly passed with A and xi, are then calculated
based on environment-specific information env_in (mandatory) and model parameters theta (when
not passed, standard values will be used). At the moment one can choose among five models: Yasso07
(Tuomi et al. 2009), Yasso15 (Viskari et al. 2020), Yasso20 (Viskari et al. 2022), RothC (Coleman and
Jenkinson 1996) or C-Tool (Taghizadeh-Toosi et al. 2014).

According to the definitions given in section 2.1, A is a matrix of size n× n and xi(t) is a vector of
length n, with n being the number of pools. For all predefined models, n = 5, except for C-Tool, where
n = 6. When using predefined models, the xi(t) vectors are calculated based on annual decomposition
rates. Using the default value of tsteps = "monthly", xi(t) is divided by 12, which is not taken into
account below.

When using predefined SOC models, the pooltypes vector does not need to be passed since default
values are used. These values were created be the SORCERING developers out of logical considerations
and with the aim of SON initialization.

3.3.1 Yasso

When modelling with Yasso, the user must pass either model = "Yasso07", model = "Yasso15" or
model = "Yasso20" according to the three versions provided.

Parameters

When model = "Yasso07", a theta default vector of

ΘY 07 = (kA,kW,kE,kN,kH, p1...p12, pH,β1,β2,γ) (11)

is used, and when model = "Yasso15" or model = "Yasso20", a theta default vector of

ΘY 15 = ΘY 20 = (kA,kW,kE,kN,kH, p1...p12, pH,β1,β2,βN1,βN2,βH1,βH2,γ,γN ,γH ,θ1,θ2,r) (12)

is used, with standard values listed in Table 1.

sorcering 23

Table 1: Yasso standard parameters.

Yasso07 Yasso15 Yasso20

kA 0.66 0.49 0.51 Base decomposition rate for pool A [yr−1]

kW 4.3 4.9 5.19 Base decomposition rate for pool W [yr−1]

kE 0.35 0.24 0.13 Base decomposition rate for pool E [yr−1]

kN 0.22 0.095 0.1 Base decomposition rate for pool N [yr−1]

kH 0.0033 0.0013 0.0015 Base decomposition rate for pool H [yr−1]

p1 0.32 0.44 0.5 Transference fraction from pool W to pool A

p2 0.01 0.25 0 Transference fraction from pool E to pool A

p3 0.93 0.92 1 Transference fraction from pool N to pool A

p4 0.34 0.99 1 Transference fraction from pool A to pool W

p5 0 0.084 0.99 Transference fraction from pool E to pool W

p6 0 0.011 0 Transference fraction from pool N to pool W

p7 0 0.00061 0 Transference fraction from pool A to pool E

p8 0 0.00048 0 Transference fraction from pool W to pool E

p9 0.01 0.066 0 Transference fraction from pool N to pool E

p10 0 0.00077 0 Transference fraction from pool A to pool N

p11 0 0.1 0.163 Transference fraction from pool W to pool N

p12 0.02 0.65 0 Transference fraction from pool E to pool N

pH 0.04 0.0046 0.0015 Transference fraction from AWEN pools to pool H

β1 0.076 0.091 0.158 First-order temperature parameter for AWE pools [◦C−1]

β2 -0.00089 -0.00021 -0.002 Second-order temperature parameter for AWE pools [◦C−2]

βN1 - 0.049 0.17 First-order temperature parameter for N pool [◦C−1]

βN2 - -0.000079 -0.005 Second-order temperature parameter for N pool [◦C−2]

βN1 - 0.035 0.067 First-order temperature parameter for H pool [◦C−1]

βH2 - -0.00021 0 Second-order temperature parameter for H pool [◦C−2]

γ -1.27 -1.8 -1.44 Precipitation impact parameter for AWE pools [yr mm−1]

γN - -1.2 -2 Precipitation impact parameter for N pool [yr mm−1]

γH - -13 -6.9 Precipitation impact parameter for H pool [yr mm−1]

θ1 - -0.44 -2.55 First-order impact parameter for wood size [cm−1]

θ2 - 1.3 1.24 Second-order impact parameter for wood size [cm−2]

r - 0.26 0.25 Exponent parameter for wood size

24 sorcering

Transfer Matrix

For all Yasso versions A looks like this:

A =

−kA p1 p2 p3 0
p4 −kW p5 p6 0
p7 p8 −kE p9 0
p10 p11 p12 −kN 0
pH pH pH pH −kH

(13)

Environmental Factors

When model = "Yasso07", xi(t) is calculated as follows:

xi1(t) =xi2(t) = xi3(t) = xi4(t) = xi5(t) (14)

=eβ1T+β2T 2
(1− eγ p)

When model = "Yasso15" or model = "Yasso20", xi(t) is calculated as follows:

xi1(t) =xi2(t) = xi3(t) (15)

=eβ1T (t)+β2T (t)2
(

1− eγ p(t)
)

xi4(t) =eβN1T (t)+βN2T (t)2
(

1− eγN p(t)
)

(16)

xi5(t) =eβH1T (t)+βH2T (t)2
(

1− eγH p(t)
)

(17)

with T in degrees Celsius and p in mm, both passed with env_in.

