Network Working GroupIndependent Submission LM. ContrerasInternet-DraftRequest for Comments: 8597 TelefonicaIntended status:Category: Informational CJ. BernardosExpires: May 25, 2019ISSN: 2070-1721 UC3M D. Lopez Telefonica M. Boucadair Orange P. Iovanna EricssonNovember 21, 2018May 2019 Cooperating Layered Architecture forSoftware DefinedSoftware-Defined Networking (CLAS)draft-contreras-layered-sdn-03AbstractSoftware DefinedSoftware-Defined Networkingadheres to(SDN) advocates for the separation of the control plane from the data plane in the network nodes and its logical centralization on one or a set of control entities. Most of the network and/orseviceservice intelligence is moved to these control entities. Typically, such an entity is seen as a compendium of interacting control functions in a vertical,tighttightly integrated fashion. The relocation of the control functions from a number of distributed network nodes to a logical central entity conceptually places together a number of control capabilities with different purposes. As a consequence, the existing solutions do not provide a clear separation between transport control and services thatreliesrely upon transport capabilities. This document describes an approachnamedcalled Cooperating Layered Architecture forSoftware Defined Networking. The idea behind that is to differentiateSoftware-Defined Networking (CLAS), wherein the control functions associatedtowith transport are differentiated from those related toservices,services in such a way that they can be provided and maintainedindependently,independently and can follow their own evolution path. Status of This Memo ThisInternet-Draftdocument issubmitted in full conformance withnot an Internet Standards Track specification; it is published for informational purposes. This is a contribution to theprovisionsRFC Series, independently ofBCP 78any other RFC stream. The RFC Editor has chosen to publish this document at its discretion andBCP 79. Internet-Draftsmakes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor areworking documentsnot candidates for any level oftheInternetEngineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The listStandard; see Section 2 of RFC 7841. Information about the currentInternet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximumstatus ofsix monthsthis document, any errata, and how to provide feedback on it may beupdated, replaced, or obsoleted by other documentsobtained atany time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on May 25, 2019.https://www.rfc-editor.org/info/rfc8597. Copyright Notice Copyright (c)20182019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . .54 3. Architecture Overview . . . . . . . . . . . . . . . . . . . .65 3.1. Functional Strata . . . . . . . . . . . . . . . . . . . . 9 3.1.1. Transport Stratum . . . . . . . . . . . . . . . . . . 9 3.1.2. Service Stratum . . . . . . . . . . . . . . . . . . . 10 3.1.3. Recursiveness . . . . . . . . . . . . . . . . . . . . 10 3.2. Plane Separation . . . . . . . . . . . . . . . . . . . . 10 3.2.1. Control Plane . . . . . . . . . . . . . . . . . . . . 11 3.2.2. Management Plane . . . . . . . . . . . . . . . . . . 11 3.2.3. Resource Plane . . . . . . . . . . . . . . . . . . . 11 4. Required Features . . . . . . . . . . . . . . . . . . . . . . 11 5. CommunicationBetweenbetween SDN Controllers . . . . . . . . . . . . 12 6. Deployment Scenarios . . . . . . . . . . . . . . . . . . . . 12 6.1. Full SDN Environments . . . . . . . . . . . . . . . . . .1213 6.1.1. Multiple Service Strata Associatedtowith a Single Transport Stratum . . . . . . . . . . . . . . . . . . 13 6.1.2. Single Service Stratumassociated to multipleAssociated with Multiple Transport Strata . . . . . . . . . . . . . . . . . . 13 6.2. Hybrid Environments . . . . . . . . . . . . . . . . . . . 13 6.2.1. SDN Service Stratumassociated toAssociated with a Legacy Transport Stratum . . . . . . . . . . . . . . . . . .. . . . .13 6.2.2. Legacy Service Stratum Associatedtowith an SDN Transport Stratum . . . . . . . . . . . . . . . . . .. . . . .13 6.3. Multi-domain Scenarios in the Transport Stratum . . . . .. . 1314 7. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7.1. Network Function Virtualization (NFV) . . . . . . . . . . 14 7.2. Abstraction and Control ofTransportTE Networks . . . . . .14. . . 15 8. Challenges for Implementing ActionsBetweenbetween Service and Transport Strata . . . . . . . . . . . . . . . . . . . . . . 15 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 16 10. Security Considerations . . . . . . . . . . . . . . . . . . . 16 11.AcknowledgementsReferences . . . . . . . . . . . . . . . . . . . . . . . . . 1712.11.1. Normative References . . . . . . . . . . . . . . . . . . 17 11.2. Informative References . . . . . . .17 12.1. Normative References .. . . . . . . . . . 17 Appendix A. Relationship with RFC 7426 . . . . . . .17 12.2. Informative References. . . . . . 