Network Working GroupInternet Engineering Task Force (IETF) X. LiuInternet-DraftRequest for Comments: 8294 JabilIntended status:Category: Standards Track Y. QuExpires: April 16, 2018ISSN: 2070-1721 Futurewei Technologies, Inc. A. Lindem Cisco Systems C. Hopps Deutsche Telekom L. Berger LabN Consulting, L.L.C.October 13,December 2017Routing AreaCommon YANG Data Typesdraft-ietf-rtgwg-routing-types-17for the Routing Area Abstract This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area. Status of This Memo ThisInternet-Draftissubmitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documentsan Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents validthe IETF community. It has received public review and has been approved fora maximumpublication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 ofsix monthsRFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on April 16, 2018.https://www.rfc-editor.org/info/rfc8294. Copyright Notice Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents(http://trustee.ietf.org/license-info)(https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . 2....................................................3 1.1. Terminology. . . . . . . . . . . . . . . . . . . . . . . 2................................................3 2. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . 2........................................................3 3. IETF Routing Types YANG Module. . . . . . . . . . . . . . . 6..................................8 4. IANA Routing Types YANG Module. . . . . . . . . . . . . . . 22.................................27 5. IANA Considerations. . . . . . . . . . . . . . . . . . . . . 31............................................37 5.1. IANA-Maintained iana-routing-types Module. . . . . . . . 32.................38 6. Security Considerations. . . . . . . . . . . . . . . . . . . 33........................................39 7.Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 33 8.References. . . . . . . . . . . . . . . . . . . . . . . . . 34 8.1......................................................39 7.1. Normative References. . . . . . . . . . . . . . . . . . 34 8.2.......................................39 7.2. Informative References. . . . . . . . . . . . . . . . . 34....................................40 Acknowledgements ..................................................42 Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . . 36................................................42 1. IntroductionTheYANG [RFC6020] [RFC7950] is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types. This document introduces a collection of common data types derived from the built-in YANG data types. The derived types are designed to be the common types applicable for modeling in the routing area. 1.1. Terminology The terminology for describing YANG data models is found in [RFC7950]. 2. Overview This document definesthetwomodelsYANG modules for common routingtypes, ietf- routing-typestypes: ietf-routing-types and iana-routing-types. The only module imports (ietf-yang-types and ietf-inet-types; see Section 3) are from [RFC6991]. The ietf-routing-typesmodelmodule contains common routing types other than those corresponding directly to IANA mappings. Theseinclude:include the following: router-id Router Identifiers are commonly used to identify nodes in routing and othercontrol planecontrol-plane protocols. An example usage of router-id can be found in[I-D.ietf-ospf-yang].[OSPF-YANG]. route-target Route Targets (RTs) are commonly used to control the distribution ofvirtual routingVirtual Routing andforwardingForwarding (VRF)information, see [RFC4364],information (see [RFC4364]) in support of BGP/MPLS IPvirtual private networksVirtual Private Networks (VPNs) and BGP/MPLS Ethernet VPNs [RFC7432]. An example usage can be found in[I-D.ietf-bess-l2vpn-yang].[L2VPN-YANG]. ipv6-route-target IPv6 Route Targets(RTs)are similar to standard RouteTargets onlyTargets, except that they are IPv6 Address Specific BGP Extended Communities as described in [RFC5701]. An IPv6 Route Target is 20 octets and includes an IPv6 address as the global administrator. route-target-type This type defines the import and export rules of Route Targets, as described in Section 4.3.1 of [RFC4364].An example usage can be found in [I-D.ietf-idr-bgp-model].route-distinguisher Route Distinguishers (RDs) are commonly used to identify separate routes in support ofvirtual private networks (VPNs).VPNs. For example, as described in [RFC4364], RDs are commonly used to identify independent VPNs and VRFs,andand, more generally, to identify multiple routes to the same prefix.An example usage can be found in [I-D.ietf-idr-bgp-model].route-origin A Route Origin is commonly used to indicate the Site of Origin forRouting and forwarding (VRF) information, see [RFC4364],VRF information (see [RFC4364]) in support of BGP/MPLS IPvirtual private networks (VPNs)VPNs andBGP/ MPLSBGP/MPLS Ethernet VPNs [RFC7432].An example usage can be found in [I-D.ietf-bess-l3vpn-yang].ipv6-route-origin An IPv6 Route Origin would also be used to indicate the Site of Origin forRouting and forwarding (VRF) information, see [RFC4364],VRF information (see [RFC4364]) in support ofvirtual private networks (VPNs).VPNs. IPv6 Route Origins are IPv6 Address Specific BGP Extended Communities as described in [RFC5701]. An IPv6 Route Origin is 20 octets and includes an IPv6 address as the global administrator. ipv4-multicast-group-address This type defines the representation of an IPv4 multicast group address, which is in the rangefromof 224.0.0.0 to 239.255.255.255. An example usage can be found in[I-D.ietf-pim-yang].[PIM-YANG]. ipv6-multicast-group-address This type defines the representation of an IPv6 multicast group address, which is in the range ofFF00::/8.ff00::/8. An example usage can be found in[I-D.ietf-pim-yang].[PIM-YANG]. ip-multicast-group-address This type represents an IP multicast group address and is IP version neutral. The format of the textual representation implies the IP version. An example usage can be found in[I-D.ietf-pim-yang].