CCAMP Working GroupInternet Engineering Task Force (IETF) J. Ahlberg, Ed.Internet-DraftRequest for Comments: 8432 Ericsson ABIntended status:Category: Informational M. Ye, Ed.Expires: December 7, 2018ISSN: 2070-1721 Huawei Technologies X. Li NEC Laboratories Europe LM. Contreras Telefonica I+D CJ. Bernardos Universidad Carlos III de MadridJune 5,October 2018 AframeworkFramework for Management and Control ofmicrowaveMicrowave andmillimeter wave interface parameters draft-ietf-ccamp-microwave-framework-07Millimeter Wave Interface Parameters Abstract The unification of control and management of microwave radio link interfaces is a precondition for seamlessmultilayermulti-layer networking and automated network provisioning and operation. This document describes the required characteristics and use cases for control and management of radio link interface parameters using a YANGData Model.data model. The purpose is to create a frameworkfor identification ofto identify the necessary information elements anddefinition ofdefine a YANGData Modeldata model for control and management of the radio link interfaces in a microwave node. Some parts of the resulting model may be genericwhichand could also be used by other technologies, e.g., Ethernet technology. Status of This Memo ThisInternet-Draftdocument issubmitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documentsnot an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draftthe IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documentsvalidapproved by the IESG are candidates fora maximumany level of Internet Standard; see Section 2 of RFC 7841. Information about the current status ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on December 7, 2018.https://www.rfc-editor.org/info/rfc8432. Copyright Notice Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . 3....................................................3 1.1. ConventionsusedUsed inthis document . . . . . . . . . . . . 5This Document ..........................5 2. Terminology and Definitions. . . . . . . . . . . . . . . . . 5.....................................5 3. Approaches tomanageManage andcontrol radio link interfaces . . . 6Control Radio Link Interfaces ..........7 3.1. Network Management Solutions. . . . . . . . . . . . . . 7...............................7 3.2.Software DefinedSoftware-Defined Networking. . . . . . . . . . . . . . . 7................................7 4. Use Cases. . . . . . . . . . . . . . . . . . . . . . . . . . 8.......................................................8 4.1. Configuration Management. . . . . . . . . . . . . . . . 8...................................9 4.2. Inventory. . . . . . . . . . . . . . . . . . . . . . . . 9.................................................10 4.3. Status andstatistics . . . . . . . . . . . . . . . . . . 10Statistics .....................................10 4.4. Performancemanagement . . . . . . . . . . . . . . . . . 10Management ....................................10 4.5. Fault Management. . . . . . . . . . . . . . . . . . . . 10..........................................11 4.6. Troubleshooting and Root Cause Analysis. . . . . . . . . 11...................11 5. Requirements. . . . . . . . . . . . . . . . . . . . . . . . 11...................................................11 6. Gap Analysis on Models. . . . . . . . . . . . . . . . . . . 12.........................................12 6.1. Microwave Radio Link Functionality. . . . . . . . . . . 12........................13 6.2. Generic Functionality. . . . . . . . . . . . . . . . . . 13.....................................14 6.3. Summary. . . . . . . . . . . . . . . . . . . . . . . . . 15...................................................15 7. Security Considerations. . . . . . . . . . . . . . . . . . . 15........................................15 8. IANA Considerations. . . . . . . . . . . . . . . . . . . . . 16............................................16 9. References. . . . . . . . . . . . . . . . . . . . . . . . . 16.....................................................16 9.1. Normative References. . . . . . . . . . . . . . . . . . 16......................................16 9.2. Informative References. . . . . . . . . . . . . . . . . 16 Appendix A.....................................16 Contributors. . . . . . . . . . . . . . . . . . . . 18......................................................19 Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . . 19................................................20 1. Introduction Microwave radio is a technology that useshigh frequencyhigh-frequency radio waves to providehigh speedhigh-speed wireless connections that can send and receive voice, video, and data information. It is a general term used for systems covering a very large range of traffic capacities, channel separations, modulationformatsformats, and applications over a wide range of frequency bands from 1.4 GHz up to and above 100 GHz. The main application for microwave is backhaul for mobile broadband. Those networks will continue to be modernized using a combination of microwave and fiber technologies. The choice of technologyis a question aboutdepends on fiber presence and cost of ownership, notaboutcapacity limitations in microwave.MicrowaveToday, microwave is alreadytodayable to fully support the capacity needs of a backhaul in a radio access network and will evolve to support multiple gigabits in traditional frequency bands andbeyondmore than 10 gigabits inhigher frequencyhigher-frequency bands with more bandwidth.L2Layer 2 (L2) Ethernet features are normally an integrated part of microwavenodesnodes, and more advanced L2 andL3Layer 3 (L3) features willover timebe introduced over time to support the evolution of the transport servicestothat will be provided by abackhaul/ transportbackhaul/transport network. Note thatthewireless access technologies such as 3/4/5G and Wi-Fi are not within the scope of thismicrowave model work.document. Open and standardized interfaces are apre-requisiteprerequisite for efficient management of equipment from multiple vendors, integrated in a single system/controller. This framework addresses management and control of the radio link interface(s) andthetheir relationship to otherinterfaces, typically tointerfaces (typically, Ethernetinterfaces,interfaces) in a microwave node. A radio link provides the transport over the air, using one or several carriers in aggregated or protected configurations. Managing and controlling a transport service over a microwave node involves both radio link and packet transport functionality.Already todayToday, there are already numerous IETF data models,RFCsRFCs, anddrafts,Internet-Drafts withtechnology specifictechnology-specific extensions that cover a large part of the L2 and L3 domains. Examplesareinclude IP Management [RFC8344], Routing Management[RFC8349][RFC8349], and Provider Bridge[PB-YANG]. They[IEEE802.1Qcp]. These are based on the IETF YANG data model for Interface Management [RFC8343], which is an evolution of the SNMPIF-MIBIF- MIB [RFC2863]. Since microwave nodes will contain more and more L2 andL3(packet)L3 (packet) functionalitywhichthat is expected to be managed using those models, there are advantages if radio link interfaces can be modeled and managed using the same structure and the sameapproach, specificallyapproach. This is especially true for use cases in which a microwave node is managed as one common entityincludingthat includes both the radio link and the L2 and L3 functionality,e.g. ate.g., basic configuration of the node and connections, centralizedtrouble shooting, upgradetroubleshooting, upgrade, and maintenance. All interfaces in a node, irrespective of technology, would then be accessed from the same core model,i.e.i.e., [RFC8343], and could be extended withtechnology specifictechnology-specific parameters in models augmenting that core model. Therelationship/ connectivityrelationship/connectivity between interfaces could be given by the physical equipmentconfiguration, e.g.configuration. For example, the slotin whichwhere the Radio Link Terminal (modem) is plugged in could be associated with a specific Ethernet port due to the wiring in the backplane of the system, or it could be flexible and therefore configured via a management system or controller. +------------------------------------------------------------------+ | Interface [RFC8343] | | +---------------+ | | | Ethernet Port | | | +---------------+ | | \ | | +---------------------+ | | | Radio Link Terminal | | | +---------------------+ | | / \ | | +---------------------+ +---------------------+ | | | Carrier Termination | | Carrier Termination | | | +---------------------+ +---------------------+ | +------------------------------------------------------------------+ Figure 1: Relationship betweeninterfacesInterfaces in anodeNode There will always be certain implementations that differ amongproducts andproducts, so it isthereforepractically impossible to achieve industry consensus on every design detail. It is therefore important to focus on the parameters that are required to support the use cases applicable for centralized, unified, multi-vendor management and to allow other parameters to either be optional ortobe covered by extensions to the standardized model. Furthermore, a standard that allows for a certain degree of freedom encourages innovation andcompetitioncompetition, whichis something thatbenefits the entire industry.ItThus, it isthereforeimportant that a radio link management model covers all relevant functions but also leaves room forproduct/feature-specificproduct- and feature-specific extensions.ForModels are available for microwave radio linkfunctionality work has been initiated (ONF: Microwave Modeling [ONF-model], IETF:functionality: "Microwave Information Model" by the ONF [ONF-MW] and "Microwave Radio LinkModel [I-D.ietf-ccamp-mw-yang]).YANG Data Models" submitted to and discussed by the CCAMP Working Group [CCAMP-MW]. The purpose of thiseffortdocument is to reach consensus within the industry around one commonapproach,approach with respect to the use cases and requirements to be supported, the type and structure of themodelmodel, and the resulting attributes to be included. This document describes the usecasescases, requirements, andrequirements agreed to be covered, theexpected characteristics of themodel and at the endmodel. It also includes an analysis of how the models in the twoon-goingongoing initiatives fulfill these expectations anda recommendation onrecommendations for what can be reused and what gaps need to be filled by a new and evolvedradio link model.model ("A YANG Data Model for Microwave Radio Link" by the IETF [IETF-MW]). 