18 Acknowledgements . . . . . . . . . . .17 Appendix A. Relationship with RFC7426. . . . . . . . . . . . .1819 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . .1920 1. Introduction Network softwarization advances are facilitating the introduction of programmability in the services and infrastructures of telco operators. This is generally achievedgenericallythrough the introduction ofSoftware DefinedSoftware-Defined Networking(SDN, [RFC7149][RFC7426])(SDN) [RFC7149] [RFC7426] capabilities in the network, including controllers and orchestrators. However, there are concerns of a different nature that these SDN capabilities have to resolve.InOn the onehand there is a need forhand, actions focused on programming the networkforto handle the connectivity or forwarding of digital data between distantnodes.nodes are needed. On the other hand,there is a need foractions devoted toprogramprogramming the functions or services that process (or manipulate) such digitaldata.data are also needed. SDNadheres toadvocates for the separation of the control plane from the data plane in the network nodes by introducing abstraction among both planes, allowingto centralizethe control logic on a functionalentityentity, which is commonly referred as SDNController;Controller, to be centralized; one or multiple controllers may be deployed. A programmatic interface is then defined between a forwarding entity (at the network node) and a control entity. Through that interface, a control entity instructs the nodes involved in the forwarding plane and modifies theirtraffic forwardingtraffic-forwarding behavior accordingly.AdditionalSupport for additional capabilities (e.g., performance monitoring, fault management, etc.) could be expectedto be supportedthroughsuchthis kind of programmatic interface [RFC7149]. Most of the intelligence is moved tosuchthis kind of functional entity. Typically, such an entity is seen as a compendium of interacting control functions in a vertical,tighttightly integrated fashion. The approach of considering an omnipotent control entity governing the overall aspects of a network, especially both the transport network and the services to be supported on top of it, presents a number of issues: o From a provider perspective, whereusuallydifferent departments usually are responsibleoffor handling service and connectivity (i.e., transport capabilities for the service on top), the mentioned approach offers unclear responsibilities for complete service provision and delivery. o Complex reuse of functions for the provision of services. o Closed, monolithic control architectures. o Difficult interoperability and interchangeability of functional components. o Blurred business boundaries among providers, especially in situations whereaone provider providesjustonly connectivity while another provider offers a more sophisticated service on top of that connectivity. o Complex service/network diagnosis and troubleshooting, particularly to determine whichsegmentlayer is responsible for a failure. The relocation of the control functions from a number of distributed network nodes to another entity conceptually places together a number of control capabilities with different purposes. As a consequence, the existing SDN solutions do not provide a clear separation between services and transport control. Here, the separation between service and transport follows the distinction provided by[Y.2011],[Y.2011] andalsoas defined in Section 2 of this document. This document describes an approachnamedcalled Cooperating Layered Architecture for SDN(CLAS). The idea behind that is to differentiate(CLAS), wherein the control functions associatedtowith transport are differentiated from those related toservices,services in such a way that they can be provided and maintainedindependently,independently and can follow their own evolution path. Despite suchdifferentiation it is required adifferentiation, close cooperation between the service and transport layers (or strata in [Y.2011]) and the associated components are necessary to provideanefficient usage of the resources. 2. Terminology This document makes use of the following terms: o Transport: denotes the transfer capabilities offered by a networking infrastructure. The transfer capabilities can rely upon pure IPtechniques,techniques or othermeansmeans, such as MPLS or optics. o Service: denotes a logical construct that makes use of transport capabilities. This document does not make anyassumption onassumptions about the functional perimeter of a service that can be built above a transport infrastructure. As such, a service can bean offering that isoffered to customers orbeinvoked for the delivery of another (added-value) service. o Layer: refers to the set of elementscomprised for enablingthat enable either transport or servicecapabilitiescapabilities, as definedbefore.previously. In [Y.2011], this is referred to asstratum,a "stratum", andboththe two terms are used interchangeably. o Domain: is a set of elementswhichthat share a common property or characteristic. In thisdocument thisdocument, it