Initial Pool Properties

Initial pool properties described here apply equally to all three Yasso versions. When calcN0 = TRUE,
a pooltypes default vector of (1,1,1,2,3) is used. When calcC0 = TRUE and C0_fracts = Null, a
C0_fracts default vector of (0.15,0.025,0.025,0.35,0.45) is used, which could be a plausible initial
carbon distribution for the Yasso pools. However, these values are not intended by the Yasso develop-
ers. It is recommended to perform model spinup runs for the initialisation of SOC.

Input from Woody Litter

Woody litter is only considered when model = "Yasso15" or model = "Yasso20". Then in-
stead of Cin or Cin_sl, and instead of Nin or Nin_sl, Cin_wood or Cin_wood_sl, and Nin_wood
or Nin_wood_sl must be passed. When model = "Yasso15" or model = "Yasso20", by default an
additional set of rate modifying factors xiw(t) for each wood diameter class is calculated:

sorcering 25

xiw(t) = min(1,
(
1+θ1 ·diam+θ2 ·diam2)−r

) (18)

with θ1,θ2 and r as described in section 3.3.1 and diam being the wood diameter as described in
wood_diam or wood_diam_sl. Equation 2 then is exchanged with:

Ae(t) =
(
AT · xi(t) · xiw(t)

)T

= A ·diag(xi(t) · xiw(t)) (19)

Since each wood diameter produces a new xiw(t) the model calculation for each wood class is automat-
ically run separately and after each time step the overall new SOC and SON are calculated as weighted
means over all wood diameter input runs. The idea behind this separation of input diameter classes is
that woody components are subject to delayed decomposition.

3.3.2 RothC

The RothC application used here uses standard RothC parameters and properties for agricultural soils
(Coleman and Jenkinson 2014). This particularly affects the estimation of initial SOC. Therefore,
especially if modelling non-agricultural soils, it is recommended to use the SOC input and pass
RothC_Cin4C0 = TRUE to estimate the initial SOC.

Parameters

When model = "RothC", a theta default vector of

ΘR = (kDPM,kRPM,kBIO,kHUM,kIOM,RW,max,RW,min) (20)

is used, with standard values listed in Table 2. Note that RW,max and RW,min are not typically intended
by RothC developers to be modifiable parameters.

Table 2: RothC standard parameters.

kDPM 10 Decomposition rate for DPM pool [yr−1]

kRPM 0.3 Decomposition rate for RPM pool [yr−1]

kBIO 0.66 Decomposition rate for BIO pool [yr−1]

kHUM 0.02 Decomposition rate for HUM pool [yr−1]

kIOM 0 Decomposition rate for IOM pool [yr−1]

RW,max 1 Maximum rate modifying factor for soil moisture

RW,min 0.2 Minimum rate modifying factor for soil moisture

26 sorcering

Transfer Matrix

A is build as follows:

A =

−kDPM 0 0 0 0
0 −kRPM 0 0 0

B · kDPM B · kRPM B · kBIO − kBIO B · kHUM 0
H · kDPM H · kRPM H · kBIO H · kHUM − kHUM 0

0 0 0 0 −kIOM

(21)

with

B =
0.46

1+1.67(1.85+1.6e−0.0786·clay)
(22)

H =
0.54

1+1.67(1.85+1.6e−0.0786·clay)
(23)

and clay as defined in site.

Environmental Factors

xi(t) is calculated as follows:

xi1(t) =xi2(t) = xi3(t) = xi4(t) = xi5(t) (24)
=RT (t) ·RC(t) ·RW (t)

with RT (t) being the rate modifying factor series for temperature:

RT (t) =

47.91

1+e

(
106.06

T (t)+18.27

) , ∀T (t)>−18.27

0, otherwise
(25)

and RC(t) being the soil cover rate modifying factor:

RC(t) =
{

1, ∀scover(t) = 0 or scover(t) = 2
0.6, ∀scover(t) = 1 (26)

and RW (t) being the topsoil moisture deficit (TSMD) rate modifying factor:

RW (t) =

{
RW,max, ∀T SMDacc(t)≥ 0.444 ·T SMD(t)

RW,min +(RW,max −RW,min)
T SMDmax,pot−T SMDacc(t)

T SMDmax,pot−0.444·T SMDmax,pot
, otherwise

(27)

sorcering 27

and T SMDmax,pot(t) being the potentially, regardless of land cover, on the maximum remaining TSMD

T SMDmax,pot(t) =
{

T SMDmax(t)/1.8, ∀scover(t) = 0
T SMDmax(t), ∀scover(t) = 1 or scover(t) = 2 (28)

and T SMDmax(t) being the maximum TSMD

T SMDmax(t) =−(20+1.3 · clay−0.01 · clay2)
depth

23
(29)

and T SMDacc(t) being the accumulated TSMD

T SMDacc(t) =

max(T SMD(t),WF(t)), ∀WF(t)< 0 and t = 0
max(T SMD(t),T SMDacc(t −1)+WF(t)), ∀T SMDacc(t −1)+WF(t)< 0 and t > 0

0, otherwise
(30)

with

T SMD(t) =
{

T SMDmax(t)/1.8, ∀scover(t) = 0 or scover(t) = 2
T SMDmax(t), ∀scover(t) = 1 (31)

and WF(t) describing the water flux

WF(t) = p(t)−ET P(t) (32)

with clay and depth as defined in site and temperature T , precipitation p, evapotranspiration ET P
and soil cover index scover as defined in env_in. Please note that T SMDmax,pot(t) only differs from
T SMD(t) when scover(t) = 2.

