<?xmlversion="1.0" encoding="US-ASCII"?> <!DOCTYPE rfc SYSTEM "rfc2629.dtd"[ <!ENTITY RFC2119 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"> <!ENTITY RFC6790 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6790.xml"> <!ENTITY RFC4206 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4206.xml"> <!ENTITY RFC7325 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7325.xml"> <!ENTITY RFC7855 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7855.xml"> <!ENTITY RFC8174 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY SR SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-spring-segment-routing.xml"> <!ENTITY SR-MPLS SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-spring-segment-routing-mpls.xml"> <!ENTITY ISIS-ELC SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-isis-mpls-elc.xml"> <!ENTITY OSPF-ELC SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-ospf-mpls-elc.xml"> <!ENTITY OSPF-MSD SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-ospf-segment-routing-msd.xml"> <!ENTITY ISIS-MSD SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-isis-segment-routing-msd.xml"> <!ENTITY BGP-MSD SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-idr-bgp-ls-segment-routing-msd.xml"> <!ENTITY SR-L2-BUNDLES SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-isis-l2bundles.xml"> ]> <?rfc toc="yes" ?> <?rfc tocompact="yes"?> <?rfc tocdepth="4"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes" ?> <?rfc sortrefs="no"?> <?rfc rfcedstyle="yes"?> <?rfc subcompact="no"?> <?rfc compact="yes" ?> <?rfc iprnotified="Yes" ?> <?rfc strict="no" ?>version='1.0' encoding='utf-8'?> <rfcipr="trust200902"xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="std" consensus="true" docName="draft-ietf-mpls-spring-entropy-label-12"obsoletes="" updates=""indexInclude="true" ipr="trust200902" number="8662" prepTime="2019-12-04T22:14:22" scripts="Common,Latin" sortRefs="false" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en"> <link href="https://datatracker.ietf.org/doc/draft-ietf-mpls-spring-entropy-label-12" rel="prev"/> <link href="https://dx.doi.org/10.17487/rfc8662" rel="alternate"/> <link href="urn:issn:2070-1721" rel="alternate"/> <front> <title abbrev="Entropy Labels for SPRINGtunnels">Entropy labelTunnels">Entropy Label forSPRING tunnels</title>Source Packet Routing in Networking (SPRING) Tunnels</title> <seriesInfo name="RFC" value="8662" stream="IETF"/> <author initials="S" surname="Kini" fullname="Sriganesh Kini"><organization></organization><organization showOnFrontPage="true"/> <address> <postal><street></street> <city></city> <region></region> <code></code> <country></country><street/> <city/> <region/> <code/> <country/> </postal> <email>sriganeshkini@gmail.com</email> </address> </author> <author initials="K" surname="Kompella" fullname="Kireeti Kompella"><organization>Juniper</organization><organization showOnFrontPage="true">Juniper</organization> <address> <postal><street></street> <city></city> <region></region> <code></code> <country></country><street/> <city/> <region/> <code/> <country/> </postal> <email>kireeti@juniper.net</email> </address> </author> <author initials="S" surname="Sivabalan" fullname="Siva Sivabalan"><organization>Cisco</organization><organization showOnFrontPage="true">Cisco</organization> <address> <postal><street></street> <city></city> <region></region> <code></code> <country></country><street/> <city/> <region/> <code/> <country/> </postal> <email>msiva@cisco.com</email> </address> </author> <author initials="S" surname="Litkowski" fullname="Stephane Litkowski"><organization>Orange</organization><organization showOnFrontPage="true">Orange</organization> <address> <postal><street></street> <city></city> <region></region> <code></code> <country></country><street/> <city/> <region/> <code/> <country/> </postal><email>stephane.litkowski@orange.com</email><email>slitkows.ietf@gmail.com</email> </address> </author> <author initials="R" surname="Shakir" fullname="Rob Shakir"><organization>Google</organization><organization showOnFrontPage="true">Google</organization> <address> <postal><street></street> <city></city> <region></region> <code></code> <country></country><street/> <city/> <region/> <code/> <country/> </postal><email>rjs@rob.sh</email><email>robjs@google.com</email> </address> </author> <author initials="J" surname="Tantsura" fullname="Jeff Tantsura"><organization></organization><organization showOnFrontPage="true">Apstra, Inc.