<?xmlversion="1.0" encoding="US-ASCII"?> <!DOCTYPE rfc SYSTEM "rfc2629.dtd" [ ]>version='1.0' encoding='utf-8'?> <rfcnumber="8661"xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="std"consensus="yes"consensus="true" docName="draft-ietf-spring-segment-routing-ldp-interop-15" indexInclude="true" ipr="trust200902" number="8661" prepTime="2019-12-04T20:41:37" scripts="Common,Latin" sortRefs="true" submissionType="IETF"ipr="trust200902"> <?rfc compact="yes"?> <?rfc text-list-symbols="-o*+"?> <?rfc subcompact="no"?> <?rfc sortrefs="yes"?> <?rfc symrefs="yes"?> <?rfc strict="yes"?> <?rfc toc="yes"?>symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en"> <link href="https://datatracker.ietf.org/doc/draft-ietf-spring-segment-routing-ldp-interop-15" rel="prev"/> <link href="https://dx.doi.org/10.17487/rfc8661" rel="alternate"/> <link href="urn:issn:2070-1721" rel="alternate"/> <front> <title abbrev="Segment Routing and LDP">Segment Routing MPLS Interworking with LDP</title> <seriesInfo name="RFC" value="8661" stream="IETF"/> <author fullname="Ahmed Bashandy" initials="A." role="editor" surname="Bashandy"><organization>Individual</organization><organization showOnFrontPage="true">Individual</organization> <address> <postal> <street>United States of America</street> </postal> <email>abashandy.ietf@gmail.com</email> </address> </author> <author fullname="Clarence Filsfils" initials="C." role="editor" surname="Filsfils"><organization>Cisco<organization showOnFrontPage="true">Cisco Systems, Inc.</organization> <address> <postal> <street>Brussels</street> <street>Belgium</street> </postal> <email>cfilsfil@cisco.com</email> </address> </author> <author fullname="Stefano Previdi" initials="S." surname="Previdi"><organization>Cisco Systems, Inc.</organization><organization showOnFrontPage="true">Huawei Technologies</organization> <address> <postal> <street>Italy</street> </postal> <email>stefano@previdi.net</email> </address> </author> <author fullname="Bruno Decraene" initials="B." surname="Decraene"><organization>Orange</organization><organization showOnFrontPage="true">Orange</organization> <address> <postal> <street>France</street> </postal> <email>bruno.decraene@orange.com</email> </address> </author> <author fullname="Stephane Litkowski" initials="S." surname="Litkowski"><organization>Orange</organization><organization showOnFrontPage="true">Orange</organization> <address> <postal> <street>France</street> </postal><email>stephane.litkowski@orange.com</email><email>slitkows.ietf@gmail.com</email> </address> </author> <datemonth="September"month="12" year="2019"/><abstract> <t>A<keyword>SR-MPLS</keyword> <abstract pn="section-abstract"> <t pn="section-abstract-1">A Segment Routing (SR) node steers a packet through a controlled set of instructions, called segments, by prepending the packet with an SR header. A segment can represent any instruction, topological or service based. SR allows enforcing a flow through any topological path while maintaining per-flow state only at the ingress node to the SR domain.</t><t>The<t pn="section-abstract-2">The Segment Routing architecture can be directly applied to the MPLS data plane with no change in the forwarding plane. This document describes how Segment Routing MPLS operates in a network where LDP is deployed and in the case where SR-capable and non-SR-capable nodes coexist.</t> </abstract> <boilerplate> <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1"> <name slugifiedName="name-status-of-this-memo">Status of This Memo</name> <t pn="section-boilerplate.1-1"> This is an Internet Standards Track document. </t> <t pn="section-boilerplate.1-2"> This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. </t> <t pn="section-boilerplate.1-3"> Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <eref target="https://www.rfc-editor.org/info/rfc8661" brackets="none"/>. </t> </section> <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2"> <name slugifiedName="name-copyright-notice">Copyright Notice</name> <t pn="section-boilerplate.2-1"> Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. </t> <t pn="section-boilerplate.2-2"> This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. </t> </section> </boilerplate> <toc> <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1"> <name slugifiedName="name-table-of-contents">Table of Contents</name> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1"> <li pn="section-toc.1-1.1"> <t keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.1.2"> <li pn="section-toc.1-1.1.2.1"> <t keepWithNext="true" pn="section-toc.1-1.1.2.1.1"><xref derivedContent="1.1" format="counter" sectionFormat="of" target="section-1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-requirements-language">Requirements Language</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.2"> <t keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-ldp-ships-in-the-night-c">SR-LDP Ships-in-the-Night Coexistence</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.2.2"> <li pn="section-toc.1-1.2.2.1"> <t keepWithNext="true" pn="section-toc.1-1.2.2.1.1"><xref derivedContent="2.1" format="counter" sectionFormat="of" target="section-2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-mpls2mpls-mpls2ip-and-ip2mp">MPLS2MPLS, MPLS2IP, and IP2MPLS Coexistence</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.3"> <t keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-and-ldp-interworking">SR and LDP Interworking</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2"> <li pn="section-toc.1-1.3.2.1"> <t keepWithNext="true" pn="section-toc.1-1.3.2.1.1"><xref derivedContent="3.1" format="counter" sectionFormat="of" target="section-3.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-ldp-to-sr">LDP to SR</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.1.2"> <li pn="section-toc.1-1.3.2.1.2.1"> <t keepWithNext="true" pn="section-toc.1-1.3.2.1.2.1.1"><xref derivedContent="3.1.1" format="counter" sectionFormat="of" target="section-3.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-ldp-to-sr-behavior">LDP to SR Behavior</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.3.2.2"> <t keepWithNext="true" pn="section-toc.1-1.3.2.2.1"><xref derivedContent="3.2" format="counter" sectionFormat="of" target="section-3.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-to-ldp">SR to LDP</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.2.2"> <li pn="section-toc.1-1.3.2.2.2.1"> <t keepWithNext="true" pn="section-toc.1-1.3.2.2.2.1.1"><xref derivedContent="3.2.1" format="counter" sectionFormat="of" target="section-3.2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-segment-routing-mapping-ser">Segment Routing Mapping Server (SRMS)</xref></t> </li> <li pn="section-toc.1-1.3.2.2.2.2"> <t keepWithNext="true" pn="section-toc.1-1.3.2.2.2.2.1"><xref derivedContent="3.2.2" format="counter" sectionFormat="of" target="section-3.2.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-to-ldp-behavior">SR to LDP Behavior</xref></t> </li> <li pn="section-toc.1-1.3.2.2.2.3"> <t keepWithNext="true" pn="section-toc.1-1.3.2.2.2.3.1"><xref derivedContent="3.2.3" format="counter" sectionFormat="of" target="section-3.2.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-interoperability-of-multipl">Interoperability of Multiple SRMSes and Prefix-SID Advertisements</xref></t> </li> </ul> </li> </ul> </li> <li pn="section-toc.1-1.4"> <t keepWithNext="true" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-ldp-interworking-use-cas">SR-LDP Interworking Use Cases</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2"> <li pn="section-toc.1-1.4.2.1"> <t keepWithNext="true" pn="section-toc.1-1.4.2.1.1"><xref derivedContent="4.1" format="counter" sectionFormat="of" target="section-4.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-protection-of-ldp-based-">SR Protection of LDP-Based Traffic</xref></t> </li> <li pn="section-toc.1-1.4.2.2"> <t keepWithNext="true" pn="section-toc.1-1.4.2.2.1"><xref derivedContent="4.2" format="counter" sectionFormat="of" target="section-4.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-eliminating-targeted-ldp-se">Eliminating Targeted LDP Sessions</xref></t> </li> <li pn="section-toc.1-1.4.2.3"> <t keepWithNext="true" pn="section-toc.1-1.4.2.3.1"><xref derivedContent="4.3" format="counter" sectionFormat="of" target="section-4.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-guaranteed-frr-coverage">Guaranteed FRR Coverage</xref></t> </li> <li pn="section-toc.1-1.4.2.4"> <t keepWithNext="true" pn="section-toc.1-1.4.2.4.1"><xref derivedContent="4.4" format="counter" sectionFormat="of" target="section-4.4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-inter-as-option-c-carriers-">Inter-AS Option C, Carrier's Carrier</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.5"> <t keepWithNext="true" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t> </li> <li pn="section-toc.1-1.6"> <t keepWithNext="true" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-manageability-consideration">Manageability Considerations</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2"> <li pn="section-toc.1-1.6.2.1"> <t keepWithNext="true" pn="section-toc.1-1.6.2.1.1"><xref derivedContent="6.1" format="counter" sectionFormat="of" target="section-6.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sr-and-ldp-coexistence">SR and LDP Coexistence</xref></t> </li> <li pn="section-toc.1-1.6.2.2"> <t keepWithNext="true" pn="section-toc.1-1.6.2.2.1"><xref derivedContent="6.2" format="counter" sectionFormat="of" target="section-6.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-data-plane-verification">Data-Plane Verification</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.7"> <t keepWithNext="true" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t> </li> <li pn="section-toc.1-1.8"> <t keepWithNext="true" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.8.2"> <li pn="section-toc.1-1.8.2.1"> <t keepWithNext="true" pn="section-toc.1-1.8.2.1.1"><xref derivedContent="8.1" format="counter" sectionFormat="of" target="section-8.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t> </li> <li pn="section-toc.1-1.8.2.2"> <t keepWithNext="true" pn="section-toc.1-1.8.2.2.1"><xref derivedContent="8.2" format="counter" sectionFormat="of" target="section-8.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.9"> <t keepWithNext="true" pn="section-toc.1-1.9.1"><xref derivedContent="Appendix A" format="default" sectionFormat="of" target="section-appendix.a"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-migration-from-ldp-to-sr">Migration from LDP to SR</xref></t> </li> <li pn="section-toc.1-1.10"> <t keepWithNext="true" pn="section-toc.1-1.10.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgements">Acknowledgements</xref></t> </li> <li pn="section-toc.1-1.11"> <t keepWithNext="true" pn="section-toc.1-1.11.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.c"/><xref derivedContent="" format="title" sectionFormat="of" target="name-contributors">Contributors</xref></t> </li> <li pn="section-toc.1-1.12"> <t keepWithNext="true" pn="section-toc.1-1.12.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.d"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t> </li> </ul> </section> </toc> </front> <middle> <sectionanchor="section-1" title="Introduction"> <t>Segmentanchor="sec-1" numbered="true" toc="include" removeInRFC="false" pn="section-1"> <name slugifiedName="name-introduction">Introduction</name> <t pn="section-1-1">Segment Routing, as described in <xreftarget="RFC8402"/>,target="RFC8402" format="default" sectionFormat="of" derivedContent="RFC8402"/>, can be used on top of the MPLS data plane without any modification as described in <xreftarget="RFC8660"/>.