Network Working Group
Internet Engineering Task Force (IETF)                      D. Farinacci
Internet-Draft
Request for Comments: 8060                                   lispers.net
Intended status:
Category: Experimental                                          D. Meyer
Expires: June 1, 2017
ISSN: 2070-1721                                                  Brocade
                                                             J. Snijders
                                                                     NTT
                                                       November 28, 2016
                                                           February 2017

                  LISP Canonical Address Format (LCAF)
                        draft-ietf-lisp-lcaf-22

Abstract

   This document defines a canonical address format encoding used in
   LISP
   Locator/ID Separation Protocol (LISP) control messages and in the
   encoding of lookup keys for the LISP Mapping Database System.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

Status of This Memo

   This Internet-Draft document is submitted in full conformance with the
   provisions of BCP 78 not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and BCP 79.

   Internet-Drafts are working documents
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This document is a product of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list  It represents the consensus of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid the IETF
   community.  It has received public review and has been approved for
   publication by the Internet Engineering Steering Group (IESG).  Not
   all documents approved by the IESG are a maximum candidate for any level of
   Internet Standard; see Section 2 of RFC 7841.

   Information about the current status of six months this document, any errata,
   and how to provide feedback on it may be updated, replaced, or obsoleted by other documents obtained at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 1, 2017.
   http://www.rfc-editor.org/info/rfc8060.

Copyright Notice

   Copyright (c) 2016 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3 ....................................................4
   2. Terminology .....................................................5
      2.1. Requirements Language ......................................5
      2.2. Definition of Terms . . . . . . . . . . . . . . . . . . . . .   4 ........................................5
   3. LISP Canonical Address Format Encodings . . . . . . . . . . .   5 .........................6
   4. LISP Canonical Address Applications . . . . . . . . . . . . .   8 .............................8
      4.1. Segmentation using Using LISP . . . . . . . . . . . . . . . . .   8 ....................................8
      4.2. Carrying AS Numbers in the Mapping Database . . . . . . .   9 ................9
      4.3. Assigning Geo Coordinates Geo-Coordinates to Locator Addresses  . . . . .  11 ............10
      4.4. NAT Traversal Scenarios . . . . . . . . . . . . . . . . .  13 ...................................11
      4.5. Multicast Group Membership Information  . . . . . . . . .  15 ....................13
      4.6. Traffic Engineering using Using Re-encapsulating Tunnels  . . .  17 ........15
      4.7. Storing Security Data in the Mapping Database . . . . . .  18 .............16
      4.8. Source/Destination 2-Tuple Lookups  . . . . . . . . . . .  20 ........................17
      4.9. Replication List Entries for Multicast Forwarding . . . .  22 .........18
      4.10. Applications for AFI List LCAF Type  . . . . . . . . . . . . .  23 ......................19
           4.10.1. Binding IPv4 and IPv6 Addresses  . . . . . . . . . .  23 ...................19
           4.10.2.  Layer-2 Layer 2 VPNs . . . . . . . . . . . . . . . . . . . .  24 ......................................20
           4.10.3. ASCII Names in the Mapping Database  . . . . . . . .  25 ...............21
           4.10.4. Using Recursive LISP Canonical Address Encodings . .  26 ..22
           4.10.5. Compatibility Mode Use Case  . . . . . . . . . . . .  27 .......................23
   5. Experimental LISP Canonical Address Applications  . . . . . .  28 ...............24
      5.1. Convey Application Specific Application-Specific Data  . . . . . . . . . . . .  29 ..........................24
      5.2. Generic Database Mapping Lookups  . . . . . . . . . . . .  30 ..........................25
      5.3. PETR Admission Control Functionality  . . . . . . . . . .  32 ......................26
      5.4. Data Model Encoding . . . . . . . . . . . . . . . . . . .  33 .......................................27
      5.5. Encoding Key/Value Address Pairs  . . . . . . . . . . . .  34 ..........................28
      5.6. Multiple Data-Planes  . . . . . . . . . . . . . . . . . .  35 ......................................29
   6. Security Considerations . . . . . . . . . . . . . . . . . . .  37 ........................................31
   7. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  38 ............................................31
   8. References  . . . . . . . . . . . . . . . . . . . . . . . . .  39 .....................................................32
      8.1. Normative References  . . . . . . . . . . . . . . . . . .  39 ......................................32
      8.2. Informative References  . . . . . . . . . . . . . . . . .  40
   Appendix A. ....................................33
   Acknowledgments  . . . . . . . . . . . . . . . . . .  42
   Appendix B.  Document Change Log  . . . . . . . . . . . . . . . .  42
     B.1.  Changes to draft-ietf-lisp-lcaf-22.txt  . . . . . . . . .  42
     B.2.  Changes to draft-ietf-lisp-lcaf-21.txt  . . . . . . . . .  43
     B.3.  Changes to draft-ietf-lisp-lcaf-20.txt  . . . . . . . . .  43
     B.4.  Changes to draft-ietf-lisp-lcaf-19.txt  . . . . . . . . .  43
     B.5.  Changes to draft-ietf-lisp-lcaf-18.txt  . . . . . . . . .  43
     B.6.  Changes to draft-ietf-lisp-lcaf-17.txt  . . . . . . . . .  43
     B.7.  Changes to draft-ietf-lisp-lcaf-16.txt  . . . . . . . . .  43
     B.8.  Changes to draft-ietf-lisp-lcaf-15.txt  . . . . . . . . .  44
     B.9.  Changes to draft-ietf-lisp-lcaf-14.txt  . . . . . . . . .  44
     B.10. Changes to draft-ietf-lisp-lcaf-13.txt  . . . . . . . . .  44
     B.11. Changes to draft-ietf-lisp-lcaf-12.txt  . . . . . . . . .  44
     B.12. Changes to draft-ietf-lisp-lcaf-11.txt  . . . . . . . . .  44
     B.13. Changes to draft-ietf-lisp-lcaf-10.txt  . . . . . . . . .  44
     B.14. Changes to draft-ietf-lisp-lcaf-09.txt  . . . . . . . . .  45
     B.15. Changes to draft-ietf-lisp-lcaf-08.txt  . . . . . . . . .  45
     B.16. Changes to draft-ietf-lisp-lcaf-07.txt  . . . . . . . . .  45
     B.17. Changes to draft-ietf-lisp-lcaf-06.txt  . . . . . . . . .  45
     B.18. Changes to draft-ietf-lisp-lcaf-05.txt  . . . . . . . . .  45
     B.19. Changes to draft-ietf-lisp-lcaf-04.txt  . . . . . . . . .  45
     B.20. Changes to draft-ietf-lisp-lcaf-03.txt  . . . . . . . . .  46
     B.21. Changes to draft-ietf-lisp-lcaf-02.txt  . . . . . . . . .  46
     B.22. Changes to draft-ietf-lisp-lcaf-01.txt  . . . . . . . . .  46
     B.23. Changes to draft-ietf-lisp-lcaf-00.txt  . . . . . . . . .  46 ...................................................35
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  46 ................................................36

1.  Introduction

   The LISP architecture and protocols protocol [RFC6830] introduces two new
   numbering spaces, spaces: Endpoint Identifiers (EIDs) and Routing Locators
   (RLOCs).  To provide flexibility for current and future applications,
   these values can be encoded in LISP control messages using a general
   syntax that includes Address Family Identifier (AFI), length, and
   value fields.

   Currently defined AFIs include IPv4 and IPv6 addresses, which are
   formatted according to code-points assigned in [AFI] the "Address Family
   Numbers" registry [AFN] as follows:

   IPv4 Encoded

   IPv4-Encoded Address:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            AFI = 1            |       IPv4 Address ...        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     ...  IPv4 Address         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   IPv6 Encoded

   IPv6-Encoded Address:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            AFI = 2            |       IPv6 Address ...        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ...  IPv6 Address  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ...  IPv6 Address  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ...  IPv6 Address  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     ...  IPv6 Address         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   This document describes the currently-defined currently defined AFIs the that LISP protocol uses
   along with their encodings and introduces the LISP Canonical Address
   Format (LCAF) that can be used to define the LISP-specific encodings
   for arbitrary AFI values.

   Specific detail detailed uses for the LCAF types Types defined in this document
   can be found in the use-case documents that use implement them.  The same
   LCAF type Type may be used by more than one use-case document.  As an experimental
   Experimental specification, this work is is, by definition, incomplete.