applies to the administrative domain (i.e., elements pertaining to the same organization), technological domain (elements implementing the same kind of technology, such asfor exampleoptical nodes), etc. o SDN Intelligence: refers to the decision-making process that is hosted by a node or a set of nodes. These nodes are called SDN controllers. The intelligence can be centralized or distributed. Both schemes are within the scope of this document.TheAn SDNintelligenceIntelligence relies on inputsformfrom various functionalblocksblocks, such as: network topology discovery, service topology discovery, resource allocation, business guidelines, customer profiles, service profiles, etc. The exact decomposition of an SDNintelligence,Intelligence, apart from the layering discussedin this document,here, is out ofscope.the scope of this document. Additionally, the following acronyms are used in this document: CLAS: Cooperating Layered Architecture for SDN FCAPS: Fault, Configuration, Accounting,PerformancePerformance, and Security SDN:Software DefinedSoftware-Defined Networking SLA: Service Level Agreement 3. Architecture Overview Current operator networks support multiple services (e.g.,VoIP,Voice over IP (VoIP), IPTV, mobile VoIP, critical mission applications, etc.) on a variety of transport technologies. The provision and delivery of a serviceindependentlyindependent of the underlying transport capabilities require a separation of theservice relatedservice-related functionalities and an abstraction of the transport network to hide the specificities of the underlying transfer techniques while offering a common set of capabilities. Such separation can provide configuration flexibility and adaptability from the point of view of either the services or the transport network. Multiple services can be provided on top of a common transportinfrastructure, andinfrastructure; similarly, different technologies can accommodate the connectivity requirements of a certain service.A closeClose coordination amongthemthese elements is required foraconsistent service delivery (inter-layer cooperation). This document focuses particularlyon:on the means to: oMeans toexpose transport capabilities to services. oMeans tocaptureservicetransport requirements of services. oMeans tonotify service intelligencewithof underlying transport events, forexampleexample, to adjust a service decision-making process with underlying transport events. oMeans toinstruct the underlying transport capabilities to accommodate new requirements, etc. An example isto guaranteeguaranteeing someQuality of ServiceQuality-of-Service (QoS) levels. Different QoS-based offerings could be present at both the service and transport layers. Vertical mechanisms for linking both service and transport QoS mechanisms should be in place to providethequality guarantees to the end user. CLAS architecture assumes that the logically centralized control functions are separatedininto two functional layers. One of the functional layers comprises the service-related functions, whereas the other one contains the transport-related functions. The cooperation between the two layers is expected to be implemented through standard interfaces. Figure 1 shows the CLAS architecture. It is based on functional separation in theNGNNext Generation Network (NGN) architecture defined by the ITU-T in [Y.2011], where two strata of functionality aredefined, namelydefined. These strata are the Service Stratum, comprising the service-related functions, and theConnectivityTransport Stratum, covering thetransport ones.transport-related functions. The functionsonof each of these layers are further groupedoninto the control,managementmanagement, and user (or data) planes. CLAS adopts the same structured model described in [Y.2011] butapplyingapplies it to the objectives of programmability through SDN [RFC7149].ToIn this respect, CLAS advocates for addressing services and transport in a separated manner because of their differentiated concerns. Applications /\ || || +-------------------------------------||-------------+ | Service Stratum || | | \/ | | ........................... | | . SDN Intelligence . | | . . | | +--------------+ . +--------------+ . | | | Resource Pl. | . | Mngmt. Pl. | . | | | |<===>. +--------------+ | . | | | | . | Control Pl. | | . | | +--------------+ . | |-----+ . | | . | | . | | . +--------------+ . | | ........................... | | /\ | | || | +-------------------------------------||-------------+ || Standard -- || -- API || +-------------------------------------||-------------+ | Transport Stratum || | | \/ | | ........................... | | . SDN Intelligence . | | . . | | +--------------+ . +--------------+ . | | | Resource Pl. | . | Mngmt. Pl. | . | | | |<===>. +--------------+ | . | | | | . | Control Pl. | | . | | +--------------+ . | |-----+ . | | . | | . | | . +--------------+ . | | ........................... | | | | | +----------------------------------------------------+ Figure 1: Cooperating Layered Architecture