Networking Working GroupInternet Engineering Task Force (IETF) S. Previdi, Ed.Internet-DraftRequest for Comments: 6822 L. GinsbergIntended status:Category: Standards Track Cisco SystemsExpires: April 20, 2013ISSN: 2070-1721 M. Shand A. Roy D. Ward Cisco SystemsOctober 17,December 2012 IS-IS Multi-Instancedraft-ietf-isis-mi-08.txtAbstract Thisdraftdocument describes a mechanism that allows a single router to share one or more circuits among multiple Intermediate SystemToto Intermediate System (IS-IS) routing protocol instances. Multiple instances allow the isolation of resources associated with each instance. Routers will forminstance specificinstance-specific adjacencies. Each instance can support multiple topologies. Each topology has a unique Link State Database (LSDB). Each Protocol Data Unit (PDU) will contain a newType Length ValueType-Length-Value (TLV) identifying the instance and thetopology(ies)topology (or topologies) to which the PDU belongs.Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].Status ofthisThis Memo ThisInternet-Draftissubmitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documentsan Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents validthe IETF community. It has received public review and has been approved fora maximumpublication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on April 20, 2013.http://www.rfc-editor.org/info/rfc6822. Copyright Notice Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .43 1.1. Requirements Language . . . . . . . . . . . . . . . . . . 3 2. Elements Of Procedure . . . . . . . . . . . . . . . . . . . . 4 2.1. Instance Identifier TLV . . . . . . . . . . . . . . . . .54 2.2. Instance Membership . . . . . . . . . . . . . . . . . . .65 2.3. Use of Authentication . . . . . . . . . . . . . . . . . .76 2.4. Adjacency Establishment . . . . . . . . . . . . . . . . .76 2.4.1. Point-to-Point Adjacencies . . . . . . . . . . . . . .76 2.4.2. Multi-Access Adjacencies . . . . . . . . . . . . . . .76 2.5. Update Process Operation . . . . . . . . . . . . . . . . .87 2.5.1. Update Process Operation on Point-to-Point Circuits .87 2.5.2. Update Process Operation on Broadcast Circuits . . . .87 2.6. Interoperability Considerations . . . . . . . . . . . . .87 2.6.1. Interoperability Issues on Broadcast Circuits . . . .87 2.6.2. Interoperabilityusing point-to-point circuitsUsing Point-to-Point Circuits . . . .98 3. Usage Guidelines . . . . . . . . . . . . . . . . . . . . . . .109 3.1.One-OneOne-to-One MappingBetweenbetween Topologies and Instances . . .. . 109 3.2.Many-to-oneMany-to-One MappingBetweenbetween Topologies and Instances . . .109 3.3. Considerations for the Number of Instances . . . . . . . .1110 4. Relationship to M-ISIS . . . . . . . . . . . . . . . . . . . .1110 5. Graceful Restart Interactions . . . . . . . . . . . . . . . .1211 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . .1211 7. Security Considerations . . . . . . . . . . . . . . . . . . .1211 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .1211 9. References . . . . . . . . . . . . . . . . . . . . . . . . . .1311 9.1. Normative References . . . . . . . . . . . . . . . . . . .1311 9.2. Informative References . . . . . . . . . . . . . . . . . .14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 1412 1. Introduction An existing limitation of the protocol defined by[IS-IS][ISO10589] is that only one instance of the protocol can operate on a given circuit. This document defines an extension to IS-IS to remove this restriction. The extension is referred to as"Multi-instance"Multi-Instance IS-IS" (MI-IS-IS). Routerswhichthat support this extension are referred to as "Multi-instance capableInstance-capable routers" (MI-RTR). The use of multiple instances enhances the ability to isolate the resources associated with a given instance both within a router and across the network.Instance specificInstance-specific prioritization for processing PDUs and performing routing calculations within a router may be specified.Instance specificInstance-specific flooding parameters may also be defined so as to allow different instances to consumenetwork widenetwork-wide resources at different rates. Another existing protocol limitation is that a given instance supports a single