Initial Pool Properties

When calcN0 = TRUE, a pooltypes default vector of (1,1,2,2,3) is used. When calcC0 = TRUE
and C0_fracts = Null, initial SOC fractions are calculated for the first four SOC pools, and the
initial SOC of the fifth pool C(0)IOM (inert pool IOM, as described by Falloon et al. 1998) is calculated
directly out of the total C(0):

C(0)IOM = 0.049(C(0)−C0rel)
1.139 +C0rel (33)

with C0rel increasing the SOC in the inert pool of black sands based on a method of Springob and
Kirchmann (2010):

C0rel =

{
0, ∀CN(0)≤ 11∨bs f lag = 0

C(0)(11−CN(0))
CN(0)(11

35−1)
, ∀CN(0)> 11∧bs f lag = 1 (34)

and bs f lag being the identifier of black sand soils as defined in site, and CN(0) being the CN ratio
as defined in site or, if specified there by entry = 0, as calculated. In the letter case, the CN ratio is

28 sorcering

calculated either as in eq. 10 or from C0 and N0, depending on whether measured data should be used
to estimate the initial CN ratio.

The initial state of the remaining carbon pools is calculated using a simplified version of the analytical
solution from Dechow et al. (2019) assuming steady-state conditions. The initial SOC distribution
among the five pools is then calculated as:

(C(0)1,C(0)2,C(0)3,C(0)4,C(0)5) = (f1 ·C(0), f2 ·C(0), f3 ·C(0), f4 ·C(0),C(0)IOM) (35)

with

(f1, f2, f3, f4) = (fd pm, frpm, fbio, fhum) ·
C(0)−C(0)IOM

C(0)
(36)

and

fd pm + frpm + fbio + fhum = 1 (37)

Following Dechow et al. (2019), these fractions are calculated as:

fd pm =
f ractI1 · kDPM

−1

f ractI1 ·ud pm + f ractI2 ·urpm
(38)

frpm =
f ractI2 · kRPM

−1

f ractI1 ·ud pm + f ractI2 ·urpm

fbio =
f ractI1 ·ubio,d pm + f ractI2 ·ubio,rpm

f ractI1 ·ud pm + f ractI2 ·urpm

fhum =
f ractI1 ·uhum,d pm + f ractI2 ·uhum,rpm

f ractI1 ·ud pm + f ractI2 ·urpm

with

f ractI1 =

{
0.59, RothC_Cin4C0 = FALSE

Cin,tot,DPM
Cin,tot,DPM+Cin,tot,RPM

, RothC_Cin4C0 = TRUE
(39)

and

f ractI2 = 1− f ractI1 (40)

and Cin,tot,DPM and Cin,tot,RPM being the total SOC inputs (during the following simulation) into DPM
and RPM pools, and

sorcering 29

ud pm =kDPM
−1 +ubio,d pm +uhum,d pm (41)

urpm =kRPM
−1 +ubio,rpm +uhum,rpm

and

uhum,d pm =uhum,rpm =
1

a1,2
(−ubio,d pm) ·a1,1 −α1 (42)

and

ubio,d pm =ubio,rpm =
α2 ·a1,2 −α1 ·a2,2

a1,1 ·a2,2 −a1,2 ·a2,1
(43)

and

a1,1 =kBIO · (α1 −1) (44)
a1,2 =kHUM ·α1

a2,1 =kBIO ·α2

a2,2 =kHUM · (α2 −1)

and

α1 =cue ·0.46 (45)
α2 =cue ·0.54

and carbon use efficiency

cue =
1

1+1.67(1.85+1.6e−0.0786·clay)
(46)

and clay being the clay content as defined in site.

3.3.3 C-Tool

C-Tool typically needs to be run twice, one time with model = "C-Tool" with Cin (and if desired
Nin) of crop input and one time with model = "C-Tool-org" with Cin (and Nin) of organic input.
In case of model = "C-Tool-org", C0 (and N0) should be zero. The user must calculate the overall
C-Tool result independently as the sum of both runs. Thus, "C-Tool-org" is not a separate model, but
rather a running mode of C-Tool.

30 sorcering

Parameters

When model = "C-Tool" or model = "C-Tool-org", a theta default vector of

ΘC =(kFOMt ,kHUMt ,kROMt ,kFOMs,kHUMs,kROMs, t f , fCO2 , fROM, fHUM) (47)

is used, with standard values taken from Taghizadeh-Toosi (2015) listed in Table 3.

Table 3: C-Tool standard parameters.

