Diameter Maintenance and Extensions (DIME)Internet Engineering Task Force (IETF) S. DonovanInternet-DraftRequest for Comments: 8581 Oracle Updates:RFC7683 (if approved) March 22, 2017 Intended status:7683 August 2019 Category: Standards TrackExpires: September 23, 2017ISSN: 2070-1721 Diameter Agent Overload and the Peer Overload Reportdraft-ietf-dime-agent-overload-11.txtAbstract This specification documents an extension toRFC 7683 (Diameterthe Diameter Overload Indication Conveyance(DOIC))(DOIC), a basesolution.solution for Diameter overload defined in RFC 7683. The extension defines the PeeroverloadOverload report type. The initial use case for thePeerpeer report is the handling of occurrences of overload of a Diameteragent. Requirements The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].Agent. Status of This Memo ThisInternet-Draftissubmitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documentsan Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF).Note that other groups may also distribute working documents as Internet-Drafts. The listIt represents the consensus ofcurrent Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents validthe IETF community. It has received public review and has been approved fora maximumpublication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on September 23, 2017.https://www.rfc-editor.org/info/rfc8581. Copyright Notice Copyright (c)20172019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents(http://trustee.ietf.org/license-info)(https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . .32 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 3. Terminology and Abbreviations . . . . . . . . . . . . . . . . 33. Peer Report4. Peer-Report Use Cases . . . . . . . . . . . . . . . . . . . . 43.1.4.1. Diameter Agent Overload Use Cases . . . . . . . . . . . . 43.1.1.4.1.1. Single Agent . . . . . . . . . . . . . . . . . . . . 53.1.2.4.1.2. Redundant Agents . . . . . . . . . . . . . . . . . . 63.1.3.4.1.3. Agent Chains . . . . . . . . . . . . . . . . . . . . 73.2.4.2. Diameter Endpoint Use Cases . . . . . . . . . . . . . . . 83.2.1. Hop-by-hop4.2.1. Hop-by-Hop Abatement Algorithms . . . . . . . . . . . 84.5. Interaction Between Host/Realm and Peer Overload Reports . . 85. Peer Report6. Peer-Report Behavior . . . . . . . . . . . . . . . . . . . . 85.1.6.1. Capability Announcement . . . . . . . . . . . . . . . . . 95.1.1. Reacting Node6.1.1. Reacting-Node Behavior . . . . . . . . . . . . . . . 95.1.2. Reporting Node6.1.2. Reporting-Node Behavior . . . . . . . . . . . . . . . 95.2.6.2. Peer Overload Report Handling . . . . . . . . . . . . . . 105.2.1.6.2.1. Overload Control State . . . . . . . . . . . . . . . 105.2.2. Reporting Node6.2.2. Reporting-Node Maintenance ofPeer ReportPeer-Report OCS . . . . 115.2.3. Reacting Node6.2.3. Reacting-Node Maintenance ofPeer ReportPeer-Report OCS . . . . 115.2.4.6.2.4. Peer-ReportReporting NodeReporting-Node Behavior . . . . . . . . . 125.2.5.6.2.5. Peer-ReportReacting NodeReacting-Node Behavior . . . . . . . . . 136. Peer Report7. Peer-Report AVPs . . . . . . . . . . . . . . . . . . . . . . 146.1.7.1. OC-Supported-Features AVP . . . . . . . . . . . . . . . . 146.1.1.7.1.1. OC-Feature-Vector AVP . . . . . . . . . . . . . . . . 146.1.2.7.1.2. OC-Peer-Algo AVP . . . . . . . . . . . . . . . . . . 146.2.7.2. OC-OLR AVP . . . . . . . . . . . . . . . . . . . . . . . 156.2.1.7.2.1. OC-Report-Type AVP . . . . . . . . . . . . . . . . . 156.3.7.3. SourceID AVP . . . . . . . . . . . . . . . . . . . . . . 156.4. Attribute Value7.4. Attribute-Value Pair Flag Rules . . . . . . . . . . . . . 167.8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 167.1. AVP Codes9. Security Considerations . . . . . . . . . . . . . . . . . . . 16 10. References . . . . .16 7.2. New Registries. . . . . . . . . . . . . . . . . . . . 17 10.1. Normative References .16 8. Security Considerations. . . . . . . . . . . . . . . . . 17 10.2. Informative References . .16 9. Acknowledgements. . . . . . . . . . . . . . . 17 Acknowledgements . . . . . . .17 10. References. . . . . . . . . . . . . . . . .. . . . . . . . 17 10.1. Informative References . . . . . . . . . . . . . . . . . 