TEAS Working GroupInternet Engineering Task Force (IETF) D. DhodyInternet-DraftRequest for Comments: 7898 U. PalleIntended status:Category: Experimental V. KondreddyExpires: May 22, 2016ISSN: 2070-1721 Huawei Technologies R. Casellas CTTCNovember 19, 2015June 2016 Domain Subobjects for ResourceReserVationReservation Protocol - Traffic Engineering (RSVP-TE)draft-ietf-teas-rsvp-te-domain-subobjects-05Abstract The ResourceReserVationReservation Protocol - Traffic Engineering (RSVP-TE) specification and the Generalized Multiprotocol Label Switching (GMPLS) extensions to RSVP-TE allow abstract nodes and resources to be explicitly included in a path setup.FurtherFurther, ExcludeRoutesRoute extensions to RSVP-TE allow abstract nodes and resources to be explicitly excluded in a path setup. This document specifies new subobjects to include or exclude4-ByteAutonomousSystem (AS)Systems (ASes), which are identified by a 4-byte AS number, and Interior Gateway Protocol (IGP)areaareas during path setup. Status of This Memo ThisInternet-Draftdocument issubmitted in full conformance with the provisions of BCP 78not an Internet Standards Track specification; it is published for examination, experimental implementation, andBCP 79. Internet-Drafts are working documentsevaluation. This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents validthe IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are amaximumcandidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on May 22, 2016.http://www.rfc-editor.org/info/rfc7898. Copyright Notice Copyright (c)20152016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Requirements Language . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Subobjects for Domains . . . . . . . . . . . . . . . . . . . 5 3.1. Domains . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2. Explicit Route Object(ERO)'s(ERO) Subobjects . . . . . . . . . 5 3.2.1. AutonomoussystemSystem . . . . . . . . . . . . . . . . . . 6 3.2.2. IGP Area . . . . . . . . . . . . . . . . . . . . . .76 3.2.3. Mode of Operation . . . . . . . . . . . . . . . . . . 8 3.3. Exclude Route Object(XRO)'s(XRO) Subobjects . . . . . . . . . . 8 3.3.1. AutonomoussystemSystem . . . . . . . . . . . . . . . . . . 8 3.3.2. IGP Area . . . . . . . . . . . . . . . . . . . . . . 9 3.3.3. Mode of Operation . . . . . . . . . . . . . . . . . . 9 3.4. Explicit Exclusion Route Subobject . . . . . . . . . . . 9 4. Interaction with Path Computation Element (PCE) . . . . . . . 10 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 5.1. New Subobjects . . . . . . . . . . . . . . . . . . . . . 10 6. Security Considerations . . . . . . . . . . . . . . . . . . .1110 7.Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 11 8.References . . . . . . . . . . . . . . . . . . . . . . . . . 118.1.7.1. Normative References . . . . . . . . . . . . . . . . . . 118.2.7.2. Informative References . . . . . . . . . . . . . . . . . 12 Appendix A. Examples . . . . . . . . . . . . . . . . . . . . . .1412 A.1. Inter-Area LSP Path Setup . . . . . . . . . . . . . . . .1413 A.2. Inter-AS LSP Path Setup . . . . . . . . . . . . . . . . .1514 A.2.1. Example 1 . . . . . . . . . . . . . . . . . . . . . .1514 A.2.2. Example 2 . . . . . . . . . . . . . . . . . . . . . . 15 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 16 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . .1716 1. Introduction The RSVP-TE specification [RFC3209] and the GMPLS extensions toRSVP- TERSVP-TE [RFC3473] allow abstract nodes and resources to be explicitly included in a path setup using the Explicit Route Object (ERO).FurtherFurther, ExcludeRoutesRoute extensions [RFC4874] allow abstract nodes or resources to be excluded from the whole path using the Exclude RouteobjectObject (XRO). To exclude certain abstract nodes or resources between a specific pair of abstract nodes present in an ERO,aan Explicit Exclusion RouteSubobjectsubobject (EXRS) is used. [RFC3209] already describes the notion of abstract nodes, where an abstract node is a group of nodes whose internal topology is opaque to the ingress node of the Label Switched Path (LSP). It further defines a subobject for AS, but with a2-Byte2-byte AS number only. This document extends the notion of abstract nodes by adding new subobjects for IGPAreasareas and 4-byte AS numbers (as per [RFC6793]). These subobjects can be included inExplicit Route Object (ERO), Exclude Route Object (XRO)ERO, XRO, orExplicit Exclusion Route Subobject (EXRS).EXRS. In case of per-domain path computation [RFC5152], where the full path of an inter-domain TE LSP cannot be or is not determined at the ingress node,andthe signaling message could use domain identifiers. The use of these new subobjects is illustrated in Appendix A. Further, the domain identifier could simply act as a delimiter to specify where the domain boundary starts and ends. This is a companion document to Path Computation Element Protocol (PCEP) extensions for the domain sequence[PCE-DOMAIN].