[PIM-YANG]. ipv4-multicast-source-address This represents the IPv4 source address type for use in multicast control protocols. This type also allows the indication of wildcard sources, i.e., "*". An example of where this type may/will be used is[I-D.ietf-pim-yang].[PIM-YANG]. ipv6-multicast-source-address This represents the IPv6 source address type for use in multicast control protocols. This type also allows the indication of wildcard sources, i.e., "*". An example of where this type may/will be used is[I-D.ietf-pim-yang].[PIM-YANG]. bandwidth-ieee-float32BandwidthThis represents the bandwidth in IEEE 754floating pointfloating-point 32-bit binary format [IEEE754].CommonlyIt is commonly used in Traffic Engineeringcontrol planecontrol-plane protocols. An example of where this type may/will be used is[I-D.ietf-ospf-yang].[OSPF-YANG]. link-access-type This type identifies the IGP link type.An example of where this type may/will be used is [I-D.ietf-ospf-yang].timer-multiplier This type is used in conjunction with a timer-value type. It is generally used to indicatedefinethe number of timer-value intervals that may expire before a specific event must occur. Examples of this include the arrival of anyBFD packets, seeBidirectional Forwarding Detection (BFD) packets (see [RFC5880] Section6.8.4,6.8.4) or hello_intervalin[RFC3209].Example of where this type may/will be used is [I-D.ietf-idr-bgp-model] and [I-D.ietf-teas-yang-rsvp].timer-value-seconds16 This type covers timerswhichthat can be set in seconds, not set, or set to infinity. This type supports a range of values that can be represented in a uint16 (2 octets).An example of where this type may/will be used is [I-D.ietf-ospf-yang].timer-value-seconds32 This type covers timerswhichthat can be set in seconds, not set, or set to infinity. This type supports a range of values that can be represented in a uint32 (4 octets).An example of where this type may/will be used is [I-D.ietf-teas-yang-rsvp].timer-value-milliseconds This type covers timerswhichthat can be set in milliseconds, not set, or set to infinity. This type supports a range of values that can be represented in a uint32 (4 octets).Examples of where this type may/will be used include [I-D.ietf-teas-yang-rsvp] and [I-D.ietf-bfd-yang]. percentage Thispercentage This type defines a percentage with a range of 0-100%. An example usage can be found in[I-D.ietf-idr-bgp-model].[BGP-Model]. timeticks64 This type is based on the timeticks type defined in [RFC6991] but with 64-bit precision. It represents the time in hundredths of a second between two epochs. An example usage can be found in[I-D.ietf-idr-bgp-model].[BGP-Model]. uint24 This type defines a 24-bit unsigned integer.It is used by [I-D.ietf-ospf-yang].An example usage can be found in [OSPF-YANG]. generalized-label This type represents ageneralized labelGeneralized Label for GeneralizedMulti- ProtocolMultiprotocol Label Switching (GMPLS) [RFC3471]. The Generalized Label does not identify its type, which is known fromthecontext. An example usage can be found in[I-D.ietf-teas-yang-te].[TE-YANG]. mpls-label-special-purpose This type represents the special-purposeMultiprotocol Label Switching (MPLS)MPLS label values [RFC7274].An example usage can be found in [I-D.ietf-mpls-base-yang].mpls-label-general-use The20 bits20-bit labelvaluesvalue in an MPLS label stackentry,is specified in [RFC3032]. This label value does not include the encodings of Traffic Class and TTL(time(Time tolive).Live). The label range specified by this type is for general use, with special-purpose MPLS label values excluded.An example usage can be found in [I-D.ietf-mpls-base-yang].mpls-label The20 bits20-bit labelvaluesvalue in an MPLS label stackentry,is specified in [RFC3032]. This label value does not include the encodings of Traffic Class andTTL (time to live).TTL. The label range specified by this type covers thegeneral usegeneral-use values and the special-purpose label values. An example usage can be found in[I-D.ietf-mpls-base-yang].[MPLS-Base-YANG]. This document defines the following YANG groupings: mpls-label-stack This grouping defines a reusable collection of schema nodes representing an MPLS label stack [RFC3032].An example usage can be found in [I-D.ietf-mpls-base-yang].vpn-route-targets This grouping defines a reusable collection of schema nodes representing Route Target import-export rules used inthe BGP enabled Virtual Private Networks (VPNs). [RFC4364][RFC4664].BGP-enabled VPNs [RFC4364] [RFC4664]. An example usage can be found in[I-D.ietf-bess-l2vpn-yang].[L2VPN-YANG]. The iana-routing-typesmodelmodule contains common routing types corresponding directly to IANA mappings. Theseinclude:include the following: address-family This type defines values for use inaddress familyAddress Family identifiers. The values are based on the IANAAddress"Address FamilyNumbers RegistryNumbers" registry [IANA-ADDRESS-FAMILY-REGISTRY]. An example usage can be found in[I-D.ietf-idr-bgp-model].[BGP-Model]. subsequent-address-family This type defines values for use insubsequent address family (SAFI) identifiers.Subsequent Address Family Identifiers (SAFIs). The values are based on the IANASubsequent"Subsequent Address Family Identifiers (SAFI)Parameters RegistryParameters" registry [IANA-SAFI-REGISTRY]. 3. IETF Routing Types YANG Module <CODE BEGINS> file"ietf-routing-types@2017-10-13.yang""ietf-routing-types@2017-12-04.yang" module ietf-routing-types { namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types"; prefix rt-types; import ietf-yang-types { prefix yang; } import ietf-inet-types { prefix inet; } organization "IETF RTGWG - Routing Area Working Group"; contact "WG Web:<http://tools.ietf.org/wg/rtgwg/><https://datatracker.ietf.org/wg/rtgwg/> WG List: <mailto:rtgwg@ietf.org>Editor:Editors: Xufeng Liu <mailto:Xufeng_Liu@jabail.com> Yingzhen Qu <mailto:yingzhen.qu@huawei.com> Acee Lindem <mailto:acee@cisco.com> Christian Hopps <mailto:chopps@chopps.org> Lou Berger <mailto:lberger@labn.com>"; description "This module contains a collection of YANG data types considered generally useful for routing protocols. Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents(http://trustee.ietf.org/license-info).(https://trustee.ietf.org/license-info). This version of this YANG module is part of RFCXXXX;8294; see the RFC itself for full legal notices.";reference "RFC XXXX";revision2017-10-132017-12-04 { description "Initial revision."; reference "RFCTBD: Routing8294: Common YANG DataTypes";Types for the Routing Area. Section 3."; } /*** Identities related to MPLS/GMPLS ***/ identity mpls-label-special-purpose-value { description "Base identity for deriving identities describing special-purpose Multiprotocol Label Switching (MPLS) label values."; reference"RFC7274:"RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels."; } identity ipv4-explicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the IPv4 Explicit NULL Label."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding. Section 2.1."; } identity router-alert-label { base mpls-label-special-purpose-value; description "This identity represents the Router Alert Label."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding. Section 2.1."; } identity ipv6-explicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the IPv6 Explicit NULL Label."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding. Section 2.1."; } identity implicit-null-label { base mpls-label-special-purpose-value; description "This identity represents the Implicit NULL Label."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding. Section 2.1."; } identity entropy-label-indicator { base mpls-label-special-purpose-value; description "This identity represents the Entropy Label Indicator."; reference"RFC6790:"RFC 6790: The Use of Entropy Labels in MPLS Forwarding. Sections 3 and 10.1."; } identity gal-label { base mpls-label-special-purpose-value; description "This identity represents the Generic Associated Channel (G-ACh) Label (GAL)."; reference"RFC5586:"RFC 5586: MPLS Generic Associated Channel. Sections 4 and 10."; } identity oam-alert-label { base mpls-label-special-purpose-value; description "This identity represents the OAM Alert Label."; reference"RFC3429:"RFC 3429: Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions. Sections 3 and 6."; } identity extension-label { base mpls-label-special-purpose-value; description "This identity represents the Extension Label."; reference"RFC7274:"RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels. Sections 3.1 and 5."; } /*** Collection of types related to routing ***/ typedef router-id { type yang:dotted-quad; description "A 32-bit number in thedotted quaddotted-quad format assigned to each router. This number uniquely identifies the router within an Autonomous System."; } /*** Collection of types related toVPNVPNs ***/ typedef route-target { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; } description "Aroute targetRoute Target is an 8-octet BGP extended community initially identifying a set of sites in a BGP VPN (RFC 4364). However, it has since taken on a more general role in BGP route filtering. Aroute targetRoute Target consists of two or three fields: a 2-octettypeType field, an administrator field, and, optionally, an assigned number field. According to the data formats fortypetypes 0, 1, 2, and 6 as defined inRFC4360, RFC5668,RFC 4360, RFC 5668, andRFC7432,RFC 7432, the encoding pattern is defined as: 0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number2:4-octet-asn:2-octet-number. 6:6-octet-mac-address.2:4-octet-asn:2-octet-number 6:6-octet-mac-address Additionally, a generic pattern is defined for futureroute targetRoute Target types: 2-octet-other-hex-number:6-octet-hex-number Some valid examplesare:are 0:100:100, 1:1.1.1.1:100,2:1234567890:2032:1234567890:203, and6:26:00:08:92:78:00";6:26:00:08:92:78:00."; reference"RFC4360:"RFC 4360: BGP Extended Communities Attribute.RFC4364:RFC 4364: BGP/MPLS IP Virtual Private Networks(VPNs) RFC5668:(VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community.RFC7432:RFC 7432: BGP MPLS-Based EthernetVPN";VPN."; } typedef ipv6-route-target { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; } description "An IPv6route targetRoute Target is a 20-octet BGP IPv6address specific extended communityAddress Specific Extended Community serving the same function as a standard 8-octetroute targetRoute Target, except that it onlyallowing forallows an IPv6 address as the global administrator. The format is <ipv6-address:2-octet-number>.SomeTwo valid examplesare: 2001:DB8::1:6544are 2001:db8::1:6544 and2001:DB8::5eb1:791:6b37:17958";2001:db8::5eb1:791:6b37:17958."; reference"RFC5701:"RFC 5701: IPv6 Address Specific BGP Extended CommunityAttribute";Attribute."; } typedef route-target-type { type enumeration { enum"import"import { value 0; description "Theroute targetRoute Target applies to route import."; } enum"export"export { value 1; description "Theroute targetRoute Target applies to route export."; } enum"both"both { value 2; description "Theroute targetRoute Target applies to both route import and route export."; } } description "Indicates the role aroute targetRoute Target takes in route filtering."; reference"RFC4364:"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs)."; } typedef route-distinguisher { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; } description "Aroute distinguisherRoute Distinguisher is an 8-octet value used to distinguish routes from different BGP VPNs (RFC 4364).As per RFC 4360, a route distinguisherA Route Distinguisher will have the same format as aroute targetRoute Target as per RFC 4360 and will consist of two or threefields includingfields: a 2-octettypeType field, an administrator field, and, optionally, an assigned number field. According to the data formats fortypetypes 0, 1, 2, and 6 as defined inRFC4360, RFC5668,RFC 4360, RFC 5668, andRFC7432,RFC 7432, the encoding pattern is defined as: 0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number2:4-octet-asn:2-octet-number. 