   The LCAF
   types Types defined in this document are to support
   experimentation and are intended for cautious use in self-contained
   environments in support of the corresponding use-case documents.
   This document provides assignment for an initial set of approved LCAF
   Types (registered with IANA) and additional unapproved LCAF Types
   [RFC6830].  The unapproved LCAF encodings are defined to support
   further study and experimentation.

2.  Terminology

2.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.2.  Definition of Terms

   Address Family Identifier (AFI):  a term used to describe an address
      encoding in a packet.  Address families are defined for IPv4 and
      IPv6.  See [AFI] [AFN] and [RFC3232] for details.  The reserved AFI
      value of 0 is used in this specification to indicate an
      unspecified encoded address where the length of the address is 0
      bytes following the 16-bit AFI value of 0.

   Unspecified Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            AFI = 0            |      <no address follows>
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Endpoint ID (EID):  a 32-bit (for IPv4) or 128-bit (for IPv6) value
      used in the source and destination address fields of the first
      (most inner) LISP header of a packet.  The host obtains a
      destination EID the same way it obtains a destination address
      today, for example example, through a DNS lookup or SIP exchange.  The
      source EID is obtained via existing mechanisms used to set a
      host's "local" IP address.  An EID is allocated to a host from an
      EID-prefix block associated with the site where the host is
      located.  An EID can be used by a host to refer to other hosts.

   Routing Locator (RLOC):  the IPv4 or IPv6 address of an egress
      tunnel router Egress Tunnel
      Router (ETR).  It is the output of a an EID-to-RLOC mapping lookup.
      An EID maps to one or more RLOCs.  Typically, RLOCs are numbered
      from topologically aggregatable blocks that are assigned to a site
      at each point to which it attaches to the global Internet; where
      the topology is defined by the connectivity of provider networks,
      RLOCs can be thought of as Provider-Assigned (PA) addresses.
      Multiple RLOCs can be assigned to the same ETR device or to
      multiple ETR devices at a site.

3.  LISP Canonical Address Format Encodings

   IANA has assigned AFI value 16387 (0x4003) to the LISP architecture
   and protocols. Canonical
   Address Format (LCAF).  This specification defines the encoding
   format of the LISP Canonical Address (LCA).  This section defines all types
   Types for which an initial allocation in the LISP-LCAF registry is
   requested.  See IANA Considerations section Section 7 for the complete list of such types. Types.

   The Address Family AFI definitions from [AFI] in [AFN] only allocate code-
   points code-points for the AFI
   value itself.  The length of the address or entity that follows is
   not defined and is implied based on conventional experience.  When the
   LISP protocol uses LCAF definitions from this document, the AFI-based address
   lengths are specified in this document.  When new LCAF definitions
   are defined in other use case use-case documents, the AFI-based address
   lengths for any new AFI encoded AFI-encoded addresses are specified in those
   documents.

   The first 6 bytes of an a LISP Canonical Address are followed by a
   variable number of fields of variable length:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Type       |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             . . .                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Rsvd1/Rsvd2:  these 8-bit fields are reserved for future use and MUST
      be transmitted as 0 and ignored on receipt.

   Flags:  this 8-bit field is for future definition and use.  For now,
      set to zero on transmission and ignored on receipt.

   Type:  this 8-bit field is specific to the LISP Canonical Address
      formatted
      Format encodings.  Currently allocated (both  Both approved and
      unapproved) unapproved values are listed
      below.  Unapproved values are: are indicated; see Section 5 for more
      details.

   Type 0:  Null Body

   Type

     Type 1:  AFI List

   Type

     Type 2:  Instance ID

   Type

     Type 3:  AS Number

   Type

     Type 4:  Application Data Type (unapproved; see Section 5)

   Type 5:  Geo Coordinates Type  Geo-Coordinates

   Type 6:  Opaque Key Type (unapproved; see Section 5)

   Type 7:  NAT-Traversal

   Type

     Type 8:  Nonce Locator Type (unapproved; see Section 5)

   Type 9:  Multicast Info

   Type

     Type 10:  Explicit Locator Path

   Type

     Type 11:  Security Key

   Type

     Type 12:  Source/Dest Key

   Type
     Type 13:  Replication List Entry

   Type

     Type 14:  JSON Data Model Type (unapproved; see Section 5)

   Type 15:  Key/Value Address Pair Type (unapproved; see Section 5)

   Type 16:  Encapsulation Format Type (unapproved; see Section 5)

   Length:  this 16-bit field is in units of bytes and covers all of the
      LISP Canonical Address payload, starting and including the byte
      after the Length field.  When including the AFI, an LCAF encoded LCAF-encoded
      address will have a minimum length of 8 bytes when the Length
      field is 0.  The 8 bytes include the AFI, Flags, Type, Rsvd1,
      Rsvd2, and Length fields.  When the AFI is not next to an encoded
      address in a control message, then the encoded address will have a
      minimum length of 6 bytes when the Length field is 0.  The 6 bytes
      include the Flags, Type, Rsvd1, Rsvd2, and Length fields.

   [RFC6830] states RLOC records RLOC-records based on an IP address are sorted when
   encoded in control messages messages, so the locator-set has consistent order
   across all xTRs for a given EID.  The sort order is based on sort-key
   {afi, RLOC-address}.  When an RLOC based on an IP address is LCAF
   encoded, the sort-key is {afi, LCAF-Type}.  Therefore, when a locator-
   set
   locator-set has a mix of AFI records and LCAF records, they are
   ordered from smallest to largest AFI value.

4.  LISP Canonical Address Applications

   The following sections define the LCAF for the currently approved
   initial set of Type values.

4.1.  Segmentation using Using LISP

   When multiple organizations inside of a LISP site are using private
   addresses [RFC1918] as EID-prefixes, EID prefixes, their address spaces must remain
   segregated due to possible address duplication.  An Instance ID in
   the address encoding can aid in making the entire AFI-based address
   unique.

   Another use for the Instance ID LISP Canonical Address Format is when
   creating multiple segmented VPNs inside of a LISP site where keeping
   EID-prefix based
   EID-prefix-based subnets is desirable.

   Instance ID LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 2    | IID mask-len  |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Instance ID                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |         Address  ...          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   IID mask-len:  if the AFI is set to 0, then this format is not
      encoding an extended EID-prefix EID prefix, but rather an instance-ID Instance ID range
      where the 'IID mask-len' indicates the number of high-order bits
      used in the Instance ID field for the range.  The low-order bits
      of the Instance ID field must be 0.

   Length:  length in bytes starting and including the byte after this
      Length field.

   Instance ID:  the low-order 24-bits 24 bits that can go into a LISP data
      header when the I-bit I bit is set.  See [RFC6830] for details.  The
      reason for the length difference is so that the maximum number of
      instances supported per mapping system is 2^32 2^32, while conserving
      space in the LISP data header.  This comes at the expense of
      limiting the maximum number of instances per xTR to 2^24.  If an
      xTR is configured with multiple instance-IDs Instance IDs where the value in
      the high-order 8 bits are is the same, then the low-order 24 bits MUST
      be unique.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   This LISP Canonical Address Type can be used to encode either EID or
   RLOC addresses.

   Usage: When used as a lookup key, the EID is regarded as an extended-
   EID in the mapping system.  This encoding is used in EID records EID-records in
   Map-Requests, Map-Replies, Map-Registers,
   Map-Request, Map-Reply, Map-Register, and Map-Notify messages.  When LISP-DDT [I-D.ietf-lisp-ddt]
   LISP Delegated Database Tree (LISP-DDT) [LISP-DDT] is used as the
   mapping system mechanism, extended EIDs are used in Map-Referral
   messages.

4.2.  Carrying AS Numbers in the Mapping Database

   When an AS Autonomous System (AS) number is stored in the LISP Mapping
   Database System for either policy or documentation reasons, it can be
   encoded in a LISP Canonical Address.

   AS Number LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 3    |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           AS Number                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |         Address  ...          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   AS Number:  the 32-bit AS number of the autonomous system that has
      been assigned to either the EID or RLOC that follows.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   The AS Number Canonical Address LCAF Type can be used to encode either EID or RLOC
   addresses.  The former is used to describe the LISP-ALT AS number the EID-prefix
   EID prefix for the site is being carried for.  The latter is used to
   describe the AS that is carrying RLOC based prefixes in the
   underlying routing system.

   Usage: This encoding can be used in EID EID-records or RLOC records RLOC-records in Map-
   Requests, Map-Replies, Map-Registers,
   Map-Request, Map-Reply, Map-Register, and Map-Notify messages.  When
   LISP-DDT [I-D.ietf-lisp-ddt] [LISP-DDT] is used as the mapping system mechanism, extended
   EIDs are used in Map-Referral messages.

