CCAMP Working GroupInternet Engineering Task Force (IETF) D. Ceccarelli, Ed.Internet-DraftRequest for Comments: 7138 EricssonIntended status:Category: Standards Track F. ZhangExpires: June 14, 2014ISSN: 2070-1721 Huawei Technologies S. Belotti Alcatel-Lucent R. Rao Infinera Corporation J. Drake JuniperDecember 11, 2013March 2014 Traffic Engineering Extensions to OSPF forGeneralized MPLS (GMPLS)GMPLS Control of Evolving G.709OTNOptical Transport Networksdraft-ietf-ccamp-gmpls-ospf-g709v3-13Abstract This document describes Open Shortest Path First - Traffic Engineering (OSPF-TE) routing protocol extensions to supportGeneralized MPLS (GMPLS)GMPLS control of Optical Transport Networks(OTN)(OTNs) specified in ITU-T Recommendation G.709 as published in 2012. It extends mechanisms defined inRFC4203.RFC 4203. Status ofthisThis Memo ThisInternet-Draftissubmitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documentsan Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents validthe IETF community. It has received public review and has been approved fora maximumpublication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on June 14, 2014.http://www.rfc-editor.org/info/rfc7138. Copyright Notice Copyright (c)20132014 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 3....................................................3 1.1. Terminology. . . . . . . . . . . . . . . . . . . . . . . 3................................................3 2. OSPF-TE Extensions. . . . . . . . . . . . . . . . . . . . . . 3..............................................3 3. TE-Link Representation. . . . . . . . . . . . . . . . . . . . 5..........................................5 4. ISCDformat extensions . . . . . . . . . . . . . . . . . . . . 5Format Extensions ..........................................5 4.1. Switching Capability Specific Information. . . . . . . . 7..................7 4.1.1. Switching Capability Specific Information forfixed containers . . . . . . . . . . . . . . . . . . . 8Fixed Containers ................................8 4.1.2. Switching Capability Specific Information forvariable containers . . . . . . . . . . . . . . . . . 8Variable Containers .............................9 4.1.3. Switching Capability Specific Information--- FieldvaluesValues andexplanation . . . . . . . . . . . . . . . . 9Explanation ........................9 5. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 12.......................................................12 5.1. MAX LSP BandwidthfieldsFields in the ISCD. . . . . . . . . . . 12......................12 5.2. Example ofT,ST, S, and TSgranularity utilization . . . . . . 14Granularity Utilization ...........15 5.2.1. Example ofdifferentDifferent TS Granularities. . . . . . . . 15..............16 5.3. Example of ODUflexadvertisement . . . . . . . . . . . . . 18Advertisement ..........................19 5.4. Example ofsingle stage muxing . . . . . . . . . . . . . . 20Single-Stage Muxing ............................21 5.5. Example ofmulti stage muxing -Multi-Stage Muxing -- Unbundledlink . . . . . . 22Link ...........22 5.6. Example ofmulti stage muxing -Multi-Stage Muxing -- Bundledlinks . . . . . . 24Links ............24 5.7. Example ofcomponent linksComponent Links withnon-homogeneous hierarchies . . . . . . . . . . . . . . . . . . . . . . . 25Non-Homogeneous Hierarchies ...............................................26 6. OSPFv2scalability . . . . . . . . . . . . . . . . . . . . . . 28Scalability .............................................28 7. Compatibility. . . . . . . . . . . . . . . . . . . . . . . . 29..................................................29 8. Security Considerations. . . . . . . . . . . . . . . . . . . 29........................................29 9. IANA Considerations. . . . . . . . . . . . . . . . . . . . . 29............................................30 9.1. Switchingtypes . . . . . . . . . . . . . . . . . . . . . 30Types ...........................................30 9.2. Newsub-TLVs . . . . . . . . . . . . . . . . . . . . . . . 30Sub-TLVs ..............................................30 10. Contributors. . . . . . . . . . . . . . . . . . . . . . . . . 31..................................................31 11. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . 33..............................................32 12. References. . . . . . . . . . . . . . . . . . . . . . . . . . 33....................................................32 12.1. Normative References. . . . . . . . . . . . . . . . . . . 33.....................................32 12.2. Informative References. . . . . . . . . . . . . . . . . . 34 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 35...................................33 1. Introduction G.709 ("Interfaces for the Optical Transport Network(OTN)(OTN)") [G.709-2012] includes new fixed and flexible ODU (Optical channel Data Unit) containers, includes two types ofTributary Slotstributary slots (i.e.,1.25Gbps1.25 Gbps and2.5Gbps),2.5 Gbps), and supports various multiplexing relationships (e.g., ODUj multiplexed into ODUk (j<k)), two different tributary slots for ODUk (K=1, 2,3)3), and the ODUflex service type. In order topresentadvertise this information in routing, this document provides encoding specific to OTN technologyspecific encodingfor use in GMPLS OSPF-TE as defined in [RFC4203]. For a short overview of OTN evolution and implications of OTN requirements on GMPLSroutingrouting, please refer to[OTN-FWK].