6:6-octet-mac-address.2:4-octet-asn:2-octet-number 6:6-octet-mac-address Additionally, a generic pattern is defined for future route discriminator types: 2-octet-other-hex-number:6-octet-hex-number Some valid examplesare:are 0:100:100, 1:1.1.1.1:100,2:1234567890:2032:1234567890:203, and6:26:00:08:92:78:00";6:26:00:08:92:78:00."; reference"RFC4360:"RFC 4360: BGP Extended Communities Attribute.RFC4364:RFC 4364: BGP/MPLS IP Virtual Private Networks(VPNs) RFC5668:(VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community.RFC7432:RFC 7432: BGP MPLS-Based EthernetVPN";VPN."; } typedef route-origin { type string { pattern '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|' + '42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|' + '42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|' + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|' + '655[0-2][0-9]|' + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(2:(429496729[0-5]|42949672[0-8][0-9]|' + '4294967[01][0-9]{2}|' + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|' + '4294[0-8][0-9]{5}|' + '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|' + '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|' + '(6(:[a-fA-F0-9]{2}){6})|' + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):' + '[0-9a-fA-F]{1,12})'; } description "Aroute originRoute Origin is an 8-octet BGP extended community identifying the set of sites where the BGP route originated (RFC 4364). Aroute target consistsRoute Origin will have the same format as a Route Target as per RFC 4360 and will consist of two or three fields: a 2-octettypeType field, an administrator field, and, optionally, an assigned number field. According to the data formats fortypetypes 0, 1, 2, and 6 as defined inRFC4360, RFC5668,RFC 4360, RFC 5668, andRFC7432,RFC 7432, the encoding pattern is defined as: 0:2-octet-asn:4-octet-number 1:4-octet-ipv4addr:2-octet-number2:4-octet-asn:2-octet-number. 6:6-octet-mac-address.2:4-octet-asn:2-octet-number 6:6-octet-mac-address Additionally, a generic pattern is defined for futureroute originRoute Origin types: 2-octet-other-hex-number:6-octet-hex-number Some valid examplesare:are 0:100:100, 1:1.1.1.1:100,2:1234567890:2032:1234567890:203, and6:26:00:08:92:78:00";6:26:00:08:92:78:00."; reference"RFC4360:"RFC 4360: BGP Extended Communities Attribute.RFC4364:RFC 4364: BGP/MPLS IP Virtual Private Networks(VPNs) RFC5668:(VPNs). RFC 5668: 4-Octet AS Specific BGP Extended Community.RFC7432:RFC 7432: BGP MPLS-Based EthernetVPN";VPN."; } typedef ipv6-route-origin { type string { pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}' + '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + ':' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|' + '6[0-4][0-9]{3}|' + '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)'; } description "An IPv6route originRoute Origin is a 20-octet BGP IPv6address specific extended communityAddress Specific Extended Community serving the same function as a standard 8-octetrouteroute, except that it onlyallowing forallows an IPv6 address as the global administrator. The format is <ipv6-address:2-octet-number>.SomeTwo valid examplesare: 2001:DB8::1:6544are 2001:db8::1:6544 and2001:DB8::5eb1:791:6b37:17958";2001:db8::5eb1:791:6b37:17958."; reference"RFC5701:"RFC 5701: IPv6 Address Specific BGP Extended CommunityAttribute";Attribute."; } /*** Collection of types common to multicast ***/ typedef ipv4-multicast-group-address { type inet:ipv4-address { pattern '(2((2[4-9])|(3[0-9]))\.).*'; } description "This type represents an IPv4 multicast group address, which is in the rangefromof 224.0.0.0 to 239.255.255.255."; reference"RFC1112:"RFC 1112: Host Extensions for IP Multicasting."; } typedef ipv6-multicast-group-address { type inet:ipv6-address { pattern '(([fF]{2}[0-9a-fA-F]{2}):).*'; } description "This type represents an IPv6 multicast group address, which is in the range ofFF00::/8.";ff00::/8."; reference"RFC4291:"RFC 4291: IP Version 6 Addressing Architecture.SecSection 2.7.RFC7346:RFC 7346: IPv6 Multicast Address Scopes."; } typedef ip-multicast-group-address { type union { type ipv4-multicast-group-address; type ipv6-multicast-group-address; } description "This type represents a version-neutral IP multicast group address. The format of the textual representation implies the IP version."; } typedef ipv4-multicast-source-address { type union { type enumeration { enum"*"* { description "Any source address."; } } type inet:ipv4-address; } description "Multicast source IPv4 address type."; } typedef ipv6-multicast-source-address { type union { type enumeration { enum"*"* { description "Any source address."; } } type inet:ipv6-address; } description "Multicast source IPv6 address type."; } /*** Collection of types common to protocols ***/ typedef bandwidth-ieee-float32 { type string { pattern '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|' + '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|' + '1[01][0-9]|0?[0-9]?[0-9])?)'; } description "Bandwidth in IEEE 754floating pointfloating-point 32-bit binary format: (-1)**(S) * 2**(Exponent-127) * (1 + Fraction), where Exponent uses 8bits,bits and Fraction uses 23 bits. The units are octets per second. The encoding format is the external hexadecimal-significant character sequences specified in IEEE 754 and ISO/IEC C99. The format is restricted to be normalized, non-negative, and non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0, where 'h' and 'H' are hexadecimal digitsand'd'and 'd' and 'D' are integers in the range of [0..127]. When six hexadecimal digits are used for 'hhhhhh' or 'HHHHHH', the least significant digit must be an even number. 