4.3.  Assigning Geo Coordinates Geo-Coordinates to Locator Addresses

   If an ETR desires to send a Map-Reply describing the Geo Coordinates Geo-Coordinates
   for each locator in its locator-set, it can use the Geo Coordinate Geo-Coordinates
   LCAF Type to convey physical location information.

   Coordinates are specified using the WGS-84 WGS 84 (World Geodetic System) System
   1984) reference coordinate system [WGS-84].

   Geo Coordinate

   Geo-Coordinates LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 5    |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |N|     Latitude Degrees        |    Minutes    |    Seconds    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |E|     Longitude Degrees       |    Minutes    |    Seconds    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Altitude                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |         Address  ...          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   N: When set to 1 means North, otherwise South. north; otherwise, south.

   Latitude Degrees:  Valid values range from 0 to 90 degrees above or
      below the equator (northern or southern hemisphere, respectively).

   Latitude Minutes:  Valid values range from 0 to 59.

   Latitude Seconds:  Valid values range from 0 to 59.

   E: When set to 1 means East, otherwise West. east; otherwise, west.

   Longitude Degrees:  Valid values are from 0 to 180 degrees right or
      left of the Prime Meridian.

   Longitude Minutes:  Valid values range from 0 to 59.

   Longitude Seconds:  Valid values range from 0 to 59.

   Altitude:  Height relative to sea level in meters.  This is a two's
      complement signed integer meaning that the altitude could be below
      sea level.  A value of 0x7fffffff indicates no Altitude value is
      encoded.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   The Geo Coordinates Canonical Address Geo-Coordinates LCAF Type can be used to encode either EID or
   RLOC addresses.  When used for EID encodings, you can determine the
   physical location of an EID along with the topological location by
   observing the locator-set.

   Usage: This encoding can be used in EID EID-records or RLOC records RLOC-records in Map-
   Requests, Map-Replies, Map-Registers,
   Map-Request, Map-Reply, Map-Register, and Map-Notify messages.  When
   LISP-DDT [I-D.ietf-lisp-ddt] [LISP-DDT] is used as the mapping system mechanism, extended
   EIDs are used in Map-Referral messages.

   The use of the Geo-Coordinates LCAF encoding raises privacy issues as
   location information is privacy sensitive, and possibly unexpectedly
   privacy sensitive
   privacy-sensitive information may be conveyed, e.g. e.g., if the location
   information corresponds to a router located in a person's home.
   Therefore, this encoding should not be used unless needed for
   operation of a LISP deployment.  Before electing to utilize this
   encoding, care should be taken to ensure the appropriate policies are
   being used by the EID for controlling the conveyed information.

4.4.  NAT Traversal Scenarios

   When a LISP system is conveying global address global-address and mapped port mapped-port
   information when traversing through a NAT device, the NAT-Traversal
   LCAF Type is used.  See [I-D.ermagan-lisp-nat-traversal] [NAT-LISP] for details.

   NAT-Traversal Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 7    |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       MS UDP Port Number      |      ETR UDP Port Number      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |  Global ETR RLOC Address  ... |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |       MS RLOC Address  ...    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          | Private ETR RLOC Address  ... |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |      RTR RLOC Address 1 ...   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |      RTR RLOC Address k ...   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   MS UDP Port Number:  this is the UDP port number of the Map-Server
      and is set to 4342.

   ETR UDP Port Number:  this is the port number returned to a LISP
      system which that was copied from the source port from a packet that has
      flowed through a NAT device.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   Global ETR RLOC Address:  this is an address known to be globally
      unique built by NAT-traversal functionality in a LISP router.

   MS RLOC Address:  this is the address of the Map-Server used in the
      destination RLOC of a packet that has flowed through a NAT device.

   Private ETR RLOC Address:  this is an address known to be a private
      address inserted in this LCAF by a LISP router that resides on the
      private side of a NAT device.

   RTR RLOC Address:  this is an encapsulation address used by an ITR
      Ingress Tunnel Router (ITR) or
      PITR which Proxy Ingress Tunnel Router (PITR)
      that resides behind a NAT device.  This address is known to have
      state in a NAT device so packets can flow from it to the LISP ETR
      behind the NAT.  There can be one or more NAT Reencapsulating Re-encapsulating
      Tunnel Router (RTR) [I-D.ermagan-lisp-nat-traversal] [NAT-LISP] addresses supplied in these set of
      fields.  The number of RTRs encoded is determined by parsing each
      field.  When there are no RTRs supplied, the RTR fields can be
      omitted and reflected by the LCAF length field or an AFI of 0 can
      be used to indicate zero RTRs encoded.

   Usage: This encoding can be used in Info-Request and Info-Reply
   messages.  The mapping system does not store this information.  The
   information is used by an xTR and Map-Server to convey private and
   public address information when traversing NAT and firewall devices.

   Care should be taken to protect privacy against the adverse use of a
   Global or Private ETR RLOC Address by ensuring policy controls are
   used during EID registrations that use this LCAF Type in RLOC-
   records.  Refer to the use case use-case documents for additional information.

4.5.  Multicast Group Membership Information

   Multicast group information can be published in the mapping database.
   So a lookup on a group address EID can return a replication list of
   RLOC group addresses or RLOC unicast addresses.  The intent of this
   type of unicast replication is to deliver packets to multiple ETRs at
   receiver LISP multicast sites.  The locator-set encoding for this EID
   record type
   EID-record Type can be a list of ETRs when they each register with
   "Merge Semantics".  The encoding can be a typical AFI-encoded locator
   address.  When an RTR list is being registered (with multiple levels
   according to [I-D.coras-lisp-re]), [LISP-RE]), the Replication List Entry LCAF
   type Type is used
   for locator encoding.

   This LCAF encoding can be used to send broadcast packets to all
   members of a subnet when an EID is away from its home subnet
   location.

   Multicast Info Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 9    |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Instance-ID                         Instance ID                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Reserved           | Source MaskLen| Group MaskLen |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |   Source/Subnet Address  ...  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |       Group Address  ...      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Reserved:  must be set to zero and ignored on receipt.

   Instance ID:  the low-order 24-bits 24 bits that can go into a LISP data
      header when the I-bit I bit is set.  See [RFC6830] for details.  The use
      of the Instance-ID Instance ID in this LCAF type Type is to associate a multicast
      forwarding entry for a given VPN.  The instance-ID Instance ID describes the
      VPN and is registered to the mapping database system as a 3-tuple
      of (Instance-ID, (Instance ID, S-prefix, G-prefix).

   Source MaskLen:  the mask length of the source prefix that follows.
      The length is the number of high-order mask bits set.

   Group MaskLen:  the mask length of the group prefix that follows.
      The length is the number of high-order mask bits set.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].  When a specific address
      family has a multicast address semantic, this field must be either
      a group address or a broadcast address.

   Source/Subnet Address:  is  the source address or prefix for encoding
      a an
      (S,G) multicast entry.

   Group Address:  is  the group address or group prefix for encoding (S,G)
      or (*,G) multicast entries.

   Usage: This encoding can be used in EID records EID-records in Map-Requests, Map-Request, Map-
   Replies, Map-Registers,
   Reply, Map-Register, and Map-Notify messages.  When LISP-DDT
   [I-D.ietf-lisp-ddt]
   [LISP-DDT] is used as the mapping system mechanism, extended EIDs are
   used in Map-Referral messages.

4.6.  Traffic Engineering using Using Re-encapsulating Tunnels

   For a given EID lookup into the mapping database, this LCAF can be
   returned to provide a list of locators in an explicit re-
   encapsulation path.  See [I-D.farinacci-lisp-te] [LISP-TE] for details.

   Explicit Locator Path (ELP) Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 10   |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Rsvd3         |L|P|S|           AFI = x             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Reencap Hop 1  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Rsvd3         |L|P|S|           AFI = x             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Reencap Hop k  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Rsvd3:  this field is reserved for future use and MUST be transmitted
      as 0 and ignored on receipt.

   Lookup bit (L):  this is the Lookup bit used to indicate to the user
      of the ELP to not to use this address for encapsulation but to look
      it up in the mapping database system to obtain an encapsulating
      RLOC address.