17 10.2. Normative References . . . . . . . . . . . . . . . . . . 1718 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 18 1. Introduction This specification documents an extension to the Diameter Overload Indication Conveyance(DOIC) [RFC7683](DOIC), a basesolution.solution for Diameter overload [RFC7683]. The extension defines the PeeroverloadOverload report type. The initial use case for thePeerpeer report is the handling of occurrences of overload of a Diameteragent.Agent. This document defines the behavior of Diameter nodes when DiameteragentsAgents enter an overload condition and send anoverloadOverload report requesting a reduction of traffic. It also defines a newoverloadOverload report type, the PeeroverloadOverload report type,thatwhich is used for handlingofagent overload conditions. The PeeroverloadOverload report type is defined in a generic fashion so that it can also be used for other Diameter overload scenarios. The base Diameter overload specification [RFC7683] addresses the handling of overload when a Diameter endpoint (a Diameter Client or Diameter Server as defined in [RFC6733]) becomes overloaded. In the base specification, the goal is to handle abatement of the overload occurrence as close to the source of the Diameter traffic as feasible. Whenpossiblepossible, this is done at the originator of the traffic, generally referred to as a Diameter Client. A Diameter Agent might also handle the overload mitigation. For instance, a Diameter Agent might handle Diameter overload mitigation when it knows that a Diameter Client does not support the DOIC extension. This document extends the base Diameter endpoint overload specification to address the case when Diameter Agents become overloaded. Just as is the case with other Diameternodes --nodes, i.e., Diameter Clients and DiameterServers --Servers, surges in Diameter traffic can cause a Diameter Agent to be asked to handle more Diameter traffic than it was configured to handle. For a more detailed discussion of what can cause the overload of Diameter nodes, refer to the DiameterOverload Requirementsoverload requirements [RFC7068]. This document defines a newoverloadOverload report type to communicate occurrences of agent overload. This report type works for the"Loss"Diameter overloadmitigationloss abatement algorithm defined in [RFC7683] and is expected to work for other overload abatement algorithms defined in extensions to the DOIC solution. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Terminology and Abbreviations AVPAttribute ValueAttribute-Value Pair Diameter Node A[RFC7683]Diameter Client,an [RFC7683]Diameter Server,and [RFC7683]or DiameterAgent.Agent [RFC6733] Diameter EndpointAn [RFC7683]A Diameter Clientand [RFC7683]or DiameterServer.Server [RFC6733] Diameter AgentAn [RFC7683]A DiameterAgent.node that provides relay, proxy, redirect, or translation services [RFC6733] Reporting Node A DOICNodenode that sends anoverloadOverload report in a Diameter answermessage.message Reacting Node A DOICNodenode that receives and acts on a DOICoverload report.Overload report DOIC Node A DiameterNodenode that supports the DOIC solution defined in[RFC7683]. 3. Peer Report[RFC7683] 4. Peer-Report Use Cases This section outlines representative use cases for the peer report used to communicate agent overload. There are two primary classes of use cases currentlyidentified,identified: those involving the overload ofagentsagents, and those involving the overload of Diameter endpoints. In bothcasescases, the goal is to use an overload algorithm that controls traffic sent towards peers.3.1.4.1. Diameter Agent Overload Use Cases The peer report needs to support thefollowingusecases.cases described below. In the figures in this section, elements labeled "c" are Diameter Clients, elements labeled "a" are DiameterAgentsAgents, and elements labeled "s" are Diameter Servers.3.1.1.4.1.1. Single Agent This use case is illustrated in Figure 1. In this case, the client sends all traffic through the single agent. If there is a failure in theagentagent, then the client is unable to send Diameter traffic toward the server. +-+ +-+ +-+ |c|----|a|----|s| +-+ +-+ +-+ Figure 1 A more likely case for the use of agents is illustrated in Figure 2. In this case, there are multiple servers behind the single agent. The client sends all traffic through theagentagent, and the agent determines how to distribute the traffic to the servers based on local routing and load distribution policy. +-+ --|s| +-+ +-+ / +-+ |c|----|a|- ... +-+ +-+ \ +-+ --|s| +-+ Figure 2 In both of these cases, the occurrence of overload in the single agent must by handled by the clientin a similar fashionsimilarly to as if the client were handling the overload of a directly connected server. When the agent becomesoverloadedoverloaded, it will insert anoverloadOverload report in answer messages flowing to the client. ThisoverloadOverload report will contain a requested reduction in the amount of traffic sent to the agent. The client will apply overload abatement behavior as defined in the base Diameter overload specification [RFC7683] or in the extensiondraftdocument that defines the indicated overload abatement algorithm. This will result in the throttling of the abated traffic that would have been sent to the agent, as there is no alternative route. The client sends an appropriate error response to the originator of the request.3.1.2.4.1.2. Redundant Agents Figure 3 and Figure 4 illustrate a second, and more likely, type of deployment scenario involving agents. In both of these cases, the client has Diameter connections to two agents. Figure 3 illustrates a client that has a primary connection to one of the agents (agent a1) and a secondary connection to the other agent (agent a2). In this scenario, under normal circumstances, the client will use the primary connection for all traffic. The secondary connection is used when there is a failure scenario of some sort. +--+ +-+ --|a1|---|s| +-+ / +--+\ /+-+ |c|- x +-+ . +--+/ \+-+ ..|a2|---|s| +--+ +-+ Figure 3 The second case, in Figure 4, illustrates the case where the connections to the agents are both actively used. In this case, the client will have local distribution policy to determine the traffic sent through each client. +--+ +-+ --|a1|---|s| +-+ / +--+\ /+-+ |c|- x +-+ \ +--+/ \+-+ --|a2|---|s| +--+ +-+ Figure 4 In the case where one of the agents in the above scenarios become overloaded, the client should reduce the amount of traffic sent to the overloaded agent by the amount requested. This traffic should instead be routed through the non-overloaded agent. For example, assume that the overloaded agent requests a reduction of 10 percent. The client should send 10 percent of the traffic that would have been routed to the overloaded agent through the non-overloaded agent. When the client has both an active and a standby connection to the twoagentsagents, then an alternative strategy for responding to anoverloadOverload report from an agent is to change the standby connection to active. This will result in all traffic being routed through the new active connection. In the case where both agents are reporting overload, the client may need to start decreasing the total traffic sent to the agents. This would be done in a similar fashion as that discussed in Section3.1.14.1.1. The amount of traffic depends on the combined reduction requested by the two agents.3.1.3.4.1.3. Agent Chains There are also deployment scenarios where there can be multiple Diameter Agents between Diameter Clients and Diameter Servers. An example of this type of deploymentincludesis when there are DiameteragentsAgents between administrative domains. Figure 5 illustrates one such network deployment case. Note that while this figure shows a maximum of two agents being involved in a Diameter transaction, it is possiblethatfor more than two agentscouldto be in the path of a transaction. +---+ +---+ +-+ --|a11|-----|a21|---|s| +-+ / +---+ \ / +---+\ /+-+ |c|- x x +-+ \ +---+ / \ +---+/ \+-+ --|a12|-----|a22|---|s| +---+ +---+ +-+ Figure 5HandlingThe handling of overloadoffor one or bothof agentsagents, a11 or a12 in thiscasecase, is equivalent to that discussed in Section3.1.2. Overload4.1.2. The overload of agents a21 and a22 must be handled by thepreviousprevious- hop