'x' and 'X' indicate hexadecimal; 'p' and 'P' indicate a power of two. Some examplesare:are 0x0p0, 0x1p10, and0x1.abcde2p+20";0x1.abcde2p+20."; reference "IEEE Std 754-2008: IEEE Standard for Floating-PointArithmetic.";Arithmetic. ISO/IEC C99: Information technology - Programming Languages - C."; } typedef link-access-type { type enumeration { enum"broadcast"broadcast { description "Specify broadcast multi-access network."; } enum"non-broadcast-multiaccess"non-broadcast-multiaccess { description "Specify Non-Broadcast Multi-Access (NBMA) network."; } enum"point-to-multipoint"point-to-multipoint { description "Specify point-to-multipoint network."; } enum"point-to-point"point-to-point { description "Specify point-to-point network."; } } description "Link access type."; } typedef timer-multiplier { type uint8; description "The number of timer value intervals that should be interpreted as a failure."; } typedef timer-value-seconds16 { type union { type uint16 { range "1..65535"; } type enumeration { enum"infinity"infinity { description "The timer is set to infinity."; } enum"not-set"not-set { description "The timer is not set."; } } } units "seconds"; description "Timer value type, in seconds (16-bit range)."; } typedef timer-value-seconds32 { type union { type uint32 { range "1..4294967295"; } type enumeration { enum"infinity"infinity { description "The timer is set to infinity."; } enum"not-set"not-set { description "The timer is not set."; } } } units "seconds"; description "Timer value type, in seconds (32-bit range)."; } typedef timer-value-milliseconds { type union { type uint32 { range "1..4294967295"; } type enumeration { enum"infinity"infinity { description "The timer is set to infinity."; } enum"not-set"not-set { description "The timer is not set."; } } } units "milliseconds"; description "Timer value type, in milliseconds."; } typedef percentage { type uint8 { range "0..100"; } description "Integer indicating a percentagevalue";value."; } typedef timeticks64 { type uint64; description "This type is based on the timeticks type defined in RFC 6991, but with 64-bit width. It represents the time, modulo 2^64, in hundredths of a second between two epochs."; reference "RFC6991 -6991: Common YANG DataTypes";Types."; } typedef uint24 { type uint32 { range"0 .. 16777215";"0..16777215"; } description "24-bit unsignedinteger";integer."; } /*** Collection of types related to MPLS/GMPLS ***/ typedef generalized-label { type binary; description "Generalizedlabel.Label. Nodes sending and receiving the Generalized Label are aware of the link-specific label context and type."; reference"RFC3471:"RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description. Section3.2";3.2."; } typedef mpls-label-special-purpose { type identityref { base mpls-label-special-purpose-value; } description "This type represents the special-purposeMultiprotocol Label Switching (MPLS)MPLS label values."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding.RFC7274:RFC 7274: Allocating and Retiring Special-Purpose MPLS Labels."; } typedef mpls-label-general-use { type uint32 { range "16..1048575"; } description "The 20-bit labelvaluesvalue in an MPLS label stackentry,as specified inRFC3032.RFC 3032. This label value does not include the encodings of Traffic Class and TTL(time(Time tolive).Live). The label range specified by this type is for general use, with special-purpose MPLS label values excluded."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding."; } typedef mpls-label { type union { type mpls-label-special-purpose; type mpls-label-general-use; } description "The 20-bit labelvaluesvalue in an MPLS label stackentry,as specified inRFC3032.RFC 3032. This label value does not include the encodings of Traffic Class andTTL (time to live).";TTL."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding."; } /*** Groupings **/ grouping mpls-label-stack { description "This grouping specifies an MPLS label stack. The label stack is encoded as a list of label stack entries. The list key is an identifierwhichthat indicates the relative ordering of each entry, with thelowest valuelowest-value identifier corresponding to the top of the label stack."; container mpls-label-stack { description "Container for a list of MPLS label stack entries."; list entry { key "id"; description "List of MPLS label stack entries."; leaf id { type uint8; description "Identifies the entry in a sequence of MPLS label stack entries. An entry with a smaller identifier value precedes an entry with a larger identifier value in the label stack. The value of this ID has no semantic meaning other than relative ordering and referencing the entry."; } leaf label { type rt-types:mpls-label; description "Label value."; } leaf ttl { type uint8; description "Time to Live (TTL)."; reference"RFC3032:"RFC 3032: MPLS Label Stack Encoding."; } leaf traffic-class { type uint8 { range "0..7"; } description "Traffic Class (TC)."; reference"RFC5462:"RFC 5462: Multiprotocol Label Switching (MPLS) Label Stack Entry: 'EXP' Field Renamed to 'Traffic Class' Field."; } } } } grouping vpn-route-targets { description "A grouping that specifies Route Target import-export rules used inthe BGP enabled Virtual Private Networks (VPNs).";BGP-enabled VPNs."; reference"RFC4364:"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).RFC4664:RFC 4664: Framework for Layer 2 Virtual Private Networks(L2VPNs)";(L2VPNs)."; list vpn-target { key "route-target"; description "List of Route Targets."; leaf route-target { type rt-types:route-target; description "Route Targetvalue";value."; } leaf route-target-type { type rt-types:route-target-type; mandatory true; description "Import/export type of the Route Target."; } } } } <CODE ENDS> 4. IANA Routing Types YANG Module <CODE BEGINS> file"iana-routing-types@2017-09-19.yang""iana-routing-types@2017-12-04.yang" module iana-routing-types { namespace "urn:ietf:params:xml:ns:yang:iana-routing-types"; prefix iana-rt-types; organization "IANA"; contact" Internet"Internet Assigned Numbers Authority Postal: ICANN4676 Admiralty Way,12025 Waterfront Drive, Suite330 Marina del Rey,300 Los Angeles, CA9029290094-2536 United States of America Tel: +1 310823 9358301 5800 <mailto:iana@iana.org>"; description "This module contains a collection of YANG data types considered defined by IANA and used for routing protocols. Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents(http://trustee.ietf.org/license-info).