for SDN In the CLASarchitecturearchitecture, both the control and management functions are considered to be performed by one or a set of SDN controllers (due to,e.g.,for example, scalability,reliability)reliability), providing the SDNIntelligence,Intelligence in such a way that separated SDN controllers are present in the Service and Transportstrata.Strata. Management functions are considered to be part of the SDN Intelligence to allowthefor effective operation in a service provider ecosystem[RFC7149] despite[RFC7149], although some initial propositions did not consider such management as part of the SDN environment [ONFArch]. Furthermore, the genericuseruser- ordata planedata-plane functions included in the NGN architecture are referred to here asresource planeresource-plane functions. The resource plane in each stratum is controlled by the corresponding SDN Intelligence through a standard interface. The SDN controllers cooperateforin the provision and delivery of services. There is a hierarchy in which the Service SDN Intelligence makes requeststransport capabilities toof the Transport SDNIntelligence.Intelligence for the provision of transport capabilities. The Service SDN Intelligence acts as a client of the Transport SDN Intelligence. Furthermore, the Transport SDN Intelligence interacts with the Service SDN Intelligence to inform it about events in the transport network that can motivate actions in the service layer. Despiteit isnot being shown in Figure 1, the resource planes of each stratum could be connected. This will depend on the kind of service provided. Furthermore, the ServicestratumStratum could offer an interfacetowardsto applications to expose network service capabilities to those applications or customers. 3.1. Functional Strata Asdescribed before, theaforementioned, there is a functional split that separates transport-related functions from service-related functions. Both strata cooperate foraconsistent service delivery. Consistency is determined and characterized by the service layer. 3.1.1. Transport Stratum The Transport Stratum comprises the functions focused on the transfer of data between the communicationend pointsendpoints (e.g., between end-user devices, between two service gateways, etc.). Thedata forwardingdata-forwarding nodes are controlled and managed by the Transport SDN component. TheControlcontrol plane in the SDN Intelligence is in charge of instructing the forwarding devices to build theend to endend-to-end data path for each communication or to make sure the forwarding service is appropriatelysetup.set up. Forwarding may not be rely solely on thesole pre-configuredpreconfigured entries;dynamicmeans can be enabled so that involved nodes canbuilddynamically build routing and forwarding paths (this would require that the nodes retain some of the control and management capabilities for enabling this). Finally, theManagementmanagement plane performs management functions (i.e., FCAPS) on those devices, like fault or performance management, as part of the Transport Stratum capabilities. 3.1.2. Service Stratum The ServicestratumStratum contains the functions related to the provision of services and the capabilities offered to external applications. TheResourceresource plane consists of the resources involved in the service delivery, such as computing resources, registries, databases, etc. TheControlcontrol plane is in charge of controlling and configuring thoseresources,resources as well as interacting with theControlcontrol plane of the TransportstratumStratum in client modefor requestingto request transport capabilities for a given service. In the same way, theManagementmanagement plane implements management actions on the service-related resources and interacts with theManagementmanagement plane in the Transport Stratumfor a cooperatingto ensure management cooperation between layers. 3.1.3. Recursiveness Recursive layering can happen in some usage scenarios in which the Transport Stratum is itself structured in the Service and TransportStratum.Strata. This could be the caseofin the provision of a transport service complemented with advanced capabilitiesadditionalin addition to the pure data transport (e.g., maintenance of a given SLA [RFC7297]). Recursiveness hasbeenalso been discussed in [ONFArch] as a way of reaching scalability and modularity,whenwhere each higher level can provide greater abstraction capabilities. Additionally, recursiveness can allow somescenarios formulti-domain scenarios where single or multiple administrative domains are involved, such asthe onesthose described in Section 6.3. 3.2. Plane Separation The CLAS architecture leveragesonplane separation. As mentionedbefore,in Sections 3.1.1 and 3.1.2, three different planes are considered for each stratum. The communication among these three planes(and with(with the corresponding plane in other strata) is based on open, standard interfaces. 