</organization> <address> <postal><street></street> <city></city> <region></region> <code></code> <country></country><street/> <city/> <region/> <code/> <country/> </postal><email>jefftant@gmail.com</email><email>jefftant.ietf@gmail.com</email> </address> </author> <dateyear="2018" />month="12" year="2019"/> <area>Routing</area><workgroup>Network Working Group</workgroup> <abstract> <t><keyword>Flow-aware load balancing</keyword> <keyword>ECMP</keyword> <keyword>equal-cost multipath</keyword> <abstract pn="section-abstract"> <t pn="section-abstract-1"> Segment Routing (SR) leverages thesource routingsource-routing paradigm. A node steers a packet through an ordered list of instructions, called segments. Segment Routing can be applied to theMulti ProtocolMultiprotocol Label Switching (MPLS) data plane. Entropylabel (EL) is a techniquelabels (ELs) are used in MPLS to improve load-balancing. This document examines and describes how ELs are to be applied to Segment Routing MPLS. </t> </abstract> <boilerplate> <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1"> <name slugifiedName="name-status-of-this-memo">Status of This Memo</name> <t pn="section-boilerplate.1-1"> This is an Internet Standards Track document. </t> <t pn="section-boilerplate.1-2"> This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. </t> <t pn="section-boilerplate.1-3"> Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <eref target="https://www.rfc-editor.org/info/rfc8662" brackets="none"/>. </t> </section> <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2"> <name slugifiedName="name-copyright-notice">Copyright Notice</name> <t pn="section-boilerplate.2-1"> Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. </t> <t pn="section-boilerplate.2-2"> This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. </t> </section> </boilerplate> <toc> <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1"> <name slugifiedName="name-table-of-contents">Table of Contents</name> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1"> <li pn="section-toc.1-1.1"> <t keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.1.2"> <li pn="section-toc.1-1.1.2.1"> <t keepWithNext="true" pn="section-toc.1-1.1.2.1.1"><xref derivedContent="1.1" format="counter" sectionFormat="of" target="section-1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-requirements-language">Requirements Language</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.2"> <t keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-abbreviations-and-terminolo">Abbreviations and Terminology</xref></t> </li> <li pn="section-toc.1-1.3"> <t keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-use-case-requiring-multipat">Use Case Requiring Multipath Load-Balancing</xref></t> </li> <li pn="section-toc.1-1.4"> <t keepWithNext="true" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-entropy-readable-label-dept">Entropy Readable Label Depth</xref></t> </li> <li pn="section-toc.1-1.5"> <t keepWithNext="true" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-maximum-sid-depth">Maximum SID Depth</xref></t> </li> <li pn="section-toc.1-1.6"> <t keepWithNext="true" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-lsp-stitching-using-the-bin">LSP Stitching Using the Binding SID</xref></t> </li> <li pn="section-toc.1-1.7"> <t keepWithNext="true" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-insertion-of-entropy-labels">Insertion of Entropy Labels for SPRING Path</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.7.2"> <li pn="section-toc.1-1.7.2.1"> <t keepWithNext="true" pn="section-toc.1-1.7.2.1.1"><xref derivedContent="7.1" format="counter" sectionFormat="of" target="section-7.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-overview">Overview</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.7.2.1.2"> <li pn="section-toc.1-1.7.2.1.2.1"> <t keepWithNext="true" pn="section-toc.1-1.7.2.1.2.1.1"><xref derivedContent="7.1.1" format="counter" sectionFormat="of" target="section-7.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-1-the-ingress-node-">Example 1: The Ingress Node Has a Sufficient MSD</xref></t> </li> <li pn="section-toc.1-1.7.2.1.2.2"> <t keepWithNext="true" pn="section-toc.1-1.7.2.1.2.2.1"><xref derivedContent="7.1.2" format="counter" sectionFormat="of" target="section-7.1.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-2-the-ingress-node-">Example 2: The Ingress Node Does Not Have a Sufficient MSD</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.7.2.2"> <t keepWithNext="true" pn="section-toc.1-1.7.2.2.1"><xref derivedContent="7.2" format="counter" sectionFormat="of" target="section-7.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-considerations-for-the-plac">Considerations for the Placement of Entropy Labels</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.7.2.2.2"> <li pn="section-toc.1-1.7.2.2.2.1"> <t keepWithNext="true" pn="section-toc.1-1.7.2.2.2.1.1"><xref derivedContent="7.2.1" format="counter" sectionFormat="of" target="section-7.2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-erld-value">ERLD Value</xref></t> </li> <li pn="section-toc.1-1.7.2.2.2.2"> <t keepWithNext="true" pn="section-toc.1-1.7.2.2.2.2.1"><xref derivedContent="7.2.2" format="counter" sectionFormat="of" target="section-7.2.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-segment-type">Segment Type</xref></t> </li> <li pn="section-toc.1-1.7.2.2.2.3"> <t keepWithNext="true" pn="section-toc.1-1.7.2.2.2.3.1"><xref derivedContent="7.2.3" format="counter" sectionFormat="of" target="section-7.2.