(https://trustee.ietf.org/license-info). This version of this YANG module is part of RFCXXXX;8294; see the RFC itself for full legal notices.";reference "RFC XXXX";revision2017-09-192017-12-04 { description "Initial revision."; reference "RFCTBD: IANA Routing8294: Common YANG DataTypes";Types for the Routing Area. Section 4."; } /*** Collection of IANA types related to routing ***/ /*** IANAaddress familyAddress Family enumeration ***/ typedef address-family { type enumeration { enum ipv4 { value 1; description "IPv4 AddressFamily";Family."; } enum ipv6 { value 2; description "IPv6 AddressFamily";Family."; } enum nsap { value 3; description "OSI Network Service Access Point (NSAP) AddressFamily";Family."; } enum hdlc { value 4; description "High-Level Data Link Control (HDLC) AddressFamily";Family."; } enum bbn1822 { value 5; description "Bolt, Beranek, and Newman Report 1822 (BBN 1822) AddressFamily";Family."; } enum ieee802 { value 6; description "IEEE 802 Committee Address Family(aka, MAC address)";(aka Media Access Control (MAC) address)."; } enum e163 { value 7; description "ITU-T E.163 AddressFamily";Family."; } enum e164 { value 8; description "ITU-T E.164(SMDS,(Switched Multimegabit Data Service (SMDS), Frame Relay, ATM) AddressFamily";Family."; } enum f69 { value 9; description "ITU-T F.69 (Telex) AddressFamily";Family."; } enum x121 { value 10; description "ITU-T X.121 (X.25, Frame Relay) AddressFamily";Family."; } enum ipx { value 11; description "Novell Internetwork Packet Exchange (IPX) AddressFamily";Family."; } enum appletalk { value 12; description "Apple AppleTalk AddressFamily";Family."; } enum decnet-iv { value 13; description "Digital Equipment DECnet Phase IV AddressFamily";Family."; } enum vines { value 14; description "Banyan Vines AddressFamily";Family."; } enum e164-nsap { value 15; description "ITU-T E.164 with NSAP sub-address AddressFamily";Family."; } enum dns { value 16; description "Domain Name System (DNS) AddressFamily";Family."; } enum distinguished-name { value 17; description "Distinguished Name AddressFamily";Family."; } enum as-num { value 18; description"AS"Autonomous System (AS) Number AddressFamily";Family."; } enum xtp-v4 { value 19; description "Xpress Transport Protocol (XTP) over IPv4 AddressFamily";Family."; } enum xtp-v6 { value 20; description"Xpress Transport Protocol (XTP)"XTP over IPv6 AddressFamily";Family."; } enum xtp-native { value 21; description"Xpress Transport Protocol (XTP)"XTP native mode AddressFamily";Family."; } enum fc-port { value 22; description "Fibre Channel (FC) World-Wide Port Name AddressFamily";Family."; } enum fc-node { value 23; description"Fibre Channel (FC)"FC World-Wide Node Name AddressFamily";Family."; } enum gwid { value 24; description "ATM Gateway Identifier (GWID) Number AddressFamily";Family."; } enum l2vpn { value 25; description"Layer-2"Layer 2 VPN (L2VPN) AddressFamily";Family."; } enum mpls-tp-section-eid { value 26; description"MPLS-TP"MPLS Transport Profile (MPLS-TP) Section Endpoint Identifier AddressFamily";Family."; } enum mpls-tp-lsp-eid { value 27; description "MPLS-TPLSPLabel Switched Path (LSP) Endpoint Identifier AddressFamily";Family."; } enum mpls-tp-pwe-eid { value 28; description "MPLS-TP Pseudowire Endpoint Identifier AddressFamily";Family."; } enum mt-v4 { value 29; description "Multi-Topology IPv4 AddressFamily";Family."; } enum mt-v6 { value 30; description "Multi-Topology IPv6 AddressFamily";Family."; } enum eigrp-common-sf { value 16384; description "Enhanced Interior Gateway Routing Protocol (EIGRP) Common Service Family AddressFamily";Family."; } enum eigrp-v4-sf { value 16385; description"Enhanced Interior Gateway Routing Protocol (EIGRP)"EIGRP IPv4 Service Family AddressFamily";Family."; } enum eigrp-v6-sf { value 16386; description"Enhanced Interior Gateway Routing Protocol (EIGRP)"EIGRP IPv6 Service Family AddressFamily";Family."; } enum lcaf { value 16387; description"LISP"Locator/ID Separation Protocol (LISP) Canonical Address Format (LCAF) AddressFamily";Family."; } enum bgp-ls { value 16388; description "Border Gateway Protocol - Link State (BGP-LS) AddressFamily";Family."; } enum mac-48 { value 16389; description "IEEE 48-bitMedia Access Control (MAC)MAC AddressFamily";Family."; } enum mac-64 { value 16390; description "IEEE 64-bitMedia Access Control (MAC)MAC AddressFamily";Family."; } enum trill-oui { value 16391; description"TRILL"Transparent Interconnection of Lots of Links (TRILL) IEEE Organizationally Unique Identifier (OUI) AddressFamily";Family."; } enum trill-mac-24 { value 16392; description "TRILLFinalfinal 3 octets of 48-bit MACaddressAddressFamily";Family."; } enum trill-mac-40 { value 16393; description "TRILLFinalfinal 5 octets of 64-bit MACaddressAddressFamily";Family."; } enum ipv6-64 { value 16394; description "First 8 octets(64-bits)(64 bits) ofanIPv6 address AddressFamily";Family."; } enum trill-rbridge-port-id { value 16395; description "TRILLRemoteRouting Bridge (RBridge) Port ID AddressFamily";Family."; } enum trill-nickname { value 16396; description "TRILL Nickname AddressFamily";Family."; } } description "Enumeration containing all theIANA defined address families.";IANA-defined Address Families."; } /***SAFIsSubsequent Address Family Identifiers (SAFIs) ***/ /*** forMulti-Protocolmultiprotocol BGP enumeration ***/ typedef bgp-safi { type enumeration { enum unicast-safi { value 1; description "UnicastSAFI";SAFI."; } enum multicast-safi { value 2; description "MulticastSAFI";SAFI."; } enum labeled-unicast-safi { value 4; description "Labeled UnicastSAFI";SAFI."; } enum multicast-vpn-safi { value 5; description "Multicast VPNSAFI";SAFI."; } enum pseudowire-safi { value 6; description "Multi-segment Pseudowire VPNSAFI";SAFI."; } enum tunnel-encap-safi { value 7; description "Tunnel EncapSAFI";SAFI."; } enum mcast-vpls-safi { value 8; description "Multicast Virtual Private LAN Service (VPLS)SAFI";SAFI."; } enum tunnel-safi { value 64; description "TunnelSAFI";SAFI."; } enum vpls-safi { value 