Update Process operating on a single Link State Database (LSDB). This document defines an extension to IS-IS to allow non-zero instances of the protocol to support multiple Update Processes. Each Update Process is associated with a topology and a unique topology specific LSDB. Non-zero instances of the protocol are only supported by MI-RTRs. Legacy routers support the standard or zero instance of the protocol. The behavior of the standard instance is not changed in any way by the extensions defined in this document. MI-IS-IS might be used to supporttopology specifictopology-specific routing. When used for thispurposepurpose, it is an alternative to Multi-Topology IS-IS [RFC5120]. MI-IS-IS might also be used to support advertisement of information on behalf of applications[I-D.ietf-isis-genapp].[RFC6823]. The advertisement of information not directly related to the operation of the IS-IS protocol can therefore be done in a mannerwhichthat minimizes its impact on the operation of routing. The above are examples of how MI-IS-IS might be used. The specification of uses of MI-IS-IS is outside the scope of this document. 1.1. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. 2. Elements Of Procedure An Instance Identifier (IID) is introduced to uniquely identify an IS-IS instance. The protocol extension includes a new TLV (IID-TLV) in each IS-IS PDU originated by an MI-RTR except as noted in this document. The IID-TLV identifies the unique instance as well as the topology/topologies to which the PDU applies. Each IS-IS PDU is associated with only one IS-IS instance. MI-RTRs forminstance specificinstance-specific adjacencies. The IID-TLV included inIntermediate System-Intermediate SystemIS-IS Hellos (IIH) includes the IID and the set ofInstance SpecificInstance-Specific Topology Identifiers(ITID)(ITIDs) that the sending IS supports. When multiple instances share the samecircuitcircuit, each instance will have a separate set of adjacencies. MI-RTRs support the exchange oftopology specifictopology-specific Link State PDUs for the IID/ITID pairs that each neighbor supports. A unique IS-IS Updateprocess [see IS-IS]Process (see [ISO10589] operates for each IID/ITID pair. This MAY also implyIID/ITID specificIID/ITID-specific routing calculations andIID/ITID specificIID/ ITID-specific routing and forwarding tables. However, this aspect is outside the scope of this specification. The mechanisms used to implement support of the separation of IS-IS instances andtopology specifictopology-specific UpdateprocessesProcesses within a router are outside the scope of this specification. 2.1. Instance Identifier TLV A new TLV is defined in order to convey the IID and ITIDs supported. The IID-TLV associatesPDUsa PDU witheachan IS-IS instance using a unique 16-bit number. The IID-TLV is carried in all IS-IS PDUs(Intermediate System to Intermediate System Hellos (IIH),that are associated with a non-zero instance; this includes IIHs, Sequence Number PDUs(SNP)(SNPs), and Link State PDUs(LSP)) which are associated with a non-zero instance.(LSPs). Multiple instances of IS-IS mayco-existcoexist on the same circuit and on the same physical router. IIDs MUST be unique within the same routing domain.Instance identifierIID #0 is reserved for the standard instance supported by legacy systems. IS-IS PDUs associated with the standard instance MUST NOT include an IID-TLV except where noted in this document. The IID-TLV MAY include one or more ITIDs. An ITID is a16 bit16-bit identifier where all values (0 - 65535) are valid. The following format is used for the IID-TLV: Type: 7 Length: 2 - 254 Value: No. of octets +-------------------------+ | IID (0 - 65535) | 2 +-------------------------+ | Supported ITID | 2 +-------------------------+ : : +-------------------------+ | Supported ITID | 2 +-------------------------+ When the IID = 0, the list of supported ITIDs MUST NOT be present. An IID-TLV with IID = 0 MUST NOT appear in an SNP or LSP. When the TLV appears (with a non-zero IID) in an SNP or LSP, exactly one ITID MUST be present indicating the topology with which the PDU is associated. If no ITIDs or multiple ITIDs are present or the IID iszerozero, then the PDU MUST be ignored. When the IID is non-zero and the TLV appears in an