Network Working GroupInternet Engineering Task Force (IETF) R. HuangInternet-DraftRequest for Comments: 6990 Q. WuIntended status:Category: Standards Track HuaweiExpires: December 2, 2013ISSN: 2070-1721 H. Asaeda NICT G. Zorn Network ZenMay 31,August 2013 RTP Control Protocol (RTCP) Extended Report (XR) Block forMPEG2MPEG-2 Transport Stream (TS) Program Specific Information (PSI) Independent Decodability Statistics Metricsreporting draft-ietf-xrblock-rtcp-xr-decodability-12Reporting Abstract AnMPEG2MPEG-2 Transport Stream (TS) is a standard container format used in the transmission and storage of multimedia data.Unicast/Multicast MPEG2Unicast/ multicast MPEG-2 TS over RTP is widely deployed in IPTV systems. This document defines an RTP Control Protocol (RTCP) Extended Report (XR)Blockblock that allows the reporting ofMPEG2MPEG-2 TS decodability statistics metrics related to transmissions ofMPEG2MPEG-2 TS over RTP. The metrics specified in the RTCP XRBlockblock are not dependent on Programspecific informationSpecific Information (PSI) carried inMPEGMPEG-2 TS. Status ofthisThis Memo ThisInternet-Draftissubmitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documentsan Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents validthe IETF community. It has received public review and has been approved fora maximumpublication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on December 2, 2013.http://www.rfc-editor.org/info/rfc6990. Copyright Notice Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . ..3 1.1.MPEG2MPEG-2 Transport Stream Decodability Metrics . . . . . ..3 1.2. RTCP and RTCPXRExtended Reports . . . . . . . . . . . . .. . . .3 1.3. Performance Metrics Framework . . . . . . . . . . . . . . 3 1.4. Applicability . . . . . . . . . . . . . . . . . . . . . .3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . .42.1.2. Standards Language . . . . . . . . . . . . . . . . . . . . . 4 3.MPEG2MPEG-2 TSPSI IndependentPSI-Independent Decodability Statistics Metrics Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. SDP Signaling . . . . . . . . . . . . . . . . . . . . . . . .78 4.1. SDPrtcp-xr-attribrtcp-xr Attribute Extension . . . . . . . . . . . . . 8 4.2. Offer/Answer Usage . . . . . . . . . . . . . . . . . . ..8 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 5.1. New RTCP XR Block Typevalue .Value . . . . . . . . . . . . . . 8 5.2. New RTCP XR SDP Parameter . . . . . . . . . . . . . . . .89 5.3. ContactinformationInformation forregistrationsRegistrations . . . . . . . . . .89 6. Security Considerations . . . . . . . . . . . . . . . . . . . 9 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . ..9 8. References . . . . . . . . . . . . . . . . . . . . . . . . ..9 8.1. Normative References . . . . . . . . . . . . . . . . . ..9 8.2. Informative References . . . . . . . . . . . . . . . . .. 10 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . .10 1. Introduction 1.1.MPEG2MPEG-2 Transport Stream Decodability Metrics The European Telecommunications Standards Institute (ETSI) has defined a set of syntax and information consistency tests and corresponding indicators [ETSI] that are recommended for the monitoring ofMPEG2MPEG-2 Transport Streams[ISO-IEC.13818-1.2007].[ISO-IEC.13818-1.2013]. The tests and corresponding indicators are grouped according to priority: o First priority - Necessary for decodability (basic monitoring) o Second priority - Recommended for continuous or periodic monitoring o Third priority - Recommended for application-dependent monitoring This memo is based on information consistency tests and resulting indicators defined by ETSI [ETSI] and defines a new block type to augment those defined in [RFC3611] for use withMPEG2MPEG-2 Transport Stream (TS)[ISO-IEC.13818-1.2007].[ISO-IEC.13818-1.2013]. The new block type supports reporting of the number of occurrences of eachProgram Specific Information (PSI) IndependentPSI-independent indicator in the first and second priorities; third priority indicators are not supported. 1.2. RTCP and RTCPXRExtended Reports The use of RTCP for reporting is defined in [RFC3550]. [RFC3611] defined an extensible structure for reporting using an RTCP Extended Report (XR). This document defines a new Extended Report block for use with [RFC3550] and [RFC3611]. 