1.1. ConventionsusedUsed inthis documentThis Document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 2. Terminology and Definitions Microwaveradio isradio: a term commonly used for technologies that operate in both microwave and millimeterwave lengthswavelengths and in frequency bands from 1.4 GHz up to and beyond 100 GHz. In traditionalbandsbands, it typically supports capacities of 1-3Gbps andGbps; in the 70/80 GHzbandband, it supports up to 10 Gbps. Using multi-carrier systems operating in frequency bands with wider channels, the technology will be capable of providing capacities of up to 100 Gbps.The microwaveMicrowave radiotechnology istechnology: widely used for point-to-point telecommunications becauseofits small wavelengththatallowsconveniently-sizedconveniently sized antennas to directthemradio waves in narrowbeams,beams andtheits comparatively higher frequenciesthatallow broad bandwidth and highdata transmissiondata-transmission rates. It is used for a broad range of fixed and mobileservicesservices, including high-speed, point-to-point wireless local area networks (WLANs) and broadband access. The ETSI EN 302 217 series defines the characteristics and requirements of microwave equipment and antennas.EspeciallyIn particular, ETSI EN 302 217-2 [EN302217-2] specifies the essential parameters for the systems operating from1.4GHz1.4 GHz to86GHz.86 GHz. Carrier Termination and Radio LinkTerminal areTerminal: two concepts defined to support modeling of microwave radio link features and parameters in a structuredandyet simple manner. * CarrierTermination isTermination: an interface for the capacity provided over the air by a single carrier. It is typically defined by its transmitting and receiving frequencies. * Radio LinkTerminal isTerminal: an interface providing Ethernet capacityand/ orand/or Time Division Multiplexing (TDM) capacity to the associated Ethernet and/or TDM interfaces in anode andnode. It is used for setting up a transport service over a microwave radio link. Figure 2 provides a graphical representation of the Carrier Termination and Radio Link Terminal concepts. /--------- Radio Link ---------\ Near End Far End +---------------+ +---------------+ | Radio Link | | Radio Link | | Terminal | | Terminal | | | | | | (Protected or Bonded) | | | | | | +-----------+ | | +-----------+ | | | | | Carrier A | | | | | | Carrier | |<--------->| | Carrier | | | |Termination| | | |Termination| | ETH----| | | | | | | |----ETH | +-----------+ | | +-----------+ | TDM----| | | |----TDM | +-----------+ | | +-----------+ | | | | | Carrier B | | | | | | Carrier | |<--------->| | Carrier | | | |Termination| | | |Termination| | | | | | | | | | | +-----------+ | | +-----------+ | | | | | +---------------+ +---------------+ \--- Microwave Node ---/ \--- Microwave Node ---/ Figure 2: Radio Link Terminal and Carrier TerminationSoftware DefinedSoftware-Defined Networking(SDN) is(SDN): an architecture that decouples the network control and forwardingfunctionsfunctions, enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. SDN can be used for automation of traditional network management functionality using an SDN approach of standardized programmable interfaces for control and management [RFC7426]. 3. Approaches tomanageManage andcontrol radio link interfacesControl Radio Link Interfaces This framework addresses the definition of an open and standardized interface fortheradio link functionality in a microwave node. The application of such an interface used for management and control of nodes and networks typicallyvaryvaries from one operator toanother,another in terms of the systems used and how they interact. Possible approaches includevia the use ofusing anetwork management systemNetwork Management System (NMS),via software defined networking (SDN) and viaSoftware-Defined Networking (SDN), or some combination ofNMS and SDN.the two. As there are still many networks where the NMS is implemented as one component/interface and the SDN controller is scoped tocontrol planecontrol-plane functionality as a separate component/interface, this document does not preclude either model. The aim of this document is to provide a framework for development of a common YANGData Modeldata model for both management and control of microwave interfaces. 3.1. Network Management Solutions The classic network management solutions, withvendor specificvendor-specific domain management combined withcross domaincross-domain functionality for service management and analytics, still dominate the market. These solutions are expected to evolve and benefit from an increased focus on standardization by simplifying multi-vendor management andremoveremoving the need forvendor/domain specificvendor- or domain-specific management. 