   RLOC-Probe

   RLOC Probe bit (P):  this is the RLOC-probe RLOC Probe bit which that means the
      Reencap Hop allows RLOC-probe messages to be sent to it.  When the
      R-bit
      R bit is set to 0, RLOC-probes must not be sent.  When a Reencap
      Hop is an anycast address then multiple physical Reencap Hops are
      using the same RLOC address.  In this case, RLOC-probes are not
      needed because when the closest RLOC address is not reachable reachable,
      another RLOC address can be reachable.

   Strict bit (S):  this is the strict bit Strict bit, which means the associated
      Reencap Hop is required to be used.  If this bit is 0, the
      reencapsulator re-
      encapsulator can skip this Reencap Hop and go to the next one in
      the list.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].  When a specific AFI has
      its own encoding of a multicast address, this field must be either
      a group address or a broadcast address.

   Usage: This encoding can be used in RLOC records RLOC-records in Map-Requests,
   Map-Replies, Map-Registers, Map-Request, Map-
   Reply, Map-Register, and Map-Notify messages.  This encoding does not
   need to be understood by the mapping system for mapping database lookups
   lookups, since this LCAF type Type is not a lookup key.

4.7.  Storing Security Data in the Mapping Database

   When a locator in a locator-set has a security key associated with
   it, this LCAF will be used to encode key material.  See
   [I-D.ietf-lisp-ddt] [LISP-DDT]
   for details.

   Security Key Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 11   |      Rsvd2    |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Key Count   |      Rsvd3    | Key Algorithm |   Rsvd4     |R|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Key Length          |       Key Material ...        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        ... Key Material                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |       Locator Address ...     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Key Count:  the Key Count field declares the number of Key sections
      included in this LCAF.  A key Key section is made up of "Key Length" Key Length and "Key Material"
      Key Material fields.

   Rsvd3:  this field is reserved for future use and MUST be transmitted
      as 0 and ignored on receipt.

   Key Algorithm:  the Key Algorithm field identifies the key's
      cryptographic algorithm and specifies the format of the Public Key
      field.  Refer to the [I-D.ietf-lisp-ddt] [LISP-DDT] and
      [I-D.ietf-lisp-crypto] [RFC8061] use cases for
      definitions of this field.

   Rsvd4:  this field is reserved for future use and MUST be transmitted
      as 0 and ignored on receipt.

   R bit:  this is the revoke Revoke bit and, if set, it specifies that this
      Key
      key is being Revoked. revoked.

   Key Length:  this field determines the length in bytes of the Key
      Material field.

   Key Material:  the Key Material field stores the key material.  The
      format of the key material stored depends on the Key Algorithm
      field.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].  This is the locator
      address that owns the encoded security key.

   Usage: This encoding can be used in EID EID-records or RLOC records RLOC-records in Map-
   Requests, Map-Replies, Map-Registers,
   Map-Request, Map-Reply, Map-Register, and Map-Notify messages.  When
   LISP-DDT [I-D.ietf-lisp-ddt] [LISP-DDT] is used as the mapping system mechanism, extended
   EIDs are used in Map-Referral messages.

4.8.  Source/Destination 2-Tuple Lookups

   When both a source and destination address of a flow need
   consideration for different locator-sets, this 2-tuple key is used in
   EID fields in LISP control messages.  When the Source/Dest key is
   registered to the mapping database, it can be encoded as a source-
   prefix and destination-prefix.  When the Source/Dest is used as a key
   for a mapping database lookup lookup, the source and destination come from a
   data packet.

   Source/Dest Key Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 12   |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Reserved           |   Source-ML   |    Dest-ML    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |         Source-Prefix ...     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = y          |     Destination-Prefix ...    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Reserved:  must be set to zero and ignore ignored on receipt.

   Source-ML:  the mask length of the source prefix that follows.  The
      length is the number of high-order mask bits set.

   Dest-ML:  the mask length of the destination prefix that follows.
      The length is the number of high-order mask bits set.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   AFI = y:  y can be any AFI value from [AFI]. [AFN].  When a specific address
      family has a multicast address semantic, this field must be either
      a group address or a broadcast address.

   Usage: This encoding can be used in EID records EID-records in Map-Requests, Map-Request, Map-
   Replies, Map-Registers,
   Reply, Map-Register, and Map-Notify messages.  When LISP-DDT
   [I-D.ietf-lisp-ddt]
   [LISP-DDT] is used as the mapping system mechanism, extended EIDs are
   used in Map-Referral messages.  Refer to
   [I-D.farinacci-lisp-te] [LISP-TE] for usage details
   of this LCAF type. Type.

4.9.  Replication List Entries for Multicast Forwarding

   The Replication List Entry LCAF type Type is an encoding for a locator
   being used for unicast replication according to the specification in
   [I-D.coras-lisp-re].
   [LISP-RE].  This locator encoding is pointed to by a Multicast Info
   LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs)
   that are participating in an overlay distribution tree.  Each RTR
   will register its locator address and its configured level in the
   distribution tree.

   Replication List Entry Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 13   |    Rsvd2      |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Rsvd3            |     Rsvd4     |  Level Value  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |           RTR/ETR #1 ...      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Rsvd3            |     Rsvd4     |  Level Value  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |           RTR/ETR  #n ...     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Rsvd3/Rsvd4:  must be set to zero and ignore ignored on receipt.

   Level Value:  this value is associated with the level within the
      overlay distribution tree hierarchy where the RTR resides.  The
      level numbers are ordered from lowest value being close to the ITR
      (meaning that ITRs replicate to level-0 RTRs) and higher levels
      are further downstream on the distribution tree closer to ETRs of
      multicast receiver sites.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].  A specific AFI has its
      own encoding of either a unicast or multicast locator address.
      For efficiency reasons, all RTR/ETR entries for the same level
      should be combined together by a Map-Server to avoid searching through the
      entire multi-level multilevel list of locator entries in a Map-
      Reply Map-Reply message.

   Usage: This encoding can be used in RLOC records RLOC-records in Map-Requests,
   Map-Replies, Map-Registers, Map-Request, Map-
   Reply, Map-Register, and Map-Notify messages.

4.10.  Applications for AFI List LCAF Type

4.10.1.  Binding IPv4 and IPv6 Addresses

   When header translation between IPv4 and IPv6 is desirable desirable, a LISP
   Canonical Address can use the AFI List LCAF Type to carry a variable
   number of AFIs in one LCAF AFI.

   Address Binding LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 1    |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            AFI = 1            |       IPv4 Address ...        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     ...  IPv4 Address         |            AFI = 2            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          IPv6 Address ...                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ...  IPv6 Address  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ...  IPv6 Address  ...                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     ...  IPv6 Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   This type of address format can be included in a Map-Request when the
   address is being used as an EID, but the LISP Mapping Database System
   lookup destination can use only the IPv4 address.  This is so a
   Mapping Database Service Transport System, such as LISP-ALT
   [RFC6836], can use the Map-Request destination address to route the
   control message to the desired LISP site.

   Usage: This encoding can be used in EID EID-records or RLOC records RLOC-records in Map-
   Requests, Map-Replies, Map-Registers,
   Map-Request, Map-Reply, Map-Register, and Map-Notify messages.  See
   the other subsections in this section for specific use cases.

4.10.2.  Layer-2  Layer 2 VPNs

   When MAC Media Access Control (MAC) addresses are stored in the LISP
   Mapping Database System, the AFI List LCAF Type can be used to carry
   AFI 6.

   MAC Address LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 1    |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             AFI = 6           |    Layer-2    Layer 2 MAC Address  ...   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    ... Layer-2 Layer 2 MAC Address                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   This address format can be used to connect layer-2 Layer 2 domains together
   using LISP over an IPv4 or IPv6 core network to create a layer-2 Layer 2 VPN.
   In this use case, a MAC address is being used as an EID, and the
   locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, RLOC, or
   even another MAC address being used as an RLOC.  See
   [I-D.portoles-lisp-eid-mobility] [EID-MOBILITY]
   for how layer-2 Layer 2 VPNs operate when doing EID mobility.

   Care should be taken to protect privacy against the adverse use of a
   Layer-2
   Layer 2 MAC Address address by ensuring policy controls are used during EID
   registrations that use AFI=6 encodings in RLOC-records.  Refer to the
   use case
   use-case documents for additional information.

4.10.3.  ASCII Names in the Mapping Database

   If DNS names [RFC1035] or URIs [RFC3986] are stored in the LISP
   Mapping Database System, the AFI List LCAF Type can be used to carry
   an ASCII string.

   ASCII LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 1    |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             AFI = 17          |      DNS Name or URI  ...     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Length:  length in bytes starting and including the byte after this
      Length field.