[RFC7062]. The information model and an evaluation against the current solution are provided in[OTN-INFO].[RFC7096]. The reader is supposed to be familiar with both of these documents. Routing information for Optical ChannelLayer(OCh) layer (i.e., wavelength) is beyond the scope of this document. Please refer to [RFC6163] and [RFC6566] for further information. 1.1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 2. OSPF-TE Extensions In terms ofGMPLS basedGMPLS-based OTN networks, eachOTUkOptical channel Transport Unit-k (OTUk) can be viewed as a component link, and each component link can carry one or more types of ODUj (j<k). EachTE LinkTE-Link State Advertisement (LSA) can carry a top-level linkType Length Value (TLV)TLV with several nested sub-TLVs to describe different attributes of aTE link.TE-Link. Two top-level TLVs are defined in[RFC3630].[RFC3630]: (1) The Router Address TLV (referred to as the Node TLV) and (2) theTE linkTE-Link TLV. One or more sub-TLVs can be nested into the two top-level TLVs. The sub-TLV set for the two top-level TLVs are also defined in [RFC3630] and [RFC4203]. As discussed in[OTN-FWK][RFC7062] and[OTN-INFO],[RFC7096], OSPF-TE must be extended to be able to advertise the termination andswitching capabilitiesSwitching Capabilities of each different ODUj and ODUk/OTUk (Optical Transport Unit) and the advertisement of related multiplexing capabilities. These capabilities are carried in the Switching Capability specific information field of the Interface Switching Capability Descriptor (ISCD)Switching Capability-specific information fieldusing formats defined in this document. As discussed in[SWCAP- UPDT],[RFC7062], the use of atechnology specifictechnology-specific SwitchingCapability-specificCapability specific information field necessitates the definition of a new Switching Capability value and associated new Switching Capability. In the following, we will use ODUj to indicate a service type that is multiplexed into ahigher orderhigher-order (HO) ODU, ODUk to indicate ahigherhigher- order ODU including anODUjODUj, and ODUk/OTUk to indicate the layer mapped into the OTUk. Moreover, ODUj(S) and ODUk(S) are used to indicate the ODUj and ODUk supportingswitching capabilitySwitching Capability only, and the ODUj->ODUk format is used to indicate theODUj into ODUkODUj-into-ODUk multiplexing capability. This notation can be repeated as needed depending on the number of multiplexing levels. In the following, the term "multiplexing tree" is used to identify a multiplexing hierarchy where the root is always a server ODUk/OTUk and any other supported multiplexed container is represented with increasing granularity until reaching the leaf of the tree. The tree can be structured with more than one branch if the server ODUk/OTUk supports more than one hierarchy. For example, if a multiplexing hierarchy like the following one is considered: ODU2 ODU0 ODUflex ODU0 \ / \ / | | ODU3 ODU2 \ / \ / \ / \ / ODU4Thethe ODU4 is the root of the muxingtree,tree; ODU3 and ODU2 are containers directly multiplexed into theserverserver; and ODU2 andthen ODU2,ODU0 are the leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of the ODU2 one. This means that it is possible to have the following multiplexing capabilities: ODU2->ODU3->ODU4 ODU0->ODU3->ODU4 ODUflex->ODU2->ODU4 ODU0->ODU2->ODU4 3. TE-Link Representation G.709 ODUk/OTUkLinkslinks are represented as TE-Links in GMPLS Traffic Engineering Topology for supporting ODUj layer switching. These TE- Links can be modeled in multiple ways. OTUk physicalLink(s)link(s) can be modeled as a TE-Link(s). Figure 1 below provides an illustration ofone hopone-hop OTUkTE-links.TE-Links. +-------+ +-------+ +-------+ | OTN | | OTN | | OTN | |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch | | A | | B | | C | +-------+ +-------+ +-------+ |<-- TE-Link -->| |<-- TE-Link -->| Figure 1: OTUk TE-Links It is possible to create TE-Links that span more than one hop by creatingFAsforwarding adjacencies (FAs) between non-adjacent nodes (see Figure 2). As in theone hopone-hop case,multiple hop TE-linksmultiple-hop TE-Links advertise the ODUswitching capacity.Switching Capability. +-------+ +-------+ +-------+ | OTN | | OTN | | OTN | |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch | | A | | B | | C | +-------+ +-------+ +-------+ ODUk Switched |<------------- ODUk Link ------------->| |<-------------- TE-Link--------------->| Figure 2:Multiple hopMultiple-Hop TE-Link 4. ISCDformat extensionsFormat Extensions The ISCD describes theswitching capabilitySwitching Capability of an interface and is defined in [RFC4203]. This document defines a new Switching Capability value for OTN [G.709-2012] as follows: Value Type ----- ---- 110(TBA by IANA)OTN-TDM capable(OTN-TDM)When supporting the extensions defined in this document, for both fixed and flexible ODUs, the Switching Capability and Encoding values MUST be used as follows:-o Switching Capability = OTN-TDM-o Encoding Type = G.709 ODUk (Digital Path) as defined in [RFC4328] The sameswitching typeSwitching Type and encoding values must be used for both fixed and flexible ODUs. When Switching Capability and Encoding fields are set to values as stated above, the Interface Switching Capability Descriptor MUST be interpreted as defined in [RFC4203].Maximum LSP BandwidthThe MAX LSP Bandwidth field is used according to[RFC4203]:[RFC4203], i.e., 0 <= MAX LSP Bandwidth <= ODUk/OTUk, and intermediate values are those on the branch of the OTN switching hierarchy supported by the interface. For example, in the OTU4 link it could be possible to have ODU4 as MAX LSP Bandwidth for some priorities, ODU3 for others, ODU2 for some others, etc. The bandwidth unit isin bytes per secondin bytes/second and the encoding MUST be inInstitute of Electrical and Electronic Engineers (IEEE)IEEE floating point format. The discrete values for various ODUs are shown in the table below (please note that there are 1000 bits in akbitkilobit according to normal practices in telecommunications).