[RFC7897]. 1.1. Scope The procedures described in this document are experimental. The experiment is intended to enable research for the usage ofDomaindomain subobjects for inter-domain path setup. For thispurposepurpose, this documentspecifyspecifies new domain subobjects as well as how they incorporate with existing subobjects. The experiment will end two years after the RFC is published. At that point, the RFC authors will attempt to determine how widely this has been implemented and deployed. This document does not change the procedures for handling subobjects in RSVP-TE. The new subobjects introduced by this document will not be understood by legacy implementations. If a legacy implementation receives one of the subobjects that it does not understand in an RSVP-TE object, the legacy implementation will behave as described in [RFC3209] and [RFC4874]. Therefore, it is assumed that this experiment will be conducted only when all nodes processing the new subobject form part of the experiment. When the result of implementation and deployment are available, this document will be updated and refined, and then it will be moved from Experimental toStandardStandards Track. It should be noted that there are other ways such as the use of a boundary node to identify the domain (instead of a domainidentifier),identifier); the mechanism defined in this document is just another tool in the toolkit for the operator. 1.2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 2. Terminology The following terminology is used in this document. AS: AutonomousSystem.System Domain: As per [RFC4655], any collection of network elements within a common sphere of address management or path computational responsibility. Examples of domains includeInterior Gateway Protocol (IGP)IGP areas andAutonomous Systems (ASs).ASes. ERO: Explicit Route Object EXRS: Explicit Exclusion RouteSubobjectsubobject IGP: Interior Gateway Protocol. Either of the two routingprotocols,protocols: Open Shortest Path First (OSPF) or Intermediate System to Intermediate System (IS-IS). IS-IS: Intermediate System to IntermediateSystem.System OSPF: Open Shortest PathFirst.First PCE: Path Computation Element. An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints. PCEP: Path Computation ElementProtocol.Protocol RSVP: Resource Reservation Protocol TE LSP: Traffic Engineering Label SwitchedPath.Path XRO: Exclude Route Object 3. Subobjects for Domains 3.1. Domains [RFC4726] and [RFC4655] define domain as a separate administrative or geographic environment within the network. A domain could be further defined as a zone of routing or computational ability. Under thesedefinitionsdefinitions, a domain might be categorized as an AS or an IGP area. As per [RFC3209], an abstract node is a group of nodes whose internal topology is opaque to the ingress node of the LSP. Using this concept of abstraction, an explicitly routed LSP can be specified as a sequence of IP prefixes or a sequence ofAutonomous Systems.ASes. In thisdocumentdocument, we extend the notion to include the IGP area and4-Byte4-byte AS number. Thesesub-objectssubobjects appear in RSVP-TE, notablyin -in: o Explicit Route Object (ERO): As per [RFC3209], an explicit route is a particular path in the network topology including abstract nodes (including domains). o Exclude Route Object (XRO): As per [RFC4874], anexclude routeExclude Route identifies a list of abstract nodes (includingdomains),domains) that should not be traversed along the path of the LSP being established. o Explicit Exclusion Route Subobject (EXRS): As per [RFC4874], used to specify exclusion of certain abstract nodes between a specific pair of nodes. EXRSareis a subobject carried inside the ERO. These subobjects can be used to specify the domains to be excluded between two abstract nodes. 