1.3. Performance Metrics FrameworkThe"Guidelines for Considering New PerformanceMetrics FrameworkMetric Development" [RFC6390] provides guidance on the definition and specification of performance metrics.The"Guidelines for Use of the RTP MonitoringArchitecturesFramework" [RFC6792] providesguideline forguidance on the reporting block format using RTCP XR. The new report block described in this memo is in compliance with the monitoring architecture specified in [RFC6792] and thePerformance Metrics Frameworkperformance metrics framework [RFC6390]. 1.4. Applicability This block type allows acountscount ofMPEGMPEG-2 Transport Stream quality metrics that are measured in accordance with ETSI TR 101290 [ETSI] to be reported by an endpoint. These metrics are useful for identifying bitstream packetization and transport stream encoding problems that may affect the user's perception of a video service delivered over RTP. 2.Terminology 2.1.Standards Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. 3.MPEG2MPEG-2 TSPSI IndependentPSI-Independent Decodability Statistics Metrics Block ETSI TR 101290 [ETSI] generally defines metrics related to error events while this document contains counts of those metrics defined in [ETSI]. The block defined in this document reportsMPEG2MPEG-2 TSPSI IndependentPSI- independent decodability statistics metrics beyond the information carried in the standard RTCP packet format, which are measured at the receiving end of the RTP stream. It contains counts of eight metrics defined in ETSI TR 101290 [ETSI]. Information is reported about basic monitoring parameters necessary to ensure that the TS can bedecodeddecoded, including: o Transport Stream Synchronization Losses o Sync byte errors o Continuity count errors and continuous monitoring parameters necessary to ensure the continuousdecodingdecoding, including: o Transport errors o Program Clock Reference (PCR) errors o PCR repetition errors o PCR discontinuity indicator errors o PCR accuracy errors o Presentation Time Stamp (PTS) errors The other parameters are ignored since they do not apply to allMPEG2MPEG-2 implementations. For further information on these parameters, see [ETSI]. Note that when the report of this block spans across more than one measurementintervalsinterval [RFC6776], the count of the metrics (e.g., Sync byteerrors, PCRerrors)definedand PCR errors) defined in [ETSI] may reflect a problem in the current or previous measurement interval. TheMPEG2MPEG-2 TSPSI IndependentPSI-Independent Decodability Statistics Metrics Block has the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |BT=MTPIDBT=22 | Reserved |block lengthBlock Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SSRC ofsourceSource | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | begin_seq | end_seq | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TS_sync_loss_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sync_byte_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Continuity_count_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Transport_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCR_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCR_repetition_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCR_discontinuity_indicator_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PCR_accuracy_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PTS_error_count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+block typeBlock Type (BT): 8 bits TheMPEG2MPEG-2 TSPSI IndependentPSI-Independent Decodability Statistics Metrics Block is identified by the constant<MTPID>.22. Reserved: 8 bits These bits are reserved. They MUST be set to zero by senders and ignored by receivers(See(see [RFC6709]sectionSection 4.2).block length:Block Length: 16 bits The constant 11, in accordance with the definition of this field in Section 3 of RFC 3611. The block MUST be discarded if the block length is set to a different value.SSRCSynchronization source (SSRC) ofsource:Source: 32 bits As defined in Section 4.1 of RFC 3611. begin_seq: 16 bits The RTP sequence number corresponding to the start of the measurement period, as defined in Section 4.1 of RFC 3611. end_seq: 16 bits The RTP sequence number corresponding