+---------------------+------------------------------+-----------------++-------------------+-----------------------------+-----------------+ | ODU Type | ODU nominal bit rate |Value in Byte/Sec| | | |(floating p. val)|+---------------------+------------------------------+-----------------++-------------------+-----------------------------+-----------------+ | ODU0 | 1,244,160kbit/skbps | 0x4D1450C0 | | ODU1 | 239/238 x 2,488,320kbit/skbps | 0x4D94F048 | | ODU2 | 239/237 x 9,953,280kbit/skbps | 0x4E959129 | | ODU3 | 239/236 x 39,813,120kbit/skbps | 0x4F963367 | | ODU4 | 239/227 x 99,532,800kbit/skbps | 0x504331E3 | | ODU2e | 239/237 x 10,312,500kbit/skbps | 0x4E9AF70A | | | | | | ODUflex for CBR | 239/238 x client signal | MAX LSP | | Client signals | bit rate |BANDWIDTHBandwidth | | | | | | ODUflex for GFP-F | | MAX LSP ||Mapped| Mapped clientsignal| Configured bit rate |BANDWIDTHBandwidth | | signal | | | | | | | ||ODU flex resizableODUflex | Configured bit rate | MAX LSP | | resizable | |BANDWIDTHBandwidth |+---------------------+------------------------------+-----------------++-------------------+-----------------------------+-----------------+ A single ISCD MAY be used for the advertisement of unbundled or bundled links supporting homogeneous multiplexing hierarchies and the same TS(Tributary Slot)(tributary slot) granularity. A different ISCD MUST be used for each different muxing hierarchy (muxing tree in the following examples) and different TS granularity supported within theTE Link.TE-Link. When a received LSA includes a sub-TLV not formatted accordingly to the precise specifications in this document, the problem SHOULD be logged and the wrongly formatted sub-TLV MUST NOT be used for path computation. 4.1. Switching Capability Specific Information Thetechnology specifictechnology-specific part of the OTN-TDM ISCD may include a variable number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV is encoded with the sub-TLV header as defined in[RFC3630] section[RFC3630], Section 2.3.2. The muxing hierarchy tree MUST be encoded as anorder independentorder-independent list. Two types of Bandwidthsub-TLVsub-TLVs are defined (TBA by IANA). Note that type values are defined in this document and not in [RFC3630].-o Type 1 - Unreserved Bandwidth for fixed containers-o Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers The SwitchingCapability-Specific InformationCapability specific information (SCSI) MUST include one Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for each variable container. Each container type is identified by a Signal Type. Signal Type values are defined in[OTN-SIG].[RFC7139]. With respect to ODUflex, three differentsignal typesSignal Types are allowed: o 20 -ODUflex Constant Bit Rate (CBR),ODUflex(CBR) (i.e., 1.25*N Gbps) o 21 -ODUflex Generic Framing Procedure-Frame mapped (GFP-F)ODUflex(GFP-F), resizableand(i.e., 1.25*N Gbps) o 22 -ODUflex (GFP-F) non-resizable.ODUflex(GFP-F), non-resizable (i.e., 1.25*N Gbps) where CBR stands for Constant Bit Rate, and GFP-F stands for Generic Framing Procedure - Framed. Each MUST always be advertised in separate Type 2 sub-TLVs as each uses different adaptation functions [G.805]. In the case that both GFP-F resizable and non-resizable (i.e., 21 and 22) are supported, only Signal Type 21 SHALL be advertised as this type also implies support fortypeType 22 adaptation. 4.1.1. Switching Capability Specific Information forfixed containersFixed Containers The format of the Bandwidth sub-TLV for fixed containers is depicted in the following figure: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SignaltypeType | Num of stages |T|S| TSG | Res | Priority | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1 | ... | Stage#N | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved ODUj at Prio 0 | ..... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved ODUj at Prio 7 | Unreserved Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 3: Bandwidthsub-TLV -Sub-TLV -- Type 1-The values of the fields shown infigureFigure 3 are explained insectionSection 4.1.3. 4.1.2. Switching Capability Specific Information forvariable containersVariable Containers The format of the Bandwidth sub-TLV for variable containers is depicted in the following figure: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 (Unres/MAX-var) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SignaltypeType | Num of stages |T|S| TSG | Res | Priority | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1 | ... | Stage#N | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: Bandwidthsub-TLV -Sub-TLV -- Type 2-The values of the fields shown in figure 4 are explained insectionSection 4.1.3. 