   An example for using DNS names is when an ETR registers a mapping
   with an EID-record encoded as (AFI=1, 10.0.0.0/8) with a an RLOC-record
   (AFI=17, "router.abc.com").

4.10.4.  Using Recursive LISP Canonical Address Encodings

   When any combination of above is desirable, the AFI List LCAF Type
   value can be used to carry within the LCAF AFI another LCAF AFI (for
   example, Application Specific Application-Specific Data see in Section 5.1. 5.1).

   Recursive LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 1    |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 4    |     Rsvd2     |            Length2            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   IP TOS, IPv6 TC or Flow Label               |    Protocol   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Local Port (lower-range)   |    Local Port (upper-range)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Remote Port (lower-range)   |   Remote Port (upper-range)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            AFI = 1            |       IPv4 Address ...        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     ...  IPv4 Address         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Length2:  length in bytes starting and including the byte after this
      Length2 field.

   This format could be used by a Mapping Database Service Transport
   System, such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is
   used as an EID and placed in the Map-Request destination address by
   the sending LISP system.  The ALT system can deliver the Map-Request
   to the LISP destination site independent of the Application Data LCAF
   Type AFI payload values.  When this AFI is processed by the
   destination LISP site, it can return different locator-sets based on
   the type of application or level of service that is being requested.

4.10.5.  Compatibility Mode Use Case

   A LISP system should use the AFI List LCAF Type format when sending
   to LISP systems that do not support a particular LCAF Type used to
   encode locators.  This allows the receiving system to be able to
   parse a locator address for encapsulation purposes.  The list of AFIs
   in an AFI List LCAF Type has no semantic ordering and a receiver
   should parse each AFI element no matter what the ordering.

   Compatibility Mode Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 1    |     Rsvd2     |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 5    |     Rsvd2     |           Length2             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |N|     Latitude Degrees        |    Minutes    |    Seconds    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |E|     Longitude Degrees       |    Minutes    |    Seconds    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Altitude                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = 0          |           AFI = 1             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          IPv4 Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Length2:  length in bytes starting and including the byte after this
      Length2 field.

   If a system does not recognized the Geo Coordinate Geo-Coordinates LCAF Type that is
   accompanying a locator address, an encoder can include the Geo
   Coordinate Geo-
   Coordinates LCAF Type embedded in a an AFI List LCAF Type where the AFI
   in the Geo Coordinate Geo-Coordinates LCAF Type is set to 0 and the AFI encoded next
   in the list is encoded with a valid AFI value to identify the locator
   address.

   A LISP system is required to support the AFI List LCAF Type to use
   this procedure.  It would skip over 10 bytes of the Geo Coordinate Geo-Coordinates
   LCAF Type to get to the locator address encoding (an IPv4 locator
   address).  A LISP system that does support the Geo Coordinate Geo-Coordinates LCAF
   Type can support parsing the locator address within the Geo
   Coordinate Geo-
   Coordinates LCAF Type encoding or in the locator encoding that
   follows in the AFI List LCAF. LCAF Type.

5.  Experimental LISP Canonical Address Applications

   The following sections describe experimental LCAF encodings.  These
   LCAF Types are not approved (registered (i.e., not registered with IANA).  The
   inclusion of these encodings in this document are is in support of
   further study and experimentation to determine whether these
   encodings are functional, if there is a demand for these use cases,
   and to better understand deployment considerations.  As noted
   previously, these LCAF Types are restricted to cautious use in self-contained self-
   contained environments in support of the corresponding use-case
   documents.

5.1.  Convey Application Specific Application-Specific Data

   When a locator-set needs to be conveyed based on the type of
   application or the Per-Hop Behavior (PHB) of a packet, the
   Application Data LCAF Type can be used.

   Application Data LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 4    |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       IP TOS, IPv6 TC, or Flow Label          |    Protocol   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Local Port (lower-range)   |    Local Port (upper-range)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Remote Port (lower-range)   |   Remote Port (upper-range)   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |         Address  ...          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Length:  length in bytes starting and including the byte after this
      Length field.

   IP TOS, IPv6 TC, or Flow Label:  this field stores the 8-bit IPv4 TOS
      field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow
      Label used in an IPv6 header.

   Local Port/Remote Port Ranges:  these fields are from the TCP, UDP,
      or SCTP Stream Control Transmission Protocol (SCTP) transport header.
      A range can be specified by using a lower value and an upper
      value.  When a single port is encoded, the lower and upper value
      fields are the same.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   The Application Data Canonical Address LCAF Type is used for an EID encoding when an
   ITR wants a locator-set for a specific application.  When used for an
   RLOC encoding, the ETR is supplying a locator-set for each specific
   application is has been configured to advertise.

   Usage: This encoding can be used in EID records EID-records in Map-Requests, Map-Request, Map-
   Replies, Map-Registers,
   Reply, Map-Register, and Map-Notify messages.  When LISP-DDT
   [I-D.ietf-lisp-ddt]
   [LISP-DDT] is used as the mapping system mechanism, extended EIDs are
   used in Map-Referral messages.  This LCAF type Type is used as a lookup
   key to the mapping system that can return a longest-match or
   exact-match exact-
   match entry.

5.2.  Generic Database Mapping Lookups

   When the LISP Mapping Database system System holds information accessed by a
   generic formatted key (where the key is not the usual IPv4 or IPv6
   address), an opaque key may be desirable.

   Opaque Key LISP Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 6    |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Key Field Num |      Key Wildcard Fields      |   Key . . .   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       . . . Key                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Length:  length in bytes starting and including the byte after this
      Length field.

   Key Field Num:  the value of this field is the number of "Key" sub-
      fields minus 1, the "Key" Key field can be broken up into.  So  So, if this
      field has a value of 0, there is 1 one sub-field in the "Key".  The
      width of the sub-fields are fixed length.  So  So, for a key size of 8
      bytes, with a Key Field Num of 3, allows 4 four sub-fields of 2 bytes each
      in length. length are allowed.  Allowing for a reasonable number of 16
      sub-field separators, valid values range from 0 to 15.

   Key Wildcard Fields:  describes which fields in the key are not used
      as part of the key lookup.  This wildcard encoding is a bitfield.
      Each bit is a don't-care bit for a corresponding field in the key.
      Bit 0 (the low-order bit) in this bitfield corresponds the first
      field, the low-order field in the key, bit 1 the second field, and
      so on.  When a bit is set in the bitfield bitfield, it is a don't-care bit
      and should not be considered as part of the database lookup.  When
      the entire 16-bits is 16 bits are set to 0, then all bits of the key are used
      for the database lookup.

   Key:  the variable length key used to do a LISP Database Mapping Database
      System lookup.  The length of the key is the value n (as shown
      above).

   Usage: This is an experimental type Type where the usage has not yet been
   defined yet.
   defined.

5.3.  PETR Admission Control Functionality

   When a public PETR Proxy Egress Tunnel Router (PETR) device wants to
   verify who is encapsulating to it, it can check for a specific nonce
   value in the LISP encapsulated LISP-encapsulated packet.  To convey the nonce to
   admitted ITRs or PITRs, this LCAF is used in a Map-Register or Map-Reply Map-
   Reply locator-record.

   Nonce Locator Canonical Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 8    |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Reserved    |                  Nonce                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |         Address  ...          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Reserved:  must be set to zero and ignore ignored on receipt.

   Nonce:  this is  a nonce value returned by an ETR in a Map-Reply
      locator-record locator-
      record to be used by an ITR or PITR when encapsulating to the
      locator address encoded in the AFI field of this LCAF type. Type.  This
      nonce value is inserted in the nonce field in the LISP header
      encapsulation.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].

   Usage: This is an experimental type Type where the usage has not yet been
   defined yet.
   defined.

5.4.  Data Model Encoding

   This type Type allows a JSON data model to be encoded either as either an EID or
   an RLOC.

   JSON Data Model Type Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 14   |    Rsvd2    |B|            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           JSON length         | JSON binary/text encoding ... |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |       Optional Address ...    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Length:  length in bytes starting and including the byte after this
      Length field.

   B bit:  indicates that the JSON field is binary encoded according to
      [JSON-BINARY] when the bit is set to 1.  Otherwise  Otherwise, the encoding
      is based on text encoding according to [RFC7159].

   JSON length:  length in octets of the following 'JSON JSON binary/text
      encoding'
      encoding field.

   JSON binary/text encoding field: encoding:  a variable length variable-length field that contains
      either binary or text encodings.