3.2. Explicit Route Object(ERO)'s(ERO) Subobjects As stated in [RFC3209], an explicit route is a particular path in the network topology. In addition to the ability to identify specific nodes along the path, an explicit route can identify a group of nodes (abstract nodes) to be traversed along the path. Some subobjects are defined in [RFC3209], [RFC3473], [RFC3477],[RFC4874][RFC4874], and[RFC5553][RFC5553], but new subobjects related to domains are needed. This document extends the support for4-Byte4-byte AS numbers and IGPAreas. Type Subobject TBD1 Autonomous systemareas. Value Description ----- --------- 5 4-byte AS number(4 Byte) TBD26 OSPF Areaid TBD3 ISISID 7 IS-IS AreaidID 3.2.1. AutonomoussystemSystem [RFC3209] already defines2-Byte2-byte ASnumber.numbers. To support4-Byte4-byte AS numbers as per [RFC6793], the following subobject is defined: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L| Type | Length | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |AS-IDAS Number (4 bytes) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ L: The L bit is an attribute of the subobject as defined in [RFC3209], i.e., it's set if the subobject represents a loose hop in the explicit route. If the bit is not set, the subobject represents a strict hop in the explicit route. Type:(TBD1 by IANA) indicating5 (indicating a4-Byte4-byte ASNumber.number). Length: 8(Total(total length of the subobject in bytes). Reserved: Zero attransmission,transmission; ignored at receipt.AS-ID:AS Number: The4-Byte4-byte ASNumber.number. Note that if2-Byte2-byte AS numbers are in use, thelow orderlow-order bits (16 through 31) MUST beusedused, and thehigh orderhigh-order bits (0 through 15) MUST be set to zero. For the purpose of this experiment, it is advised to use4-Bytea 4-byte AS number subobject as the default. 3.2.2. IGP Area Since the length and format ofArea-idArea ID is different for OSPF andISIS,IS-IS, the following two subobjects are defined: For OSPF, thearea-idArea ID is a32 bit32-bit number. The subobject is encoded as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L| Type | Length | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OSPF AreaIdID (4 bytes) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ L: The L bit is an attribute of the subobject as defined in [RFC3209]. Type:(TBD2 by IANA) indicating6 (indicating a4-Byte4-byte OSPF AreaID.ID). Length: 8(Total(total length of the subobject in bytes). Reserved: Zero attransmission,transmission; ignored at receipt. OSPF AreaId:ID: The4-Byte4-byte OSPF Area ID. For IS-IS, thearea-idArea ID is of variablelength and thuslength; thus, the length of the subobject is variable. TheArea-idArea ID is as described in IS-IS by the ISO standard [ISO10589]. The subobject is encoded as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |L| Type | Length | Area-Len | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | // IS-IS Area ID // | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ L: The L bit is an attribute of the subobject as defined in [RFC3209]. Type:(TBD3 by IANA) indicating7 (indicating the IS-IS AreaID.ID). Length: Variable. TheLengthlength MUST be at least8,8 and MUST be a multiple of 4. Area-Len: Variable(Length(length of the actual (non-padded) IS-ISArea Identifierarea identifier in octets;Validvalid values are from 1 to1313, inclusive). Reserved: Zero attransmission,transmission; ignored at receipt. IS-IS AreaId:ID: The variable-length IS-IS area identifier. Padded with trailing zeroes to afour-byte4-byte boundary. 3.2.3. Mode of Operation The new subobjects to support4-Byte4-byte AS numbers and the IGP (OSPF /ISIS) AreaIS-IS) area could be used in the ERO to specify an abstract node (a group of nodes whose internal topology is opaque to the ingress node of the LSP). All the rules of processing (forexample Next Hop Selection,example, next-hop selection, L bit processing, unrecognizedsubobjects etc)subobjects, etc.) are as per the [RFC3209]. Note that if a node is called upon to processsubobjectsubobjects defined in thisdocument, anddocument that it does not recognize, it will behave as described in [RFC3209] when an unrecognized ERO subobject is encountered. This means that this node will return a PathErr with error code "Routing Error" and error value "Bad EXPLICIT_ROUTE object" with the EXPLICIT_ROUTE object included, truncated (on the left) to the offending subobject. 