C-Tool C-Tool-org

kFOMt 1.44 1.44 Decomposition rate for FOM pool (topsoil) [yr−1]

kHUMt 0.0336 0.0336 Decomposition rate for HUM pool (topsoil) [yr−1]

kROMt 0.000463 0 Decomposition rate for ROM pool (topsoil) [yr−1]

kFOMs 1.44 1.44 Decomposition rate for FOM pool (subsoil) [yr−1]

kHUMs 0.0336 0.0336 Decomposition rate for HUM pool (subsoil) [yr−1]

kROMs 0.000463 0 Decomposition rate for ROM pool (subsoil) [yr−1]

t f 0.03 0 Fraction going to downward transport

fCO2 0.628 0.628 Fraction of CO2 released

fROM 0.012 0 Fraction of fresh organic matter going to ROM pool

fHUM 0 0.358 Fraction of input going to HUM pool

Transfer Matrix

A is build as follows:

A =

−kFOMt 0 0 0 0 0
ai21 −kHUMt 0 0 0 0

0 ai32 −kROMt 0 0 0
ai41 0 0 −kFOMs +ai44 0 0

0 ai52 0 ai54 −kHUMs +ai55 0
0 0 ai63 0 ai65 −kROMs +ai66

(48)

sorcering 31

with

ai21 = (1− t f) ·h · kFOMt (49)
ai41 = t f · kFOMt

ai32 = fROM · kHUMt

ai52 = (1− fCO2 − fROM) · kHUMt

ai63 = (1− fCO2) · kROMt

ai44 = t f · kFOMs

ai54 = (1− t f) ·h · kFOMs

ai65 = fROM · kHUMs

ai55 = (1− fCO2 − fROM) · kHUMs

ai66 = (1− fCO2) · kROMs

and h being a factor that depends on clay content:

h =
1

1+1.67(1.85+1.6 · e−7.86 clay
100)

(50)

and clay being the clay content as defined in site.

Input Transformation

If the input of SOC and SON is not defined for the single pools but only for topsoil and subsoil fractions
(CTool_input_raw = TRUE) the standard way of distributing the fractions among the pools is used:

Cin(t) =

(Cinraw,top · (1−Fhum,clay),Cinraw,top ·Fhum,clay,0,Cinraw,sub · (1−Fhum,clay),Cinraw,sub ·Fhum,clay,0)
Nin(t) =

(Ninraw,top · (1−Fhum,clay),Ninraw,top ·Fhum,clay,0,Ninraw,sub · (1−Fhum,clay),Ninraw,sub ·Fhum,clay,0)
(51)

with

Fhum,clay = max(0, fHUM −h) (52)

and fhum and h as defined above, and with Cinraw,top and Ninraw,top being topsoil inputs and Cinraw,sub
and Ninraw,sub being subsoil inputs.

Environmental Factors

xi(t) is calculated as follows:

32 sorcering

xi1(t) =xi2(t) = xi3(t) = f tt(t) (53)
xi4(t) =xi5(t) = xi6(t) = f ts(t)

and

f tt = 7.24 · e−3.432+0.168Test,t (t)(1−
Test,t (t)

73.8 (54)

f ts = 7.24 · e−3.432+0.168Test,s(t)(1−
Test,s(t)

73.8

and

Test,t = T̄ +amp · e−
dt

10·ddamp · sin(ρ · (doy−o f f set)) ·86400− dt

10 ·ddamp
(55)

Test,s = T̄ +amp · e−
ds

10·ddamp · sin(ρ · (doy−o f f set)) ·86400− ds

10 ·ddamp

with T̄ being the average annual temperature, amp being the temperature range that lays between the
25% and the 75% quantile, dt the number of the decimeter-wide soil layer that is relevant for the topsoil,
ds the one that is relevant for the subsoil (with standard values dt = 2dm and ds = 3dm), furthermore
with ddamp being the damping depth, ρ being the angular frequency (= π ·2/365/24/3600= 1.992385 ·
10−7 sec−1), doy being the day of the year and o f f set being defined as 110 days. T̄ is calculated using
data from tsteps and env_in. Since amp is based on within-year fluctuations it is recommended to
use a temporal resolution not coarser than a monthly one. Note that the function from RcppArmadillo
(Eddelbuettel et al. 2021b) used to calculate the quantiles is equivalent to type 5 of the R quantile
function. ddamp is calculated as follows:

ddamp =

√
2T hdi f f

ρ
= 1.874401m (56)

with default thermal diffusivity of solid soil T hdi f f of 0.35 ·10−6 m2sec−1.

Initial Pool Properties

When calcN0 = TRUE, a pooltypes default vector of (1,2,3,4,5,6) is used. When calcC0 = TRUE
and C0_fracts = Null, a C0_fracts default vector of

C0 f racts =(fFOMt , fHUMt , fROMt , fFOMs · s f , fHUMs · s f , fROMs · s f) (57)
=(0.0316,0.4804,0.488,0.003 · s f ,0.3123 · s f ,0.6847 · s f)

=(0.0316,0.4804,0.488,0.00338298,0.35216822,0.77210880)

sorcering 33

is used, with fFOMt , fHUMt and fROMt being the fresh organic, humus and resistant topsoil matter
fractions, and fFOMt , fHUMt and fROMt being those of the subsoil, and with s f being the subsoil factor
defined as

s f =
0.53
0.47

= 1.12766 (58)

Note that by default the first three pools in C-Tool represent the upper soil. Thus, to compare with
other SOC models only the first three pools of the C-Tool output are relevant.