3.2.1. Control Plane TheControlcontrol plane logically centralizes the control functions of each stratum and directly controls the corresponding resources. [RFC7426] introduces the role of the control plane inaan SDN architecture. This plane is part of an SDNIntelligence,Intelligence and can interact with other control planes in the same or different stratafor accomplishingto perform control functions. 3.2.2. Management Plane TheManagementmanagement plane logically centralizes the management functions for each stratum, including the management of theControlcontrol andResourceresource planes. [RFC7426] describes the functions of the management plane inaan SDN environment. This plane is also part of the SDNIntelligence,Intelligence and can interact with the corresponding management planes residing in SDN controllers of the same or different strata. 3.2.3. Resource Plane TheResourceresource plane comprises the resources for either the transport or the service functions. In somecasescases, the service resources can be connected to the transport ones (e.g., being the terminating points of a transportfunction) whereasfunction); in othercasescases, it can be decoupled from the transport resources (e.g., one database keepingsomea register for the end user). Both the forwarding and operational planes proposed in [RFC7426] would be part of theResourceresource plane in this architecture. 4. Required Features Since the CLAS architecture implies the interaction of different layers with different purposes and responsibilities, a number of features are required to be supported: o Abstraction: the mapping of physical resources into the corresponding abstracted resources. oService parameter translation:Service-Parameter Translation: the translation of service parameters (e.g., in the form of SLAs) to transport parameters (or capabilities) according to different policies. o Monitoring: mechanisms (e.g., event notifications) available in order to dynamically update the (abstracted) resources' status while takingin tointo account,e.g.,for example, the traffic load. o Resourcecomputation:Computation: functions able to decide which resources will be used for a given service request. As an example, functions like PCE could be used to compute/select/decide a certain path. o Orchestration: the ability to combine diverse resources (e.g., IT and network resources) in an optimal way. o Accounting: record of resource usage. o Security: secure communication among components, preventing,e.g.,for example, DoS attacks. 5. CommunicationBetweenbetween SDN Controllers The SDN controllers residing respectively in the Service andtheTransportStratumStrata need to establishatight coordination. Mechanisms fortransfertransferring relevant information for each stratum should be defined. From the service perspective, the Service SDN Intelligence needs to easily access transport resources through well-defined APIs to retrieve the capabilities offered by the Transport Stratum. There could be different ways of obtaining such transport-aware information, i.e., by discovering or publishing mechanisms. In the formercasecase, the Service SDN Intelligence could be ableof handlingto handle complete information about the transport capabilities (including resources) offered by the Transport Stratum. In the latter case, the Transport Stratumexposesreveals the available capabilities,e.g.,for example, through a catalog, reducing the amount of detail of the underlying network. On the other hand, the Transport Stratumrequires tomust properly capture the Service requirements. These can include SLA requirements with specific metrics (such as delay), the level of protection to be provided,max/minmaximum/minimum capacity, applicable resource constraints, etc. The communication between controllers mustbealso be secure, e.g., by preventing denial of service or any other kind ofthreatsthreat (similarly,thecommunications with the network nodes must be secure). 6. Deployment Scenarios Different situations can be found depending on the characteristics of the networks involved in a given deployment. 6.1. Full SDN Environments This case considers that the networks involved in the provision and delivery of a given service have SDN capabilities. 6.1.1. Multiple Service Strata Associatedtowith a Single Transport Stratum A single Transport Stratum can provide transfer functions to more than one Servicestrata.Stratum. The Transport Stratum offers a standard interface(s) to each of the Servicestrata.Strata. The ServicestrataStrata are the clients of the Transport Stratum. Some of the capabilities offered by the TransportstratumStratum can be isolation of the transport resources (slicing), independent routing, etc. 6.1.2. Single Service Stratumassociated to multipleAssociated with Multiple Transport Strata A single ServicestratumStratum can make use of different Transport Strata for the provision of a certain service. The ServicestratumStratum invokes standard interfaces to each of the TransportStrata with standard protocols,Strata, and orchestrates the provided transfer capabilities for building theend to endend-to-end transport needs. 