</t> <t>Segmenttarget="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/>.</t> <t pn="section-1-2">Segment Routing control plane can coexist with current label distribution protocols such as LDP <xreftarget="RFC5036"/>.</t> <t>Thistarget="RFC5036" format="default" sectionFormat="of" derivedContent="RFC5036"/>.</t> <t pn="section-1-3">This document outlines the mechanisms through which SR interworks with LDP in cases where a mix of SR-capable and non-SR-capable routers coexist within the same network and more precisely in the same routing domain.</t><t><xref target="section-2"/><t pn="section-1-4"><xref target="sec-2" format="default" sectionFormat="of" derivedContent="Section 2"/> describes the coexistence of SR with other MPLS control-plane protocols. <xreftarget="section-4"/>target="sec-4" format="default" sectionFormat="of" derivedContent="Section 3"/> documents the interworking between SR and LDP in the case of nonhomogeneous deployment. <xreftarget="section-5"/>target="sec-5" format="default" sectionFormat="of" derivedContent="Section 4"/> describes how a partial SR deployment can be used to provide SR benefits to LDP-based traffic including a possible application of SR in the context of interdomain MPLS use cases. <xreftarget="Appendix-A"/>target="Appendix-A" format="default" sectionFormat="of" derivedContent="Appendix A"/> documents a method to migrate from LDP to SR-based MPLS tunneling.</t><t>Typically,<t pn="section-1-5">Typically, an implementation will allow an operator to select (through configuration) which of the described modes of SR and LDP coexistence to use.</t> <sectiontitle="Requirements Language"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-1.1"> <name slugifiedName="name-requirements-language">Requirements Language</name> <t pn="section-1.1-1"> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119"/> <xref target="RFC8174"/>target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xref target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> </section> <sectionanchor="section-2" title="SR/LDPanchor="sec-2" numbered="true" toc="include" removeInRFC="false" pn="section-2"> <name slugifiedName="name-sr-ldp-ships-in-the-night-c">SR-LDP Ships-in-the-NightCoexistence"> <t>"MPLSCoexistence</name> <t pn="section-2-1">"MPLS Control-Plane Client (MCC)" refers to any control-plane protocol installing forwarding entries in the MPLS data plane. SR, LDP <xreftarget="RFC5036"/>,target="RFC5036" format="default" sectionFormat="of" derivedContent="RFC5036"/>, RSVP-TE <xreftarget="RFC3209"/>,target="RFC3209" format="default" sectionFormat="of" derivedContent="RFC3209"/>, BGP <xreftarget="RFC8277"/>,target="RFC8277" format="default" sectionFormat="of" derivedContent="RFC8277"/>, etc., are examples of MCCs.</t><t>An<t pn="section-2-2">An MCC, operating atnodeNode N, must ensure that the incoming label it installs in the MPLS data plane ofnodeNode N has been uniquely allocated to itself.</t><t>Segment<t pn="section-2-3">Segment Routing makes use of the Segment Routing Global Block (SRGB, as defined in <xreftarget="RFC8402"/>)target="RFC8402" format="default" sectionFormat="of" derivedContent="RFC8402"/>) for the label allocation. The use of the SRGB allows SR to coexist with any other MCC.</t><t>This<t pn="section-2-4">This is clearly the case for the adjacency segment: it is a local label allocated by the label manager, as is the case forforany MCC.</t><t>This<t pn="section-2-5">This is clearly the case for the prefix segment: the label manager allocates the SRGB set of labels to the SR MCC client, and the operator ensures the unique allocation of each global prefix segment or label within the allocated SRGB set.</t><t>Note<t pn="section-2-6">Note that this static label-allocation capability of the label manager has existed for many years across several vendors and is therefore not new. Furthermore, note that the label manager's ability to statically allocate a range of labels to a specific application is not new either. This is required for MPLS-TP operation. In this case, the range is reserved by the label manager, and it is the MPLS-TP <xreftarget="RFC5960"/>target="RFC5960" format="default" sectionFormat="of" derivedContent="RFC5960"/> Network Management System (acting as an MCC) that ensures the unique allocation of any label within the allocated range and the creation of the related MPLS forwarding entry.</t><t><list hangIndent="-1" style="hanging"><thangText="Letpn="section-2-7">Let us illustrate an example of ship-in-the-night (SIN)coexistence."><vspace blankLines="0"/></t> </list></t>coexistence. </t> <figure anchor="ref-sin-coexistence"title="SIN Coexistence"> <artwork><![CDATA[align="left" suppress-title="false" pn="figure-1"> <name slugifiedName="name-sin-coexistence">SIN Coexistence</name> <artwork name="" type="" align="left" alt="" pn="section-2-8.1"> PE2 PE4 \ / PE1----A----B---C---PE3]]></artwork></artwork> </figure><t>The<t pn="section-2-9">The EVEN VPN service is supported by PE2 and PE4 while the ODD VPN service is supported by PE1 and PE3. The operator wants to tunnel the ODD service via LDP and the EVEN service via SR.</t><t><list hangIndent="3" style="hanging"><thangText="Thispn="section-2-10">This can be achieved in the followingmanner:"><vspace blankLines="1"/> Themanner: </t> <ul bare="false" empty="false" spacing="normal" pn="section-2-11"> <li pn="section-2-11.1">The operator configures PE1, PE2, PE3, and PE4 with respective loopbacks 192.0.2.201/32, 192.0.2.202/32, 192.0.2.203/32, and 192.0.2.204/32. These PEs advertised their VPN routes withnext-hopnext hop set on their respective loopback address.<vspace blankLines="1"/> The</li> <li pn="section-2-11.2">The operator configures A, B, C with respective loopbacks 192.0.2.1/32, 192.0.2.2/32, 192.0.2.3/32.<vspace blankLines="1"/> The</li> <li pn="section-2-11.3">The operator configures PE2, A, B, C, and PE4 with SRGB [100, 300].<vspace blankLines="1"/> The</li> <li pn="section-2-11.4">The operator attaches the respective Node Segment Identifiers(Node-SIDs,(Node SIDs, as defined in <xreftarget="RFC8402"/>),target="RFC8402" format="default" sectionFormat="of" derivedContent="RFC8402"/>), 202, 101, 102, 103, and 204, to the loopbacks of nodes PE2, A, B, C, and PE4. TheNode-SIDsNode SIDs are configured to request Penultimate Hop Popping.<vspace blankLines="1"/> PE1,</li> <li pn="section-2-11.5">PE1, A, B, C, and PE3 are LDP capable.<vspace blankLines="1"/> PE1</li> <li pn="section-2-11.6">PE1 and PE3 are not SRcapable.</t> </list></t> <t>PE3capable. </li> </ul> <t pn="section-2-12">PE3 sends an ODD VPN route to PE1 with next-hop 192.0.2.203 and VPN label 10001.</t><t>From<t pn="section-2-13">From an LDP viewpoint, PE1 received an LDP label binding (1037) for aforwarding equivalence classForwarding Equivalence Class (FEC) 192.0.2.203/32 from its next-hop A; A received an LDP label binding (2048) for that FEC from its next-hop B; B received an LDP label binding (3059) for that FEC from its next-hop C; and C receivedimplicit-nullimplicit NULL LDP binding from its next-hop PE3.</t><t>As<t pn="section-2-14">As a result, PE1 sends its traffic to the ODD service route advertised by PE3 to next-hop A with two labels: the top label is 1037 and the bottom label is 10001. Node A swaps 1037 with 2048 and forwards to B; B swaps 2048 with 3059 and forwards to C; C pops 3059 and forwards to PE3.</t><t>PE4<t pn="section-2-15">PE4 sends an EVEN VPN route to PE2 with next-hop 192.0.2.204 and VPN label 10002.</t><t>From<t pn="section-2-16">From an SR viewpoint, PE2 maps the IGP route 192.0.2.204/32 ontoNode-SIDNode SID 204;nodeNode A swaps 204 with 204 and forwards to B; B swaps 204 with 204 and forwards to C; and C pops 204 and forwards to PE4.</t><t>As<t pn="section-2-17">As a result, PE2 sends its traffic to the VPN service route advertised by PE4 to next-hop A with two labels: the top label is 204 and the bottom label is 10002. Node A swaps 204 with 204 and forwards to B. B swaps 204 with 204 and forwards to C. C pops 204 and forwards to PE4.</t><t><list hangIndent="3" style="hanging"><thangText="Thepn="section-2-18">The two modes of MPLS tunnelingcoexist."><vspace blankLines="1"/> Thecoexist. </t> <ul empty="false" bare="false" spacing="normal" pn="section-2-19"> <li pn="section-2-19.1">The ODD service is tunneled from PE1 to PE3 through a continuous LDP LSP traversing A, B, and C.<vspace blankLines="1"/> The</li> <li pn="section-2-19.2">The EVEN service is tunneled from PE2 to PE4 through a continuous SR node segment traversing A, B, andC.</t> </list></t>C. </li> </ul> <sectionanchor="section-2.1" title="MPLS2MPLS,anchor="sec-2.1" numbered="true" toc="include" removeInRFC="false" pn="section-2.1"> <name slugifiedName="name-mpls2mpls-mpls2ip-and-ip2mp">MPLS2MPLS, MPLS2IP, and IP2MPLSCoexistence"> <t>MPLS2MPLSCoexistence</name> <t pn="section-2.1-1">MPLS2MPLS refers to the forwarding behavior where a router receives a labeled packet and switches it out as a labeled packet. Several MPLS2MPLS entries may be installed in the data plane for the same prefix.</t><t><list hangIndent="3" style="hanging"><thangText="Letpn="section-2.1-2">Let us examine A's MPLS forwarding table as anexample:"><vspace blankLines="1"/> Incomingexample:</t> <ul empty="true" bare="false" spacing="normal" pn="section-2.1-3"> <li pn="section-2.1-3.1"> <t pn="section-2.1-3.1.1">Incoming label: 1037</t></list></t> <figure> <artwork><![CDATA[ - outgoing<ul empty="false" bare="false" spacing="normal" pn="section-2.1-3.1.2"> <li pn="section-2.1-3.1.2.1">Outgoing label:2048 - outgoing next-hop: B Note: this2048</li> <li pn="section-2.1-3.1.2.2">Outgoing next hop: B</li> </ul> <t pn="section-2.1-3.1.3">Note: This entry is programmed by LDP for192.0.2.203/32 Incoming192.0.2.203/32.</t> </li> </ul> <ul empty="true" bare="false" spacing="normal" pn="section-2.1-4"> <li pn="section-2.1-4.1"> <t pn="section-2.1-4.1.1">Incoming label:203 - outgoing203</t> <ul empty="false" bare="false" spacing="normal" pn="section-2.1-4.1.2"> <li pn="section-2.1-4.1.2.1">Outgoing label:203 - outgoing next-hop: B Note: this203</li> <li pn="section-2.1-4.1.2.2">Outgoing next hop: B</li> </ul> <t pn="section-2.1-4.1.3">Note: This entry is programmed by SR for192.0.2.203/32 ]]></artwork> </figure> <t>These192.0.2.203/32.</t> </li> </ul> <t pn="section-2.1-5">These two entries can coexist because their incoming label is unique. The uniqueness is guaranteed by the label manager allocation rules.</t><t>The<t pn="section-2.1-6">The same applies for the MPLS2IP forwarding entries. MPLS2IP is the forwarding behavior where a router receives a labeled IPv4/IPv6 packet with one label only, pops the label, and switches the packet out as IPv4/IPv6. For IP2MPLS coexistence, refer to <xreftarget="section-7.1"/>.</t>target="sec-7.1" format="default" sectionFormat="of" derivedContent="Section 6.1"/>.</t> </section> </section> <sectionanchor="section-4" title="SRanchor="sec-4" numbered="true" toc="include" removeInRFC="false" pn="section-3"> <name slugifiedName="name-sr-and-ldp-interworking">SR and LDPInterworking"> <t>ThisInterworking</name> <t pn="section-3-1">This section analyzes the case where SR is available in one part of the network and LDP is available in another part. It describes how a continuous MPLS tunnel can be built throughout the network.