34 sorcering

Examples

#1 RothC application with fictional input for a single site

#1.1 Input

data(RothC_Cin_ex, RothC_Nin_ex, RothC_N0_ex, RothC_C0_ex, RothC_xi_ex,
RothC_site_ex, RothC_env_in_ex) #fictional data

#1.2 Simulations

#In the following two methods are presented, one with a RothC as a predefined
#model (1.2.1), one where the RothC rate modifying factors must be calculated
#beforehand (1.2.2). Both methods lead to the same results.

#1.2.1 Simulation with predefined model

out_rothC <- sorcering(model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex,
Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, N0=RothC_N0_ex, C0=RothC_C0_ex,
calcN=TRUE, tsteps="monthly")

#1.2.2 Simulation with own model definition and rate modifying factor definition

A_RothC <- fget_A_RothC(clay=30) #create transfer matrix for RothC
out_rothC_own <- sorcering(A=A_RothC , xi=RothC_xi_ex, Cin=RothC_Cin_ex,
Nin=RothC_Nin_ex, N0=RothC_N0_ex, C0=RothC_C0_ex, calcN=TRUE, tsteps="monthly")

#Note that RothC_xi_ex contains site and model specific rate modifying factors that
#are only valid in this specific example. Generally, xi must be calculated by the
#user for different environmental conditions and SOC models used.

#1.3 Results

#output structure summary
summary(out_rothC)

#show that results of 1.2.1 and 1.2.2 differ negligibly
all(abs(out_rothC$C-out_rothC_own$C) < 1e-14)
all(abs(out_rothC$N-out_rothC_own$N) < 1e-14)

#example plot
oldpar <- par(no.readonly=TRUE) #save old par

par(mfrow=c(1,1),mar=c(4,4,1,4))
plot(rowSums(out_rothC$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9),
pch=20)

par(new=TRUE)
plot(rowSums(RothC_Cin_ex)/rowSums(RothC_Nin_ex),
axes=FALSE,col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,60),pch=20)

axis(side=2, pos=0,
labels=(0:6)*1.5, at=(0:6)*10, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1)

axis(side=4, pos=60,
labels=(0:6)*10, at=(0:6)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)

axis(side=1, pos=0,
labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2)

title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2)
mtext("C input / N input", side=4, line=2, cex=2,col=2)
title(xlab="time", line=2, cex.lab=2)
par(oldpar) #back to old par

sorcering 35

#2 RothC application with fictional input for a multiple site application

#2.1 Input

data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_N0_ex, RothC_C0_ex, RothC_site_ex,
RothC_env_in_ex) #fictional data

#2.2. Simulation

out_multi_rothC <- sorcering(model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl,
Nin_sl=RothC_Nin_ex_sl, N0_sl=rep(list(RothC_N0_ex),3),C0_sl=rep(list(RothC_C0_ex),3),
calcN=TRUE, tsteps="monthly", multisite=TRUE,
sitelist=list("normal","half_input","double_Cin"))

#2.3 Results

#output structure summary
summary(out_multi_rothC$normal)
summary(out_multi_rothC$half_input)
summary(out_multi_rothC$double_Cin)

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
for (listelement in c(1:3))
{
lwidth<-1
if (listelement==2)lwidth<-3
plot(rowSums(out_multi_rothC[[listelement]]$N),axes=FALSE, col=1,type="l", lwd=lwidth,

lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,18))
par(new=TRUE)
plot(rowSums(RothC_Cin_ex_sl[[listelement]])/rowSums(RothC_Nin_ex_sl[[listelement]]),

type="l", lwd=lwidth, lty=listelement+2,axes=FALSE,col=2, cex.lab=2,xlab="",
ylab="",ylim=c(0,120))

par(new=TRUE)
}
axis(side=2, pos=0,
labels=(0:6)*3, at=(0:6)*20, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1)

axis(side=4, pos=60,
labels=(0:6)*20, at=(0:6)*20, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)

axis(side=1, pos=0,
labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2)

title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2)
mtext("C input / N input", side=4, line=2, cex=2,col=2)
title(xlab="time", line=2, cex.lab=2)
legend(x=40,y=100,legend=c("normal","half_input","double_Cin"),lty=c(3,4,5),
lwd=c(1,3,1))
par(oldpar) #back to old par

36 sorcering

#3 RothC application with fictional input
#and fictional measurement data to calculate C0 and N0

#3.1 Input

#fictional data
data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_site_ex, RothC_env_in_ex, meas_data_ex)

#3.2. Simulation

out_rothC_C0<-sorcering(model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex,
Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, calcC0=TRUE, calcN=TRUE, calcN0=TRUE,
tsteps="monthly", meas_data=meas_data_ex)