6.2. Hybrid Environments This case considers scenarios where one of the strata islegacytotally orin part.partly legacy. 6.2.1. SDN Service Stratumassociated toAssociated with a Legacy Transport Stratum An SDN servicestratumStratum can interact with a legacy Transport Stratum throughsomean interworking function that is able to adapt SDN-based control and management service-related commands to legacytransport-relatedtransport- related protocols, as expected by the legacy Transport Stratum. The SDN Intelligence in the ServicestratumStratum is not aware of the legacy nature of the underlying Transport Stratum. 6.2.2. Legacy Service Stratum Associatedtowith an SDN Transport Stratum A legacy ServicestratumStratum can work with an SDN-enabled Transport Stratum through the mediation ofandan interworking function capableto interpretof interpreting commands from the legacy service functions andtranslatetranslating them into SDN protocols foroperatingoperation with theSDN-enabledSDN- enabled Transport Stratum. 6.3. Multi-domain Scenarios in the Transport Stratum The Transport Stratum can be composedbyof transport resourcesbeingthat are part of different administrative,topologicaltopological, or technological domains. The Service Stratum canyetinteract with a single entity in the Transport Stratum in case some abstraction capabilities are provided in the transport part to emulate a single stratum. Those abstraction capabilities constitute a service itself offered by the Transport Stratum to the services making use ofit.this stratum. This service is focused on the provision of transport capabilities,thenwhich is differentoffrom the final communication service using such capabilities. In this particularcasecase, this recursion allows multi-domain scenarios at the transport level. Multi-domain situations can happen in both single-operator and multi- operator scenarios. Insingle operator scenariossingle-operator scenarios, a multi-domain or end-to-end abstraction component can provideana homogeneous abstract view of the underlying heterogeneous transport capabilities for all the domains. Multi-operatorscenarios,scenarios at the TransportStratum,Stratum should support the establishment of end-to-end paths in a programmatic manner across the involved networks.ThisFor example, this could beaccomplished, for example,accomplished bythe exchange of traffic-engineered information ofeach of the administrative domains exchanging their traffic-engineered information [RFC7926]. 7. Use Cases This section presents a number of use cases as examples of the applicability of the CLAS approach. 7.1. Network Function Virtualization (NFV) NFV environments offer two possible levels of SDN control[ETSI_NFV_EVE005].[GSNFV-EVE005]. One level is the needfor controllingto control the NFV Infrastructure (NFVI) to provide end-to-end connectivityend-to- endamong VNFs (Virtual Network Functions) or among VNFs and PNFs (Physical Network Functions). A second level is the control and configuration of the VNFs themselves (in other words, the configuration of the network service implemented by those VNFs),taking profit ofwhich benefits from the programmability brought by SDN.BothThe two control concerns areseparatedseparate in nature. However, interaction betweenboth couldthe two can be expected in order to optimize,scalescale, or influenceeach other.one another. 7.2. Abstraction and Control ofTransportTE Networks Abstraction and Control ofTransportTE Networks (ACTN) [RFC8453] presents a frameworkto allowthat allows the creation of virtual networks to be offered to customers. The concept ofprovider"provider" in ACTN is limited to the offering of virtual network services. These services are essentially transportservices,services and would correspond to the Transport Stratum in CLAS. On the other hand, the Service Stratum in CLAS can be assimilated as a customer in the context of ACTN. ACTN defines a hierarchy of controllersfor facilitatingto facilitate the creation and operation of the virtual networks. An interface is defined for therelation ofrelationship between the customers requesting these virtualnetworksnetwork serviceswithand the controller in charge of orchestrating and serving such a request. Such an interface is equivalent to the one defined in Figure 1 (Section 3) between the Service and Transport Strata. 8. Challenges for Implementing ActionsBetweenbetween Service and Transport Strata The distinction of service and transport concerns raises a number of challenges in the communication betweenboththe two strata. The followingis a work-in-progresslistreflectingreflects some of the identified challenges: o Standard mechanisms for interaction between layers:NowadaysNowadays, there are a number of proposals that could accommodate requests from theservice stratumService Stratum to thetransport stratum.Transport Stratum. Some ofthemthe proposals could be solutions like the Connectivity Provisioning Negotiation Protocol[I-D.boucadair-connectivity-provisioning-protocol][CPNP] or theIntermediate-ControllerIntermediate- Controller Plane Interface (I-CPI) [ONFArch]. Other potential candidates could be the Transport API [TAPI] or the TransportTransportNorthbound Interface[I-D.ietf-ccamp-transport-nbi-app-statement].