3.2.Software DefinedSoftware-Defined Networking One of the main drivers for applying SDN from an operator perspective is simplification and automation of network provisioning as well asend to endend-to-end network service management. The vision is to have a global view of the network conditions spanningacrossdifferent vendors' equipment and multiple technologies. If nodes from different vendors arebemanaged by the same SDN controller via a node management interface(north bound interface, NBI),without the extra effort of introducing intermediate systems, all nodes must align their node management interfaces. Hence, an open and standardized node management interface is required in a multi-vendor environment. Such a standardized interface enablesaunified management and configuration of nodes from different vendors by a common set of applications.On top ofIn addition to SDN applicationsto configure, managefor configuring, managing, andcontrolcontrolling the nodes and their associated transport interfacesincluding(including the L2Ethernet andEthernet, L3IP interfaces as well as theIP, and radiointerfaces,interfaces), there are also a large variety ofothermore advanced SDN applications that can be utilized and/or developed. A potentially flexible approach fortheoperators is to use SDN in alogical control way to managelogically controlled way, managing the radio links by selecting a predefined operation mode. The operation mode is a set of logical metrics or parameters describing a complete radio link configuration, such as capacity, availability,prioritypriority, and power consumption. An example of an operation mode table is shown in Figure 3. Based on its operation policy (e.g., power consumption or traffic priority), the SDN controller selects one operation mode and translates that into the required configuration of the individual parameters for theradio link terminalsRadio Link Terminals and the associatedcarrier terminations.Carrier Terminations. +----+---------------+------------+-------------+-----------+------+ | ID |Description | Capacity |Availability | Priority |Power | +----+---------------+------------+-------------+-----------+------+ | 1 |High capacity | 400 Mbps | 99.9% | Low |High | +----+---------------+------------+-------------+-----------+------+ | 2 |High avail- | 100 Mbps | 99.999% | High |Low | | | ability | | | | | +----+---------------+------------+-------------+-----------+------+ Figure 3: Example of anoperation mode tableOperation Mode Table An operation mode bundles together the values of a set of different parameters. How each operation mode mapsintoa certain set of attributes is out of the scope of this document. 4. Use Cases The use cases described should be the basis foridentificationidentifying anddefinition ofdefining the parameters to be supported by a YANGDatadata model for management of radiolinks,links that will be applicableforto centralized, unified, multi-vendor management. The use cases involve configuration management, inventory, status and statistics, performance management, fault management, and troubleshooting and root cause analysis. Otherproduct specificproduct-specific use cases, e.g., addressinge.g. installation, on- site trouble shootinginstallation or on-site troubleshooting and fault resolution, are outside the scope of this framework. If required, these use cases are expected to be supported byproduct specificproduct-specific extensions to the standardized model. 4.1. Configuration Management Configurationofmanagement involves configuring aradio link terminal,Radio Link Terminal, the constituentcarrier terminations andCarrier Terminations, and, whenapplicableapplicable, the relationship to IP/Ethernet and TDM interfaces. o Understand the capabilities and limitations Exchange of information between a manager and a device about the capabilities supported and specific limitations in the parameter valuesand enumerations that can be used. Support for the XPIC (Cross Polarization Interference Cancellation) feature or not and the maximum modulation supported are two examples onand enumerations that can be used. Examples of information that could beexchanged.exchanged include the maximum modulation supported and support (or lack of support) for the Cross Polarization Interference Cancellation (XPIC) feature. o Initial Configuration Initial configuration of aradio link terminal,Radio Link Terminal, enough to establishL1Layer 1 (L1) connectivity to an associatedradio link terminalRadio Link Terminal on a device at the far end over the hop. It may also include configuration of the relationship between aradio link terminalRadio Link Terminal and an associated traffic interface,e.g.e.g., an Ethernet interface, unless that is given by the equipment configuration. Frequency, modulation,codingcoding, and output power are examples of parameters typically configured for acarrier terminationCarrier Termination and type of aggregation/bonding or protection configurations expected for aradio link terminal.Radio Link