#3.3 Results

#output structure summary
summary(out_rothC_C0)

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
plot(rowSums(out_rothC_C0$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9),
type="l",lwd=1)

par(new=TRUE)
plot(rowSums(out_rothC_C0$C),axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,90),
type="l",lwd=1)

par(new=TRUE)
plot(x=meas_data_ex[,1],y=meas_data_ex[,3],axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",
xlim=c(0,length(rowSums(out_rothC_C0$N))),ylim=c(0,9),pch=4,cex=3)

par(new=TRUE)
plot(x=meas_data_ex[,1],y=meas_data_ex[,2],axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",
xlim=c(0,length(rowSums(out_rothC_C0$N))),ylim=c(0,90),pch=4,cex=3)

par(new=TRUE)
axis(side=2, pos=0,
labels=(0:8)*1, at=(0:8)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1)

axis(side=4, pos=60,
labels=(0:8)*10, at=(0:8)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)

axis(side=1, pos=0,
labels= (0:8)*10 , at=(0:8)*10, hadj=0.5, padj=0, cex.axis=2)

title(ylab=expression("SON [t ha"^-1*"]"), line=2, cex.lab=2)
mtext(expression("SOC [t ha"^-1*"]"), side=4, line=3, cex=2,col=2)
title(xlab="time", line=2, cex.lab=2)
legend(x=30,y=30,legend=c("model result","measurement"),lwd=c(1,0))
legend(x=31,y=30,legend=c("",""),pch=4,pt.cex=c(0,3),bty="n")
par(oldpar) #back to old par

sorcering 37

#4 Yasso15 application using multiple sites and
#input values of different wood diameters which take uncertainties into account

#4.1 Input

data(Yasso_Cin_ex_wood_u_sl, Yasso_Nin_ex_wood_u_sl, Yasso_C0_ex_sl, Yasso_N0_ex_sl,
RothC_env_in_ex) #fictional data

#show last entries of C input for 3rd site, 2nd wood layer, 4th uncertainty layer
tail(Yasso_Cin_ex_wood_u_sl[[3]][[2]][[4]])

#diameter of wood input: 2 classes of 0 cm and 10 cm for each of the 3 sites
wood_diam_ex_sl<-list(c(0,10),c(0,10),c(0,10))

#environmental variables
Yasso_env_in_ex<-RothC_env_in_ex[,1:2]

#4.2 Simulation

out_multi_yasso_wood_unc <- sorcering(model="Yasso15", C0_sl=Yasso_C0_ex_sl,
env_in_sl=rep(list(Yasso_env_in_ex),3), wood_diam_sl=wood_diam_ex_sl,
Cin_wood_sl=Yasso_Cin_ex_wood_u_sl,Nin_wood_sl=Yasso_Nin_ex_wood_u_sl,
N0_sl=Yasso_N0_ex_sl, calcN=TRUE, tsteps="monthly", multisite=TRUE,
sitelist=list("a","b","c"))

#4.3 Results

#show the last C results for 3rd site, 4th uncertainty layer
tail(out_multi_yasso_wood_unc[[3]][[4]]$C)

38 sorcering

#5 RothC application using stochastically varying parameters
#and multiple sites

#5.1 fictional data
data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_C0_ex, RothC_N0_ex,
RothC_site_ex, RothC_env_in_ex)

#standard deviations [%] used for each of the 7 RothC theta parameters
RothC_theta_unc <- c(0,0,1,1,1,1,2)

#5.2 Simulation

out_sl <- sorcering(model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl,
Nin_sl=RothC_Nin_ex_sl, C0_sl=rep(list(RothC_C0_ex),3),
N0_sl=rep(list(RothC_N0_ex),3),calcN=TRUE,theta_n_unc=10,
theta_unc=RothC_theta_unc, multisite=TRUE,
sitelist=list("normal","half_input","double_Cin"))

#5.3 Means and standard deviation

#60 time steps, 5 pools, 9 output types, 10 theta_n_unc, 3 sites
out_sl_arr <- array(unlist(out_sl),c(60,5,9,10,3))
out_sl_arr_N <- out_sl_arr[,,2,,] #only output type 2: N
#mean over all uncerts
out_sl_arr_N_mean <- apply(out_sl_arr_N , c(1,2,4), na.rm=TRUE, FUN=mean)

#standard deviation
out_sl_arr_N_sd<-
array(0, dim=c(dim(out_sl_arr_N)[1],dim(out_sl_arr_N)[2],dim(out_sl_arr_N)[4]))
for (dim3 in c(1:dim(out_sl_arr_N)[4]))
out_sl_arr_N_sd[,,dim3]<-apply(out_sl_arr_N[,,,dim3],c(1:2),sd)

#5.4 Results

#show the last N means for stand 1
tail(out_sl_arr_N_mean[,,1])

#show the last N standard deviations for stand 1
tail(out_sl_arr_N_sd[,,1])

sorcering 39

#6 How to create input lists for a RothC application using stochastically
#varying inputs and input scenarios