</t> <figure anchor="ref-sr-and-ldp-interworking"title="SRalign="left" suppress-title="false" pn="figure-2"> <name slugifiedName="name-sr-and-ldp-interworking-2">SR and LDPInterworking"> <artwork><![CDATA[Interworking</name> <artwork name="" type="" align="left" alt="" pn="section-3-2.1"> PE2 PE4 \ / PE1----P5--P6--P7--P8---PE3]]></artwork><-----SR----> <------LDP------> </artwork> </figure><t><list hangIndent="3" style="hanging"><thangText="Letpn="section-3-3">Let us analyze the followingexample:"><vspace blankLines="1"/> P6,example: </t> <ul bare="false" empty="false" spacing="normal" pn="section-3-4"> <li pn="section-3-4.1">P6, P7, P8, PE4, and PE3 are LDP capable.<vspace blankLines="1"/> PE1,</li> <li pn="section-3-4.2">PE1, PE2, P5, and P6 are SR capable. PE1, PE2, P5, and P6 are configured with SRGB (100, 200) andrespectivelywith node segments 101, 102, 105, and106. <vspace blankLines="1"/> A106, respectively. </li> <li pn="section-3-4.3">A service flow must be tunneled from PE1 to PE3 over a continuous MPLS tunnelencapsulation andencapsulation; therefore, SR and LDP need tointerwork.</t> </list></t> <t/>interwork. </li> </ul> <sectionanchor="section-4.1" title="LDPanchor="sec-4.1" numbered="true" toc="include" removeInRFC="false" pn="section-3.1"> <name slugifiedName="name-ldp-to-sr">LDP toSR"> <t>InSR</name> <t pn="section-3.1-1">In this section, a right-to-left traffic flow is analyzed.</t><t>PE3<t pn="section-3.1-2">PE3 has learned a service route whosenext-hopnext hop is PE1. PE3 has an LDP label binding from the next-hop P8 for the FEC "PE1". Therefore, PE3 sends its service packet to P8 as per classic LDP behavior.</t><t>P8<t pn="section-3.1-3">P8 has an LDP label binding from its next-hop P7 for the FEC "PE1" and therefore, P8 forwards to P7 as per classic LDP behavior.</t><t>P7<t pn="section-3.1-4">P7 has an LDP label binding from its next-hop P6 for the FEC "PE1" and therefore, P7 forwards to P6 as per classic LDP behavior.</t><t>P6<t pn="section-3.1-5">P6 does not have an LDP binding from its next-hop P5 for the FEC "PE1". However, P6 has an SR node segment to the IGP route "PE1". Hence, P6 forwards the packet to P5 and swaps its local LDP label for FEC "PE1" by the equivalent node segment (i.e., 101).</t><t>P5<t pn="section-3.1-6">P5 pops 101 (assuming PE1 advertised its node segment 101 with the penultimate-pop flag set) and forwards to PE1.</t><t>PE1<t pn="section-3.1-7">PE1 receives the tunneled packet and processes the service label.</t><t>The<t pn="section-3.1-8">The end-to-end MPLS tunnel is builtfromby stitching an LDP LSP from PE3 to P6 and the related node segment from P6 to PE1.</t> <sectionanchor="section-4.1.1" title="LDPanchor="sec-4.1.1" numbered="true" toc="include" removeInRFC="false" pn="section-3.1.1"> <name slugifiedName="name-ldp-to-sr-behavior">LDP to SRBehavior"> <t>ItBehavior</name> <t pn="section-3.1.1-1">It has to be noted that no additional signaling or state is required in order to provide interworking in the direction LDP to SR.</t><t>An<t pn="section-3.1.1-2">An SR node having LDP neighborsMUST<bcp14>MUST</bcp14> create LDP bindings for eachPrefix SIDPrefix-SID learned in the SR domain by treating SR-learned labels as if they were learned through an LDP neighbor. In addition, for each FEC, the SR node stitches the incoming LDP label to the outgoing SR label. This has to be done in both LDP-independent and ordered label distribution control modes as defined in <xreftarget="RFC5036"/>.</t>target="RFC5036" format="default" sectionFormat="of" derivedContent="RFC5036"/>.</t> </section> </section> <sectionanchor="section-4.2" title="SRanchor="sec-4.2" numbered="true" toc="include" removeInRFC="false" pn="section-3.2"> <name slugifiedName="name-sr-to-ldp">SR toLDP"> <t>InLDP</name> <t pn="section-3.2-1">In this section, the left-to-right traffic flow is analyzed.</t><t>This<t pn="section-3.2-2">This section defines the Segment Routing Mapping Server (SRMS). The SRMS is an IGP node advertising mapping between Segment Identifiers (SID) and prefixes advertised by other IGP nodes. The SRMS uses a dedicated IGP extension (IS-IS, OSPFv2, and OSPFv3), which is protocol specific and defined in <xreftarget="RFC8665"/>, <xref target="RFC8666"/>,target="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/>, <xref target="RFC8666" format="default" sectionFormat="of" derivedContent="RFC8666"/>, and <xreftarget="RFC8667"/>.</t> <t>Thetarget="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/>.</t> <t pn="section-3.2-3">The SRMS function of an SR-capable router allows distribution of mappings for prefixes not locally attached to the advertising router and therefore allows advertisement of mappings on behalf of non-SR-capable routers.</t><t>The<t pn="section-3.2-4">The SRMS is a control-plane-only function that may be located anywhere in the IGP flooding scope. At least one SRMS serverMUST<bcp14>MUST</bcp14> exist in a routing domain to advertisePrefix SIDsPrefix-SIDs on behalf ofnon&nbhy;SRnon‑SR nodes, thereby allowing non-LDP routers to send and receive labeled traffic from LDP-only routers. Multiple SRMSes may be present in the same network (for redundancy). This implies that there are multiple ways a prefix-to-SID mapping can be advertised. Conflicts resulting from inconsistent advertisements are addressed by <xreftarget="RFC8660"/>.</t> <t>Thetarget="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/>.</t> <t pn="section-3.2-5">The example depicted in <xreftarget="ref-sr-and-ldp-interworking"/>target="ref-sr-and-ldp-interworking" format="default" sectionFormat="of" derivedContent="Figure 2"/> assumes that the operator configures P5 to act as a Segment Routing Mapping Server(SRMS)and advertises the following mappings: (P7, 107), (P8, 108), (PE3, 103), and (PE4, 104).</t><t>The<t pn="section-3.2-6">The mappings advertised by one or more SRMSes result from local policy information configured by the operator.</t><t>If<t pn="section-3.2-7">If PE3 had been SR capable, the operator would have configured PE3 with node segment 103. Instead, as PE3 is not SR capable, the operator configures that policy at the SRMS and it is the latter that advertises the mapping.</t><t>The mapping server advertisements<t pn="section-3.2-8">The Mapping Server Advertisements are only understood by SR-capable routers. The SR-capable routers install the related node segments in the MPLS data plane exactly like the node segments had been advertised by the nodes themselves.</t><t>For<t pn="section-3.2-9">For example, PE1 installs the node segment 103 with next-hop P5 exactly as if PE3 had advertised node segment 103.</t><t>PE1<t pn="section-3.2-10">PE1 has a service route whosenext-hopnext hop is PE3. PE1 has a node segment for that IGP route: 103 with next-hop P5. Hence, PE1 sends its service packet to P5 with two labels: the bottom label is the service label and the top label is 103.</t><t>P5<t pn="section-3.2-11">P5 swaps 103 for 103 and forwards to P6.</t><t>P6's next-hop<t pn="section-3.2-12">P6's next hop for the IGP route "PE3" is not SR capable (P7 does not advertise the SR capability). However, P6 has an LDP label binding from thatnext-hopnext hop for the same FEC (e.g., LDP label 1037). Hence, P6 swaps 103 for 1037 and forwards to P7.</t><t>P7<t pn="section-3.2-13">P7 swaps this label with the LDP label received from P8 and forwards to P8.</t><t>P8<t pn="section-3.2-14">P8 pops the LDP label and forwards to PE3.</t><t>PE3<t pn="section-3.2-15">PE3 receives the tunneled packet and processes the service label.</t><t>The<t pn="section-3.2-16">The end-to-end MPLS tunnel is builtfromby stitching an SR node segment from PE1 to P6 and an LDP LSP from P6 to PE3.</t><t>SR-mapping<t pn="section-3.2-17">SR-mapping advertisement for a given prefix provides no information about Penultimate Hop Popping. Other mechanisms, such as IGP-specific mechanisms (<xreftarget="RFC8665"/>, <xref target="RFC8666"/> and <xref target="RFC8667"/>), MAYtarget="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/>, <xref target="RFC8666" format="default" sectionFormat="of" derivedContent="RFC8666"/>, and <xref target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/>), <bcp14>MAY</bcp14> be used to determine the Penultimate Hop Popping in such case.</t><t>Note:<aside pn="section-3.2-18"> <t pn="section-3.2-18.1">Note: In the previous example, Penultimate Hop Popping is not performed at theSR/LDPSR-LDP border for segment 103 (PE3), because none of the routers in the SR domain are Penultimate Hop for segment 103. In this case, P6 requires the presence of the segment 103 such as to map it to the LDP label 1037.</t> </aside> <sectionanchor="section-4.2.1" title="Segmentanchor="sec-4.2.1" numbered="true" toc="include" removeInRFC="false" pn="section-3.2.1"> <name slugifiedName="name-segment-routing-mapping-ser">Segment Routing Mapping Server(SRMS)"> <t>This(SRMS)</name> <t pn="section-3.2.1-1">This section specifies the concept and externally visible functionality of asegment routing mapping serverSegment Routing Mapping Server (SRMS).</t><t>The<t pn="section-3.2.1-2">The purpose of SRMS functionality is to support the advertisement ofPrefix SIDsPrefix-SIDs to a prefix without the need to explicitly advertise such assignment within a prefix reachability advertisement. Examples of explicitPrefix SID advertisementPrefix-SID Advertisement are thePrefix SIDPrefix-SID sub-TLVs defined in <xreftarget="RFC8665"/>, <xref target="RFC8666"/>,target="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/>, <xref target="RFC8666" format="default" sectionFormat="of" derivedContent="RFC8666"/>, and <xreftarget="RFC8667"/>.</t> <t>Thetarget="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/>.</t> <t pn="section-3.2.1-3">The SRMS functionality allows assigning ofPrefix SIDsPrefix-SIDs to prefixes owned by non-SR-capable routers as well as to prefixes owned by SR-capable nodes. It is the former capability that is essential to the SR-LDP interworking described later in this section.</t><t>The<t pn="section-3.2.1-4">The SRMS functionality consists of two functional blocks: the Mapping Server (MS) and Mapping Client (MC).</t><t>An<t pn="section-3.2.1-5">An MS is a node that advertises an SR mappings. Advertisements sent by an MS define the assignment of aPrefix SIDPrefix-SID to a prefix independent of the advertisement of reachability to the prefix itself. An MSMAY<bcp14>MAY</bcp14> advertise SR mappings for any prefix whether or not it advertises reachability for the prefix and irrespective of whether that prefix is advertised by or even reachable through any router in the network.</t><t>An<t pn="section-3.2.1-6">An MC is a node that receives and uses the MS mapping advertisements. Note that a node may be both an MS and an MC. An MC interprets the SR-mapping advertisement as an assignment of aPrefix SIDPrefix-SID to a prefix. For a given prefix, if an MC receives an SR-mapping advertisement from amapping serverMapping Server and also has received aPrefix SID advertisementPrefix-SID Advertisement for that same prefix in a prefix reachability advertisement, then the MCMUST<bcp14>MUST</bcp14> prefer the SID advertised in the prefix reachability advertisement over themapping server advertisement,Mapping Server Advertisement, i.e., themapping server advertisement MUSTMapping Server Advertisement <bcp14>MUST</bcp14> be ignored for that prefix. Hence, assigning aPrefix SIDPrefix-SID to a prefix using the SRMS functionality does not preclude assigning the same or differentPrefix SID(s)Prefix-SID(s) to the same prefix using explicitPrefix SID advertisementPrefix-SID Advertisement such as the aforementionedPrefix SIDPrefix-SID sub-TLVs.