agents. As such, agents a11 and a12 must handle the overload mitigation logic when receiving anagent overloadAgent Overload report from agents a21 and a22. The handling ofpeer overloadPeer Overload reports is similar to that discussed in Section3.1.2.4.1.2. If the overload can be addressed usingdiversiondiversion, then this approach should be taken. If both of the agents have requested a reduction intraffictraffic, then theprevious hopprevious-hop agent must start throttling the appropriate number of transactions. When throttling requests, an agent uses the same error responses as defined in the base DOIC specification [RFC7683].3.2.4.2. Diameter Endpoint Use Cases This section outlines use cases for thepeer overloadPeer Overload report involving Diameter Clients and Diameter Servers.3.2.1. Hop-by-hop4.2.1. Hop-by-Hop Abatement Algorithms It is envisioned that abatement algorithms will be defined that will support the option for DiameterEndpointsendpoints to send peer reports. For instance, it is envisioned that one usage scenario for the ratealgorithm, [I-D.ietf-dime-doic-rate-control], which isalgorithm [RFC8582] will involve abatement beingworked on by the DIME working group as this document is being written, will involve abatement being donedone on a hop-by-hop basis. Thisrate deploymentrate-deployment scenario would involve DiameterEndpointsendpoints generating peer reports and selecting the rate algorithm for abatement of overload conditions.4.5. Interaction Between Host/Realm and Peer Overload Reports It is possiblethatfor both an agent and anend-pointendpoint in the path of a transactionareto be overloaded at the same time. When this occurs, Diameter entities need to handleboth overloadmultiple Overload reports. In thisscenarioscenario, the reacting node should first handle the throttling of the overloadedhostHost orrealm.Realm. Any messages that survive throttling due tohostHost orrealmRealm reports should then go through abatement for thepeer overloadPeer Overload report. In this scenario, when doing abatement on thePEERpeer report, the reacting node SHOULD take into consideration the number of messages already throttled by the handling of theHOST/ REALMhost/ realm report abatement. Note: The goal is to avoid traffic oscillations that might result from throttling of messages for both theHOST/REALM overloadhost/realm Overload reports and the PEERoverloadOverload reports. This is especially a concern if both reports indicate theLOSSloss abatement algorithm.5. Peer Report6. Peer-Report Behavior This section defines the normative behavior associated with thePeerPeer- Report extension to the DOIC solution.5.1.6.1. Capability Announcement5.1.1. Reacting Node6.1.1. Reacting-Node Behavior When sending a Diameterrequestrequest, a DOICNodenode that supports the OC_PEER_REPORT feature (as defined in Section6.1.1) feature7.1.1) MUST include in the OC-Supported-Features AVP an OC-Feature-Vector AVP with the OC_PEER_REPORT bit set. When sending arequestrequest, a DOICNodenode that supports the OC_PEER_REPORT feature MUST include a SourceID AVP in the OC-Supported-Features AVP with its own DiameterIdentity. When a Diameter Agent relays a request that includes a SourceID AVP in the OC-Supported-Features AVP, if the Diameter Agent supports the OC_PEER_REPORTfeaturefeature, then it MUST remove the received SourceID AVP and replace it with a SourceID AVP containing its own DiameterIdentity.5.1.2. Reporting Node6.1.2. Reporting-Node Behavior When receiving arequestrequest, a DOICNodenode that supports the OC_PEER_REPORT feature MUST update transaction state with an indication of whether or not the peer from which the request was received supports the OC_PEER_REPORT feature. Note: The transaction state is used when the DOICNodenode is acting as a peer-report reporting node and needs to send OC-OLR AVP reports of typepeer"PEER-REPORT" in answer messages. Thepeer overloadPeer Overload reports are only included in answer messages being sent to peers that support the OC_PEER_REPORT feature. The peer supports the OC_PEER_REPORT feature if the received request contains an OC-Supported-Features AVP with the OC-Feature-Vector