#6.1 Input

#fictional data
data(RothC_Cin_ex_sl, RothC_C0_ex, RothC_site_ex, RothC_env_in_ex)

#create input list of 3 scenarios, 100 uncertainties each
set.seed(17) #to make ’random’ results reproducible
f1<-1
for (no in c(1:3)) #loop over 3 input scenarios
{

#normal, half and double input
Cin <- switch (no, RothC_Cin_ex, RothC_Cin_ex/2, RothC_Cin_ex*2)
f2 <- 1
#create fictional uncertainties
for (unc in c(1:100)) #loop over 100 uncertainties
{

randnum<-max(0,rnorm(1,1,0.5)) #out of normal dist. with 50% sd.
if (f2==1) Cin_u <- list(Cin*randnum) else
Cin_u[[length(Cin_u)+1]] <- Cin*randnum
f2 <- 0

}
if (f1==1) Cin_u_sl <- list(Cin_u) else
Cin_u_sl[[length(Cin_u_sl)+1]] <- Cin_u
f1 <- 0

}

#show input of scenario 3, uncertainty 51
head(Cin_u_sl[[3]][[51]])

#6.2 Simulation
out_sl <- sorcering(model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex),3),Cin_sl=Cin_u_sl,
C0_sl=list(RothC_C0_ex,RothC_C0_ex,RothC_C0_ex), tsteps="monthly",
multisite=TRUE, sitelist=list("normal","half_input","double_Cin"))

#6.3 Means and standard deviation

#60 time steps, 5 pools, 1000 uncertainties, 3 sites
out_sl_arr <- array(unlist(out_sl),c(60,5,100,3))

#means
out_sl_arr_mean <- apply(out_sl_arr , c(1,2,4), na.rm=TRUE, FUN=mean)

#standard deviation
out_sl_arr_sd<-
array(0, dim=c(dim(out_sl_arr)[1],dim(out_sl_arr)[2],dim(out_sl_arr)[4]))

for (dim3 in c(1:dim(out_sl_arr)[4]))
out_sl_arr_sd[,,dim3]<-apply(out_sl_arr[,,,dim3],c(1:2),sd)

40 sorcering

#6.4 Results

#C-pool sums of means for the 3 scenarios
totalC_m1<-rowSums(out_sl_arr_mean[,,1])
totalC_m2<-rowSums(out_sl_arr_mean[,,2])
totalC_m3<-rowSums(out_sl_arr_mean[,,3])

#C-pool sums of standard deviations for the 3 scenarios
totalC_s1<-rowSums(out_sl_arr_sd[,,1])
totalC_s2<-rowSums(out_sl_arr_sd[,,2])
totalC_s3<-rowSums(out_sl_arr_sd[,,3])

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
plot(totalC_m1,axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,100),
type="l",lwd=1)

par(new=TRUE)
plot(totalC_m2,axes=FALSE, col=3, cex.lab=2,xlab="",ylab="",ylim=c(0,100),
type="l",lwd=1)

par(new=TRUE)
plot(totalC_m3,axes=FALSE, col=4, cex.lab=2,xlab="",ylab="",ylim=c(0,100),
type="l",lwd=1)

par(new=TRUE)
polygon(c(1:60,60:1),c(totalC_m1+totalC_s1, rev(totalC_m1-totalC_s1)),
border=NA,col=rgb(1,0,0,0.27),density=40,angle=180,xlab="",ylab="")

par(new=TRUE)
polygon(c(1:60,60:1),c(totalC_m2+totalC_s2, rev(totalC_m2-totalC_s2)),
border=NA,col=rgb(0,1,0,0.27),density=30,xlab="",ylab="")

par(new=TRUE)
polygon(c(1:60,60:1),c(totalC_m3+totalC_s3, rev(totalC_m3-totalC_s3)),
border=NA,col=rgb(0,0,1,0.27),density=25,angle=90,xlab="",ylab="")

par(new=TRUE)
axis(side=2, pos=0,

labels=(0:10)*1, at=(0:10)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1)
axis(side=1, pos=0,

labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2)
title(ylab=expression("SOC [t ha"^-1*"]"), line=2, cex.lab=2)
title(xlab="time", line=2, cex.lab=2)
legend(x=20,y=30,fill=c(0,0,0,4,2,3),density=c(0,0,0,25,40,30),angle=c(0,0,0,90,0,45),
border=c(0,0,0,1,1,1),legend=c("mean double input scenario",
"mean regular input scenario", "mean half input scneario",
"uncertainty range double input scenario", "uncertainty range regular input scenario",
"uncertainty range half input scenario"))

legend(x=20,y=30,lty=c(1,1,1,0,0,0),seg.len=c(1,1,1,0,0,0), col=c(4,2,3,0,0,0),
legend=c("","","","","",""),bty="n")

par(oldpar) #back to old par

sorcering 41

#7 RothC application with fictional input for a spin-up application

#7.1 Input

#fictional data
data(RothC_Cin_ex_sl_spin, RothC_Nin_ex_sl_spin, RothC_site_ex, RothC_env_in_ex)