[TRANS-NORTH]. Each of these options has a differentstatus of maturity andscope. o Multi-provider awareness: In multi-domain scenarios involving more than one provider at the transport level, theservice stratum could haveService Stratum may or may notawarenessbe aware of such multiplicity of domains. If theservice stratumService Stratum is unaware of the multi-domain situation, then the Transport Stratum acting as the entry point of theservice stratumService Stratum request should be responsibleoffor managing the multi-domain issue. On the contrary, if theservice stratumService Stratum is aware of the multi- domain situation, it should be in charge of orchestrating the requests to the different underlying Transport Stratafor composingto compose the final end-to-end path among serviceend-pointsendpoints (i.e., service functions). o SLA mapping: Both strata will handleSLAsSLAs, but the nature of those SLAs could differ.ThenTherefore, it is required for the entities in each stratum to map service SLAs to connectivity SLAs in order to ensure proper service delivery. o Association between strata: The association between strata could be configured beforehand, or both strata couldbe dynamic following mechanismsrequire the use ofdiscovery,a discovery mechanism thatcould be required to be supported by both strata with this purpose.dynamically establishes the association between the strata. o Security: As reflected before, the communication between strata must be securepreventingto prevent attacks and threats. Additionally, privacy should be enforced, especially when addressing multi- provider scenarios at the transport level. o Accounting: The control and accountancy of resources used and consumed by services should be supported in the communication among strata. 9. IANA Considerations This documentdoes not request any action from IANA.has no IANA actions. 10. Security Considerations The CLAS architecture relies upon the functional entities that are introduced in [RFC7149] and [RFC7426]. Assuchsuch, security considerations discussed in Section 5 of [RFC7149], in particular, must be taken into account. The communication between the service and transport SDN controllers must rely on secure meanswhichthat achieve the following: o Mutual authentication must be enabled before taking any action. o Message integrity protection. Each of the controllers must be provided with instructionsaboutregarding the set of information (and granularity) that can be disclosed to a peer controller. Means to prevent the leaking of privacy data (e.g., from theservice stratumService Stratum to thetransport stratum)Transport Stratum) must be enabled. The exact set of information to be shared isdeployment-specific.deployment specific. A corrupted controller may induce some disruption on another controller.GuardsProtection against such attacks should be enabled. Security in the communication between the strataheredescribed here should applyonto the APIs (and/or protocols) to be defined among them.In consequence,Consequently, security concerns will correspond to the specific solution.12.11. References12.1.11.1. Normative References [Y.2011] International Telecommunication Union, "General principles and general reference model for Next Generation Networks", ITU-T RecommendationY.2011 ,Y.2011, October2004. 12.2.2004, <https://www.itu.int/rec/T-REC-Y.2011-200410-I/en>. 11.2. Informative References[ETSI_NFV_EVE005] "Report on SDN Usage in NFV Architectural Framework", December 2015. [I-D.boucadair-connectivity-provisioning-protocol][CPNP] Boucadair, M., Jacquenet, C., Zhang, D., and P. Georgatsos, "Connectivity Provisioning Negotiation Protocol (CPNP)",draft-boucadair-connectivity- provisioning-protocol-15 (workWork inprogress),Progress, draft-boucadair- connectivity-provisioning-protocol-15, December 2017.[I-D.ietf-ccamp-transport-nbi-app-statement] Busi, I., King, D., Zheng, H., and Y. Xu, "Transport Northbound Interface Applicability Statement", draft-ietf- ccamp-transport-nbi-app-statement-04 (work in progress), November 2018. [I-D.irtf-sdnrg-layered-sdn] Contreras, L., Bernardos, C., Lopez, D., Boucadair, M., and P. Iovanna, "Cooperating Layered Architecture for SDN", draft-irtf-sdnrg-layered-sdn-01 (work[GSNFV-EVE005] ETSI, "Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage inprogress), October 2016.NFV Architectural Framework", ETSI GS NFV-EVE 005, V1.1.1, December 2015, <https://www.etsi.org/deliver/etsi_gs/NFV- EVE/001_099/005/01.01.01_60/gs_nfv-eve005v010101p.pdf>. [ONFArch] Open Networking Foundation, "SDN Architecture, Issue 1", June 2014, <https://www.opennetworking.org/images/stories/downloads/ sdn-resources/technical-reports/ TR_SDN_ARCH_1.0_06062014.pdf>. [RFC7149] Boucadair, M. and C. Jacquenet, "Software-Defined