with the OC_PEER_REPORT feature bit set and with a SourceID AVP with a value that matches the DiameterIdentity of the peer from which the request was received. When an agent relays an answer message, a reporting node that supports the OC_PEER_REPORT feature MUST strip any SourceID AVP from the OC-Supported-Features AVP. When sending an answer message, a reporting node that supports the OC_PEER_REPORT feature MUST determine if the peer to which the answer is to be sent supports the OC_PEER_REPORT feature. If the peer supports the OC_PEER_REPORTfeaturefeature, then the reporting node MUST indicate support for the feature in the OC-Supported- Features AVP. If the peer supports the OC_PEER_REPORTfeaturefeature, then the reporting node MUST insert the SourceID AVP in the OC-Supported-Features AVP in the answer message. If the peer supports the OC_PEER_REPORTfeaturefeature, then the reporting node MUST insert the OC-Peer-Algo AVP in the OC-Supported-Features AVP. The OC-Peer-Algo AVP MUST indicate the overload abatement algorithm that the reporting node wants the reacting nodes to use should the reporting node send apeer overloadPeer Overload report as a result of becoming overloaded.5.2.6.2. Peer Overload Report Handling This section defines the behavior for the handling ofoverloadOverload reports of typepeer. 5.2.1."PEER-REPORT". 6.2.1. Overload Control State This section describes the Overload Control State (OCS) that might be maintained by both the peer-report reporting node and the peer-report reacting node. This is an extension of the OCS handling defined in [RFC7683].5.2.1.1. Reporting Node Peer Report6.2.1.1. Reporting-Node Peer-Report OCS A DOICNodenode that supports the OC_PEER_REPORT feature SHOULD maintainReporting NodeReporting-Node OCS, as defined in [RFC7683] and extended here. If differentabatement specificabatement-specific contents are sent to eachpeerpeer, then the reporting node MUST maintain a separatereporting node peerreporting-node peer- report OCS entry perpeerpeer, to which apeer overloadPeer Overload report is sent. Note: Therate overloadrate-overload abatement algorithm allows for different rates to be sent to each peer.5.2.1.2. Reacting Node Peer Report6.2.1.2. Reacting-Node Peer-Report OCS In addition to OCS maintained as defined in [RFC7683], a reacting node that supports the OC_PEER_REPORT feature maintains the following OCS per supported Diameter application: Apeer-typepeer-report OCS entry for each peer to which it sendsrequests.requests Apeer-typepeer-report OCS entry is identified by both thepair ofApplication-ID and the peer's DiameterIdentity. Thepeer-typepeer-report OCS entryincludeincludes the following information (the actual information stored is an implementation decision): Sequence number (as received in the OC-OLRAVP).AVP) Time of expiry (derived from the OC-Validity-Duration AVP received in the OC-OLR AVP and time of reception of the message carryingOC- OLR AVP).the OC-OLR AVP) Selected abatement algorithm (as received in the OC-Supported- FeaturesAVP).AVP) Input data that is specific to the abatement algorithmspecific(as received in the OC-OLRAVP -- for example,AVP, e.g., OC-Reduction-Percentage for the loss abatementalgorithm). 5.2.2. Reporting Nodealgorithm) 6.2.2. Reporting-Node Maintenance ofPeer ReportPeer-Report OCS All rules for managing thereporting nodereporting-node OCS entries defined in [RFC7683] apply to the peer report.5.2.3. Reacting Node6.2.3. Reacting-Node Maintenance ofPeer ReportPeer-Report OCS When a reacting node receives an OC-OLR AVP with a report type ofpeer"PEER-REPORT", it MUST determine if the report was generated by the Diameter peer from which the report was received. If a reacting node receives an OC-OLR AVP of typepeer"PEER-REPORT" and the SourceID matches the DiameterIdentity of the Diameter peer from which the response message wasreceivedreceived, then the report was generated by a Diameter peer. If a reacting node receives an OC-OLR AVP of typepeer"PEER-REPORT" and the SourceID does not match the DiameterIdentity of the Diameter peer from which the response message wasreceivedreceived, then the reacting node MUST ignore theoverloadOverload