IIH, the set of ITIDs supported on the circuit over which the IIH is sent is included. There MUSTBEbe at least one ITID present. Multiple IID-TLVs MAY appear in IIHs. If multiple IID-TLVs are present and the IID value in all IID-TLVs is not thesamesame, then the PDU MUSTBEbe ignored. A single IID-TLV will support advertisement of up to 126 ITIDs. If multiple IID-TLVs are present in an IIHPDUPDU, the supported set of ITIDs is the union of all ITIDs present in all IID-TLVs. When an LSP purge is initiated, the IID-TLV MUST beretainedretained, but the remainder of the body of the LSP SHOULD be removed.PurgeThe purge procedure is described in [RFC6233] and [RFC6232]. A PDU without an IID-TLV belongs to the standardinstance (#0).instance. 2.2. Instance Membership Each MI-RTR is configured to be participating in one or more instances of IS-IS. For each non-zero instance in which it participates, an MI-RTR marks IS-IS PDUs (IIHs,LSPsLSPs, or SNPs) generatedpertainingthat pertain to that instance by including the IID-TLV with the appropriate instance identifier. 2.3. Use of Authentication When authentication is in use, the IID, if present, is first used to select the authentication configurationwhichthat is applicable. The authentication check is then performed as normal. When multiple ITIDs are supported,ITID specificITID-specific authentication MAY be used in SNPs and LSPs. 2.4. Adjacency Establishment In order to establish adjacencies, IS-IS routers exchange IIH PDUs. Two types of adjacencies exist in IS-IS: point-to-point and broadcast. The followingsub-sectionssubsections describe the additional rules an MI-RTR MUST follow when establishing adjacencies. 2.4.1. Point-to-Point Adjacencies MI-RTRs include the IID-TLV in the point-to-pointhelloHello PDUs they originate. Upon reception of an IIH, an MI-RTR inspects the received IID-TLV and if the IID matches any of the IIDswhichthat the router supports on that circuit, normal adjacency establishment procedures are used to establish aninstance specificinstance-specific adjacency. Note that the absence of the IID TLV impliesinstance IDIID #0. For instances other than IID #0, an adjacency SHOULD NOT be established unless there is at least one ITID in common. This extension allows an MI-RTR to establish multiple adjacencies to the same physical neighbor over a point-to-point circuit. However, as the instances are logically independent, the normal expectation of at most one neighbor on a given point-to-point circuit still applies. 2.4.2. Multi-Access Adjacencies Multi-Access (broadcast) circuits behave differently than point-to- point in that PDUs sent by one router are visible to all routers and all routers must agree on the election of a Designated Intermediate System (DIS) independent of the set of ITIDs supported. MI-RTRs will establish adjacencies and elect a DIS per IS-IS instance. Each MI-RTR will form adjacencies only with routerswhichthat advertise support for the instanceswhichthat the local router has been configured to support on that circuit. Since an MI-RTR is not required to support all possible instances on a LAN, it's possible to elect a different DIS for different instances. 2.5. Update Process Operation For non-zero instances, a unique Update Process exists for each supported ITID. 2.5.1. Update Process Operation on Point-to-Point Circuits On Point-to-Point circuits--- including Point-to-Point Operation over LAN [RFC5309]--- theITID specificITID-specific Update Process only operates on that circuit for those ITIDswhichthat are supported by both ISs operating on the circuit. 2.5.2. Update Process Operation on Broadcast Circuits OnBroadcastbroadcast circuits, a single DIS is elected for each supported IID independent of the set of ITIDs advertised in LAN IIHs. This requires that the DIS generate pseudo-node LSPs for all supported ITIDs and that the Update Process for all supported ITIDs operate on theBroadcast Circuit. In cases wherebroadcast circuit. Among MI-RTRs operating on a broadcast circuit, if the set of supported ITIDs for a given non-zero IID isinconsistent among the MI-RTRs operating on a broadcast circuit,inconsistent, connectivity for thetopology(ies)topology (or topologies) associated with the ITIDs not supported by some MI-RTRsoperating on the circuitcan be compromised. 