to the end of the measurement period, as defined in Section 4.1 of RFC 3611. TS_sync_loss_count: 32 bits A count of the number of TS_sync_loss errors that occurred in the above sequence number interval. A TS_sync_loss error occurs when there are two or more consecutive incorrect sync bytes within theMPEG TS stream,MPEG-2 TS, as defined insectionSection 5.2.1 of [ETSI]. Sync_byte_error_count: 32 bits A count of the number of Sync_byte_errors that occurred in the above sequence number interval. A sync byte error occurs when the sync byte is not equal to 0x47 in any TS packet contained in theMPEG TS stream,MPEG-2 TS, as defined insectionSection 5.2.1 of [ETSI]. Continuity_count_error_count: 32 bits A count of the number of Continuity_count_errors that occurred in the above sequence number interval. A Continuity_count_error occurs when any of the following faults happen within theMPEGMPEG-2 TSstream --- incorrect packet order, a packet occurs more thantwicetwice, or a packet islost,aslost, as defined inthe sectionSection 5.2.1 of [ETSI]. Transport_error_count: 32 bits A count of the number of Transport_errors that occurred in the above sequence number interval. A Transport_error occurs when an erroneous TS packetcan notcannot be corrected within theMPEG TS stream.MPEG-2 TS, as defined inthe sectionSection 5.2.2 of [ETSI]. PCR_error_count: 32 bits A count of the number of PCR_errors that occurred in the above sequence number interval. A PCR_error occurs if the primary clock reference (PCR) is not seen for more than100ms100 ms within theMPEG TS stream,MPEG-2 TS, as defined inthe sectionSection 5.2.2 of [ETSI]. The time interval between two consecutive PCR values should be no more than40ms.40 ms. PCR_repetition_error_count: 32 bits A count of the number of PCR_repetition_errors that occurred in the above sequence number interval. APCR_repeition_errorPCR_repetition_error occurs when the time interval between two consecutive PCR values is more than40ms40 ms within theMPEG TS stream,asMPEG-2 TS, as defined inthe sectionSection 5.2.2 of [ETSI]. PCR_discontinuity_indicator_error_count: 32 bits A count of the number of PCR_discontinuity_indicator_errors that occurred in the above sequence number interval. A PCR_discontinuity_indicator_error occurs if the time interval between two consecutive PCR values is more than100ms100 ms within theMPEG TS stream,MPEG-2 TS, as defined inthe sectionSection 5.2.2 of [ETSI]. PCR_accuracy_error_count: 32 bits A count of theNumbernumber of PCR_accuracy_errors that occurred in the above sequence number interval. A PCR_accuracy_error occurs when the PCR accuracy of the selected program is outside the range of+/-500ns+/-500 ns within theMPEG TS stream,asMPEG-2 TS, as defined inthe sectionSection 5.2.2 of [ETSI]. PTS_error_count: 32 bits A count of the number of PTS_errors that occurred in the above sequence number interval. A PTS_error occurs when the PTS repetition is more than700ms700 ms within theMPEG TS stream,MPEG-2 TS, as defined inthe sectionSection 5.2.2of[ETSI].of [ETSI]. Note that the PTS is contained in the MPEG-2 TSstreamand is used to aid the decoder in presenting the program on time, at the correctspeedspeed, and synchronized. 4. SDP Signaling RFC 3611 defines the use ofSDP (Sessionthe Session DescriptionProtocol)Protocol (SDP) [RFC4566] for signaling the use of RTCP XR blocks.HoweverHowever, XR blocks MAY be used without prior signaling(See section(see Section 5 ofRFC3611).RFC 3611). 4.1. SDPrtcp-xr-attribrtcp-xr Attribute Extension This session augments the SDP attribute "rtcp-xr" defined in Section 5.1 of RFC 3611 by providing an additional value of "xr-format" to signal the use of the report block defined in this document. The ABNF [RFC5234] syntax is as follows. xr-format =/ xr-tpid-block xr-tpid-block = "ts-psi-indep-decodability" 4.2. Offer/Answer Usage When SDP is used inoffer-answerOffer/Answer context, the SDP Offer/Answer usage defined in [RFC3611] for unilateral "rtcp-xr" attribute parameters applies. For detailed usage of Offer/Answer for unilateralparameter,parameters, refer tosectionSection 5.2 of [RFC3611]. 5. IANA Considerations New report block types for RTCP XR are subject to IANA registration. For general guidelines on IANA allocations for RTCP XR, refer to Section 6.2 of RFC 3611. 