report. Note: Under normal circumstances, a Diameter node will not add a peer report when sending to a peer that does not support this extension. This requirement is to handle the case where peer reports are erroneously or maliciously inserted into response messages. If the peer report was received from a Diameterpeerpeer, then the reacting node MUST determine if it is for an existing or new overload condition. The peer report is for an existing overload condition if the reacting node has an OCS that matches the received peer report. For a peer report, this means it matches the Application-ID and the peer's DiameterIdentity in an existing OCS entry. If the peer report is for an existing overloadconditioncondition, then it MUST determine if the peer report is a retransmission or an update to the existing OLR. If the sequence number for the received peer report is greater than the sequence number stored in the matching OCSentryentry, then the reacting node MUST update the matching OCS entry. If the sequence number for the received peer report is less than or equal to the sequence number in the matching OCSentryentry, then the reacting node MUST silently ignore the received peer report. The matching OCS MUST NOT be updated in this case. If the received peer report is for a new overloadconditioncondition, then the reacting node MUST generate a new OCS entry for the overload condition. For a peerreportreport, this means it creates an OCS entry with a DiameterIdentity from the SourceID AVP in the received OC-OLR AVP. If the received peer report contains a validity duration of zero("0")("0"), then the reacting node MUST update the OCS entry as being expired. The reacting node does not delete an OCS when receiving an answer message that does not contain an OC-OLR AVP(i.e.(i.e., the absence of OLR means "no change"). The reacting node sets the abatement algorithm based on the OC-Peer- Algo AVP in the received OC-Supported-Features AVP.5.2.4.6.2.4. Peer-ReportReporting NodeReporting-Node Behavior When there is an existingreporting node peer reportreporting-node peer-report OCS entry, the reporting node MUST include an OC-OLR AVP with a report type ofpeer"PEER-REPORT" using the contents of thereporting node peer reportreporting-node peer-report OCS entry in all answer messages sent by the reporting node to peers that support the OC_PEER_REPORT feature. Note: The reporting node determines if a peer supports the OC_PEER_REPORT feature based on the indication recorded in the reporting node's transaction state. The reporting node MUST include its DiameterIdentity in the SourceID AVP in the OC-OLR AVP. This is used by DOICNodesnodes that support the OC_PEER_REPORT feature to determine if the report was received from a Diameter peer. The reporting agent must follow all other overloadreporting nodereporting-node behaviors outlined in the DOIC specification.5.2.5.6.2.5. Peer-ReportReacting NodeReacting-Node Behavior A reacting node supporting this extension MUST support the receipt of multipleoverloadOverload reports in a single message. The message might include ahost overloadHost Overload report, arealm overload reportRealm Overload report, and/or apeer overloadPeer Overload report. When a reacting node sends arequestrequest, it MUST determine if that request matches an active OCS. In all cases, if the reacting node is anagentagent, then it MUST strip thePeer ReportPeer-Report OC-OLR AVP from the message. If the request matches an activeOCSOCS, then the reacting node MUST apply abatement treatment to the request. The abatement treatment applied depends on the abatement algorithm indicated in the OCS. Forpeer overload reports,Peer Overload Reports, the preferred abatement treatment is diversion. As such, the reacting node SHOULD attempt to divert requests identified as needing abatement to other peers. If there is not sufficient capacity to divert abatedtraffictraffic, then the reacting node MUST throttle the necessary requests to fit within the available capacity of the peers able to handle the requests. If the abatement treatment results in throttling of the request and if the reacting node is anagentagent, then the agent