Terminal. o Radio linkre-configurationreconfiguration and optimizationRe-configuration, updateReconfiguration, update, or optimization of an existingradio link terminal.Radio Link Terminal. Output power and modulation for acarrier termination andCarrier Termination as well as protection schemas andactivation/de-activationactivation/deactivation of carriers in aradio link terminalRadio Link Terminal are examples on parameters that can bere- configuredreconfigured and used for optimization of the performance of a network. o Radio link logical configuration Radiolink terminalsLink Terminals configured to include a group of carriers are widely used in microwave technology. There are several kinds of groups: aggregation/bonding, 1+1 protection/redundancy, etc. To avoid configuration on eachcarrier terminationCarrier Termination directly, a logical control provides flexible management by mapping a logical configuration to a set of physical attributes. This could also be applied in a hierarchical SDN environment where some domain controllers are located between the SDN controller and theradio link terminal.Radio Link Terminal. 4.2. Inventory o Retrieve logical inventory and configuration from device Request from manager and response by device with information about radio interfaces, e.g., their constitution and configuration. o Retrieve physical/equipment inventory from device Request from manager about physical and/or equipment inventory associated with theradio link terminalsRadio Link Terminals andcarrier terminations.Carrier Terminations. 4.3. Status andstatisticsStatistics o Actual status and performance of a radio link interface Manager requests and device responds with information about actual status and statistics of configured radio link interfaces and their constituent parts. It's important to report the effective bandwidth of a radio link since it can be configured to dynamically adjust the modulation based on the current signal conditions. 4.4. PerformancemanagementManagement o Configuration of historical performance measurements Configuration of historical performance measurements for a radio link interface and/or its constituent parts. See Section4.1 above.4.1. o Collection of historical performance data Collection of historical performance data in bulk by the manager is a general use case for a device and not specific to a radio link interface. Collection of an individual counter for a specific interval is insamesome cases required as a complement to the retrieval in bulk as described above. 4.5. Fault Management o Configuration of alarm reporting Configuration of alarm reporting associated specifically with radio interfaces,e.g.e.g., configuration of alarm severity, is a subset of the configuration use case to be supported. See Section4.1 above.4.1. o Alarm management Alarm synchronization, visualization, handling,notificationsnotifications, and events are generic use cases for a device and should be supported on a radio link interface. Thereare howeverare, however, radio-specific alarms that are important toreport, where signalreport. Signal degradation of the radio link is one example. 4.6. Troubleshooting and Root Cause AnalysisInformationProvide information and suggest actions required by amanager/operatormanager/ operator to investigate and understand the underlying issue to a problem in the performance and/or functionality of aradio link terminalRadio Link Terminal and the associatedcarrier terminations.Carrier Terminations. 5. Requirements For managing a microwave node including both the radio link and the packet transport functionality, a unified data model is desired to unify the modeling of the radio link interfaces and the L2/L3 interfaces using the same structure and the samemodellingmodeling approach. If some part of the model is generic for other technology usage, it should be clearly stated. The purpose of the YANGData Modeldata model is for management and control of the radio link interface(s) and the relationship/connectivity to other interfaces, typically to Ethernet interfaces, in a microwave node. The capability of configuring and managing microwave nodes includes the following requirements for themodelling:model: 1. It MUST be possible to configure,managemanage, and control aradio link terminalRadio Link Terminal and the constituentcarrier terminations.Carrier Terminations. A. Configuration of frequency, channel bandwidth, modulation,codingcoding, and transmitter output power MUST be supported for acarrier termination.Carrier Termination. B. Aradio link terminalRadio Link Terminal MUST configure the associatedcarrier terminationsCarrier Terminations and the type of aggregation/bonding or protection configurations expected for theradio link terminal.Radio Link Terminal. C. Thecapability, e.g.capability (e.g., the maximum modulationsupported,supported) and the actualstatus/statistics, e.g.status/statistics (e.g., administrative status of thecarriers,carriers) SHOULD also be supported by the data model. D. The definition of the features and parameters SHOULD be based on established microwave equipment and radio standards, such as ETSI EN 302 217[EN302217-2][EN302217-2], which specifies the essential parameters for microwave systems operating from1.4GHz1.4 GHz to86GHz.86 GHz. 2. It MUST be possible to map different traffic types(e.g. TDM,(e.g., TDM and Ethernet) to the transport capacity provided by a specificradio link terminal.Radio Link Terminal. 