   AFI = x:  x can be any AFI value from [AFI]. [AFN].  A specific AFI has its
      own encoding of either a unicast or multicast locator address.
      All RTR/ETR entries for the same level should be combined together by a
      Map-Server to avoid searching through the entire multi-level multilevel list
      of locator entries in a Map-Reply message.

   Usage: This is an experimental type Type where the usage has not yet been
   defined yet.
   defined.  An example mapping is an EID-record encoded as a
   distinguished-name "cpe-rotuer" "cpe-router" and a an RLOC-record encoded as a JSON
   string "{ "router-address" : "1.1.1.1", "router-mask" : "8" }".

5.5.  Encoding Key/Value Address Pairs

   The Key/Value pair is, for example, useful for attaching attributes
   to other elements of LISP packets, such as EIDs or RLOCs.  When
   attaching attributes to EIDs or RLOCs, it's necessary to distinguish
   between the element that should be used as EID or RLOC, and hence RLOC and, hence, as
   the key for lookups, lookups and additional attributes.  This is especially
   the case when the difference cannot be determined from the types Types of
   the elements, such as when two IP addresses are being used.

   Key/Value Address Pair Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 15   |     Rsvd2     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |       Address as Key ...      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = y          |       Address as Value ...    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Length:  length in bytes starting and including the byte after this
      Length field.

   AFI = x:  x is the "Address as Key" AFI that can have any value from
      [AFI].
      [AFN].  A specific AFI has its own encoding of either a unicast or
      a multicast locator address.  All RTR/ETR entries for the same
      level should be combined together by a Map-Server to avoid searching
      through the entire multi-level multilevel list of locator entries in a Map-
      Reply message.

   Address as Key:  this  AFI-encoded address that will be attached with the
      attributes encoded in "Address as Value" Value", which follows this
      field.

   AFI = y:  y is the "Address of Value" AFI that can have any value
      from [AFI]. [AFN].  A specific AFI has its own encoding of either a
      unicast or a multicast locator address.  All RTR/ETR entries for
      the same level should be combined together by a Map-Server to avoid
      searching through the entire multi-level multilevel list of locator entries in
      a Map-Reply message.

   Address as Value:  this  AFI-encoded address that will be the attribute
      address that goes along with "Address as Key" which precedes this
      field.

   Usage: This is an experimental type Type where the usage has not yet been
   defined yet.
   defined.

5.6.  Multiple Data-Planes

   Overlays are becoming popular in many parts of the network network, which have has
   created an explosion of data-plane encapsulation headers.  Since the
   LISP mapping system can hold many types of address formats, it can
   represent the encapsulation format supported by an RLOC as well.
   When an encapsulator receives a Map-Reply with an Encapsulation
   Format LCAF Type encoded in an RLOC-record, it can select an
   encapsulation format, that it can support, from any of the
   encapsulation protocols which that have the bit set to 1 in this LCAF
   type. Type.

   Encapsulation Format Address Format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           AFI = 16387         |     Rsvd1     |     Flags     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type = 16   |     Rsvd2     |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Reserved-for-Future-Encapsulations       |U|G|N|v|V|l|L|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              AFI = x          |          Address ...          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Length:  length in bytes starting and including the byte after this
      Length field.

   Reserved-for-Future-Encapsulations:  must be set to zero and ignored
      on receipt.  This field will get bits allocated to future
      encapsulations, as they are created.

   L:

   U: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept layer 3 LISP encapsulation Generic UDP Encapsulation (GUE) using destination UDP
      port
      4341 [RFC6830].

   l: 6080 [GUE].

   G: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept layer 2 LISP Geneve encapsulation using destination UDP port
      8472 [I-D.smith-lisp-layer2].

   V: 6081
      [GENEVE].

   N: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept VXLAN encapsulation NV-GRE (Network Virtualization - Generic Routing
      Encapsulation) using destination UDP port 4789
      [RFC7348]. IPv4/IPv6 protocol number 47 [RFC7637].

   v: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept VXLAN-GPE (Generic Protocol Extension) encapsulation
      using destination UDP port 4790
      [I-D.quinn-vxlan-gpe].

   N: [GPE-VXLAN].

   V: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept NV-GRE Virtual eXtensible Local Area Network (VXLAN)
      encapsulation using IPv4/ IPv6 protocol number
      47 [RFC7637].

   G: destination UDP port 4789 [RFC7348].

   l: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept GENEVE Layer 2 LISP encapsulation using destination UDP port 6081
      [I-D.gross-geneve].

   U:
      8472 [LISP-L2].

   L: The RLOCs listed in the AFI-encoded addresses in the next longword
      can accept GUE Layer 3 LISP encapsulation using destination UDP port TBD
      [I-D.herbert-gue].
      4341 [RFC6830].

   Usage: This encoding can be used in RLOC records RLOC-records in Map-Requests,
   Map-Replies, Map-Registers, Map-Request, Map-
   Reply, Map-Register, and Map-Notify messages.

6.  Security Considerations

   This document is classified as Experimental.  The LCAF encodings
   defined in this document are intended to be used with their
   corresponding use cases and in self-contained environments.  Users
   should carefully consider how the [I-D.ietf-lisp-sec] [LISP-SEC] threat model applies to
   their particular use case.

   The use of the Geo-Coordinates LCAF Type may raise physical privacy
   issues.  Care should be taken when configuring the mapping system to
   use specific policy parameters so geo-location geolocation information is not
   returned gratuitously.  It is recommended that any documents that
   specify the use of the Geo-Coordinates LCAF Type should consider the
   applicability of the BCP160 RFC 6280 (BCP 160) [RFC6280] for location-based
   privacy protection.

   Additional privacy concerns have arisen since publication of BCP160, BCP 160,
   and future work on LISP should examine potential threats beyond
   BCP160 BCP
   160 and address improving privacy and security for LISP deployments.

7.  IANA Considerations

   This document defines a canonical address format encoding used in
   LISP control messages and in the encoding of lookup keys for the LISP
   Mapping Database System.  Such an address format is based on a fixed
   AFI (16387) and a LISP LCAF Type field.

   The LISP LCAF Type field is an 8-bit field specific to the LISP
   Canonical Address formatted encodings, for which Format encodings.  IANA is to create
   and maintain has created a new registry
   (as outlined in [RFC5226]) entitled titled "LISP
   LCAF Type". Canonical Address Format
   (LCAF) Types".  Initial values for the LISP LCAF Type "LISP Canonical Address Format
   (LCAF) Types" registry are given below.  Future assignments are to be
   made based on specification
   required. using the Specification Required policy [RFC5226].  Assignments
   consist of a LISP LCAF Type name Name and its associated value:

           +-------+------------------------------+------------+

              +-------+------------------------+-----------+
              | Value | LISP LCAF Type Name    | Definition Reference |
           +-------+------------------------------+------------+
              +-------+------------------------+-----------+
              | 0     | Null Body Type              | Section 3 |
              | 1     | AFI List Type               | Section 3 |
              | 2     | Instance ID Type            | Section 3 |
              | 3     | AS Number Type              | Section 3 |
              | 5     | Geo Coordinates Type Geo-Coordinates        | Section 3 |
              | 7     | NAT-Traversal Type          | Section 3 |
              | 9     | Multicast Info Type         | Section 3 |
              | 10    | Explicit Locator Path Type  | Section 3 |
              | 11    | Security Key Type           | Section 3 |
              | 12    | Source/Dest Key Type        | Section 3 |
              | 13    | Replication List Entry Type | Section 3 |
           +-------+------------------------------+------------+
              +-------+------------------------+-----------+

                      Table 1: LISP LCAF Type Initial Values in the
           "LISP Canonical Address Format (LCAF) Types" Registry

8.  References

8.1.  Normative References

   [BCP160]   "An Architecture for Location and Location Privacy in
              Internet Applications", Best Current Practices
              https://www.rfc-editor.org/bcp/bcp160.txt, July 2011.

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <http://www.rfc-editor.org/info/rfc1035>.

   [RFC1918]  Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
              and E. Lear, "Address Allocation for Private Internets",
              BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
              <http://www.rfc-editor.org/info/rfc1918>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC3232]  Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
              by an On-line Database", RFC 3232, DOI 10.17487/RFC3232,
              January 2002, <http://www.rfc-editor.org/info/rfc3232>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <http://www.rfc-editor.org/info/rfc3986>.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC6280]  Barnes, R., Lepinski, M., Cooper, A., Morris, J.,
              Tschofenig, H., and H. Schulzrinne, "An Architecture for
              Location and Location Privacy in Internet Applications",
              BCP 160, RFC 6280, DOI 10.17487/RFC6280, July 2011,
              <http://www.rfc-editor.org/info/rfc6280>.