MUST send an appropriate error response as defined in [RFC7683]. In the case that the OCS entry validity duration expires or has a validity duration of zero ("0"), meaning that if the reporting node has explicitly signaled the end of the overloadconditioncondition, then abatement associated with the OCS entry MUST be ended in a controlled fashion.6. Peer Report7. Peer-Report AVPs6.1.7.1. OC-Supported-Features AVP This extension adds a new feature to the OC-Feature-Vector AVP. This feature indication shows support for handling ofpeer overloadPeer Overload reports. PeeroverloadOverload reports are used by agents to indicate the need for overload abatement handling by the agent's peer. A supporting node must also include the SourceID AVP in the OC- Supported-Features capability AVP. This AVP contains the DiameterIdentity of the node that supports the OC_PEER_REPORT feature. This AVP is used to determine if support for thepeer overloadPeer Overload report is in an adjacent node. The value of this AVP should be the same Diameter identity used as part of the Diameter Capabilities Exchange procedure defined in [RFC7683]. This extension also adds the OC-Peer-Algo AVP to the OC-Supported- Features AVP. This AVP is used by a reporting node to indicate the abatement algorithm it will use forpeer overloadPeer Overload reports. OC-Supported-Features ::= < AVP Header: 621 > [ OC-Feature-Vector ] [ SourceID ] [ OC-Peer-Algo] * [ AVP ]6.1.1.7.1.1. OC-Feature-Vector AVP Thepeer reportPeer-Report feature defines a new feature bit for the OC-Feature- Vector AVP. OC_PEER_REPORT (0x0000000000000010) When this flag is set by a DOICNodenode, it indicates that the DOICNodenode supports thepeer overloadPeer Overload report type.6.1.2.7.1.2. OC-Peer-Algo AVP The OC-Peer-Algo AVP (AVP codeTBD1)648) is of type Unsigned64 and contains a64 bit64-bit flags field of announced capabilitiesoffor a DOICNode.node. The value of zero(0)("0") is reserved. Feature bits defined for the OC-Feature-Vector AVP and associated with overload abatement algorithms are reused for this AVP.6.2.7.2. OC-OLR AVP This extension makes no changes to the OC_Sequence_Number or OC_Validity_Duration AVPs in the OC-OLR AVP. These AVPsarecan also be used inpeer overloadPeer Overload reports. The OC_PEER_REPORT feature extends the base Diameter overload specification by defining a newoverloadOverload report type of"peer"."PEER- REPORT". Seesection [7.6] inSection 7.6 of [RFC7683] for a description of theOC-Report-TypeOC- Report-Type AVP. Theoverloadpeer report MUST also include the Diameter identity of the agent that generated the report. This is necessary to handle the case where there is anon supportingnon-supporting agent between the reporting node and the reacting node. Without the indication of the agent that generated theoverloadpeer report, the reacting node could erroneously assume that the report applied to the non-supporting node. This could, in turn, result in unnecessary traffic being either diverted or throttled. The SourceID AVP is used in the OC-OLR AVP to carry this DiameterIdentity. OC-OLR ::= < AVP Header: 623 > < OC-Sequence-Number > < OC-Report-Type > [ OC-Reduction-Percentage ] [ OC-Validity-Duration ] [ SourceID ] * [ AVP ]6.2.1.7.2.1. OC-Report-Type AVP The following new report type is defined for the OC-Report-Type AVP. PEER_REPORT22: The overload treatment should apply to all requests bound for the peer identified in theoverloadOverload report. If the peer identified in theoverloadpeer report is not a peer to the reactingendpointendpoint, then theoverloadpeer report should be stripped and not acted upon.6.3.7.3. SourceID AVP The SourceID AVP (AVP codeTBD2)649) is of type DiameterIdentity and is inserted by a Diameter node to indicate the source of the AVP in which it is a part. In the case of peer reports, the SourceID AVP indicates the node that supports this feature (in the OC-Supported-Features AVP) or the node that generates an overload report with a report type ofpeer"PEER-REPORT" (in the OC-OLR AVP). It contains the DiameterIdentity of the inserting node. This is used by other Diameter nodes to determine the node that inserted the enclosing