</t><t>For<t pn="section-3.2.1-7">For example, consider an IPv4 prefix advertisement received by anIS&nbhy;ISIS‑IS router in the Extended IP reachability TLV (TLV 135). Suppose TLV 135 contained thePrefix SIDPrefix-SID sub-TLV. If the router that receives TLV 135 with thePrefix SIDPrefix-SID sub-TLV also received an SR-mapping advertisement for the same prefix through the SID/Label Binding TLV, then the receiving router must prefer thePrefix SIDPrefix-SID sub-TLV over the SID/Label Binding TLV for that prefix. Refer to <xreftarget="RFC8667"/>target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/> for details about thePrefix SIDPrefix-SID sub-TLV and SID/Label Binding TLV.</t> </section> <sectionanchor="section-4.2.2" title="SRanchor="sec-4.2.2" numbered="true" toc="include" removeInRFC="false" pn="section-3.2.2"> <name slugifiedName="name-sr-to-ldp-behavior">SR to LDPBehavior"> <t>SRBehavior</name> <t pn="section-3.2.2-1">SR to LDP interworking requires an SRMS as defined above.</t><t>Each<t pn="section-3.2.2-2">Each SR-capable router installs in the MPLS data-planeNode-SIDsNode SIDs learned from the SRMS exactlylikeas if these SIDs had been advertised by the nodes themselves.</t><t>An<t pn="section-3.2.2-3">An SR node havingLDPLDP-only neighborsMUST<bcp14>MUST</bcp14> stitch the incoming SR label (whose SID is advertised by the SRMS) to the outgoing LDP label.</t><t>It<t pn="section-3.2.2-4">It has to be noted that the SR to LDP behavior does not propagate the status of the LDP FEC that was signaledifby LDPwaswhen configuredto use thein ordered mode.</t><t>It<t pn="section-3.2.2-5">It has to be noted that in the case of SR to LDP, the label binding is equivalent to the independent LDP Label Distribution Control Mode <xreftarget="RFC5036"/>target="RFC5036" format="default" sectionFormat="of" derivedContent="RFC5036"/> where a label is bound to a FEC independently from the received binding for the same FEC.</t> </section> <sectionanchor="section-4.2.3" title="Interoperabilityanchor="sec-4.2.3" numbered="true" toc="include" removeInRFC="false" pn="section-3.2.3"> <name slugifiedName="name-interoperability-of-multipl">Interoperability of Multiple SRMSes andPrefix SID Advertisements"> <t>InPrefix-SID Advertisements</name> <t pn="section-3.2.3-1">In the case ofSR/LDPSR-LDP interoperability through the use of an SRMS, mappings are advertised by one or more SRMSes.</t><t>SRMS<t pn="section-3.2.3-2">SRMS functionality is implemented in the link-state protocol (such as IS-IS and OSPF). Link-state protocols allow propagation of updates across area boundaries and, therefore, SRMS advertisements are propagated through the usual inter-area advertisement procedures in link-state protocols.</t><t>Multiple<t pn="section-3.2.3-3">Multiple SRMSes can be provisioned in a network for redundancy. Moreover, a preference mechanism may also be used among SRMSes to deploy a primary/secondary SRMS scheme allowing controlled modification or migration of SIDs.</t><t>The<t pn="section-3.2.3-4">The content of SRMS advertisement (i.e., mappings) are a matter of local policy determined by the operator. When multiple SRMSes are active, it is necessary that the information (mappings) advertised by the different SRMSes is aligned and consistent. The following mechanism is applied to determine the preference of SRMS advertisements:</t><t>If<t pn="section-3.2.3-5">If a node acts as an SRMS, itMAY<bcp14>MAY</bcp14> advertise a preference to be associated with all SRMS SIDadvertisementsAdvertisements sent by that node. The means of advertising the preference is defined in the protocol-specific documents, e.g., <xreftarget="RFC8665"/>, <xref target="RFC8666"/>,target="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/>, <xref target="RFC8666" format="default" sectionFormat="of" derivedContent="RFC8666"/>, and <xreftarget="RFC8667"/>.target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/>. The preference value is an unsigned 8-bit integer with the following properties:</t><t><list style="hanging"> <t>0 - Reserved<table anchor="table_1" align="center" pn="table-1"> <tbody> <tr> <td align="center" colspan="1" rowspan="1">0</td> <td align="left" colspan="1" rowspan="1">Reserved value indicating advertisements from that nodeMUST NOT<bcp14>MUST NOT</bcp14> beused.</t> <t>1 - 255 Preferenceused</td> </tr> <tr> <td align="center" colspan="1" rowspan="1">1-255</td> <td align="left" colspan="1" rowspan="1">Preference value (255 is mostpreferred)</t> </list>Advertisementpreferred)</td> </tr> </tbody> </table> <t pn="section-3.2.3-7">Advertisement of a preference value is optional. Nodes that do not advertise a preference value are assigned a preference value of 128.</t><t>An<t pn="section-3.2.3-8">An MCC on a node receiving one or more SRMS mapping advertisements applies them as follows:</t><t><list style="symbols"> <t>For<ul spacing="normal" bare="false" empty="false" pn="section-3.2.3-9"> <li pn="section-3.2.3-9.1">For any prefix for which it did not receive aPrefix SID advertisement,Prefix-SID Advertisement, the MCC applies the SRMS mapping advertisements with the highest preference. The mechanism by which aPrefix SIDPrefix-SID is advertised for a given prefix is defined in the protocol specifications <xreftarget="RFC8665"/>, <xref target="RFC8666"/>, and <xref target="RFC8667"/>.</t> <t>Iftarget="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/>, <xref target="RFC8666" format="default" sectionFormat="of" derivedContent="RFC8666"/>, and <xref target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/>.</li> <li pn="section-3.2.3-9.2">If there is an incoming label collision as specified in <xreftarget="RFC8660"/>,target="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/>, apply the steps specified in <xreftarget="RFC8660"/>target="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/> to resolve thecollision.</t> </list></t> <t>Whencollision.</li> </ul> <t pn="section-3.2.3-10">When the SRMS advertises mappings, an implementation should provide a mechanism through which the operator determines which of the IP2MPLS mappings are preferred among the one advertised by the SRMS and the ones advertised by LDP.</t> </section> </section> </section> <sectionanchor="section-5" title="SR/LDPanchor="sec-5" numbered="true" toc="include" removeInRFC="false" pn="section-4"> <name slugifiedName="name-sr-ldp-interworking-use-cas">SR-LDP Interworking UseCases"> <t>SRCases</name> <t pn="section-4-1">SR can be deployed, for example, to enhance LDP transport. The SR deployment can be limited to the network region where the SR benefits are most desired.</t> <sectionanchor="section-5.1" title="SRanchor="sec-5.1" numbered="true" toc="include" removeInRFC="false" pn="section-4.1"> <name slugifiedName="name-sr-protection-of-ldp-based-">SR Protection of LDP-BasedTraffic"> <t>InTraffic</name> <t pn="section-4.1-1">In <xreftarget="ref-sr-ldp-interworking-example"/>,target="ref-sr-ldp-interworking-example" format="default" sectionFormat="of" derivedContent="Figure 3"/>, let us assume:<list style="empty"> <t></t> <ul empty="false" spacing="normal" bare="false" pn="section-4.1-2"> <li pn="section-4.1-2.1"> All link costs are 10 except FG, which is30.</t> <t>30.</li> <li pn="section-4.1-2.2"> All routers are LDPcapable.</t> <t>capable.</li> <li pn="section-4.1-2.3"> X, Y, and Z are PEs participating in an important serviceS.</t> <t>S.</li> <li pn="section-4.1-2.4"> The operator requires 50 msec link-based Fast Reroute (FRR) for serviceS.</t> <t>S.</li> <li pn="section-4.1-2.5"> A, B, C, D, E, F, and G are SRcapable.</t> <t>capable.</li> <li pn="section-4.1-2.6"> X, Y, and Z are not SR capable, e.g., as part of a staged migration from LDP to SR, the operator deploys SR first in a subpart of the network and theneverywhere.</t> </list></t>everywhere.</li> </ul> <figure anchor="ref-sr-ldp-interworking-example"title="SR/LDPalign="left" suppress-title="false" pn="figure-3"> <name slugifiedName="name-sr-ldp-interworking-example">SR-LDP InterworkingExample"> <artwork><![CDATA[Example</name> <artwork name="" type="" align="left" alt="" pn="section-4.1-3.1"> X | Y--A---B---E--Z | | \ D---C--F--G 30]]></artwork></artwork> </figure><t><list hangIndent="3" style="hanging"><thangText="Thepn="section-4.1-4">The operator would like to resolve the followingissues:"><vspace blankLines="1"/> Toissues: </t> <ul empty="false" spacing="normal" bare="false" pn="section-4.1-5"> <li pn="section-4.1-5.1">To protect the link BA along the shortest-path of the important flow XY, B requires a Remote Loop-Free Alternate (RLFA; see <xreftarget="RFC7490"/>)target="RFC7490" format="default" sectionFormat="of" derivedContent="RFC7490"/>) repair tunnel to D and, therefore, a targeted LDP session from B to D. Typically, network operators prefer avoiding these dynamically established multi-hop LDP sessions in order to reduce the number of protocols running in the network and, therefore, simplify network operations.<vspace blankLines="1"/> There</li> <li pn="section-4.1-5.2">There is no LFA/RLFA solution to protect the link BE along the shortest path of the important flow XZ. The operator wants a guaranteed link-based FRRsolution.</t> </list></t> <t>Thesolution. </li> </ul> <t pn="section-4.1-6">The operator can meet these objectives by deploying SR only on A, B, C, D, E, F, and G:</t><t><list hangIndent="3" style="hanging"> <t>The<ul bare="false" empty="false" spacing="normal" pn="section-4.1-7"> <li pn="section-4.1-7.1">The operator configures A, B, C, D, E, F, and G with SRGB [100, 200] andrespectivewith node segments 101, 102, 103, 104, 105, 106, and107.</t> </list></t> <t><list hangIndent="3" style="hanging"> <t>The107, respectively. </li> <li pn="section-4.1-7.2">The operator configures D as an SR Mapping Server with the following policy mapping: (X, 201), (Y, 202), and (Z,203).</t> </list></t> <t><list hangIndent="3" style="hanging"> <t>Each203). </li> <li pn="section-4.1-7.3">Each SR node automatically advertises a local adjacency segment for its IGP adjacencies. Specifically, F advertises adjacency segment 9001 for its adjacencyFG.</t> </list></t> <t>A,FG. </li> </ul> <t pn="section-4.1-8">A, B, C, D, E, F, and G keep their LDP capability. Therefore, the flows XY and XZ are transported over end-to-end LDP LSPs.</t><t>For<t pn="section-4.1-9">For example, LDP at B installs the following MPLS data-plane entries:</t><t><list hangIndent="3" style="hanging"><ul empty="true" bare="false" spacing="normal" pn="section-4.1-10"> <li pn="section-4.1-10.1"> <thangText="Incomingpn="section-4.1-10.1.1">Incoming label: local LDP label bound by B for FECY"><vspace blankLines="0"/> OutgoingY</t> <ul empty="false" bare="false" spacing="normal" pn="section-4.1-10.1.2"> <li pn="section-4.1-10.1.2.1">Outgoing label: LDP label bound by A for FECY<vspace blankLines="0"/> Outgoing next-hop: A</t>Y</li> <li pn="section-4.1-10.1.2.2">Outgoing next hop: A</li> </ul> </li> <li pn="section-4.1-10.2"> <thangText="Incomingpn="section-4.1-10.2.1">Incoming label: local LDP label bound by B for FECZ"><vspace blankLines="0"/>OutgoingZ</t> <ul empty="false" bare="false" spacing="normal" pn="section-4.1-10.2.2"> <li pn="section-4.1-10.2.2.1">Outgoing label: LDP label bound by E for FECZ<vspace blankLines="0"/>Outgoing next-hop: E</t> </list></t> <t>TheZ </li> <li pn="section-4.1-10.2.2.2">Outgoing next hop: E </li> </ul> </li> </ul> <t pn="section-4.1-11">The novelty comes from how the backup chains are computed for these LDP-based entries. While LDP labels are used for the primary next- hop and outgoing labels, SR information is used for the FRR construction. In steady state, the traffic is transported over LDP LSP. In transient FRR state, the traffic is backup thanks to the SR-enhanced capabilities.