Networking: A Perspective from within a Service Provider Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014, <https://www.rfc-editor.org/info/rfc7149>. [RFC7297] Boucadair, M., Jacquenet, C., and N. Wang, "IP Connectivity Provisioning Profile (CPP)", RFC 7297, DOI 10.17487/RFC7297, July 2014, <https://www.rfc-editor.org/info/rfc7297>. [RFC7426] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S., Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software- Defined Networking (SDN): Layers and Architecture Terminology", RFC 7426, DOI 10.17487/RFC7426, January 2015, <https://www.rfc-editor.org/info/rfc7426>. [RFC7926] Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G., Ceccarelli, D., and X. Zhang, "Problem Statement and Architecture for Information Exchange between Interconnected Traffic-Engineered Networks", BCP 206, RFC 7926, DOI 10.17487/RFC7926, July 2016, <https://www.rfc-editor.org/info/rfc7926>. [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for Abstraction and Control of TE Networks (ACTN)", RFC 8453, DOI 10.17487/RFC8453, August 2018, <https://www.rfc-editor.org/info/rfc8453>. [SDN-ARCH] Contreras, LM., Bernardos, CJ., Lopez, D., Boucadair, M., and P. Iovanna, "Cooperating Layered Architecture for SDN", Work in Progress, draft-irtf-sdnrg-layered-sdn-01, October 2016. [TAPI] Open Networking Foundation, "Functional Requirements for Transport API", June2016.2016, <https://www.opennetworking.org/wp- content/uploads/2014/10/ TR-527_TAPI_Functional_Requirements.pdf>. [TRANS-NORTH] Busi, I., King, D., Zheng, H., and Y. Xu, "Transport Northbound Interface Applicability Statement", Work in Progress, draft-ietf-ccamp-transport-nbi-app-statement-05, March 2019. Appendix A. Relationship withRFC7426RFC 7426 [RFC7426] introduces an SDN taxonomy by defining a number of planes, abstraction layers, and interfaces or APIs amongthem,them as a means of clarifying how the different parts constituent of SDN (network devices, control and management)relate among them.relate. A number of planes are defined,namely:including: o Forwarding Plane: focused on delivering packets in the data path based on the instructions received from the control plane. o Operational Plane: centered on managing the operational state of the network device. o Control Plane:devoteddedicated toinstructinstructing the device on how packets should be forwarded. o Management Plane: in charge of monitoring and maintaining network devices. o Application Plane: enabling the usage for different purposes (as determined by each application) of all the devices controlled in this manner. Apart fromthat,these, [RFC7426] proposes a number of abstraction layers that permit the integration of the different planes through common interfaces. CLAS focuses onControl, Managementcontrol, management, andResourceresource planes as the basic pieces of its architecture. Essentially, the control plane modifies the behavior and actions of the controlled resources. The management plane monitors and retrieves the status of those resources. And finally, the resource plane groups all the resources related to the concerns of eachstrata.stratum. From this point of view, CLAS planes can be seen as a superset of[RFC7426], even thoughthose defined in [RFC7426]. However, in somecasescases, not all the planesasconsidered in [RFC7426]could notmay be totally present in CLAS representation (e.g., the forwarding plane in the Service Stratum).Being said that,That being said, the internal structure of CLAS strata could follow the taxonomy defined in [RFC7426].WhichWhat isdifferentialdifferent is the specialization of the SDNenvironments,environments through the distinction between service and transport.11.Acknowledgements This document was previously discussed and adopted in the IRTF SDN RG as[I-D.irtf-sdnrg-layered-sdn].[SDN-ARCH]. After the closure of the IRTF SDNRGRG, this documentis beingwas progressed asIndividualan Independent Submission to record (some of) that group'sdisucussions.discussions. The authors would like to thank (in alphabetical order) Bartosz Belter, Gino Carrozzo, Ramon Casellas, Gert Grammel, Ali Haider, Evangelos Haleplidis, Zheng Haomian, Giorgios Karagianis, Gabriel Lopez, Maria Rita Palatella, Christian Esteve Rothenberg, and Jacek Wytrebowicz for their comments and suggestions. Thanks to Adrian Farrel for the review. Authors' Addresses Luis M. Contreras Telefonica Ronda de la Comunicacion, s/n Sur-3 building, 3rd floor Madrid 28050 Spain Email: luismiguel.contrerasmurillo@telefonica.com URI: http://lmcontreras.com Carlos J. Bernardos Universidad Carlos III de Madrid Av. Universidad, 30 Leganes, Madrid 28911 Spain Phone: +34 91624 6236 Email: cjbc@it.uc3m.es URI: http://www.it.uc3m.es/cjbc/ Diego R. Lopez Telefonica Ronda de la Comunicacion, s/n Sur-3 building, 3rd floor Madrid 28050 Spain Email: diego.r.lopez@telefonica.com Mohamed Boucadair Orange Rennes 35000 France Email: mohamed.boucadair@orange.com Paola Iovanna Ericsson Pisa Italy Email: paola.iovanna@ericsson.com