3. It MUST be possible to configure and collect historical measurements (for the use case described insection 5.4)Section 4.4) to be performed on a radio linkinterface, e.g.interface (e.g., minimum,maximum andmaximum, average transmitpowerpower, andreceivereceived level indBm.dBm). 4. It MUST be possible to configure and retrieve alarms reporting associated with the radiointerfaces, e.g. configuration of alarm severity, supported alarms likeinterfaces (e.g., configuration fault, signal lost, modem fault, and radiofault.fault). 6. Gap Analysis on Models The purpose of the gap analysis is to identify and recommend what models to use in a microwave device to support the use cases and requirements specified in the previouschapters.sections. Thisdraft shalldocument alsomakemakes a recommendationonfor how the gaps not supported should be filled, including the need for development of new models and evolution of existing models anddrafts. Fordocuments. Models are available for microwave radio linkfunctionality work has been initiated (ONF: Microwave Modeling [ONF-model], IETF:functionality: "Microwave Information Model" by the ONF [ONF-MW] and "Microwave Radio LinkModel [I-D.ietf-ccamp-mw-yang].YANG Data Models" submitted to and discussed by the CCAMP Working Group [CCAMP-MW]. The analysisis expected to takein this document takes these initiatives into consideration andmakemakes a recommendation on how tomakeuseof themandhow tocomplement them in order to fill the gaps identified. For generic functionality, not functionality specificforto radio link, the ambition is to refer to existing or emerging models that could be applicable for all functional areas in a microwave node. 6.1. Microwave Radio Link Functionality [ONF-CIM] defines a CoreModel of the ONF Common Information Model. An information model describes the things in a domain in terms of objects, their properties (represented as attributes), and their relationships. The ONF information model is expressed in Unified Modeling Language (UML). The ONF CoreModel is independent of specificdata planedata-plane technology. Thetechnology specifictechnology-specific content, acquired in a runtime solution via "filled in" cases of specification,augmentaugments the CoreModelto provideby providing a forwarding technology-specific representation. IETFData Model defines an implementationdata models define implementations and protocol-specific details. YANG is a data modeling language used to model the configuration and state data. [RFC8343] defines a generic YANG data model for interface managementwhichthat doesn't includetechnologytechnology- specific information. To describe thetechnology specifictechnology-specific information, several YANG data models have been proposed in the IETFby augmentingto augment [RFC8343],e.g.e.g., the data model defined in [RFC8344]. The YANG data model is a popular approach for modeling interfaces for many packet transporttechnology interfaces,technologies anditis thereby well positioned to become an industry standard. In light of this trend,[I-D.ietf-ccamp-mw-yang][CCAMP-MW] provides a YANG data model proposal for radiointerfaces, whichinterfaces that is well aligned with the structure of other technology-specific YANG data models augmenting [RFC8343]. [RFC3444] explains the difference between InformationModel(IM)Models (IMs) and DataModels(DM).Models (DMs). An IMis to modelmodels managed objects at a conceptual level for designers and operators, while a DM is defined at a lower level and includes many details for implementers. In addition, the protocol-specific details are usually included in a DM. Since conceptual models can be implemented in different ways, multiple DMs can be derived from a single IM. It is recommended to use the structure of theIETF: Radio Link Model [I-D.ietf-ccamp-mw-yang]model described in [CCAMP-MW] as the starting point, since[I-D.ietf-ccamp-mw-yang]it is a data model providing the wanted alignment with [RFC8343]. To cover the identified gaps, it is recommended to define new leafs/parameters and include those in[I-D.ietf-ccamp-mw-yang]the new model [IETF-MW] while taking reference from [ONF-CIM]. It is also recommended to add the required data nodes to describe the interface layering for the capacity provided by aradio link terminalRadio Link Terminal and the associated Ethernet and TDM interfaces in a microwave node. The principles and data nodes for interface layering described in [RFC8343] should be used as a basis. 