4.1.3. Switching Capability Specific Information--- FieldvaluesValues andexplanationExplanation The fields in the Bandwidth sub-TLV MUST be filled as follows:-o Signal Type (8 bits): Indicates the ODU type being advertised. Values are defined in[OTN-SIG]. - Number[RFC7139]. o Num of stages (8 bits): This field indicates the number of multiplexing stages used to transport the indicatedsignal type.Signal Type. It MUST be set to the number of stages represented in the sub-TLV.-o Flags (8 bits):-* T Flag (bit 17): Indicates whether the advertised bandwidth can be terminated. When thesignal typeSignal Type can be terminated T MUST be set, while when thesignal typeSignal Type cannot be terminated T MUST be cleared.-* S Flag (bit 18): Indicates whether the advertised bandwidth can be switched. When thesignal typeSignal Type can beswitchedswitched, S MUST beset, whileset; when thesignal typeSignal Type cannot beswitchedswitched, S MUST be cleared. * The value 0 in both the T bit and Sbitsbit MUST NOT be used.- TS Granularity: Tributary Slot Granularityo TSG (3 bits): Tributary Slot Granularity. Used for the advertisement of the supportedTributary Slottributary slot granularity. The following values MUST be used:-* 0 - Ignored-* 1 -1.25Gbps/2.5Gbps -1.25 Gbps / 2.5 Gbps * 2 -2.5Gbps2.5 Gbps only-* 3 -1.25Gbps1.25 Gbps only-* 4-7 - Reserved A value of 1 MUST be used on interfaceswhichthat are configured to support thefall backfallback procedures defined in[G.798-a2].[G.798]. A value of 2 MUST be used on interfaces that only support2.5Gbps time2.5 Gbps tributary slots, such as [RFC4328] interfaces. A value of 3 MUST be used on interfaces that are configured to only support1.25Gbps time1.25 Gbps tributary slots. A value of 0 MUST be used for non-multiplexedsignal typesSignal Types (i.e., a non-OTN client).-o Res (3 bits):reservedReserved bits. MUST be set to 0 and ignored on receipt.-o Priority (8 bits): A bitmap used to indicate which priorities are being advertised. The bitmap is in ascending order, with the leftmost bit representing priority level 0 (i.e., the highest) and the rightmost bit representing priority level 7 (i.e., the lowest). A bit MUST be set (1) corresponding to each priority represented in thesub-TLV,sub-TLV and MUST NOT be set (0) when the corresponding priority is not represented. At least one priority level MUST be advertised that, unless overridden by local policy, SHALL be at priority level 0.-o Stage (8 bits): Each Stage field indicates asignal typeSignal Type in the multiplexing hierarchy used to transport the signal indicated in the Signal Type field. The number of Stage fields included in a sub-TLV MUST equal the value of theNumberNum ofStagesstages field. The Stage fields MUST be ordered to match the data plane in ascending order (from the lowest order ODU to the highest order ODU). The values of the Stage field are the same as those defined for the Signal Type field. When theNumberNum ofstagestages field carries a 0, then the Stage and Padding fields MUST be omitted.-* Example: For the ODU1->ODU2->OD3 hierarchy, the Signal Type field is set to ODU1 and two Stage fields are present, the first indicating ODU2 and the second ODU3 (server layer). o Padding (variable): The Padding field is used to ensure the32 bit32-bit alignment of stage fields. The length of the Padding field is always a multiple of 8 bits (1 byte). Its length can be calculated, in bytes, as: 4 - ( "value ofNumberNum ofStagesstages field" % 4). The Padding field MUST be set to a zero (0) value on transmission and MUST be ignored on receipt.-o Unreserved ODUj (16 bits): This field indicates the Unreserved Bandwidth at a particular priority level. This field MUST be set to the number of ODUs at the indicated the Signal Type for a particular priority level. One field MUST be present for each bit set in the Priority field, andisthe fields are ordered to match the Priority field. Fields MUST NOT be present for priority levels that are not indicated in the Priority field.-o Unreserved Padding (16 bits): The Padding field is used to ensure the32 bit32-bit alignment of the Unreserved ODUj fields. Whenpresentpresent, the Unreserved Padding field is 16 bits (2byte)bytes) long. When the number of priorities is odd, the Unreserved Padding field MUST be included. When the number of priorities is even, the Unreserved Padding MUST be omitted.-o Unreserved Bandwidth (32 bits): This field indicates the Unreserved Bandwidth at a particular priority level. This field MUST be set to the bandwidth, inBytes/secbytes/second in IEEE floating point format, available at the indicated Signal Type for a particular priority level. One field MUST be present for each bit set in the Priority field, andisthe fields are ordered to match the Priority field. Fields MUST NOT be present for priority levels that are not indicated in the Priority field.-o Maximum LSP Bandwidth (32bit):bits): This field indicates the maximum bandwidth that can be allocated for a single LSP at a particular priority level. This field MUST be set to the maximum bandwidth, inBytes/secbytes/second in IEEE floating point format, available to a single LSP at the indicated Signal Type for a particular priority level. One field MUST be present for each bit set in the Priority field, andisthe fields are ordered to match the Priority field. Fields MUST NOT be present for priority levels that are not indicated in the Priority field. The advertisement of the MAX LSP Bandwidth MUST take into account HO OPUk bit rate tolerance and be calculated according to the following formula: * Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) * (1-HO OPUk bit rate tolerance) 5. Examples The examples in the following pages are not normative and are not intended to imply or mandate any specific implementation. 