</t><t>The<t pn="section-4.1-12">The RLFA paths are dynamically precomputed as defined in <xreftarget="RFC7490"/>.target="RFC7490" format="default" sectionFormat="of" derivedContent="RFC7490"/>. Typically, implementations allow to enable an RLFA mechanism through a simple configuration command that triggers both the precomputation and installation of the repair path. The details on how RLFA mechanisms are implemented and configured is outside the scope of this document and not relevant to the aspects ofSR/LDPSR-LDP interwork explained in this document.</t><!-- hmm how about "maintain guaranteed FRR coverage"?--> <t><list hangIndent="3" style="hanging"><thangText="Thispn="section-4.1-13">This helps meet the requirements of theoperator:"><vspace blankLines="1"/> Eliminateoperator: </t> <ul bare="false" empty="false" spacing="normal" pn="section-4.1-14"> <li pn="section-4.1-14.1">Eliminate targeted LDP sessions.<vspace blankLines="1"/> Guaranteed</li> <li pn="section-4.1-14.2">Provide guaranteed FRR coverage.<vspace blankLines="1"/> Keep</li> <li pn="section-4.1-14.3">Keep the traffic over LDP LSP in steady state.<vspace blankLines="1"/> Partially</li> <li pn="section-4.1-14.4">Partially deploy SR only whereneeded.</t> </list></t>needed. </li> </ul> </section> <sectionanchor="section-5.2" title="Eliminatinganchor="sec-5.2" numbered="true" toc="include" removeInRFC="false" pn="section-4.2"> <name slugifiedName="name-eliminating-targeted-ldp-se">Eliminating Targeted LDPSessions"> <t>B'sSessions</name> <t pn="section-4.2-1">B's MPLS entry to Y becomes:</t><figure> <artwork><![CDATA[ - Incoming<ul empty="true" bare="false" spacing="normal" pn="section-4.2-2"> <li pn="section-4.2-2.1"> <t pn="section-4.2-2.1.1">Incoming label: local LDP label bound by B for FECY OutgoingY</t> <ul empty="false" bare="false" spacing="normal" pn="section-4.2-2.1.2"> <li pn="section-4.2-2.1.2.1">Outgoing label: LDP label bound by A for FECY BackupY</li> <li pn="section-4.2-2.1.2.2">Backup outgoing label: SR node segment for Y{202} Outgoing next-hop: A Backup next-hop:{202}</li> <li pn="section-4.2-2.1.2.3">Outgoing next hop: A</li> <li pn="section-4.2-2.1.2.4">Backup next hop: repair tunnel: node segment to D {104} with outgoingnext-hop: C ]]></artwork> </figure> <t>Itnext hop: C</li> </ul> </li> </ul> <t pn="section-4.2-3">It has to be noted that D is selected as a Remote Loop-Free Alternate (RLFA) as defined in <xreftarget="RFC7490"/>.</t> <t>Intarget="RFC7490" format="default" sectionFormat="of" derivedContent="RFC7490"/>.</t> <t pn="section-4.2-4">In steady state, X sends its Y-destined traffic to B with a top label, which is the LDP label bound by B for FEC Y. B swaps that top label for the LDP label bound by A for FEC Y and forwards to A. A pops the LDP label and forwards to Y.</t><t>Upon<t pn="section-4.2-5">Upon failure of the link BA, B swaps the incoming top label with the node segment for Y (202) and sends the packet onto a repair tunnel to D (node segment 104). Thus, B sends the packet to C with the label stack {104,202}. 202}. C pops the node segment 104 and forwards to D. D swaps 202 for 202 and forwards to A. A'snext-hopnext hop to Y is not SR capable, and therefore,nodeNode A swaps the incoming node segment 202 to the LDP label announced by itsnext-hopnext hop (in this case, implicitnull).</t> <t>AfterNULL).</t> <t pn="section-4.2-6">After IGP convergence, B's MPLS entry to Y will become:</t><figure> <artwork><![CDATA[ - Incoming<ul empty="true" bare="false" spacing="normal" pn="section-4.2-7"> <li pn="section-4.2-7.1"> <t pn="section-4.2-7.1.1">Incoming label: local LDP label bound by B for FECY OutgoingY</t> <ul empty="false" bare="false" spacing="normal" pn="section-4.2-7.1.2"> <li pn="section-4.2-7.1.2.1">Outgoing label: LDP label bound by C for FECY Outgoing next-hop: C]]></artwork> </figure> <t/> <t>AndY</li> <li pn="section-4.2-7.1.2.2">Outgoing next hop: C</li> </ul> </li> </ul> <t pn="section-4.2-8">And the traffic XY travels again over the LDP LSP.</t><t>Conclusion:<t pn="section-4.2-9">Conclusion: the operator has eliminated the need for targeted LDP sessions (no longer required) and the steady-state traffic is still transported over LDP. The SR deployment is confined to the area where these benefits are required.</t><t>Despite<t pn="section-4.2-10">Despite that, in general, an implementation would not require a manual configuration of targeted LDP sessions. However, it is always a gain if the operator is able to reduce the set of protocol sessions running on the network infrastructure.</t> </section> <sectionanchor="section-5.3" title="Guaranteedanchor="sec-5.3" numbered="true" toc="include" removeInRFC="false" pn="section-4.3"> <name slugifiedName="name-guaranteed-frr-coverage">Guaranteed FRRCoverage"> <t>AsCoverage</name> <t pn="section-4.3-1">As mentioned in <xreftarget="section-5.1"/>,target="sec-5.1" format="default" sectionFormat="of" derivedContent="Section 4.1"/>, in the example topology described in <xreftarget="ref-sr-ldp-interworking-example"/>,target="ref-sr-ldp-interworking-example" format="default" sectionFormat="of" derivedContent="Figure 3"/>, there is no RLFA-based solution for protecting the traffic flow YZ against the failure of link BE because there is no intersection between the extended P-space and Q-space (see <xreftarget="RFC7490"/>target="RFC7490" format="default" sectionFormat="of" derivedContent="RFC7490"/> for details). However:</t><t><list style="symbols"> <t>G<ul spacing="normal" bare="false" empty="false" pn="section-4.3-2"> <li pn="section-4.3-2.1">G belongs to the Q space ofZ.</t> <t>GZ.</li> <li pn="section-4.3-2.2">G can be reached from B via a "repair SR path" {106, 9001} that is not affected by failure of link BE. (The method by which G and the repair tunnel to it from B are identified are outside the scope of thisdocument.)</t> </list></t> <t>B'sdocument.)</li> </ul> <t pn="section-4.3-3">B's MPLS entry to Z becomes:</t><figure> <artwork><![CDATA[ - Incoming<ul empty="true" bare="false" spacing="normal" pn="section-4.3-4"> <li pn="section-4.3-4.1"> <t pn="section-4.3-4.1.1">Incoming label: local LDP label bound by B for FECZ OutgoingZ</t> <ul empty="false" bare="false" spacing="normal" pn="section-4.3-4.1.2"> <li pn="section-4.3-4.1.2.1">Outgoing label: LDP label bound by E for FECZ BackupZ</li> <li pn="section-4.3-4.1.2.2">Backup outgoing label: SR node segment for Z{203} Outgoing next-hop: E Backup next-hop: repair{203}</li> <li pn="section-4.3-4.1.2.3">Outgoing next hop: E</li> <li pn="section-4.3-4.1.2.4">Backup next hop: repair tunnel to G: {106,9001} ]]></artwork></figure> <t> <list style="empty"><t><list style="empty"><t>9001}</li> </ul> </li> </ul> <ul empty="true" spacing="normal" bare="false" pn="section-4.3-5"> <li pn="section-4.3-5.1"> G is reachable from B via the combination of a node segment to F {106} and an adjacency segment FG{9001} </t> <t>{9001}. </li> <li pn="section-4.3-5.2"> Note that {106, 107} would have equallywork.worked. Indeed, in many cases, P's shortest path to Q is over the link PQ. The adjacency segment from P to Q is required only in very rare topologies where the shortest-path from P to Q is not via the link PQ.</t> </list></t></list></li> </ul> <t pn="section-4.3-6"> In steady state, X sends its Z-destined traffic to B with a top label, which is the LDP label bound by B for FEC Z. B swaps that top label for the LDP label bound by E for FEC Z and forwards to E. E pops the LDP label and forwards to Z.</t><t>Upon<t pn="section-4.3-7">Upon failure of the link BE, B swaps the incoming top label with the node segment for Z (203) and sends the packet onto a repair tunnel to G (node segment 106 followed by adjacency segment 9001). Thus, B sends the packet to C with the label stack {106, 9001,203}. 203}. C pops the node segment 106 and forwards to F. F pops the adjacency segment 9001 and forwards to G. G swaps 203 for 203 and forwards to E. E'snext-hopnext hop to Z is not SR capable, and thus, E swaps the incoming node segment 203 for the LDP label announced by itsnext-hopnext hop (in this case, implicitnull).</t> <t>AfterNULL).</t> <t pn="section-4.3-8">After IGP convergence, B's MPLS entry to Z will become:</t><figure> <artwork><![CDATA[ - Incoming<ul empty="true" bare="false" spacing="normal" pn="section-4.3-9"> <li pn="section-4.3-9.1"> <t pn="section-4.3-9.1.1">Incoming label: local LDP label bound by B for FECZ OutgoingZ</t> <ul empty="false" bare="false" spacing="normal" pn="section-4.3-9.1.2"> <li pn="section-4.3-9.1.2.1">Outgoing label: LDP label bound by C for FEC ZOutgoing next-hop: C]]></artwork> </figure> <t/> <t>And</li> <li pn="section-4.3-9.1.2.2">Outgoing next hop: C </li> </ul> </li> </ul> <t pn="section-4.3-10">And the traffic XZ travels again over the LDP LSP.</t><t>Conclusions:</t> <t><list style="symbols"> <t>the<t pn="section-4.3-11">Conclusions:</t> <ul spacing="normal" bare="false" empty="false" pn="section-4.3-12"> <li pn="section-4.3-12.1">the operator has eliminated its second problem: guaranteed FRR coverage is provided. The steady-state traffic is still transported over LDP. The SR deployment is confined to the area where these benefits arerequired.</t> <t>FRRrequired.</li> <li pn="section-4.3-12.2">FRR coverage has been achieved without any signaling for setting up the repair LSP and without setting up a targeted LDP session between B andG.</t> </list></t>G.</li> </ul> </section> <sectionanchor="section-5.4" title="Inter-ASanchor="sec-5.4" numbered="true" toc="include" removeInRFC="false" pn="section-4.4"> <name slugifiedName="name-inter-as-option-c-carriers-">Inter-AS Option C, Carrier'sCarrier"> <t>InCarrier</name> <t pn="section-4.4-1">In inter-AS Option C <xreftarget="RFC4364"/>,target="RFC4364" format="default" sectionFormat="of" derivedContent="RFC4364"/>, two interconnected ASes sets up inter-AS MPLS connectivity. SR may be independently deployed in each AS.</t> <figure anchor="ref-inter-as-option-c"title="Inter-ASalign="left" suppress-title="false" pn="figure-4"> <name slugifiedName="name-inter-as-option-c">Inter-AS OptionC"> <artwork><![CDATA[C</name> <artwork name="" type="" align="left" alt="" pn="section-4.4-2.1"> PE1---R1---B1---B2---R2---PE2<-----------> <-----------><-----------> <-----------> AS1 AS2]]></artwork></artwork> </figure><t>In<t pn="section-4.4-3">In Inter-AS Option C, B2 advertises to B1 a labeled BGP route <xreftarget="RFC8277"/>target="RFC8277" format="default" sectionFormat="of" derivedContent="RFC8277"/> for PE2, and B1 reflects it to its internal peers, e.g., PE1. PE1 learns from a service route reflector a service route whosenext-hopnext hop is PE2. PE1 resolves that service route on the labeled BGP route to PE2. That labeled BGP route to PE2 is itself resolved on the AS1 IGP route to B1.</t><t>If<t pn="section-4.4-4">If AS1 operates SR, then the tunnel from PE1 to B1 is provided by the node segment from PE1 to B1.</t><t>PE1<t pn="section-4.4-5">PE1 sends a service packet with three labels: the top one is the node segment to B1, the next one is the label in the labeled BGP route provided by B1 for the route "PE2", and the bottom one is the service label allocated by PE2.