6.2. Generic Functionality For generic functionality, not functionality specificforto radiolink,links, the recommendation is to refer to existing RFCs or emergingdraftsInternet- Drafts according tothe table inFigure4 below. New Radio Link Model4. "[IETF-MW]" is used inthe tableFigure 4 for the cases where the functionality is recommended to be included in the newradio linkmodel [IETF-MW] as described in Section 6.1. +------------------------------------+-----------------------------+ | Generic Functionality | Recommendation | | | | +------------------------------------+-----------------------------+|1.Fault|1. Fault Management | | | | | | Alarm Configuration |New Radio Link Model[IETF-MW] | | | | | Alarmnotifications/Notifications/ |[I-D.ietf-ccamp-[YANG-ALARM] | |synchronizationSynchronization |alarm-module]| +------------------------------------+-----------------------------+|2.Performance|2. Performance Management | | | | | | Performance Configuration/ |New Radio Link Model[IETF-MW] | | Activation | | | | | | Performance Collection |New Radio Link Model[IETF-MW] and| | |XML files | +------------------------------------+-----------------------------+|3.Physical/Equipment|3. Physical/Equipment Inventory | [RFC8348] | +------------------------------------+-----------------------------+ Figure 4: Recommendationon howfor How tosupport generic functionality Microwave specificSupport Generic Functionality Microwave-specific alarm configurations are recommended to be included in the newradio linkmodel [IETF-MW] and could be based on what is supported in theIETFmodels described in [ONF-MW] andONF Radio Link Models.[CCAMP-MW]. Alarm notifications and synchronization are general andisare recommended to be supported by a generic model, such as[I-D.ietf-ccamp-alarm-module].[YANG-ALARM]. Activation of interval counters and thresholds could be a genericfunctionfunction, but it is recommended to be supported by the newradio link specificmodeland[IETF-MW]. It can be based onboththeONFmodels described in [ONF-MW] andIETF Microwave Radio Link models.[CCAMP-MW]. Collection of interval/historical counters is a generic function that needs to be supported in a node.File basedFile-based collection via the SSH File TransferProtocol(SFTP)Protocol (SFTP) and collection viaaNETCONF/YANG interfaces are two possibleoptions andoptions; the recommendation is to include support for the latter in the newradio link specific model.model [IETF-MW]. TheONF and IETF Microwave Radio Linkmodels described in [ONF-MW] and [CCAMP-MW] can also be used as a basisalsoin this area. Physical and/or equipment inventory associated with theradio link terminalsRadio Link Terminals andcarrier terminationsCarrier Terminations is recommended to be covered by amodelgeneric model for the complete node,e.g. [RFC8348] and ite.g., the model defined in [RFC8348]. It is thereby outside the scope of theradio link specific model.new model [IETF-MW]. 6.3. Summary The conclusions and recommendations from the analysis can be summarized as follows: 1. AMicrowave Radio Linknew YANGData Modeldata model for radio link [IETF-MW] should be defined witha scopeenough scope to support the use cases and requirements in Sections 4 and 5 of this document. 2. Use the structureinof theIETF: Radio Link Model [I-D.ietf-ccamp-mw-yang]model described in [CCAMP-MW] as the starting point. It augments [RFC8343] and is thereby as required aligned with the structure of the models for management of the L2 and L3 domains. 3. Use established microwave equipment and radiostandards, suchstandards (such as [EN302217-2],andtheIETF: Radio Link Model [I-D.ietf-ccamp-mw-yang]model described in [CCAMP-MW], and theONF: Microwave Modeling [ONF-model]model described in [ONF-MW]) as the basis for the definition of the detailedleafs/parametersleafs/ parameters to support the specified use cases and requirements,andproposing new ones to cover identified gaps. 4. Add the required data nodes to describe the interface layering for the capacity provided by aradio link terminalRadio Link Terminal and the associated Ethernet and TDM interfaces, using the principles and data nodes for interface layering described in [RFC8343] as a basis. 5. Include support for configuration ofmicrowave specificmicrowave-specific alarms in theMicrowave Radio Linknew YANG data model [IETF-MW] and rely on a generic model such as[I-D.ietf-ccamp-alarm-module][YANG-ALARM] for notifications and alarm synchronization. 6. Use a generic model such as [RFC8348] for physical/equipment inventory. 7. Security Considerations The configuration information may be considered sensitive or vulnerable inthenetwork environments. Unauthorized access to configuration data nodes can have a negative effect on network operations, e.g., interrupting the ability to forwardtraffic,traffic or increasing the interference level of the network. The status and inventory reveal some network information that could be very helpful to an attacker. A malicious attack to that information may result in a loss of customer data. Securityissueissues concerning the access control toManagementmanagement interfaces can be generally addressed by authentication techniques providing origin verification,integrityintegrity, and confidentiality. In addition, management interfaces can be physically or logicallyisolated,isolated by configuring them to be only accessible out-of-band, through a system that is physically or logically separated from the rest of the network infrastructure. Incasecases where management interfaces are accessible in-band at the client device or within the microwave transport network domain, filtering or firewalling techniques can be used to restrict unauthorized in-band traffic.AuthenticationAdditionally, authentication techniques may beadditionallyused in all cases. This framework describes the requirements and characteristics of a YANGData Modeldata model for control and management of the radio link interfaces in a microwave node. It is supposed to be accessed via a management protocol with a secure transport layer, such as NETCONF [RFC6241]. 