3.3. Exclude Route Object(XRO)'s(XRO) Subobjects As stated in [RFC4874], theexclude routeExclude Route identifies a list of abstract nodesthatto exclude (not be traversed) along the path of the LSP being established. Some subobjects are defined in [RFC3209], [RFC3477],[RFC4874][RFC4874], and[RFC6001][RFC6001], but new subobjects related to domains are needed. This document extends the support for4-Byte4-byte AS numbers and IGPAreas. Type Subobject TBD1 Autonomous systemareas. Value Description ----- --------- 5 4-byte AS number(4 Byte) TBD26 OSPF Areaid TBD3 ISISID 7 IS-IS AreaidID 3.3.1. AutonomoussystemSystem [RFC3209] and [RFC4874] already define a2-Byte2-byte AS number. To support4-Byte4-byte AS numbers as per [RFC6793], a subobjectis withhas the same format as defined in Section 3.2.1 with the following difference: The meaning of the L bit is as per [RFC4874],where.where: 0: indicates that the abstract node specified MUST be excluded. 1: indicates that the abstract node specified SHOULD be avoided. 3.3.2. IGP Area Since the length and format ofArea-idArea ID is different for OSPF andISIS,IS- IS, the following two subobjects are defined: For OSPF, thearea-idArea ID is a32 bit32-bit number. Subobjects for OSPF and IS-IS are of the same format as defined in Section 3.2.2 with the following difference: The meaning of the L bit is as per [RFC4874]. 3.3.3. Mode of Operation The new subobjects to support4-Byte4-byte AS numbers and the IGP (OSPF /ISIS) AreaIS-IS) area could also be used in the XRO to specify exclusion of an abstract node (a group of nodes whose internal topology is opaque to the ingress node of the LSP). All the rules of processing are as perthe[RFC4874]. Note that if a node is called upon to process a subobject defined in thisdocument, anddocument that it does not recognize, it will behave as described in [RFC4874] when an unrecognized XRO subobject is encountered,i.e. toi.e., ignore it. In thiscasecase, the desired exclusion will not be carried out. IGPAreaarea subobjects in the XRO are local to the current AS. In case of multi-AS path computationto excludethat excludes an IGP area in a different AS, an IGPAreaarea subobject should be part ofExplicit Exclusion Route Subobject (EXRS)EXRS in the ERO to specify the AS in which the IGP area is to be excluded.FurtherFurther, policy may be applied to prune/ignoreAreaarea subobjects in XRO at the AS boundary. 3.4. Explicit Exclusion Route Subobject As per [RFC4874], the Explicit Exclusion Route is used to specify exclusion of certain abstract nodes between a specific pair of nodes or resources in the explicit route. EXRS is an ERO subobject that contains one or more subobjects of its own, called EXRS subobjects. The EXRS subobject could carry any of the subobjects defined forXRO, thusXRO; thus, the new subobjects to support4-Byte4-byte AS numbers and the IGP (OSPF /ISIS) AreaIS-IS) area can also be used in the EXRS. The meanings of the fields of the new XRO subobjects are unchanged when the subobjects are included in an EXRS, except that the scope of the exclusion is limited to the single hop between the previous and subsequent elements in the ERO. All the rules of processing are as perthe[RFC4874]. 4. Interaction with Path Computation Element (PCE) The domain subobjects to be used inPath Computation Element Protocol (PCEP)PCEP are referred to in[PCE-DOMAIN].[RFC7897]. Note that the new domain subobjects follow the principle that subobjects used in PCEP [RFC5440] are identical to the subobjects used in RSVP-TE and thus are interchangeable between PCEP and RSVP-TE. 5. IANA Considerations 5.1. New Subobjects IANA maintains the "Resource Reservation Protocol (RSVP) Parameters" registry at <http://www.iana.org/assignments/rsvp-parameters>. Within thisregistryregistry, IANA maintains two sub-registries: o EXPLICIT_ROUTE subobjects (seeSub-object"Sub-object type - 20 EXPLICIT_ROUTE - Type 1 ExplicitRoute at http://www.iana.org/assignments/rsvp- parameters)Route") o EXCLUDE_ROUTE subobjects (seeSub-object"Sub-object types of Class Types or C-Types - 232EXCLUDE_ROUTE at http://www.iana.org/assignments/rsvp- parameters) Upon approval of this document,EXCLUDE_ROUTE") IANAis requested to makehas made identical additions to these registries as follows, in sync with[PCE-DOMAIN]: Subobject Type[RFC7897]: Value Description ReferenceTBD1 4-Byte----- ---------------- ------------------- 5 4-byte AS number[This I.D.][PCE-DOMAIN] TBD2[RFC7897], RFC 7898 6 OSPF Area ID[This I.D.][PCE-DOMAIN] TBD3[RFC7897], RFC 7898 7 IS-IS Area ID[This I.D.][PCE-DOMAIN] Further upon approval of this document,[RFC7897], RFC 7898 Further, IANAis requested to addhas added a reference to this document to the new PCEP numbers that are registered by[PCE-DOMAIN].