2.6. Interoperability Considerations[IS-IS][ISO10589] requires that any TLV that is not understood is silently ignored without compromising the processing of the whole IS-IS PDU (IIH, LSP, SNP). To a router not implementing this extension, all IS-IS PDUs received will appear to be associated with the standard instance regardless of whether an IID TLV is present in those PDUs. This can cause interoperability issues unless the mechanisms and procedures discussed below are followed. 2.6.1. Interoperability Issues on Broadcast Circuits In order for routers to correctly interoperate with routers not implementing this extension and in order not to cause disruption, a specific and dedicated Media Access Control (MAC) address is used for multicasting IS-IS PDUs with any non-zero IID. Each level will use a specific layer 2 multicast address. Such an address allows MI-RTRs to exchange IS-IS PDUs with non-zero IIDs without these PDUs being processed by legacyroutersrouters, and therefore no disruption is caused. An MI-RTR will use the AllL1ISandor AllL2IS ISISMAC layer addressesMAC-layer address (as defined in[IS-IS])[ISO10589]) as the destination address when sendingISIS PDUsan IS-IS PDU for the standardinstance (IID #0).instance. An MI-RTR will use one of two new(TBD)dedicated layer 2 multicast addresses(one for each level)(AllL1MI-ISs or AllL2MI- ISs) as the destination address when sending an IS-ISPDUsPDU for any non-zero IID. These addresses are specified in Section 6. If operating in point-to-point mode on a broadcast circuit[RFC5309][RFC5309], an MI-RTR MUST use one of the two new multicast addresses as the destination address when sending point-to-point IIHs associated with a non-zero instance. (Either address will do.) MI-RTRs MUST discard IS-IS PDUs received if either of the following is true: o The destination multicast address is AllL1IS or AllL2IS and the PDU contains anIID-TLVIID-TLV. o The destination multicast address is one of the two newaddressesaddresses, and the PDU contains an IID-TLV with a zero value for the IID or has no IID-TLV. NOTE: If the multicast addresses AllL1IS and/or AllL2IS are improperly used to send IS-IS PDUs for non-zero IIDs, legacy systems will interpret these PDUs as being associated with IID #0. This will cause inconsistencies in the LSDB in those routers, may incorrectly maintain adjacencies, and may lead to inconsistent DIS election. 2.6.2. Interoperabilityusing point-to-point circuitsUsing Point-to-Point Circuits In order for an MI-RTR to interoperate over a point-to-point circuit with a routerwhichthat does NOT support this extension, the MI-RTR MUST NOT send IS-IS PDUs for instances other than IID #0 over the point- to-point circuit as these PDUs may affect the state of IID #0 in the neighbor. Thepresence/absencepresence or absence of the IID-TLV in an IIH indicates that the neighbordoes/doesdoes or does not support thisextension.extension, respectively. Therefore, all IIHs sent on a point-to-point circuit by an MI-RTR MUST include anIID- TLV.IID-TLV. This includes IIHs associated with IID #0. Once it is determined that the neighbor does not support this extension, anMI- RTRMI-RTR MUST NOT send PDUs (including IIHs) for instances other than IID #0. Until an IIH is received from a neighbor, an MI-RTR MAY send IIHs for a non-zero instance. However, once an IIH with no IID TLV has been received--- indicating that the neighbor is not an MI-RTR--- the MI-RTR MUST NOT send IIHs for a non-zero instance. The temporary relaxation of the restriction on sending IIHs for non-zero instances allows a non-zero instance adjacency to be established on an interface on which an MI-RTR does NOT supportinstance #0.the standard instance. Point-to-point adjacency setup MUST be done through the use ofthree- waythe three-way handshaking procedure as defined in [RFC5303] in order to prevent a non-MI capable neighbor from bringing up an adjacency prematurely based on reception of an IIHwwith an IID-TLV for anon-zeronon- zero instance. 