65; description"Virtual Private LAN Service (VPLS) SAFI";"VPLS SAFI."; } enum mdt-safi { value 66; description "Multicast Distribution Tree (MDT)SAFI";SAFI."; } enum v4-over-v6-safi { value 67; description "IPv4 over IPv6SAFI";SAFI."; } enum v6-over-v4-safi { value 68; description "IPv6 over IPv4SAFI";SAFI."; } enum l1-vpn-auto-discovery-safi { value 69; description"Layer-1"Layer 1 VPNAuto Discovery SAFI";Auto-Discovery SAFI."; } enum evpn-safi { value 70; description "Ethernet VPN (EVPN)SAFI";SAFI."; } enum bgp-ls-safi { value 71; description"BGP Link-State (BGP-LS) SAFI";"BGP-LS SAFI."; } enum bgp-ls-vpn-safi { value 72; description"BGP Link-State (BGP-LS)"BGP-LS VPNSAFI";SAFI."; } enum sr-te-safi { value 73; description "Segment Routing - Traffic Engineering (SR-TE)SAFI";SAFI."; } enum labeled-vpn-safi { value 128; description "MPLS Labeled VPNSAFI";SAFI."; } enum multicast-mpls-vpn-safi { value 129; description "Multicast for BGP/MPLS IP VPNSAFI";SAFI."; } enum route-target-safi { value 132; description "Route TargetSAFI";SAFI."; } enum ipv4-flow-spec-safi { value 133; description "IPv4 Flow SpecificationSAFI";SAFI."; } enum vpnv4-flow-spec-safi { value 134; description "IPv4 VPN Flow SpecificationSAFI";SAFI."; } enum vpn-auto-discovery-safi { value 140; description "VPN Auto-DiscoverySAFI";SAFI."; } } description "Enumeration for BGPSubsequent Address Family Identifier (SAFI) - RFC 4760.";SAFI."; reference "RFC 4760: Multiprotocol Extensions for BGP-4."; } } <CODE ENDS> 5. IANA ConsiderationsRFC Ed.: In this section, replace all occurrences of 'XXXX' with the actual RFC number (and remove this note).This document registers the following namespace URIs in theIETF"IETF XMLregistryRegistry" [RFC3688]:--------------------------------------------------------------------URI: urn:ietf:params:xml:ns:yang:ietf-routing-types Registrant Contact: The IESG. XML:N/A,N/A; the requested URI is an XML namespace.-------------------------------------------------------------------- --------------------------------------------------------------------URI: urn:ietf:params:xml:ns:yang:iana-routing-types Registrant Contact:IANAIANA. XML:N/A,N/A; the requested URI is an XML namespace.--------------------------------------------------------------------This document registers the following YANG modules in theYANG"YANG ModuleNamesNames" registry [RFC6020]:-------------------------------------------------------------------- name:Name: ietf-routing-typesnamespace:Namespace: urn:ietf:params:xml:ns:yang:ietf-routing-typesprefix:Prefix: rt-typesreference:Reference: RFCXXXX -------------------------------------------------------------------- -------------------------------------------------------------------- name:8294 Name: iana-routing-typesnamespace:Namespace: urn:ietf:params:xml:ns:yang:iana-routing-typesprefix:Prefix: iana-rt-typesreference:Reference: RFCXXXX --------------------------------------------------------------------8294 5.1. IANA-Maintained iana-routing-types Module This document defines the initial version of the IANA-maintained iana-routing-types YANG moduleSection 4.(Section 4). The iana-routing-types YANG module is intended to reflect the "Address Family Numbers" registry [IANA-ADDRESS-FAMILY-REGISTRY] and the "Subsequent Address Family Identifiers (SAFI) Parameters" registry [IANA-SAFI-REGISTRY]. IANA has added thisnotesnote to the "iana-routing-types YANG Module" registry: Address Families and Subsequent Address Families must not be directly added to the iana-routing-types YANG module. They must instead be respectively added to the "Address Family Numbers" and "Subsequent Address Family Identifiers (SAFI) Parameters" registries. When an Address Family or Subsequent Address Family is respectively added to the "Address Family Numbers" registry or the "Subsequent Address Family Identifiers (SAFI) Parameters" registry, a new "enum" statement must be added to the iana-routing-types YANG module. The name of the "enum" is the same as the correspondingaddress familyAddress Family orSAFI onlySAFI, except that it will be a valid YANG identifier in all lowercase and with hyphens separating individual words in compound identifiers. The followingsubstatements to the"enum"statementstatement, and substatements thereof, should be defined: "enum": Contains the YANG enum identifier for theaddress-family"address-family" (for Address Families) or "bgp-safi"for subsequent address families.(for Subsequent Address Families). This may be the same as theaddress-family"address-family" or"bgp-safi""bgp-safi", or it may be a shorter version tofaciliatefacilitate YANG identifier usage. "value": Contains theIANA assignedIANA-assigned value corresponding to theaddress-family"address-family" (for Address Families) or "bgp-safi"for subsequent address families.(for Subsequent Address Families). "status": Include only if a registration has been deprecated (use the value "deprecated") or obsoleted (use the value "obsolete"). "description": Replicate the description from the registry, if any. Insert line breaks as needed so that the line does not exceed 72 characters. "reference": Replicate the reference from the registry, if any, and add the title of the document. Unassigned or reserved values are not present in these modules. When the iana-routing-types YANG module is updated, a new "revision" statement must be added in front of the existing revision statements. IANA has added this new note to the "Address Family Numbers" and "Subsequent Address Family Identifiers (SAFI) Parameters" registries: When this registry is modified, the YANG module iana-routing-types must be updated as defined in RFCXXXX.8294. 