5.1. MAX LSP BandwidthfieldsFields in the ISCD This example shows how the MAX LSP Bandwidth fields of the ISCD are filledaccordinglyaccording to the evolving of theTE-linkTE-Link bandwidth occupancy. Inthe examplethis example, an OTU4 link is considered, with supported priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4. At time T0, with the link completely free, the advertisement would be: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0 =100Gbps100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 1 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 2 =100Gbps100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 4 =100Gbps100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 5 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 6 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 7 =100Gbps100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Switching Capability Specific Information | | (variable length) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5:Example 1 -MAX LSP BandwidthfieldsFields in the ISCD at T0 At time T1, an ODU3 at priority 2 isset-up,set up, so for priority00, the MAX LSP Bandwidth is still equal to the ODU4 bandwidth, while for priorities from 2 to 7 (excluding the non-supportedones)ones), the MAX LSP Bandwidth is equal to ODU3, as no more ODU4s are available and the next supported ODUj in the hierarchy is ODU3. The advertisement is updated as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0 =100Gbps100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 1 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 2 =40Gbps40 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 4 =40Gbps40 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 5 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 6 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 7 =40Gbps40 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Switching Capability Specific Information | | (variable length) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure6: Example 1 -6: MAX LSP BandwidthfieldsFields in the ISCD at T1 At time T2, an ODU2 at priority 4 isset-up.set up. The first ODU3is no longerhas not been available sinceT1,T1 as it was kept by the ODU3 LSP, while the second is nomorelonger available and just 3ODU2ODU2s are left in it. ODU2 is now the MAX LSP Bandwidth for priorities higher than 4. The advertisement is updated as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0 =100Gbps100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 1 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 2 =40Gbps40 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 4 =10Gbps10 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 5 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 6 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 7 =10Gbps10 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Switching Capability Specific Information | | (variable length) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 7:Example 1 -MAX LSP BandwidthfieldsFields in the ISCD at T2 5.2. Example ofT,ST, S, and TSgranularity utilizationGranularity Utilization In this example, an interface withTributary Slot Type 1.25Gbpstributary slot type 1.25 Gbps and fallback procedure enabled is considered (TS granularity=1). It supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and 3. Suppose that in thisinterfaceinterface, the ODU3signal typeSignal Type can be both switched or terminated, the ODU2 can only be terminated, and the ODU1switched only.can only be switched. Please note that since the ODU1 is not being advertised to support ODU0, the value of its TSG field is "ignored" (TS granularity=0). For the advertisement of the capabilities of such an interface, a single ISCD isused and itsused. Its format is as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 0 |1|1| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 8:Example 2 - TS granularity, TT, S, andS utilizationTS Granularity Utilization 5.2.1. Example ofdifferentDifferent TS Granularities In this example, two interfaces with homogeneous hierarchies but differentTributary Slot Typestributary slot types are considered. The first one supportsaan [RFC4328] interface (TS granularity=2) while the second one supports a G.709-2012 interface with fallback procedure disabled (TS granularity=3). Bothof themsupport the ODU1->ODU2->ODU3 hierarchy and priorities 0 and 3. Suppose that in thisinterfaceinterface, the ODU3signal typeSignal Type can be both switched or terminated, the ODU2 can only be terminated, and the ODU1switched only.can only be switched. For the advertisement of the capabilities of such interfaces, two different ISCDs areused and theused. The format of their SCSIs is as follows: SCSI of ISCD 1--- TS granularity=2 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 0 |1|1| 2 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 9:Example 2.1 -Utilization of Different TS Granularitiesutilization --- ISCD 1 SCSI of ISCD 2--- TS granularity=3 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 0 |1|1| 3 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 10:Example 2.1 -Utilization of Different TS Granularitiesutilization --- ISCD 2A particular case in which hierarchiesHierarchies