3. Usage Guidelines As discussed above, MI-IS-IS extends IS-IS to support multiple instances on a given circuit. Each instance is uniquely identified by the IID and formsinstance specificinstance-specific adjacencies. Each instance supports one or more topologies as represented by the ITIDs. All topologies associated with a given instance share theinstanceinstance- specific adjacencies. The set of topologies supported by a given IID MAY differ from circuit to circuit. Each topology has its own set of LSPs and runs atopology specifictopology-specific Updateprocess.Process. Flooding oftopology specifictopology-specific LSPs is only performed on circuits on which both the local router and the neighbor(s) support a given topology(i.e.(i.e., advertise the same ITID in the set of supported ITIDs sent in the IID-TLV included in IIHs). The followingsub-sectionssubsections provide some guidelines for usage of instances and topologies within each instance. While this represents examples based on the intent of the authors, implementors are not constrained by the examples. 3.1.One-OneOne-to-One MappingBetweenbetween Topologies and Instances When the set of information to be flooded in LSPs is intended to be flooded to all MI-RTRs supporting a givenIIDIID, a single topology MAY be used. The information contained in the single LSDB MAY still contain information associated with multiple applications as the GENINFO TLV for each application has anapplication specificapplication-specific IDwhichthat identifies the application to which the TLV applies[I-D.ietf-isis- genapp].[RFC6823]. 3.2.Many-to-oneMany-to-One MappingBetweenbetween Topologies and Instances When the set of information to be flooded in LSPs includes subsetswhichthat are of interest to a subset of the MI-RTRs supporting a given IID, support of multiple ITIDs allows each subset to be flooded only to those MI-RTRswhichthat are interested in that subset. In the simplest case, aone-oneone-to-one mapping between a given application and an ITID allows the information associated with that application to be flooded only to MI-RTRswhichthat support that application--- but amany- to-onemany-to-one mapping between applications and a given ITID is also possible. When the set ofapplication specificapplication-specific information is large, the use of multiple ITIDs provides significantly greaterefficienciesefficiencies, as MI-RTRs only need to maintain the LSDB for applications of interest and that information only needs to be flooded over a topology defined by the MI-RTRs who support a given ITID. The use of multiple ITIDs also allows the dedication of a full LSP set (256 LSPs at each level) for the use of a given (set of) applications, thereby minimizing the possibility of exceeding the carrying capacity of an LSPset whichset. Such a possibility might arise if information for all applications were to be included in a single LSP set. Note that the topology associated with each ITID MUST be fully connected in order forITID specificITID-specific LSPs to be successfully flooded to all MI-RTRswhothat support that ITID. 3.3. Considerations for the Number of Instances The support of multiple topologies within the context of a single instance provides better scalability in support of multiple applications both in terms of the number of adjacencieswhichthat are required and in the flooding oftopology specifictopology-specific LSDB. In manycasescases, the use of a single non-zero instance would be sufficient and optimal. However, in cases where the set of topologies desired in support of a set of applications is largely disjoint from the set of topologies desired in support of a second set of applications, it could make sense to use multiple instances. 4. Relationship to M-ISIS [RFC5120] defines support forMulti-Topology Routing.multi-topology routing. In thatdocument 12 bit Multi-topology IDsdocument, 12-bit Multi-Topology Identifiers (MTIDs) are defined to identify the topologieswhichthat an IS-IS instance (a "standard instance" as defined by this document) supports. There is no relationship between the Multi-topology IDs defined in [RFC5120] and the ITIDs defined in this document. If an MI-RTR uses the extensions in support of theBFD EnabledBFD-Enabled TLV[RFC6213] ,[RFC6213], the ITID SHOULD be used in place of theMTIDMTID, in which case all 16 bits of the identifier field are useable. An MI-RTR MAY use the extensions defined in this document to support multiple topologies in the