6. Security Considerations This document defines common routing type definitions (i.e., typedef statements) using the YANG data modeling language. The definitions themselves have no security or privacy impact on the Internet, but the usage of these definitions in concrete YANG modules might have. The security considerations spelled out in the YANG 1.1 specification [RFC7950] apply for this document as well. 7.Acknowledgements The Routing Area Yang Architecture design team members included Acee Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries, Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu. Thanks to Martin Bjorkland, Tom Petch, Stewart Bryant, and Radek Krejci for comments on the model and document text. Thanks to Jeff Haas and Robert Raszuk for suggestions for additional common routing types. 8.References8.1.7.1. Normative References [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004,<https://www.rfc- editor.org/info/rfc3688>.<https://www.rfc-editor.org/info/rfc3688>. [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010,<https://www.rfc- editor.org/info/rfc6020>.<https://www.rfc-editor.org/info/rfc6020>. [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-editor.org/info/rfc6991>. [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, <https://www.rfc-editor.org/info/rfc7950>. [IANA-ADDRESS-FAMILY-REGISTRY] "IANA Address Family Numbers Registry",<https://www.iana.org/assignments/address-family-numbers/ address-family-numbers.xhtml#address-family-numbers-2>.<https://www.iana.org/assignments/ address-family-numbers/>. [IANA-SAFI-REGISTRY] "IANA Subsequent Address FamilyIdentitiesIdentifiers (SAFI) Parameters Registry",<https://www.iana.org/assignments/ safi-namespace/safi-namespace.xhtml#safi-namespace-2>. 8.2.<https://www.iana.org/assignments/safi-namespace/>. 7.2. Informative References [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEEStd754-2008,August 2008. [I-D.ietf-bfd-yang] Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", draft-ietf-bfd-yang-06 (work in progress), June 2017. [I-D.ietf-idr-bgp-model]DOI 10.1109/IEEESTD.2008.4610935. [BGP-Model] Shaikh, A., Ed., Shakir, R., Ed., Patel, K., Ed., Hares, S., Ed., D'Souza, K., Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and X. Liu, "BGP Model for Service Provider Networks",draft- ietf-idr-bgp-model-02 (workWork inprogress),Progress, draft-ietf-idr-bgp- model-02, July 2016.[I-D.ietf-ospf-yang][OSPF-YANG] Yeung, D., Qu, Y., Zhang,Z.,J., Chen, I., and A. Lindem, "Yang Data Model for OSPF Protocol",draft-ietf-ospf- yang-08 (workWork inprogress), JulyProgress, draft-ietf-ospf-yang-09, October 2017.[I-D.ietf-pim-yang][PIM-YANG] Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu, Y., andf. hu,F. Hu, "A YANG data model for Protocol-Independent Multicast (PIM)",draft-ietf-pim-yang-10 (work in progress), September 2017. [I-D.ietf-teas-yang-rsvp] Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I., and H. Shah, "A YANG Data Model for Resource Reservation Protocol (RSVP)", draft-ietf-teas-yang-rsvp-07 (workWork inprogress), MarchProgress, draft-ietf-pim-yang-12, December 2017.[I-D.ietf-teas-yang-te][TE-YANG] Saad, T., Ed., Gandhi, R., Liu, X., Beeram, V., Shah, H., and I. Bryskin, "A YANG Data Model for Traffic Engineering Tunnels and Interfaces",draft-ietf-teas-yang-te-08 (workWork inprogress), JulyProgress, draft-ietf-teas-yang-te-09, October 2017.[I-D.ietf-bess-l2vpn-yang][L2VPN-YANG] Shah, H., Ed., Brissette, P., Ed., Chen, I., Ed., Hussain, I., Ed., Wen, B., Ed., and K. Tiruveedhula, Ed., "YANG Data Model for MPLS-based L2VPN",draft-ietf-bess-l2vpn-yang-07 (workWork inprogress), October 2017. [I-D.ietf-bess-l3vpn-yang] Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S., Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-01 (work in progress), AprilProgress, draft-ietf-bess-l2vpn-yang-07, September 2017.[I-D.ietf-mpls-base-yang][MPLS-Base-YANG] Saad, T., Raza, K., Gandhi, R., Liu, X., Beeram, V.,Saad, T.,Shah, H., Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data Model for MPLS Base",draft-ietf-mpls-base-yang-05 (workWork inprogress),Progress, draft-ietf-mpls-base-yang-05, July 2017. [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001, <https://www.rfc-editor.org/info/rfc3032>. [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, <https://www.rfc-editor.org/info/rfc3209>. [RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, DOI 10.17487/RFC3471, January 2003, <https://www.rfc-editor.org/info/rfc3471>. [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, <https://www.rfc-editor.org/info/rfc4364>. [RFC4664] Andersson, L.,Ed.Ed., and E. Rosen, Ed., "Framework for Layer 2 Virtual Private Networks (L2VPNs)", RFC 4664, DOI 10.17487/RFC4664, September 2006,<https://www.rfc- editor.org/info/rfc4664>.<https://www.rfc-editor.org/info/rfc4664>. [RFC5701] Rekhter, Y., "IPv6 Address Specific BGP Extended Community Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009, <https://www.rfc-editor.org/info/rfc5701>. [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, <https://www.rfc-editor.org/info/rfc5880>. [RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating and Retiring Special-Purpose MPLS Labels", RFC 7274, DOI 10.17487/RFC7274, June 2014,<https://www.rfc- editor.org/info/rfc7274>.<https://www.rfc-editor.org/info/rfc7274>. [RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A., Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February 2015, <https://www.rfc-editor.org/info/rfc7432>. Acknowledgements The Routing Area YANG Architecture design team members included Acee Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries, Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu. Thanks to Martin Bjorklund, Tom Petch, Stewart Bryant, and Radek Krejci for comments on the model and document text. Thanks to Jeff Haas and Robert Raszuk for suggestions for additional common routing types. Authors' Addresses Xufeng Liu Jabil 8281 Greensboro Drive, Suite 200McLeanMcLean, VA 22102USA EMail:United States of America Email: Xufeng_Liu@jabil.com Yingzhen Qu Futurewei Technologies, Inc. 2330 Central Expressway SantaClaraClara, CA 95050USA EMail:United States of America Email: yingzhen.qu@huawei.com Acee Lindem Cisco Systems 301 Midenhall Way Cary, NC 27513USA EMail:United States of America Email: acee@cisco.com Christian Hopps Deutsche TelekomEMail:Email: chopps@chopps.org Lou Berger LabN Consulting, L.L.C.EMail:Email: lberger@labn.net