[RFC7897], as shown on <http://www.iana.org/assignments/pcep>. 6. Security Considerations Security considerations for RSVP-TE and GMPLS signaling RSVP-TE extensions are covered in [RFC3209] and [RFC3473]. This document does not introduce any new messages or any substantive new processing,andso those security considerations continue to apply. Further, general considerations for securing RSVP-TE in MPLS-TE and GMPLS networks can be found in [RFC5920].The sectionSection 8 of [RFC5920] describes the inter-provider security considerations, which continue to apply. The route exclusion securityconsiderationconsiderations are covered in [RFC4874] and continue to apply. 7.Acknowledgments We would like to thank Adrian Farrel, Lou Berger, George Swallow, Chirag Shah, Reeja Paul, Sandeep Boina and AvantikaReferences 7.1. Normative References [ISO10589] International Organization fortheir useful commentsStandardization, "Information technology -- Telecommunications andsuggestions. Thanks to Vishnu Pavan Beeram for shepherding this document. Thanksinformation exchange between systems -- Intermediate System toDeborah BrungardIntermediate System intra-domain routeing information exchange protocol forbeinguse in conjunction with theResponsible AD. Thanks to Amanda Baber for IANA Review. Thanks to Brian Carpenter for Gen-ART Review. Thanks to Liang Xia (Frank) for SecDir Review. Thanks to Spencer Dawkins and Barry Leibaprotocol forcomments duringproviding theIESG Review. 8. References 8.1. Normative Referencesconnectionless-mode network service (ISO 8473)", ISO/IEC 10589:2002, Second Edition, November 2002. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>. [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, <http://www.rfc-editor.org/info/rfc3209>. [RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol- Traffic Engineering (RSVP-TE) Extensions", RFC 3473, DOI 10.17487/RFC3473, January 2003, <http://www.rfc-editor.org/info/rfc3473>. [RFC3477] Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003, <http://www.rfc-editor.org/info/rfc3477>. [RFC4874] Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874, April 2007, <http://www.rfc-editor.org/info/rfc4874>.[ISO10589] ISO, "Intermediate system to Intermediate system routing information exchange protocol for use in conjunction with the Protocol for providing the Connectionless-mode Network Service (ISO 8473)", ISO/IEC 10589:2002, 1992. [PCE-DOMAIN][RFC7897] Dhody, D., Palle, U., and R. Casellas, "Domain Subobjects for the Path Computation Element(PCE)Communication Protocol(PCEP). (draft-ietf-pce-pcep-domain-sequence)", November 2015. 8.2.(PCEP)", RFC 7897, DOI 10.17487/RFC7897, June 2016, <http://www.rfc-editor.org/info/rfc7897>. 7.2. Informative References [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, DOI 10.17487/RFC4655, August 2006, <http://www.rfc-editor.org/info/rfc4655>. [RFC4726] Farrel, A., Vasseur, J., and A. Ayyangar, "A Framework for Inter-Domain Multiprotocol Label Switching Traffic Engineering", RFC 4726, DOI 10.17487/RFC4726, November 2006, <http://www.rfc-editor.org/info/rfc4726>. [RFC5152] Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A Per-Domain Path Computation Method for Establishing Inter- Domain Traffic Engineering (TE) Label Switched Paths (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008, <http://www.rfc-editor.org/info/rfc5152>. [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009, <http://www.rfc-editor.org/info/rfc5440>. [RFC5553] Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource Reservation Protocol (RSVP) Extensions for Path Key Support", RFC 5553, DOI 10.17487/RFC5553, May 2009, <http://www.rfc-editor.org/info/rfc5553>. [RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>. [RFC6001] Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard, D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/ MRN)", RFC 6001, DOI 10.17487/RFC6001, October 2010, <http://www.rfc-editor.org/info/rfc6001>. [RFC6793] Vohra, Q. and