AVP that contains the SourceID AVP.6.4. Attribute Value7.4. Attribute-Value Pair Flag Rules +---------+ |AVP flag | |rules | +----+----+ AVP Section | |MUST| Attribute Name Code Defined Value Type |MUST| NOT| +--------------------------------------------------------+----+----+ |OC-Peer-AlgoTBD1 6.1.2648 7.1.2 Unsigned64 | | V | |SourceIDTBD2 6.3649 7.3 DiameterIdentity | | V | +--------------------------------------------------------+----+----+7.8. IANA Considerations7.1. AVP Codes New AVPs defined by this specification are listedIANA has registered the following values inSection 6.4. All AVP codes are allocated fromthe'Authentication,the "Authentication, Authorization, and Accounting (AAA)Parameters' AVP Codes registry. OneParameters" registry: Two newOC-Report-TypeAVPvalue iscodes are defined in Section6.2.1 7.2. New Registries There are no new IANA registries introduced by this document. The7.4. Note that the values used for the OC-Peer-Algo AVP arethea subset of the"OC- Feature-Vector"OC-Feature-Vector AVP Values (code 622)" registry. Only the values in that registry that apply to overload abatement algorithms apply to the OC-Peer-Algo AVP.8.A new OC-Feature-Vector AVP value is defined in Section 7.1.1. A new OC-Report-Type AVP value is defined in Section 7.2.1. 9. Security Considerations Agent overload is an extension to the base DiameteroverloadOverload mechanism. As such, all of the security considerations outlined in [RFC7683] apply to the agent overload scenarios. It is possible that the malicious insertion of anagent overloadpeer report could have a bigger impact on a Diameter network as agents can be concentration points in a Diameter network. Where anend-pointendpoint report would impact the traffic sent to a single Diameterserver,Server, for example, a peer report could throttle all traffic to the Diameter network. This impact is amplified inana Diameter agent that sits at the edge of a Diameter network that serves as the entry point from all other Diameter networks. The impacts of this attack, as well as the mitigation strategies, are the same as those outlined in [RFC7683].9. Acknowledgements Adam Roach and Eric McMurry for the work done in defining a comprehensive Diameter overload solution in draft-roach-dime- overload-ctrl-03.txt. Ben Campbell for his insights and review of early versions of this document.10. References 10.1.Informative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>. [RFC7068] McMurry, E. and B. Campbell, "Diameter Overload Control Requirements", RFC 7068, DOI 10.17487/RFC7068, November 2013, <http://www.rfc-editor.org/info/rfc7068>. 10.2.Normative References[I-D.ietf-dime-doic-rate-control] Donovan, S. and E. Noel, "Diameter Overload Rate Control", draft-ietf-dime-doic-rate-control-03 (work in progress), March 2016.[RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn, Ed., "Diameter Base Protocol", RFC 6733, DOI 10.17487/RFC6733, October 2012,<http://www.rfc-editor.org/info/rfc6733>.<https://www.rfc-editor.org/info/rfc6733>. [RFC7683] Korhonen, J., Ed., Donovan, S., Ed., Campbell, B., and L. Morand, "Diameter Overload Indication Conveyance", RFC 7683, DOI 10.17487/RFC7683, October 2015,<http://www.rfc-editor.org/info/rfc7683>.<https://www.rfc-editor.org/info/rfc7683>. [RFC8582] Donovan, S., Ed. and E. Noel, "Diameter Overload Rate Control", RFC 8582, DOI 10.17487/RFC8582, August 2019, <https://www.rfc-editor.org/info/rfc8582>. 10.2. Informative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>. [RFC7068] McMurry, E. and B. Campbell, "Diameter Overload Control Requirements", RFC 7068, DOI 10.17487/RFC7068, November 2013, <https://www.rfc-editor.org/info/rfc7068>. [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>. Acknowledgements The author would like to thank Adam Roach and Eric McMurry for the work done in defining a comprehensive Diameter overload solution in draft-roach-dime-overload-ctrl-03.txt. The author would also like to thank Ben Campbell for his insights and review of early versions of this document. Author's Address Steve Donovan Oracle 7460 Warren Parkway, Suite 300 Frisco, Texas 75034 United States of America Email: srdonovan@usdonovans.com