5.1. New RTCP XR Block TypevalueValue This document assigns the block type valueMTPID22 in the IANA" RTP"RTP Control Protocol Extended Reports (RTCP XR) Block TypeRegistry "Registry" to the"MPEG2"MPEG-2 Transport StreamPSI IndependentPSI-Independent Decodability Statistics Metrics Block".[Note to RFC Editor: please replace MPITD with the IANA provided RTCP XR block type for this block.]5.2. New RTCP XR SDP Parameter This document also registersathe new parameter"ts-psi-indep- decodability""ts-psi- indep-decodability" in the "RTP Control Protocol Extended Reports (RTCP XR) Session Description Protocol (SDP) Parameters Registry". 5.3. ContactinformationInformation forregistrationsRegistrations The contact information fortheregistrations is: Qin Wusunseawq@huawei.com(sunseawq@huawei.com) 101 Software Avenue, Yuhua District Nanjing,JiangSuJiangsu 210012 China 6. Security Considerations There might be some relationship between reported error counters and contractual Service Level Agreements(SLA)s and hence(SLAs); hence, an attack (e.g., RTP endpointsreport fake information,reporting false data, or an attacker in the pathmodifiesmodifying the data beingreported ) mayreported) might deliberately corrupt these errorcounters fields and will resultcounters, resulting in financial implications for the network operator (either as a result ofun-needed Performanceunneeded performance metrics, or penalty charges for SLA failure). A solution to prevent such an attack is to apply an authentication and integrity protection framework for the RTCP XRreportblock. This can be accomplished using the RTP profile that combines Secure RTP [RFC3711] andAVPFthe Audio-Visual Profile with Feedback (AVPF) intoSAVPFSecure AVPF (SAVPF) [RFC5124]. Besides this, theproposedRTCP XRreportblock in this document introduces noothernew security considerations beyond those described in [RFC3611]. 7. Acknowledgements Thanks to Ray van Brandenburg, Claire Bi, ColinPerkin,Perkins, Roni Even, Dan Romascanu, AliBegenBegen, Alexey Melnikov, Bert Wijnen, Gonzalo Camarillo, Benoit Claise, and Alan Clark for usefulreviewreviews and suggestions. 8. References 8.1. Normative References [ETSI] ETSI, "Digital Video Broadcasting (DVB); Measurement guidelines for DVB systems", Technical Report TR 101 290, 2001. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, July 2003. [RFC3611] Friedman, T., Caceres, R., and A. Clark, "RTP Control Protocol Extended Reports (RTCP XR)", RFC 3611, November 2003. [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC 3711, March 2004. [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session Description Protocol", RFC 4566, July 2006. [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)", RFC 5124, February 2008. [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, January 2008. 8.2. Informative References[ISO-IEC.13818-1.2007][ISO-IEC.13818-1.2013] International Organization for Standardization, "Information technology - Generic coding of moving pictures and associated audio information: Systems", ISO International Standard 13818-1,October 2007.May 2013. [RFC6390] Clark, A. and B. Claise, "Guidelines for Considering New Performance Metric Development", BCP 170, RFC 6390, October 2011. [RFC6709] Carpenter, B., Aboba, B., and S. Cheshire, "Design Considerations for Protocol Extensions", RFC 6709, September 2012. [RFC6776] Clark, A. and Q. Wu,Q.,"Measurement Identity andinformationInformation Reportingusing SDES itemUsing a Source Description (SDES) Item andXRan RTCP Extended Report (XR) Block", RFC 6776,AugustOctober 2012. [RFC6792] Wu, Q., Hunt, G., and P. Arden, "Guidelines for Use of the RTP Monitoring Framework", RFC 6792, November 2012. Authors' Addresses Rachel Huang Huawei 101 Software Avenue, Yuhua District Nanjing 210012 ChinaEmail:EMail: rachel.huang@huawei.com Qin Wu Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu 210012 ChinaEmail:EMail: bill.wu@huawei.com Hitoshi Asaeda National Institute of Information and Communications Technology 4-2-1 Nukui-Kitamachi Koganei, Tokyo 184-8795 JapanEmail:EMail: asaeda@nict.go.jp Glen Zorn Network Zen 227/358 Thanon Sanphawut Bang Na, Bangkok 10260 Thailand Phone: +66 (0)909-201060 Email:8-1000-4155 EMail: glenzorn@gmail.com