#7.2. Simulation

out_multi_rothC <- sorcering(model="RothC", site_sl=rep(list(RothC_site_ex),3),
env_in_sl=rep(list(RothC_env_in_ex[1:12,]),3), Cin_sl=RothC_Cin_ex_sl_spin,
Nin_sl=RothC_Nin_ex_sl_spin, calcN=TRUE, tsteps="monthly", multisite=TRUE,
sitelist=list("normal","half_input","double_Cin"), spinup=TRUE, t_spin_sl=36000,
C0=c(0,0,0,0,20), N0=c(0,0,0,0,2), CN_spin=c(100,100,50,50,10))

#7.3 Results

#example plot
oldpar <- par(no.readonly=TRUE) #save old par
par(mfrow=c(1,1),mar=c(4,4,1,4))
for (listelement in c(1:3))
{
lwidth<-1
if (listelement==2)lwidth<-3
printN<-rowSums(out_multi_rothC[[listelement]]$N)
printseq<-seq.int(1L,length(printN),100L)
printC<-rowSums(out_multi_rothC[[listelement]]$C)
plot(printN[printseq],axes=FALSE, col=1,type="l", lwd=lwidth,

lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,30))
par(new=TRUE)
plot(printC[printseq],axes=FALSE, col=2,type="l", lwd=lwidth,

lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,180))
par(new=TRUE)

}
axis(side=2, pos=0,
labels=(0:6)*5, at=(0:6)*30, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1)

axis(side=4, pos=360,
labels=(0:6)*30, at=(0:6)*30, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2)

axis(side=1, pos=0,
labels= (0:6)*6000 , at=(0:6)*60, hadj=0.5, padj=0, cex.axis=2)

title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2)
mtext(expression("total C [t ha"^-1*"]"), side=4, line=2, cex=2,col=2)
title(xlab="time", line=2, cex.lab=2)
legend(x=120,y=140,legend=c("normal","half_input","double_Cin"),lty=c(3,4,5),
lwd=c(1,3,1))

par(oldpar) #back to old par

42 sorcering

References

Coleman, K., Jenkinson, D.S., 1996. RothC-26.3 - A Model for the turnover of carbon in soil, in: Powlson,
D.S., Smith, P., Smith, J.U. (Eds.), Evaluation of Soil Organic Matter Models, Springer Berlin Heidelberg,
Berlin, Heidelberg. pp. 237–246.

Coleman, K., Jenkinson, D.S., 2014. RothC - A model for the turnover of carbon in soil - Model description
and users guide. Rothamsted Research Harpenden Herts AL5 2JQ. https://rothamsted.ac.
uk/rothamsted-carbon-model-rothc.

Dechow, R., Franko, U., Kätterer, T., Kolbe, H., 2019. Evaluation of the RothC model as a prognostic tool
for the prediction of SOC trends in response to management practices on arable land. Geoderma 337, 463
– 478.

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russell, N., Bates, D., Chambers, J., 2021a.
Rcpp: Seamless R and C++ Integration. R package version 1.0.6, https://cran.r-project.
org/web/packages/Rcpp/index.html.

Eddelbuettel, D., Francois, R., Bates, D., Ni, B., 2021b. RcppArmadillo: ’Rcpp’ Integration for the
’Armadillo’ Templated Linear Algebra Library. R package version 0.10.4.0.0, https://cran.
r-project.org/web/packages/RcppArmadillo/index.html.

Falloon, P., Smith, P., Coleman, K., Marshall, S., 1998. Estimating the size of inert organic matter pool from
total soil organic carbon content for use the Rothamsted Carbon Model. Soil Biology & Biochemistry 30,
1207–1211.

Springob, G., Kirchmann, H., 2010. Ratios of carbon to nitrogen quantify non-texture-stabilized organic
carbon in sandy soils. Journal of Plant Nutrition and Soil Science 173, 16–18.

Taghizadeh-Toosi, A., 2015. C-TOOL, A simple tool for simulation of soil carbon turnover. Aarhus
University, Department of Agroecology. https://agro.au.dk/fileadmin/DJF/Agro/
Medarbejderportal_AGRO/Sektioner/KLIMA/C-TOOL_Documentation.pdf.

Taghizadeh-Toosi, A., Christensen, B.T., Hutchings, N.J., Vejlin, J., Kätterer, T., Glendining, M., Olesen,
J.E., 2014. C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricul-
tural soils. Ecological Modelling 292, 11 – 25.

Tuomi, M., Thum, T., Järvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J., Sevanto, S., Liski,
J., 2009. Leaf litter decomposition—Estimates of global variability based on Yasso07 model. Ecological
Modelling 220, 3362 – 3371.

Viskari, T., Laine, M., Kulmala, L., Mäkelä, J., Fer, I., Liski, J., 2020. Improving Yasso15 soil carbon
model estimates with ensemble adjustment Kalman filter state data assimilation. Geoscientific Model
Development 13, 5959–5971.

Viskari, T., Pusa, J., Fer, I., Repo, A., Vira, J., Liski, J., 2022. Calibrating the soil organic carbon model
Yasso20 with multiple datasets. Geoscientific Model Development 15, 1735–1752.