with the same muxing tree but with different exported TS granularity MUST be considered asnon- homogenousnon-homogenous hierarchies. This is the case in which anH-LPSH-LSP and the client LSP are terminated on the same egress node. What can happen is that a loose Explicit Route Object (ERO) is used at the hop where the signaled LSP is nested into the Hierarchical-LSP (H-LSP) (penultimate hop of the LSP). In the following figure, node C receivesfrom Aa loose ERO from A; the ERO goes towards nodeEE, and node C must choose between the ODU2 H-LSP on if1 or the one on if2. In this case, the H-LSP on if1 exports aTS=1.25Gbps,TS=1.25 Gbps, and the H-LSP on if2 exports aTS=2.5Gbps,TS=2.5 Gbps; because the service LSP being signaled needs a1.25Gbps1.25 Gbps tributary slot, only the H-LSP on if1 can be used to reach node E. For further details, please seesection 4.1Section 3.2 ofthe [OTN-INFO].[RFC7096]. ODU0-LSP ..........................................................+ | | | ODU2-H-LSP | | +-------------------------------+ | | | +--+--+ +-----+ +-----+ if1 +-----+ +-----+ | | OTU3 | | OTU3 | |---------| |---------| | | A +------+ B +------+ C | if2 | D | | E | | | | | | |---------| |---------| | +-----+ +-----+ +-----+ +-----+ +-----+ ... Service LSP --- H-LSP Figure 11: Example-of Service LSP and H-LSPterminatingTerminating on thesame nodeSame Node 5.3. Example of ODUflexadvertisementAdvertisement In this example, the advertisement of an ODUflex->ODU3 hierarchy is shown. In the case of ODUflex advertisement, the MAX LSP Bandwidth needs to beadvertised and,advertised, and in some cases, information about the UnreservedbandwidthBandwidth could also be useful. The amount of UnreservedbandwidthBandwidth does not give a clear indication of how many ODUflexLSPLSPs can be set up either at the MAX LSP Bandwidth or at different rates, as it gives no information about the spatial allocation of the free TSs. An indication of the amount of UnreservedbandwidthBandwidth could be useful during the path computation process, as shown in the following example.SupposingSuppose there are twoTE-linksTE-Links (A and B) with MAX LSP Bandwidth equal to 10 Gbps each. In the case where50Gbps50 Gbps of Unreserved Bandwidth are available on Link A,10Gbps10 Gbps on Link B, and 3 ODUflex LSPs of 10GBpsGbps each have to be restored, for sure only one can be restored along LinkBB, and it is probable, but not certain, that two of them can be restored along Link A. The T,SS, andTS granularityTSG fields are not relevant to this example (filled with Xs). In the case of ODUflex advertisement, the Type 2 Bandwidth sub-TLV is used. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 (Unres/MAX-var) | Length = 72 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0| Priority(8) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 12:Example 3 -ODUflexadvertisementAdvertisement 5.4. Example ofsingle stage muxing SupposingSingle-Stage Muxing Suppose there is 1 OTU4 component link supportingsingle stagesingle-stage muxing of ODU1, ODU2,ODU3ODU3, and ODUflex, the supported hierarchy can be summarized in a tree as in the following figure. For the sake of simplicity, we also assume that only priorities 0 and 3 are supported. The T,SS, andTS granularityTSG fields are not relevant to thisexample(filledexample (filled with Xs). ODU1 ODU2 ODU3 ODUflex \ \ / / \ \ / / \ \/ / ODU4and theThe related SCSIs are as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU1 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 (Unres/MAX-var) | Length = 24 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 0=100Gbps=100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 3=100Gbps=100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0=100Gbps=100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3=100Gbps=100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 13:Example 4 - Single stage muxingSingle-Stage Muxing 5.5. Example ofmulti stage muxing -Multi-Stage Muxing -- Unbundledlink SupposingLink Suppose there is 1 OTU4 component link with muxing capabilities as shown in the following figure: ODU2 ODU0 ODUflex ODU0 \ / \ / | | ODU3 ODU2 \ / \ / \ / \ / ODU4andConsidering only supported priorities 0 and 3, the advertisement is composed by the following Bandwidth sub-TLVs (T and S fields are not relevant to this example and filled with Xs): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU4 | #stages= 0 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 (Unres/MAX-var) | Length = 24 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |S.type=ODUflex | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 0=100Gbps=100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved Bandwidth at priority 3=100Gbps=100 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0=10Gbps=10 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3=10Gbps=10 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 14:Example 5 - Multi stage muxing -Multi-Stage Muxing -- UnbundledlinkLink 5.6. Example ofmulti stage muxing -Multi-Stage Muxing -- BundledlinksLinks In this example, 2 OTU4 component links with the same supported TS granularity and homogeneous muxing hierarchies are considered. The following muxing capabilities trees are supported: Component Link#1 Component Link#2 ODU2 ODU0 ODU2 ODU0 \ / \ / | | ODU3 ODU3 | | ODU4 ODU4 Considering only supported priorities 0 and 3, the advertisement is as follows(T, S(the T, S, andTS