   [RFC6830]  Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
              Locator/ID Separation Protocol (LISP)", RFC 6830,
              DOI 10.17487/RFC6830, January 2013,
              <http://www.rfc-editor.org/info/rfc6830>.

   [RFC6836]  Fuller, V., Farinacci, D., Meyer, D., and D. Lewis,
              "Locator/ID Separation Protocol Alternative Logical
              Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836,
              January 2013, <http://www.rfc-editor.org/info/rfc6836>.

   [RFC7159]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
              2014, <http://www.rfc-editor.org/info/rfc7159>.

   [RFC7348]  Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
              L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
              eXtensible Local Area Network (VXLAN): A Framework for
              Overlaying Virtualized Layer 2 Networks over Layer 3
              Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
              <http://www.rfc-editor.org/info/rfc7348>.

   [RFC7637]  Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
              Virtualization Using Generic Routing Encapsulation",
              RFC 7637, DOI 10.17487/RFC7637, September 2015,
              <http://www.rfc-editor.org/info/rfc7637>.

8.2.  Informative References

   [AFI]      IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY
              NUMBERS http://www.iana.org/assignments/address-family-
              numbers/address-family-numbers.xhtml?, Febuary 2007.

   [I-D.coras-lisp-re]
              Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J.,
              Maino, F., and D. Farinacci, "LISP Replication
              Engineering", draft-coras-lisp-re-08 (work in progress),
              November 2015.

   [I-D.ermagan-lisp-nat-traversal]
              Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino,
              F., and C. White, "NAT traversal for LISP", draft-ermagan-
              lisp-nat-traversal-11 (work in progress), August 2016.

   [I-D.farinacci-lisp-te]
              Farinacci, D., Kowal, M., and P. Lahiri, "LISP Traffic
              Engineering Use-Cases", draft-farinacci-lisp-te-11 (work
              in progress), September 2016.

   [I-D.gross-geneve]
              Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I.,
              Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve:
              Generic Network Virtualization Encapsulation", draft-
              gross-geneve-02 (work in progress), October 2014.

   [I-D.herbert-gue]
              Herbert, T., Yong, L., and O. Zia, "Generic UDP
              Encapsulation", draft-herbert-gue-03 (work in progress),
              March 2015.

   [I-D.ietf-lisp-crypto]
              Farinacci, D. and B. Weis, "LISP Data-Plane
              Confidentiality", draft-ietf-lisp-crypto-10 (work in
              progress), October 2016.

   [I-D.ietf-lisp-ddt] Internet Applications",
              BCP 160, RFC 6280, DOI 10.17487/RFC6280, July 2011,
              <http://www.rfc-editor.org/info/rfc6280>.

   [RFC6830]  Farinacci, D., Fuller, V., Lewis, Meyer, D., Ermagan, V., Jain, A., and A.
              Smirnov, "LISP Delegated Database Tree", draft-ietf-lisp-
              ddt-08 (work in progress), September 2016.

   [I-D.ietf-lisp-sec]
              Maino, F., Ermagan, V., Cabellos-Aparicio, A., and D.
              Saucez, "LISP-Security (LISP-SEC)", draft-ietf-lisp-sec-12
              (work in progress), November 2016.

   [I-D.portoles-lisp-eid-mobility]
              Portoles-Comeras, M., Ashtaputre, V., Moreno, Lewis, "The
              Locator/ID Separation Protocol (LISP)", RFC 6830,
              DOI 10.17487/RFC6830, January 2013,
              <http://www.rfc-editor.org/info/rfc6830>.

   [RFC6836]  Fuller, V., Maino,
              F., and D. Farinacci, "LISP L2/L3 EID Mobility Using a
              Unified Control Plane", draft-portoles-lisp-eid-
              mobility-01 (work in progress), October 2016.

   [I-D.quinn-vxlan-gpe]
              Quinn, P., Manur, R., Kreeger, L., Lewis, D., Maino, F.,
              Smith, M., Agarwal, P., Yong, L., Xu, X., Elzur, U., Garg,
              P., Meyer, D., and D. Melman, "Generic Lewis,
              "Locator/ID Separation Protocol Extension for VXLAN",
              draft-quinn-vxlan-gpe-04 (work in progress), February
              2015.

   [I-D.smith-lisp-layer2]
              Smith, Alternative Logical
              Topology (LISP+ALT)", RFC 6836, DOI 10.17487/RFC6836,
              January 2013, <http://www.rfc-editor.org/info/rfc6836>.

   [RFC7159]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
              2014, <http://www.rfc-editor.org/info/rfc7159>.

   [RFC7348]  Mahalingam, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2
              (L2) LISP Encapsulation Format", draft-smith-lisp-
              layer2-03 (work in progress), September 2013.

   [JSON-BINARY]
              "Universal Binary JSON Specification",
              URL http://ubjson.org.

   [WGS-84]   Geodesy and Geophysics Department, DoD., "World Geodetic
              System 1984", NIMA TR8350.2, January 2000, <http://earth-
              info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf>.

Appendix A.  Acknowledgments

   The authors would like to thank Vince Fuller, Gregg Schudel, Jesper
   Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for
   their technical and editorial commentary.

   The authors would like to thank Victor Moreno for discussions that
   lead to the definition of the Multicast Info LCAF type.

   The authors would like to thank Parantap Lahiri and Michael Kowal for
   discussions that lead to the definition of the Explicit Locator Path
   (ELP) LCAF type.

   The authors would like to thank Fabio Maino Duda, K., Agarwal, P., Kreeger,
              L., Sridhar, T., Bursell, M., and Vina Ermagan C. Wright, "Virtual
              eXtensible Local Area Network (VXLAN): A Framework for
   discussions that lead to the definition of the Security Key LCAF
   type.

   The authors would like to thank Albert Cabellos-Aparicio
              Overlaying Virtualized Layer 2 Networks over Layer 3
              Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
              <http://www.rfc-editor.org/info/rfc7348>.

   [RFC7637]  Garg, P., Ed. and Florin
   Coras for discussions that lead to the definition of the Replication
   List Entry LCAF type.

   Thanks goes to Michiel Blokzijl Y. Wang, Ed., "NVGRE: Network
              Virtualization Using Generic Routing Encapsulation",
              RFC 7637, DOI 10.17487/RFC7637, September 2015,
              <http://www.rfc-editor.org/info/rfc7637>.

8.2.  Informative References

   [AFN]      IANA, "Address Family Numbers",
              <http://www.iana.org/assignments/address-family-numbers/>.

   [EID-MOBILITY]
              Portoles-Comeras, M., Ashtaputre, V., Moreno, V., Maino,
              F., and Alberto Rodriguez-Natal for
   suggesting new LCAF types.

   Thanks also goes to Terry Manderson for assistance obtaining D. Farinacci, "LISP L2/L3 EID Mobility Using a LISP
   AFI value from IANA.

   And finally, the authors thank Stephen Farrell (Security Area
   Director) and Deborah Brungard (Routing Area Director) for their
   suggested text to get the document through IESG review.

Appendix B.  Document Change Log

   [RFC Editor: Please delete this section on publication as RFC.]

B.1.  Changes to draft-ietf-lisp-lcaf-22.txt

   o  Submitted November 2016.

   o  Take into account RTG area director Deborah Brungard's comments
      suggestions.

   o  The changes put in shoudl clear Stephen's DISCUSS comments on
      RLOC-record ordering and privacy concerns with the Geo-Coordinate
      LCAF type.

B.2.  Changes to draft-ietf-lisp-lcaf-21.txt

   o  Submitted November 2016.

   o  Reflect Alexey's DISCUSS comments.

   o  Add text to intro section that says the details for any LCAF type
      can be found
              Unified Control Plane", Work in other use-case documents.

   o  Provide general examples for JSON and DNS LCAF types.

B.3.  Changes to draft-ietf-lisp-lcaf-20.txt

   o  Submitted Progress,
              draft-portoles-lisp-eid-mobility-01, October 2016.

   o  Put in references to DNS names

   [GENEVE]   Gross, J., Ganga, I., and URIs per Alexey's comment.

B.4.  Changes to draft-ietf-lisp-lcaf-19.txt

   o  Submitted October 2016.

   o  Make it more clear that any use-case documents that use the Geo-
      Coordinates LCAF type should discuss RFC6280 compliance.