E. Chen, "BGP Support for Four-Octet Autonomous System (AS) Number Space", RFC 6793, DOI 10.17487/RFC6793, December 2012, <http://www.rfc-editor.org/info/rfc6793>. Appendix A. Examples These examples are for illustration purposesonly,only to show how the new subobjects could be encoded. They are not meant to be an exhaustive list of all possibleusecasesuse cases and combinations. A.1. Inter-Area LSP Path Setup In an inter-area LSP path setup where the ingress and the egress belong to different IGP areas within the same AS, the domain subobjects could be represented using an ordered list of IGP area subobjects in an ERO. D2 Area D | | D1 | | ********BD1****** * | * * | * Area C Area A * | * * | * Ingress------A1-----ABF1------B1------BC1------C1------Egress / * | * / * | * / * Area | B * F1 * | * / ********BE1****** / | / | F2 E1 | Area F | E2 Area E * All IGPAreaareas in one AS (AS 100) Figure 1: Domain Corresponding to IGP Area As per Figure 1, the signaling atIngressthe ingress couldbe -be: ERO:(A1, ABF1,Areaarea B,Areaarea C,Egress)egress) It should be noted that there are other ways to achieve the desiredsignaling,signaling; the area subobject provides another tool in the toolkit and can have operational benefitswhen -when: o Use ofPCEP like domain-sequence [PCE-DOMAIN]PCEP-like domain sequence [RFC7897] configurations in the explicit path is such that area subobjects can be used to signal the loose path. o Alignment of subobjects and registries is between PCEP andRSVP-TE,RSVP- TE, thus allowing easier interworking between path computation andsignaling i.e. to and fro ofsignaling, i.e., subobjects are able to switch betweensignallingsignaling and path computation (if need be). A.2. Inter-AS LSP Path Setup A.2.1. Example 1 In an inter-AS LSP path setup where the ingress and the egress belong to a different AS, the domain subobjects(AS)(ASes) could be used in an ERO. AS A AS E AS C <-------------> <----------> <-------------> A4----------E1---E2---E3---------C4 / / \ / / \ / / AS B \ / / <----------> \ Ingress------A1---A2------B1---B2---B3------C1---C2------Egress \ / / \ / / \ / / \ / / A3----------D1---D2---D3---------C3 <----------> AS D * AllASASes have one area (area 0) Figure 2: Domain Corresponding to AS As per Figure 2, the signaling atIngressthe ingress couldbe -be: ERO:(A1, A2, AS B, AS C,Egress);egress); or ERO:(A1, A2, AS B,Areaarea 0, AS C,Areaarea 0,Egress).egress). Each AS has a single IGP area (area0), Area0); the area subobject is optional. Note that to get a domain disjoint path, the ingress could also signal the backup pathwith -with: XRO:(AS B) A.2.2. Example 2 As shown in Figure 3, where AS 200 is made up of multiple areas, the signaling can include both an AS andAreaarea subobject to uniquely identify a domain. Ingress * | * | * | * X1 * \\ * \ \ * \ \* Inter-AS AS 100 \* \ Link * \ \ * \ \ * \ \ \ \ D2 Area D AS 200 \ \ | \ \ |InterInter- \ \ D1-ASAS \ \ | Link \ \| \ ********BD1****** \ * | * \ * | * Area C Area A \ * | * \* | * A2------A1------AB1------B1------BC1------C1------Egress * | * * | * * | * * Area | B * ********BE1****** | | E1 | | E2 Area E Figure 3: Domain Corresponding to AS and Area As per Figure 3, the signaling atIngressthe ingress couldbe -be: ERO:(X1, AS 200,Areaarea B,Areaarea C,Egress).egress). Acknowledgments We would like to thank Adrian Farrel, Lou Berger, George Swallow, Chirag Shah, Reeja Paul, Sandeep Boina, and Avantika for their useful comments and suggestions. Thanks to Vishnu Pavan Beeram for shepherding this document. Thanks to Deborah Brungard for being the responsible AD. Thanks to Amanda Baber for the IANA review. Thanks to Brian Carpenter for the Gen-ART review. Thanks to Liang Xia (Frank) for the SecDir review. Thanks to Spencer Dawkins and Barry Leiba for comments during the IESG review. Authors' Addresses Dhruv Dhody Huawei Technologies Divyashree Techno Park, Whitefield Bangalore, Karnataka560037560066 IndiaEMail:Email: dhruv.ietf@gmail.com Udayasree Palle Huawei Technologies Divyashree Techno Park, Whitefield Bangalore, Karnataka560037560066 IndiaEMail:Email: udayasree.palle@huawei.com Venugopal Reddy Kondreddy Huawei Technologies Divyashree Techno Park, Whitefield Bangalore, Karnataka560037560066 IndiaEMail:Email: venugopalreddyk@huawei.com Ramon Casellas CTTC Av. Carl Friedrich Gauss n7 Castelldefels, Barcelona 08860 SpainEMail:Email: ramon.casellas@cttc.es