granularityTSG fields are not relevant to this example and filled with Xs): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU4 at Prio 0 =2 | Unres ODU4 at Prio 3 =2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 =4 | Unres ODU3 at Prio 3 =4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 =16 | Unres ODU2 at Prio 3 =16 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU0 at Prio 0 =128 | Unres ODU0 at Prio 3 =128 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 15:Example 6 - Multi stage muxing -Multi-Stage Muxing -- BundledlinksLinks 5.7. Example ofcomponent linksComponent Links withnon-homogeneous hierarchiesNon-Homogeneous Hierarchies In this example, 2 OTU4 component links with the same supported TS granularity and non-homogeneous muxing hierarchies are considered. The following muxing capabilities trees are supported: Component Link#1 Component Link#2 ODU2 ODU0 ODU1 ODU0 \ / \ / | | ODU3 ODU2 | | ODU4 ODU4 Considering only supported priorities 0 and 3, the advertisement uses two different ISCDs, one for each hierarchy(T, S(the T, S, andTS granularityTSG fields are not relevant to this example and filled with Xs). In the following figure, the SCSI of each ISCD is shown: SCSI of ISCD 1--- Component Link#1 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 16:Example 7 - Multi stage muxing - Non-homogeneous hierarchies -Multi-Stage Muxing -- Non-Homogeneous Hierarchies -- ISCD 1 SCSI of ISCD 2--- Component Link#2 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU1 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 17:Example 7 - Multi stage muxing - Non-homogeneous hierarchies -Multi-Stage Muxing -- Non-Homogeneous Hierarchies -- ISCD 2 6. OSPFv2scalabilityScalability This document does not introduce OSPF scalability issues with respect to existing GMPLS encoding and does not require any modification to flooding frequency. Moreover, the design of the encoding has been carried out taking into account bandwidth optimization,andin particular:-o Only unreserved and MAX LSP Bandwidth related to supported priorities areadvertised - With respect ofadvertised. o For fixed containers, only the number of available containers is advertised instead of the available bandwidthsoin order to use only 16 bits per container instead of 32 (as per former GMPLSencodingencoding). In order to further reduce the amount of data advertised it is RECOMMENDED to bundle component links with homogeneous hierarchies as described in [RFC4201] and illustrated in Section 5.6. 7. Compatibility All implementations of this document MAY also support advertisement as defined in[RFC4328].[RFC4203]. When nodes support both the advertisementmethods,method in [RFC4203] and the one in this document, implementations MUST support the configuration of which advertisement method is followed. The choice of which is used is based on policy and beyond the scope of this document. This enables nodes following each method to identify similar supporting nodes and compute paths using only the appropriate nodes. 8. Security Considerations This document extends [RFC4203]. Aswith[RFC4203],with [RFC4203], it specifies the contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used forSPFShortest Path First (SPF) computation or normal routing, the extensions specified here have no direct effect on IP routing. Tampering with GMPLS TE LSAs may have an effect on the underlying transport (optical and/orSONET-SDH)Synchronous Optical Network - Synchronous Digital Hierarchy (SONET-SDH) network. [RFC3630] notes that the security mechanisms described in [RFC2328] apply to Opaque LSAs carried in OSPFv2. An analysis of the security of OSPF is provided in [RFC6863] and applies to the extensions to OSPF as described in this document. Any new mechanisms developed to protect the transmission of information carried in Opaque LSAs will also automatically protect the extensions defined in this document.ForPlease refer to [RFC5920] for details on securitythreats,threats; defensivetechniques, monitoring/detection/techniques; monitoring, detection, and reporting of securityattacksattacks; andrequirements please refer to [RFC5920].requirements. 9. IANA Considerations 9.1. Switchingtypes Upon approval of this document,Types IANAwill makehas made the following assignment in the "Switching Types" section of the"GMPLS"Generalized Multi-Protocol Label Switching (GMPLS) Signaling Parameters" registry located athttp://www.iana.org/assignments/gmpls-sig-parameters:<http://www.iana.org/ assignments/gmpls-sig-parameters>: Value Name Reference --------- -------------------------- ---------- 110(*)OTN-TDM capable(OTN-TDM) [This.I-D] (*) Suggested value Same[RFC7138] The same type of modificationneeds tohas been applied to theIANA-GMPLS-TC-MIBIANA-GMPLS-TC- MIB athttps://www.iana.org/assignments/ianagmplstc-mib/ianagmplstc-mib,<https://www.iana.org/assignments/ianagmplstc-mib>, where the value: OTN-TDM (110), -- Time-Division-Multiplex OTN-TDM capableWill behas been added to the IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION syntax list. 9.2. Newsub-TLVsSub-TLVs This document defines 2 new sub-TLVs that are carried in Interface Switching Capability Descriptors [RFC4203] with the Signal TypeOTN-TDM.OTN- TDM. Each sub-TLV includes a 16-bit type identifier (the T-field). The same T-field values are applicable to the new sub-TLV.Upon approval of this document,IANAwill createhas created and will maintain a new sub-registry, the "Types for sub-TLVs of OTN-TDM SCSI(Switch Capability-Specific(Switching Capability Specific Information)" registry under the "Open Shortest Path First (OSPF) Traffic Engineering TLVs" registry, seehttp:// www.iana.org/assignments/ospf-traffic-eng-tlvs/ ospf-traffic-eng-tlvs.xml,<http://www.iana.org/assignments/ ospf-traffic-eng-tlvs>, with the sub-TLV types as follows:This document defines new sub-TLV types as follows:Value Sub-TLV Reference --------- -------------------------- ---------- 0 Reserved[This.I-D][RFC7138] 1 Unreserved Bandwidth for[This.I-D][RFC7138] fixed containers 2 Unreserved/MAX Bandwidth for[This.I-D][RFC7138] flexible containers 3-65535 Unassigned Types are to be assigned via Standards Action as defined in [RFC5226]. 