8. IANA Considerations Thismemo includesdocument has norequest to IANA.IANA actions. 9. References 9.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. 9.2. Informative References [CCAMP-MW] Ahlberg, J., Carlson, J-O., Lund, H-A., Olausson, T., Ye, M., and M. Vaupotic, "Microwave Radio Link YANG Data Models", Work in Progress, draft-ahlberg-ccamp-microwave- radio-link-01, May 2016. [EN302217-2] ETSI, "Fixed Radio Systems; Characteristics and requirements forpoint to-pointpoint-to-point equipment and antennas; Part 2: Digital systems operating in frequency bands from 1 GHz to 86 GHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU", ETSI EN 302217-2 V3.1.1 ,217-2, V3.1.1, May 2017.[I-D.ietf-ccamp-alarm-module] Vallin, S.[IEEE802.1Qcp] IEEE, "Bridges andM. Bjorklund, "YANG Alarm Module", draft- ietf-ccamp-alarm-module-01 (workBridged Networks Ammendment: YANG Data Model", Work inprogress), February 2018. [I-D.ietf-ccamp-mw-yang]Progress, Draft 2.2, March 2018, <https://1.ieee802.org/tsn/802-1qcp/>. [IETF-MW] Ahlberg, J., Ye, M., Li, X., Spreafico, D., and M. Vaupotic, "A YANG Data Model for Microwave Radio Link",draft-ietf-ccamp-mw-yang-05 (workWork inprogress), MarchProgress, draft-ietf-ccamp-mw-yang-10, October 2018. [ONF-CIM] ONF, "Core InformationModel",Model (CoreModel)", ONF TR- 512, version1.2 ,1.2, September 2016,<https://www.opennetworking.org/wp- content/uploads/2014/10/TR-512_CIM_(CoreModel)_1.2.zip>. [ONF-model]<https://www.opennetworking.org/images/stories/downloads/ sdn-resources/technical-reports/ TR-512_CIM_(CoreModel)_1.2.zip>. [ONF-MW] ONF, "Microwave Information Model", ONF TR-532, version1.0 ,1.0, December 2016, <https://www.opennetworking.org/images/stories/downloads/ sdn-resources/technical-reports/ TR-532-Microwave-Information-Model-V1.pdf>.[PB-YANG] "IEEE 802.1X and 802.1Q Module Specifications", version 0.4 , May 2015, <http://www.ieee802.org/1/files/public/docs2015/ new-mholness-YANG-8021x-0515-v04.pdf>.[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000, <https://www.rfc-editor.org/info/rfc2863>. [RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between Information Models and Data Models", RFC 3444, DOI 10.17487/RFC3444, January 2003, <https://www.rfc-editor.org/info/rfc3444>. [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>. [RFC7426] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S., Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software- Defined Networking (SDN): Layers and Architecture Terminology", RFC 7426, DOI 10.17487/RFC7426, January 2015, <https://www.rfc-editor.org/info/rfc7426>. [RFC8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC8343, March 2018, <https://www.rfc-editor.org/info/rfc8343>. [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management", RFC 8344, DOI 10.17487/RFC8344, March 2018, <https://www.rfc-editor.org/info/rfc8344>. [RFC8348] Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A YANG Data Model for Hardware Management", RFC 8348, DOI 10.17487/RFC8348, March 2018, <https://www.rfc-editor.org/info/rfc8348>. [RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for Routing Management (NMDA Version)", RFC 8349, DOI 10.17487/RFC8349, March 2018, <https://www.rfc-editor.org/info/rfc8349>.Appendix A.[YANG-ALARM] Vallin, S. and M. Bjorklund, "YANG Alarm Module", Work in Progress, draft-ietf-ccamp-alarm-module-04, October 2018. Contributors Marko Vaupotic Aviat Networks Motnica 9 Trzin-Ljubljana 1236 Slovenia Email: Marko.Vaupotic@aviatnet.com Jeff Tantsura Email: jefftant.ietf@gmail.com Koji Kawada NEC Corporation 1753, Shimonumabe Nakahara-ku Kawasaki, Kanagawa 211-8666 Japan Email: k-kawada@ah.jp.nec.com Ippei Akiyoshi NEC 1753, Shimonumabe Nakahara-ku Kawasaki, Kanagawa 211-8666 Japan Email: i-akiyoshi@ah.jp.nec.com Daniela Spreafico Nokia - IT Via Energy Park, 14 Vimercate (MI) 20871 Italy Email: daniela.spreafico@nokia.com Authors' Addresses Jonas Ahlberg (editor) Ericsson AB Lindholmspiren 11 Goteborg 417 56 Sweden Email: jonas.ahlberg@ericsson.comYeMin Ye (editor) Huawei Technologies No.1899, Xiyuan Avenue Chengdu 611731P.R.ChinaChina Email: amy.yemin@huawei.com Xi Li NEC Laboratories Europe Kurfuersten-Anlage 36 Heidelberg 69115 Germany Email: Xi.Li@neclab.eu Luis Contreras Telefonica I+D Ronda de la Comunicacion, S/N Madrid 28050 Spain Email: luismiguel.contrerasmurillo@telefonica.com Carlos J. Bernardos Universidad Carlos III de Madrid Av. Universidad, 30 Madrid, Leganes 28911 Spain Email: cjbc@it.uc3m.es