B.5.  Changes to draft-ietf-lisp-lcaf-18.txt

   o  Submitted October 2016 after October 13th telechat.

   o  Addressed comments from Ben Campbell, Jari Arrko, Stephen Farrel,
      Peter Yee, Dale Worley, Mirja Kuehlewind, and Suresh Krishnan.

B.6.  Changes to draft-ietf-lisp-lcaf-17.txt

   o  Submitted October 2016.

   o  Addressed comments from Gen-ART reviewer Peter Yee.

   o  Addressed IESG last-call comments from Suresh Krishnan.

B.7.  Changes to draft-ietf-lisp-lcaf-16.txt

   o  Submitted October 2016.

   o  Addressed comments from Security Directorate reviewer David
      Mandelberg.

B.8.  Changes to draft-ietf-lisp-lcaf-15.txt

   o  Submitted T. Sridhar, "Geneve: Generic
              Network Virtualization Encapsulation", Work in Progress,
              draft-ietf-nvo3-geneve-03, September 2016.

   o  Addressed comments from Routing Directorate reviewer Stig Venass.

B.9.  Changes to draft-ietf-lisp-lcaf-14.txt

   o  Submitted July 2016.

   o  Fix IDnits errors

   [GPE-VXLAN]
              Maino, F., Kreeger, L., and comments from Luigi Iannone, document
      shepherd.

B.10.  Changes to draft-ietf-lisp-lcaf-13.txt

   o  Submitted May 2016.

   o  Explain the Instance-ID LCAF Type is 32-bits U. Elzur, "Generic Protocol
              Extension for VXLAN", Work in length Progress,
              draft-ietf-nvo3-vxlan-gpe-03, October 2016.

   [GUE]      Herbert, T., Yong, L., and the
      Instance-ID field O. Zia, "Generic UDP
              Encapsulation", Work in the LISP encapsulation header is 24-bits.

B.11.  Changes to draft-ietf-lisp-lcaf-12.txt

   o  Submitted March Progress, draft-ietf-nvo3-gue-05,
              October 2016.

   o  Updated references

   [JSON-BINARY]
              "Universal Binary JSON Specification",
              <http://ubjson.org>.

   [LISP-DDT]
              Fuller, V., Lewis, D., Ermagan, V., Jain, A., and document timer.

   o  Removed the R, J, A.
              Smirnov, "LISP Delegated Database Tree", Work in
              Progress, draft-ietf-lisp-ddt-09, January 2017.

   [LISP-L2]  Smith, M., Dutt, D., Farinacci, D., and L bits from the Multicast Info Type LCAF
      since working group decided to not go forward with draft-
      farinacci-lisp-mr-signaling-03.txt F. Maino, "Layer 2
              (L2) LISP Encapsulation Format", Work in favor of draft- ietf-lisp-
      signal-free-00.txt.

B.12.  Changes to draft-ietf-lisp-lcaf-11.txt

   o  Submitted Progress,
              draft-smith-lisp-layer2-03, September 2015.

   o  Reflecting comments from Prague LISP working group.

   o  Readying document for a LISP LCAF registry, RFC publication, 2013.

   [LISP-RE]  Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J.,
              Maino, F., and
      for new use cases that will be defined D. Farinacci, "LISP Replication
              Engineering", Work in the new charter.

B.13.  Changes to draft-ietf-lisp-lcaf-10.txt

   o  Submitted June 2015.

   o  Fix coauthor Job's contact information.

B.14.  Changes to draft-ietf-lisp-lcaf-09.txt

   o  Submitted June Progress,
              draft-coras-lisp-re-08, November 2015.

   o  Fix IANA Considerations section to request a registry to allocate

   [LISP-SEC]
              Maino, F., Ermagan, V., Cabellos, A., and track LCAF Type values.

B.15.  Changes to draft-ietf-lisp-lcaf-08.txt

   o  Submitted April 2015.

   o  Comment from Florin.  The Application Data Type length field has a
      typo.  The field should be labeled "12 + n" D. Saucez,
              "LISP-Security (LISP-SEC)", Work in Progress,
              draft-ietf-lisp-sec-12, November 2016.

   [LISP-TE]  Farinacci, D., Kowal, M., and not "8 + n".

   o  Fix length fields P. Lahiri, "LISP Traffic
              Engineering Use-Cases", Work in the sections titled "Using Recursive LISP
      Canonical Address Encodings", "Generic Database Mapping Lookups", Progress,
              draft-farinacci-lisp-te-11, September 2016.

   [NAT-LISP]
              Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino,
              F., and "Data Model Encoding".

B.16.  Changes to draft-ietf-lisp-lcaf-07.txt

   o  Submitted December 2014.

   o  Add a new LCAF Type called "Encapsulation Format" so decapsulating
      xTRs can inform encapsulating xTRs what data-plane encapsulations
      they support.

B.17.  Changes to draft-ietf-lisp-lcaf-06.txt

   o  Submitted October 2014.

   o  Make it clear how sorted RLOC records are done when LCAFs are used
      as the RLOC record.

B.18.  Changes to draft-ietf-lisp-lcaf-05.txt

   o  Submitted May 2014.

   o  Add a length field of the JSON payload that can be used C. White, "NAT traversal for either
      binary or text encoding LISP", Work in
              Progress, draft-ermagan-lisp-nat-traversal-11, August
              2016.

   [RFC8061]  Farinacci, D. and B. Weis, "Locator/ID Separation Protocol
              (LISP) Data-Plane Confidentiality", RFC 8061,
              DOI 10.17487/RFC8061, February 2017,
              <http://www.rfc-editor.org/info/rfc8061>.

   [WGS-84]   National Imagery and Mapping Agency, "Department of JSON data.

B.19.  Changes to draft-ietf-lisp-lcaf-04.txt

   o  Submitted
              Defense World Geodetic System 1984", NIMA TR8350.2,
              January 2014.

   o  Agreement among ELP implementors 2000, <http://earth-
              info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf>.

Acknowledgments

   The authors would like to have the AFI 16-bit field
      adjacent thank Vince Fuller, Gregg Schudel, Jesper
   Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for
   their technical and editorial commentary.

   The authors would like to thank Victor Moreno for discussions that
   led to the address.  This will make definition of the encoding consistent
      with all other Multicast Info LCAF type address encodings.

B.20.  Changes Type.

   The authors would like to draft-ietf-lisp-lcaf-03.txt

   o  Submitted September 2013.

   o  Updated references and author's affilations.

   o  Added Instance-ID thank Parantap Lahiri and Michael Kowal for
   discussions that led to the Multicast Info Type so there is relative
      ease in parsing (S,G) entries within a VPN.

   o  Add port range encodings to definition of the Application Data Explicit Locator Path
   (ELP) LCAF Type.

   o  Add a new JSON

   The authors would like to thank Fabio Maino and Vina Ermagan for
   discussions that led to the definition of the Security Key LCAF Type.

   o  Add Address Key/Value LCAF Type to allow attributes

   The authors would like to be attached thank Albert Cabellos-Aparicio and Florin
   Coras for discussions that led to an address.

B.21.  Changes the definition of the Replication
   List Entry LCAF Type.

   Thanks goes to draft-ietf-lisp-lcaf-02.txt

   o  Submitted March 2013.

   o  Added Michiel Blokzijl and Alberto Rodriguez-Natal for
   suggesting new LCAF Type "Replication List Entry" to support LISP
      replication engineering use cases.

   o  Changed references Types.

   Thanks also goes to new Terry Manderson for assistance obtaining a LISP RFCs.

B.22.  Changes to draft-ietf-lisp-lcaf-01.txt

   o  Submitted January 2013.

   o  Change longitude range
   AFI value from 0-90 to 0-180 in section 4.4.

   o  Added reference to WGS-84 in section 4.4.

B.23.  Changes IANA.

   And finally, the authors thank Stephen Farrell (Security Area
   Director) and Deborah Brungard (Routing Area Director) for their
   suggested text to draft-ietf-lisp-lcaf-00.txt

   o  Posted first working group draft August 2012.

   o  This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. get the document through IESG review.

Authors' Addresses

   Dino Farinacci
   lispers.net
   San Jose, CA
   USA
   United States of America

   Email: farinacci@gmail.com

   Dave Meyer
   Brocade
   San Jose, CA
   USA
   United States of America

   Email: dmm@1-4-5.net

   Job Snijders
   NTT Communications
   Theodorus Majofskistraat 100
   Amsterdam  1065 SZ
   The Netherlands

   Email: job@ntt.net