10. Contributors DiegoCaviglia,Caviglia Ericsson ViaE.Melen,E. Melen, 77-Genova-ItalyEmail:EMail: diego.caviglia@ericsson.com DanLi,Li Huawei Technologies Bantian, Longgang District-Shenzhen 518129P.R.China Email:P.R. China EMail: danli@huawei.com Pietro VittorioGrandi,Grandi Alcatel-Lucent Via Trento, 30-Vimercate-ItalyEmail:EMail: pietro_vittorio.grandi@alcatel-lucent.com KhuzemaPithewan,Pithewan Infinera Corporation 140 CaspianCT., Sunnyvale -CT. Sunnyvale, CA-USAEmail:EMail: kpithewan@infinera.com XiaobingZi,Zi Huawei TechnologiesEmail:EMail: zixiaobing@huawei.com FrancescoFondelli,Fondelli EricssonEmail:EMail: francesco.fondelli@ericsson.com Marco Corsi EMail: corsi.marco@gmail.com EveVarma,Varma Alcatel-Lucent EMail: eve.varma@alcatel-lucent.com JonathanSadler,Sadler Tellabs EMail: jonathan.sadler@tellabs.com LyndonOng,Ong Ciena EMail: lyong@ciena.com Ashok Kunjidhapatham EMail: akunjidhapatham@infinera.com Snigdho Bardalai EMail: sbardalai@infinera.com Steve Balls EMail: Steve.Balls@metaswitch.com Jonathan Hardwick EMail: Jonathan.Hardwick@metaswitch.com Xihua Fu EMail: fu.xihua@zte.com.cn Cyril Margaria EMail: cyril.margaria@nsn.com Malcolm Betts EMail: Malcolm.betts@zte.com.cn 11. Acknowledgements The authors would like to thank Fred Gruman and Lou Berger forthe precioustheir valuable comments and suggestions. 12. References 12.1. Normative References [G.709-2012] ITU-T, "Interface for the optical transport network", Recommendation G.709/Y.1331, February 2012. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, September 2003. [RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling in MPLS Traffic Engineering (TE)", RFC 4201, October 2005. [RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005. [RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control", RFC 4328, January 2006. 12.2. Informative References[OTN-FWK] F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli, "Framework for GMPLS and PCE Control[G.798] ITU-T, "Characteristics ofG.709 Optical Transport networks, work in progress draft-ietf-ccamp-gmpls-g709-framework-13", June 2013. [OTN-INFO] S.Belotti, P.Grandi, D.Ceccarelli, D.Caviglia, F.Zhang, D.Li, "Information model for G.709 Optical Transport Networks (OTN), work in progress draft-ietf-ccamp-otn-g709-info-model-09", June 2013. [OTN-SIG] F.Zhang, G.Zhang, S.Belotti, D.Ceccarelli, K.Pithewan, "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for the evolving G.709 Optical Transport Networks Control, work in progress draft-ietf-ccamp-gmpls-signaling-g709v3-11", June 2013.optical transport network hierarchy equipment functional blocks", Recommendation G.798, December 2012. [G.805] ITU-T, "Generic functional architecture of transport networks", Recommendation G.805, March 2000. [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998. [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008. [RFC5920] Fang, L., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010. [RFC6163] Lee, Y., Bernstein, G., and W. Imajuku, "Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)", RFC 6163, April 2011. [RFC6566] Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A Framework for the Control of Wavelength Switched Optical Networks (WSONs) with Impairments", RFC 6566, March 2012. [RFC6863] Hartman, S. and D. Zhang, "Analysis of OSPF Security According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6863, March 2013.[SWCAP-UPDT] F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli,[RFC7062] Zhang, F., Li, D., Li, H., Belotti, S., and D. Ceccarelli, "Framework for GMPLS and PCE Control of G.709 Optical Transportnetworks, work in progress draft-ietf-ccamp-gmpls-g709-framework-13", JuneNetworks", RFC 7062, November 2013. [RFC7096] Belotti, S., Grandi, P., Ceccarelli, D., Ed., Caviglia, D., and F. Zhang, "Evaluation of Existing GMPLS Encoding against G.709v3 Optical Transport Networks (OTNs)", RFC 7096, January 2014. [RFC7139] Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D., and K. Pithewan, "GMPLS Signaling Extensions for Control of Evolving G.709 Optical Transport Networks", RFC 7139, March 2014. Authors' Addresses Daniele Ceccarelli (editor) Ericsson Via E.Melen 77 Genova - Erzelli ItalyEmail:EMail: daniele.ceccarelli@ericsson.com Fatai Zhang Huawei Technologies F3-5-B R&D Center, Huawei BaseShenzhen 518129 P.R.ChinaBantian, Longgang District Shenzhen 518129 P.R. China Phone: +86-755-28972912Email:EMail: zhangfatai@huawei.com Sergio Belotti Alcatel-Lucent Via Trento, 30 Vimercate ItalyEmail:EMail: sergio.belotti@alcatel-lucent.com Rajan Rao Infinera Corporation 140, Caspian CT. Sunnyvale, CA-94089 USAEmail:EMail: rrao@infinera.com JohnEE. Drake JuniperEmail:EMail: jdrake@juniper.net