context of an instance with a non-zero IID. Each MI topology is associated with a unique LSDB identified by an ITID. AnITID specificITID-specific IS-IS Update Process operates on each topology. This differs from [RFC5120] where a singleLSDB/singleLSDB or single IS-IS Update Process is used in support of all topologies. An MI-RTR MUST NOT support [RFC5120] multi-topology within a non-zero instance. The following TLVs MUST NOT be sent in an LSP associated with a non-zero instance and MUST be ignored when received: TLV 222 - MT IS Neighbors TLV 235 - MT IP Reachability TLV 237 - MT IPv6 Reachability 5. Graceful Restart Interactions [RFC5306] defines protocol extensions in support of graceful restart of a routing instance. The extensions defined there apply to MI-RTRs with the notable addition that as there aretopology specifictopology-specific LSP databaseseachall ofthesethe topology-specific LSP databases must be synchronized following restart in order for database synchronization to be complete. This involves the use of additional T2 timers. See [RFC5306] for further details. 6. IANA ConsiderationsThis document requires the definition ofPer this document, IANA has registered a newISIS TLV that needs to beIS-IS TLV, which is reflected in theISIS"IS-IS TLVcode-pointCodepoints" registry: Type Description IIH LSP SNP Purge ---- --------------------- --- --- --- ----- 7 Instance Identifier y y y yThis document requires thatPer this document, IANA has registered two EUI-48 multicast addresses from theIANA managedIANA-managed EUI address spacebe allocatedas specified in [RFC5342].Requested block size is 2.Thetwoaddresseswill be identifiedare as follows: 01-00-5E-90-00-02 AllL1MI-ISsand01-00-5E-90-00-03 AllL2MI-ISsdestination addresses.7. Security Considerations Security concerns for IS-IS are addressed in[IS-IS],[ISO10589], [RFC5304], and [RFC5310]. 8. Acknowledgements The authors would like to acknowledge contributions made by Dino Farinacci and Tony Li. 9. References 9.1. Normative References[I-D.ietf-isis-genapp] Ginsberg, L., Previdi, S., and M. Shand, "Advertising Generic Information in IS-IS", draft-ietf-isis-genapp-04 (work in progress), November 2010. [IS-IS][ISO10589] International Organization for Standardization, "Intermediate system to Intermediate system intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode Network Service (ISO8473), ISO/IEC8473)", ISO/ IEC 10589:2002, SecondEdition.", NovEdition, Nov. 2002. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi Topology (MT) Routing in Intermediate System to Intermediate Systems (IS-ISs)", RFC 5120, February 2008. [RFC5303] Katz, D., Saluja, R., and D. Eastlake, "Three-Way Handshake for IS-IS Point-to-Point Adjacencies", RFC 5303, October 2008. [RFC5304] Li, T. and R. Atkinson, "IS-IS Cryptographic Authentication", RFC 5304, October 2008. [RFC5306] Shand, M. and L. Ginsberg, "Restart Signaling for IS-IS", RFC 5306, October 2008. [RFC5310] Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R., and M. Fanto, "IS-IS Generic Cryptographic Authentication", RFC 5310, February 2009. [RFC6213] Hopps, C. and L. Ginsberg, "IS-IS BFD-Enabled TLV", RFC 6213, April 2011. [RFC6232] Wei, F., Qin, Y., Li, Z., Li, T., and J. Dong, "Purge Originator Identification TLV for IS-IS", RFC 6232, May 2011. [RFC6233] Li, T. and L. Ginsberg, "IS-IS Registry Extension for Purges", RFC 6233, May 2011. [RFC6823] Ginsberg, L., Previdi, S., and M. Shand, "Advertising Generic Information in IS-IS", RFC 6823, December 2012. 9.2. Informative References [RFC5309] Shen, N. and A. Zinin, "Point-to-Point Operation over LAN in Link State Routing Protocols", RFC 5309, October 2008. [RFC5342] Eastlake, D., "IANA Considerations and IETF Protocol Usage for IEEE 802 Parameters", BCP 141, RFC 5342, September 2008. Authors' Addresses Stefano Previdi (editor) Cisco Systems Via Del Serafico 200 Rome 0144 ItalyEmail:EMail: sprevidi@cisco.com Les Ginsberg Cisco Systems 510 McCarthy Blvd. Milpitas, CA 95035 USAEmail:EMail: ginsberg@cisco.com Mike ShandEmail: imc.shand@googlemail.comEMail: imc.shand@gmail.com Abhay Roy Cisco Systems 170 W. Tasman Dr. San Jose, CA 95134 USAEmail:EMail: akr@cisco.com Dave Ward Cisco Systems 3700 Cisco Way San Jose, CA 95134 USAEmail:EMail: wardd@cisco.com