</t> </section> </section> <sectionanchor="section-6" title="IANA Considerations"> <t>anchor="sec-6" numbered="true" toc="include" removeInRFC="false" pn="section-5"> <name slugifiedName="name-iana-considerations">IANA Considerations</name> <t pn="section-5-1"> This document has no IANA actions. </t> </section> <sectionanchor="section-7" title="Manageability Considerations">anchor="sec-7" numbered="true" toc="include" removeInRFC="false" pn="section-6"> <name slugifiedName="name-manageability-consideration">Manageability Considerations</name> <sectionanchor="section-7.1" title="SRanchor="sec-7.1" numbered="true" toc="include" removeInRFC="false" pn="section-6.1"> <name slugifiedName="name-sr-and-ldp-coexistence">SR and LDPCoexistence"> <t>WhenCoexistence</name> <t pn="section-6.1-1">When both SR and LDP coexist, the following applies:</t><t><list style="symbols"> <t>If<ul spacing="normal" bare="false" empty="false" pn="section-6.1-2"> <li pn="section-6.1-2.1">If both SR and LDP propose an IP2MPLS entry for the same IP prefix, then by default the LDP routeSHOULD<bcp14>SHOULD</bcp14> be selected. This is because it is expected that SR is introduced into networks that contain routers that do not support SR. Hence, by having a behavior that prefers LDP over SR, traffic flow is unlikely to bedisrupted</t> <t>Adisrupted.</li> <li pn="section-6.1-2.2">A local policy on a routerMUST<bcp14>MUST</bcp14> allow to prefer the SR-provided IP2MPLSentry.</t> <t>Noteentry.</li> <li pn="section-6.1-2.3">Note that this policyMAY<bcp14>MAY</bcp14> be locally defined. There is no requirement that all routers use the samepolicy.</t> </list></t>policy.</li> </ul> </section> <sectionanchor="section-7.3" title="Data-Plane Verification"> <t>Whenanchor="sec-7.3" numbered="true" toc="include" removeInRFC="false" pn="section-6.2"> <name slugifiedName="name-data-plane-verification">Data-Plane Verification</name> <t pn="section-6.2-1">When Label switch paths (LSPs) are defined by stitching LDP LSPs with SR LSPs, it is necessary to have mechanisms allowing the verification of the LSP connectivity as well as validation of the path. These mechanisms are described in <xreftarget="RFC8287"/>.</t>target="RFC8287" format="default" sectionFormat="of" derivedContent="RFC8287"/>.</t> </section> </section> <sectionanchor="section-8" title="Security Considerations"> <t>Thisanchor="sec-8" numbered="true" toc="include" removeInRFC="false" pn="section-7"> <name slugifiedName="name-security-considerations">Security Considerations</name> <t pn="section-7-1">This document does not introduce any change to the MPLS data plane <xreftarget="RFC3031"/>target="RFC3031" format="default" sectionFormat="of" derivedContent="RFC3031"/> and therefore no additional security of the MPLS data plane is required.</t><!-- [rfced] Please clarify this text. Perhaps this<t pn="section-7-2"> This document introduces another form of label binding advertisements. The security associated with these advertisements is part of theresultsecurity applied to routing protocols such as IS-IS <xref target="RFC5304" format="default" sectionFormat="of" derivedContent="RFC5304"/> and OSPF <xref target="RFC5709" format="default" sectionFormat="of" derivedContent="RFC5709"/>, which both optionally make use ofa copy/paste error. How should it be rewritten? Original: Because this document recognizes thatcryptographic authentication mechanisms. This form of advertisement is more centralized, on behalf of the node advertising the IP reachability, which presents a different risk profile. This documentmiscofiguration and/or programming may result in false or conflictingalso specifies a mechanism by which the ill effects of advertisinglabel binding advertisements, thereby compromising trafficconflicting label bindings can be mitigated. In particular,forwarding, the document recommends strict configuration/advertisements from the node advertising the IP reachability is moreprogrammability control as well as montoring the SID advertised andpreferred than the centralized one.log/error messages by the operator to avoid or at least significantly minimize the possibility of such risk. new suggestions from authors: "ThisThis document recognizes that errors in configuration and/or programming may result in false or conflicting label binding advertisements compromising traffic forwarding. Therefore, this document recommends the operatortheimplement strict configuration/programmability control, the monitoring of the advertised SIDs, the preference of an IP reachability SIDadvertisementAdvertisement over a centralized SIDadvertisementAdvertisement, and the logging of any error message in order to avoid, or at least significantly minimize, the possibility of suchrisk." --> <t>risk. </t> </section> </middle> <back> <references pn="section-8"> <name slugifiedName="name-references">References</name> <references pn="section-8.1"> <name slugifiedName="name-normative-references">Normative References</name> <reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels</title> <author initials="S." surname="Bradner" fullname="S. Bradner"> <organization showOnFrontPage="true"/> </author> <date year="1997" month="March"/> <abstract> <t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This documentintroduces another form of label binding advertisements. The security associated withdefines theseadvertisements is part of the security applied to routing protocols suchwords asIS-IS <xref target="RFC5304"/> and OSPF <xref target="RFC5709"/>, which both optionally make use of cryptographic authentication mechanisms. This form of advertisement is more centralized, on behalf of the node advertising the IP reachability, which presents a different risk profile.they should be interpreted in IETF documents. This documentalsospecifiesa mechanism by which the ill effectsan Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC5036" target="https://www.rfc-editor.org/info/rfc5036" quoteTitle="true" derivedAnchor="RFC5036"> <front> <title>LDP Specification</title> <author initials="L." surname="Andersson" fullname="L. Andersson" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="I." surname="Minei" fullname="I. Minei" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="B." surname="Thomas" fullname="B. Thomas" role="editor"> <organization showOnFrontPage="true"/> </author> <date year="2007" month="October"/> <abstract> <t>The architecture for Multiprotocol Label Switching (MPLS) is described in RFC 3031. A fundamental concept in MPLS is that two Label Switching Routers (LSRs) must agree on the meaning of the labels used to forward traffic between and through them. This common understanding is achieved by using a set of procedures, called a label distribution protocol, by which one LSR informs another ofadvertising conflictinglabel bindingscanit has made. This document defines a set of such procedures called LDP (for Label Distribution Protocol) by which LSRs distribute labels to support MPLS forwarding along normally routed paths. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5036"/> <seriesInfo name="DOI" value="10.17487/RFC5036"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author initials="B." surname="Leiba" fullname="B. Leiba"> <organization showOnFrontPage="true"/> </author> <date year="2017" month="May"/> <abstract> <t>RFC 2119 specifies common key words that may bemitigated. In particular, advertisements fromused in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RFC8402" target="https://www.rfc-editor.org/info/rfc8402" quoteTitle="true" derivedAnchor="RFC8402"> <front> <title>Segment Routing Architecture</title> <author initials="C." surname="Filsfils" fullname="C. Filsfils" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Previdi" fullname="S. Previdi" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="L." surname="Ginsberg" fullname="L. Ginsberg"> <organization showOnFrontPage="true"/> </author> <author initials="B." surname="Decraene" fullname="B. Decraene"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Litkowski" fullname="S. Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Shakir" fullname="R. Shakir"> <organization showOnFrontPage="true"/> </author> <date year="2018" month="July"/> <abstract> <t>Segment Routing (SR) leverages the source routing paradigm. A nodeadvertisingsteers a packet through an ordered list of instructions, called "segments". A segment can represent any instruction, topological or service based. A segment can have a semantic local to an SR node or global within an SR domain. SR provides a mechanism that allows a flow to be restricted to a specific topological path, while maintaining per-flow state only at the ingress node(s) to the SR domain.</t> <t>SR can be directly applied to the MPLS architecture with no change to the forwarding plane. A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack of labels. The segment to process is on the top of the stack. Upon completion of a segment, the related label is popped from the stack.</t> <t>SR can be applied to the IPv6 architecture, with a new type of routing header. A segment is encoded as an IPv6 address. An ordered list of segments is encoded as an ordered list of IPv6 addresses in the routing header. The active segment is indicated by the Destination Address (DA) of the packet. The next active segment is indicated by a pointer in the new routing header.</t> </abstract> </front> <seriesInfo name="RFC" value="8402"/> <seriesInfo name="DOI" value="10.17487/RFC8402"/> </reference> <reference anchor="RFC8660" target="https://www.rfc-editor.org/info/rfc8660" quoteTitle="true" derivedAnchor="RFC8660"> <front> <title>Segment Routing with MPLS Data Plane</title> <seriesInfo name="RFC" value="8660"/> <seriesInfo name="DOI" value="10.17487/RFC8660"/> <author initials="A" surname="Bashandy" fullname="Ahmed Bashandy" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="C" surname="Filsfils" fullname="Clarence Filsfils" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Previdi" fullname="Stefano Previdi"> <organization showOnFrontPage="true"/> </author> <author initials="B" surname="Decraene" fullname="Bruno Decraene"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Litkowski" fullname="Stephane Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="R" surname="Shakir" fullname="Rob Shakir"> <organization showOnFrontPage="true"/> </author> <date month="December" year="2019"/> </front> </reference> </references> <references pn="section-8.2"> <name slugifiedName="name-informative-references">Informative References</name> <reference anchor="RFC3031" target="https://www.rfc-editor.org/info/rfc3031" quoteTitle="true" derivedAnchor="RFC3031"> <front> <title>Multiprotocol Label Switching Architecture</title> <author initials="E." surname="Rosen" fullname="E. Rosen"> <organization showOnFrontPage="true"/> </author> <author initials="A." surname="Viswanathan" fullname="A. Viswanathan"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Callon" fullname="R. Callon"> <organization showOnFrontPage="true"/> </author> <date year="2001" month="January"/> <abstract> <t>This document specifies the architecture for Multiprotocol Label Switching (MPLS). [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="3031"/> <seriesInfo name="DOI" value="10.17487/RFC3031"/> </reference> <reference anchor="RFC3209" target="https://www.rfc-editor.org/info/rfc3209" quoteTitle="true" derivedAnchor="RFC3209"> <front> <title>RSVP-TE: Extensions to RSVP for LSP Tunnels</title> <author initials="D." surname="Awduche" fullname="D. Awduche"> <organization showOnFrontPage="true"/> </author> <author initials="L." surname="Berger" fullname="L. Berger"> <organization showOnFrontPage="true"/> </author> <author initials="D." surname="Gan" fullname="D. Gan"> <organization showOnFrontPage="true"/> </author> <author initials="T." surname="Li" fullname="T. Li"> <organization showOnFrontPage="true"/> </author> <author initials="V." surname="Srinivasan" fullname="V. Srinivasan"> <organization showOnFrontPage="true"/> </author> <author initials="G." surname="Swallow" fullname="G. Swallow"> <organization showOnFrontPage="true"/> </author> <date year="2001" month="December"/> <abstract> <t>This document describes the use of RSVP (Resource Reservation Protocol), including all the necessary extensions, to establish label-switched paths (LSPs) in MPLS (Multi-Protocol Label Switching). Since the flow along an LSP is completely identified by the label applied at the ingress node of the path, these paths may be treated as tunnels. A key application of LSP tunnels is traffic engineering with MPLS as specified in RFC 2702. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="3209"/> <seriesInfo name="DOI" value="10.17487/RFC3209"/> </reference> <reference anchor="RFC4364" target="https://www.rfc-editor.org/info/rfc4364" quoteTitle="true" derivedAnchor="RFC4364"> <front> <title>BGP/MPLS IP Virtual Private Networks (VPNs)</title> <author initials="E." surname="Rosen" fullname="E. Rosen"> <organization showOnFrontPage="true"/> </author> <author initials="Y." surname="Rekhter" fullname="Y. Rekhter"> <organization showOnFrontPage="true"/> </author> <date year="2006" month="February"/> <abstract> <t>This document describes a method by which a Service Provider may use an IP backbone to provide IP Virtual Private Networks (VPNs) for its customers. This method uses a "peer model", in which the customers' edge routers (CE routers) send their routes to the Service Provider's edge routers (PE routers); there is no "overlay" visible to the customer's routing algorithm, and CE routers at different sites do not peer with each other. Data packets are tunneled through the backbone, so that the core routers do not need to know the VPN routes. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4364"/> <seriesInfo name="DOI" value="10.17487/RFC4364"/> </reference> <reference anchor="RFC5304" target="https://www.rfc-editor.org/info/rfc5304" quoteTitle="true" derivedAnchor="RFC5304"> <front> <title>IS-IS Cryptographic Authentication</title> <author initials="T." surname="Li" fullname="T. Li"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Atkinson" fullname="R. Atkinson"> <organization showOnFrontPage="true"/> </author> <date year="2008" month="October"/> <abstract> <t>This document describes the authentication of Intermediate System to Intermediate System (IS-IS) Protocol Data Units (PDUs) using the Hashed Message Authentication Codes - Message Digest 5 (HMAC-MD5) algorithm as found in RFC 2104. IS-IS is specified in International Standards Organization (ISO) 10589, with extensions to support Internet Protocol version 4 (IPv4) described in RFC 1195. The base specification includes an authentication mechanism that allows for multiple authentication algorithms. The base specification only specifies the algorithm for cleartext passwords. This document replaces RFC 3567.</t> <t>This document proposes an extension to that specification that allows the use of the HMAC-MD5 authentication algorithm to be used in conjunction with the existing authentication mechanisms. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5304"/> <seriesInfo name="DOI" value="10.17487/RFC5304"/> </reference> <reference anchor="RFC5709" target="https://www.rfc-editor.org/info/rfc5709" quoteTitle="true" derivedAnchor="RFC5709"> <front> <title>OSPFv2 HMAC-SHA Cryptographic Authentication</title> <author initials="M." surname="Bhatia" fullname="M. Bhatia"> <organization showOnFrontPage="true"/> </author> <author initials="V." surname="Manral" fullname="V. Manral"> <organization showOnFrontPage="true"/> </author> <author initials="M." surname="Fanto" fullname="M. Fanto"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="White" fullname="R. White"> <organization showOnFrontPage="true"/> </author> <author initials="M." surname="Barnes" fullname="M. Barnes"> <organization showOnFrontPage="true"/> </author> <author initials="T." surname="Li" fullname="T. Li"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Atkinson" fullname="R. Atkinson"> <organization showOnFrontPage="true"/> </author> <date year="2009" month="October"/> <abstract> <t>This document describes how the National Institute of Standards and Technology (NIST) Secure Hash Standard family of algorithms can be used with OSPF version 2's built-in, cryptographic authentication mechanism. This updates, but does not supercede, the cryptographic authentication mechanism specified in RFC 2328. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5709"/> <seriesInfo name="DOI" value="10.17487/RFC5709"/> </reference> <reference anchor="RFC5960" target="https://www.rfc-editor.org/info/rfc5960" quoteTitle="true" derivedAnchor="RFC5960"> <front> <title>MPLS Transport Profile Data Plane Architecture</title> <author initials="D." surname="Frost" fullname="D. Frost" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Bryant" fullname="S. Bryant" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="M." surname="Bocci" fullname="M. Bocci" role="editor"> <organization showOnFrontPage="true"/> </author> <date year="2010" month="August"/> <abstract> <t>The Multiprotocol Label Switching Transport Profile (MPLS-TP) is the set of MPLS protocol functions applicable to the construction and operation of packet-switched transport networks. This document specifies the subset of these functions that comprises the MPLS-TP data plane: the architectural layer concerned with the encapsulation and forwarding of packets within an MPLS-TP network.</t> <t>This document is a product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and Pseudowire Emulation Edge-to-Edge (PWE3) architectures to support the capabilities and functionalities of a packet transport network. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5960"/> <seriesInfo name="DOI" value="10.17487/RFC5960"/> </reference> <reference anchor="RFC7490" target="https://www.rfc-editor.org/info/rfc7490" quoteTitle="true" derivedAnchor="RFC7490"> <front> <title>Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)</title> <author initials="S." surname="Bryant" fullname="S. Bryant"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Filsfils" fullname="C. Filsfils"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Previdi" fullname="S. Previdi"> <organization showOnFrontPage="true"/> </author> <author initials="M." surname="Shand" fullname="M. Shand"> <organization showOnFrontPage="true"/> </author> <author initials="N." surname="So" fullname="N. So"> <organization showOnFrontPage="true"/> </author> <date year="2015" month="April"/> <abstract> <t>This document describes an extension to the basic IPreachability is more preferred than the centralized one. Because this document recognizesfast reroute mechanism, described in RFC 5286, thatreachability, which presents a different risk profile. Thisprovides additional backup connectivity for point-to-point link failures when none can be provided by the basic mechanisms.</t> </abstract> </front> <seriesInfo name="RFC" value="7490"/> <seriesInfo name="DOI" value="10.17487/RFC7490"/> </reference> <reference anchor="RFC8277" target="https://www.rfc-editor.org/info/rfc8277" quoteTitle="true" derivedAnchor="RFC8277"> <front> <title>Using BGP to Bind MPLS Labels to Address Prefixes</title> <author initials="E." surname="Rosen" fullname="E. Rosen"> <organization showOnFrontPage="true"/> </author> <date year="2017" month="October"/> <abstract> <t>This documentmisconfiguration and/or programming may result in false or conflicting alsospecifies amechanism by which the ill effectsset ofadvertisingprocedures for using BGP to advertise that a specified router has bound a specified MPLS labelbinding advertisements, thereby compromising traffic conflicting(or a specified sequence of MPLS labels organized as a contiguous part of a labelbindingsstack) to a specified address prefix. This can bemitigated. In particular, forwarding,done by sending a BGP UPDATE message whose Network Layer Reachability Information field contains both thedocument recommends strict configuration/ advertisements fromprefix and thenode advertisingMPLS label(s) and whose Next Hop field identifies theIP reachabilitynode at which said prefix ismore programmability control as well as monitoringbound to said label(s). This document obsoletes RFC 3107.</t> </abstract> </front> <seriesInfo name="RFC" value="8277"/> <seriesInfo name="DOI" value="10.17487/RFC8277"/> </reference> <reference anchor="RFC8287" target="https://www.rfc-editor.org/info/rfc8287" quoteTitle="true" derivedAnchor="RFC8287"> <front> <title>Label Switched Path (LSP) Ping/Traceroute for Segment Routing (SR) IGP-Prefix and IGP-Adjacency Segment Identifiers (SIDs) with MPLS Data Planes</title> <author initials="N." surname="Kumar" fullname="N. Kumar" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Pignataro" fullname="C. Pignataro" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="G." surname="Swallow" fullname="G. Swallow"> <organization showOnFrontPage="true"/> </author> <author initials="N." surname="Akiya" fullname="N. Akiya"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Kini" fullname="S. Kini"> <organization showOnFrontPage="true"/> </author> <author initials="M." surname="Chen" fullname="M. Chen"> <organization showOnFrontPage="true"/> </author> <date year="2017" month="December"/> <abstract> <t>A Segment Routing (SR) architecture leverages source routing and tunneling paradigms and can be directly applied to the use of a Multiprotocol Label Switching (MPLS) data plane. A node steers a packet through a controlled set of instructions called "segments" by prepending theSID advertisedpacket with an SR header.</t> <t>The segment assignment andpreferred than the centralized one. log/error messages byforwarding semantic nature of SR raises additional considerations for connectivity verification and fault isolation for a Label Switched Path (LSP) within an SR architecture. This document illustrates theoperatorproblem and defines extensions toavoid or at least significantly minimize the possibility of such risk.</t> </section> </middle> <back> <references title="Normative References"> <?rfc include="reference.RFC.2119" ?> <?rfc include="reference.RFC.8174"?> <?rfc include="reference.RFC.5036" ?> <?rfc include="reference.RFC.8402" ?> <!-- draft-ietf-spring-segment-routing-mpls in C340 --> <reference anchor="RFC8660" target="https://www.rfc-editor.org/info/rfc8660"> <front> <title>Segmentperform LSP Ping and Traceroute for Segment Routing IGP-Prefix and IGP-Adjacency Segment Identifiers (SIDs) with an MPLSData Plane</title>data plane.</t> </abstract> </front> <seriesInfo name="RFC" value="8287"/> <seriesInfo name="DOI" value="10.17487/RFC8287"/> </reference> <reference anchor="RFC8355" target="https://www.rfc-editor.org/info/rfc8355" quoteTitle="true" derivedAnchor="RFC8355"> <front> <title>Resiliency Use Cases in Source Packet Routing in Networking (SPRING) Networks</title> <authorinitials='A' surname='Bashandy' fullname="Ahmed Bashandy"initials="C." surname="Filsfils" fullname="C. Filsfils" role="editor"><organization/><organization showOnFrontPage="true"/> </author> <authorinitials='C' surname='Filsfils' fullname='Clarence Filsfils'initials="S." surname="Previdi" fullname="S. Previdi" role="editor"><organization/> </author> <author initials='S' surname='Previdi' fullname="Stefano Previdi"> <organization/> </author> <author initials='B' surname='Decraene' fullname='Bruno Decraene'> <organization/><organization showOnFrontPage="true"/> </author> <authorinitials='S' surname='Litkowski' fullname='Stephane Litkowski'> <organization/>initials="B." surname="Decraene" fullname="B. Decraene"> <organization showOnFrontPage="true"/> </author> <authorinitials='R' surname='Shakir' fullname='Rob Shakir'> <organization/>initials="R." surname="Shakir" fullname="R. Shakir"> <organization showOnFrontPage="true"/> </author> <datemonth='September' year='2019'/>year="2018" month="March"/> <abstract> <t>This document identifies and describes the requirements for a set of use cases related to Segment Routing network resiliency on Source Packet Routing in Networking (SPRING) networks.</t> </abstract> </front> <seriesInfo name="RFC"value="8660"/>value="8355"/> <seriesInfo name="DOI"value="10.17487/RFC8660"/>value="10.17487/RFC8355"/> </reference></references> <references title="Informative References"> <?rfc include="reference.RFC.8355" ?> <?rfc include="reference.RFC.3031" ?> <?rfc include="reference.RFC.8287" ?> <?rfc include="reference.RFC.3209" ?> <?rfc include="reference.RFC.4364" ?> <?rfc include="reference.RFC.5304" ?> <?rfc include="reference.RFC.5709" ?> <?rfc include="reference.RFC.5960" ?> <?rfc include="reference.RFC.7490" ?> <?rfc include="reference.RFC.8277" ?> <!-- I-D.ietf-isis-segment-routing-extensions: I-D exists --><referenceanchor='RFC8667'>anchor="RFC8665" quoteTitle="true" target="https://doi.org/10.17487/RFC8665" derivedAnchor="RFC8665"> <front><title>IS-IS<title>OSPF Extensions for Segment Routing</title> <seriesInfo name="RFC" value="8665"/> <seriesInfo name="DOI" value="10.17487/RFC8665"/> <author initials="P" surname="Psenak" fullname="Peter Psenak" role="editor"> <organization showOnFrontPage="true"/> </author> <authorinitials='S' surname='Previdi' fullname='Stefano Previdi'>initials="S" surname="Previdi" fullname="Stefano Previdi" role="editor"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='L' surname='Ginsberg' fullname='Les Ginsberg'>initials="C" surname="Filsfils" fullname="Clarence Filsfils"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='C' surname='Filsfils' fullname='Clarence Filsfils'>initials="H" surname="Gredler" fullname="Hannes Gredler"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='A' surname='Bashandy' fullname='Ahmed Bashandy'>initials="R" surname="Shakir" fullname="Rob Shakir"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='H' surname='Gredler' fullname='Hannes Gredler'>initials="W" surname="Henderickx" fullname="Wim Henderickx"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='B' surname='Decraene' fullname='Bruno Decraene'>initials="J" surname="Tantsura" fullname="Jeff Tantsura"> <organization/>showOnFrontPage="true"/> </author> <datemonth='September' year='2019' />month="December" year="2019"/> </front><seriesInfo name='RFC' value='8667' /> <seriesInfo name='DOI' value='10.17487/RFC8667'/></reference><!-- &I-D.ietf-ospf-ospfv3-segment-routing-extensions;--><referenceanchor="RFC8666">anchor="RFC8666" quoteTitle="true" target="https://doi.org/10.17487/RFC8666" derivedAnchor="RFC8666"> <front> <title>OSPFv3 Extensions for Segment Routing</title> <seriesInfo name="RFC" value="8666"/> <seriesInfo name="DOI" value="10.17487/RFC8666"/> <authorinitials='P' surname='Psenak' fullname='Peter Psenak'initials="P" surname="Psenak" fullname="Peter Psenak" role="editor"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='S' surname='Previdi' fullname='Stefano Previdi'>initials="S" surname="Previdi" fullname="Stefano Previdi"> <organization/>showOnFrontPage="true"/> </author> <datemonth='September' year='2019' />month="December" year="2019"/> </front><seriesInfo name='RFC' value='8666' /> <seriesInfo name='DOI' value='10.17487/RFC8666'/></reference><!-- I-D.ietf-ospf-segment-routing-extensions: I-D exists --><referenceanchor="RFC8665">anchor="RFC8667" quoteTitle="true" target="https://doi.org/10.17487/RFC8667" derivedAnchor="RFC8667"> <front><title>OSPF<title>IS-IS Extensions for Segment Routing</title> <seriesInfo name="RFC" value="8667"/> <seriesInfo name="DOI" value="10.17487/RFC8667"/> <authorinitials='P' surname='Psenak' fullname='Peter Psenak' role="editor"> <organization /> </author> <author initials='S' surname='Previdi' fullname='Stefano Previdi' role="editor">initials="S" surname="Previdi" fullname="Stefano Previdi"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='C' surname='Filsfils' fullname='Clarence Filsfils'>initials="L" surname="Ginsberg" fullname="Les Ginsberg"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='H' surname='Gredler' fullname='Hannes Gredler'>initials="C" surname="Filsfils" fullname="Clarence Filsfils"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='R' surname='Shakir' fullname='Rob Shakir'>initials="A" surname="Bashandy" fullname="Ahmed Bashandy"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='W' surname='Henderickx' fullname='Wim Henderickx'>initials="H" surname="Gredler" fullname="Hannes Gredler"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='J' surname='Tantsura' fullname='Jeff Tantsura'>initials="B" surname="Decraene" fullname="Bruno Decraene"> <organization/>showOnFrontPage="true"/> </author> <datemonth='September' year='2019' />month="December" year="2019"/> </front><seriesInfo name='RFC' value='8665' /> <seriesInfo name='DOI' value='10.17487/RFC8665'/></reference> </references> </references> <section anchor="Appendix-A"title="Migrationnumbered="true" toc="include" removeInRFC="false" pn="section-appendix.a"> <name slugifiedName="name-migration-from-ldp-to-sr">Migration from LDP toSR">SR</name> <figure anchor="ref-migration"title="Migration"> <artwork><![CDATA[align="left" suppress-title="false" pn="figure-5"> <name slugifiedName="name-migration">Migration</name> <artwork name="" type="" align="left" alt="" pn="section-appendix.a-1.1"> PE2 PE4 \ / PE1----P5--P6--P7---PE3]]></artwork></artwork> </figure><t>Several<t pn="section-appendix.a-2">Several migration techniques are possible. The technique described here is inspired by the commonly used method to migrate from one IGP to another.</t><t>At<t pn="section-appendix.a-3">At time T0, all the routers run LDP. Any service is tunneled from an ingress PE to an egress PE over a continuous LDP LSP.</t><t>At<t pn="section-appendix.a-4">At time T1, all the routers are upgraded to SR. They are configured with the SRGB range [100, 300]. PE1, PE2, PE3, PE4, P5, P6, and P7 are respectively configured with the node segments 101, 102, 103, 104, 105, 106, and 107 (attached to their service-recursingloopback).</t> <t><list hangIndent="3" style="hanging"> <t>Atloopback). </t> <aside pn="section-appendix.a-5"> <t pn="section-appendix.a-5.1"> Note: At this time, the service traffic is still tunneled over LDP LSPs. For example, PE1 has an SR node segment to PE3 and an LDP LSP to PE3. As seen earlier, however, the LDP IP2MPLS encapsulation is preferred by default. However, it has to be noted that the SR infrastructure is usable, e.g., for Fast Reroute (FRR) or IGP Loop-Free Convergence to protect existing IP and LDP traffic. FRR mechanisms are described in <xreftarget="RFC8355"/>.</t> </list></t> <t>Attarget="RFC8355" format="default" sectionFormat="of" derivedContent="RFC8355"/>. </t> </aside> <t pn="section-appendix.a-6">At time T2, the operator enables the local policy at PE1 to prefer SR IP2MPLS encapsulation over LDP IP2MPLS.</t><t><list hangIndent="3" style="hanging"> <t>The<ul empty="true" indent="3" bare="false" spacing="normal" pn="section-appendix.a-7"> <li pn="section-appendix.a-7.1">The service from PE1 to any other PE is now riding over SR. All other service traffic is still transported over LDPLSPs.</t> </list></t> <t>AtLSPs.</li> </ul> <t pn="section-appendix.a-8">At time T3, gradually, the operator enables the preference for SR IP2MPLS encapsulation across all the edge routers.</t><t><list hangIndent="3" style="hanging"> <t>All<ul empty="true" indent="3" bare="false" spacing="normal" pn="section-appendix.a-9"> <li pn="section-appendix.a-9.1">All the service traffic is now transported over SR. LDP is still operational and services could be reverted toLDP.</t> </list></t> <t><list hangIndent="3" style="hanging"> <t/> </list></t> <t>AtLDP.</li> </ul> <t pn="section-appendix.a-10">At time T4, LDP is unconfigured from all routers.</t> </section> <sectionanchor="section-9" title="Acknowledgements" numbered= "no"> <t>Theanchor="sec-9" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.b"> <name slugifiedName="name-acknowledgements">Acknowledgements</name> <t pn="section-appendix.b-1">The authors would like to thank Pierre Francois, Ruediger Geib, and Alexander Vainshtein for their contributions to the content of this document.</t> </section> <sectionanchor="section-10" title="Contributors" numbered="no"> <figure> <artwork><![CDATA[anchor="sec-10" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.c"> <name slugifiedName="name-contributors">Contributors</name> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-1"> Edward Crabbe Individual Email:edward.crabbe@gmail.comedward.crabbe@gmail.com</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-2"> Igor Milojevic Email:milojevicigor@gmail.commilojevicigor@gmail.com</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-3"> Saku Ytti TDC Email:saku@ytti.fisaku@ytti.fi</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-4"> Rob Shakir Google Email:robjs@google.comrobjs@google.com</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-5"> Martin Horneffer Deutsche Telekom Email:Martin.Horneffer@telekom.deMartin.Horneffer@telekom.de</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-6"> Wim Henderickx Nokia Email:wim.henderickx@nokia.comwim.henderickx@nokia.com</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-7"> Jeff Tantsura Apstra, Inc. Email:jefftant.ietf@gmail.comjefftant.ietf@gmail.com</artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.c-8"> Les Ginsberg Cisco Systems Email:ginsberg@cisco.com]]></artwork> </figure>ginsberg@cisco.com</artwork> </section> <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.d"> <name slugifiedName="name-authors-addresses">Authors' Addresses</name> <author fullname="Ahmed Bashandy" initials="A." role="editor" surname="Bashandy"> <organization showOnFrontPage="true">Individual</organization> <address> <postal> <street>United States of America</street> </postal> <email>abashandy.ietf@gmail.com</email> </address> </author> <author fullname="Clarence Filsfils" initials="C." role="editor" surname="Filsfils"> <organization showOnFrontPage="true">Cisco Systems, Inc.</organization> <address> <postal> <street>Brussels</street> <street>Belgium</street> </postal> <email>cfilsfil@cisco.com</email> </address> </author> <author fullname="Stefano Previdi" initials="S." surname="Previdi"> <organization showOnFrontPage="true">Huawei Technologies</organization> <address> <postal> <street>Italy</street> </postal> <email>stefano@previdi.net</email> </address> </author> <author fullname="Bruno Decraene" initials="B." surname="Decraene"> <organization showOnFrontPage="true">Orange</organization> <address> <postal> <street>France</street> </postal> <email>bruno.decraene@orange.com</email> </address> </author> <author fullname="Stephane Litkowski" initials="S." surname="Litkowski"> <organization showOnFrontPage="true">Orange</organization> <address> <postal> <street>France</street> </postal> <email>slitkows.ietf@gmail.com</email> </address> </author> </section> </back> </rfc>