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-maximizing-number-of-lsrs-t">Maximizing Number of LSRs That Will Load-Balance</xref></t> </li> <li pn="section-toc.1-1.7.2.2.2.4"> <t keepWithNext="true" pn="section-toc.1-1.7.2.2.2.4.1"><xref derivedContent="7.2.4" format="counter" sectionFormat="of" target="section-7.2.4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-preference-for-a-part-of-th">Preference for a Part of the Path</xref></t> </li> <li pn="section-toc.1-1.7.2.2.2.5"> <t keepWithNext="true" pn="section-toc.1-1.7.2.2.2.5.1"><xref derivedContent="7.2.5" format="counter" sectionFormat="of" target="section-7.2.5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-combining-criteria">Combining Criteria</xref></t> </li> </ul> </li> </ul> </li> <li pn="section-toc.1-1.8"> <t keepWithNext="true" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-a-simple-example-algorithm">A Simple Example Algorithm</xref></t> </li> <li pn="section-toc.1-1.9"> <t keepWithNext="true" pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-deployment-considerations">Deployment Considerations</xref></t> </li> <li pn="section-toc.1-1.10"> <t keepWithNext="true" pn="section-toc.1-1.10.1"><xref derivedContent="10" format="counter" sectionFormat="of" target="section-10"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-options-considered">Options Considered</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.10.2"> <li pn="section-toc.1-1.10.2.1"> <t keepWithNext="true" pn="section-toc.1-1.10.2.1.1"><xref derivedContent="10.1" format="counter" sectionFormat="of" target="section-10.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-single-el-at-the-bottom-of-">Single EL at the Bottom of the Stack</xref></t> </li> <li pn="section-toc.1-1.10.2.2"> <t keepWithNext="true" pn="section-toc.1-1.10.2.2.1"><xref derivedContent="10.2" format="counter" sectionFormat="of" target="section-10.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-an-el-per-segment-in-the-st">An EL per Segment in the Stack</xref></t> </li> <li pn="section-toc.1-1.10.2.3"> <t keepWithNext="true" pn="section-toc.1-1.10.2.3.1"><xref derivedContent="10.3" format="counter" sectionFormat="of" target="section-10.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-a-reusable-el-for-a-stack-o">A Reusable EL for a Stack of Tunnels</xref></t> </li> <li pn="section-toc.1-1.10.2.4"> <t keepWithNext="true" pn="section-toc.1-1.10.2.4.1"><xref derivedContent="10.4" format="counter" sectionFormat="of" target="section-10.4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-el-at-top-of-stack">EL at Top of Stack</xref></t> </li> <li pn="section-toc.1-1.10.2.5"> <t keepWithNext="true" pn="section-toc.1-1.10.2.5.1"><xref derivedContent="10.5" format="counter" sectionFormat="of" target="section-10.5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-els-at-readable-label-stack">ELs at Readable Label Stack Depths</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.11"> <t keepWithNext="true" pn="section-toc.1-1.11.1"><xref derivedContent="11" format="counter" sectionFormat="of" target="section-11"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t> </li> <li pn="section-toc.1-1.12"> <t keepWithNext="true" pn="section-toc.1-1.12.1"><xref derivedContent="12" format="counter" sectionFormat="of" target="section-12"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t> </li> <li pn="section-toc.1-1.13"> <t keepWithNext="true" pn="section-toc.1-1.13.1"><xref derivedContent="13" format="counter" sectionFormat="of" target="section-13"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.13.2"> <li pn="section-toc.1-1.13.2.1"> <t keepWithNext="true" pn="section-toc.1-1.13.2.1.1"><xref derivedContent="13.1" format="counter" sectionFormat="of" target="section-13.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t> </li> <li pn="section-toc.1-1.13.2.2"> <t keepWithNext="true" pn="section-toc.1-1.13.2.2.1"><xref derivedContent="13.2" format="counter" sectionFormat="of" target="section-13.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.14"> <t keepWithNext="true" pn="section-toc.1-1.14.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgements">Acknowledgements</xref></t> </li> <li pn="section-toc.1-1.15"> <t keepWithNext="true" pn="section-toc.1-1.15.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-contributors">Contributors</xref></t> </li> <li pn="section-toc.1-1.16"> <t keepWithNext="true" pn="section-toc.1-1.16.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.c"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t> </li> </ul> </section> </toc> </front> <middle> <sectiontitle="Introduction" toc="default"> <t>toc="include" numbered="true" removeInRFC="false" pn="section-1"> <name slugifiedName="name-introduction">Introduction</name> <t pn="section-1-1"> Segment Routing <xreftarget="I-D.ietf-spring-segment-routing"/>target="RFC8402" format="default" sectionFormat="of" derivedContent="RFC8402"/> is based onsource routedsource-routed tunnels to steer a packet along a particular path. This path is encoded as an ordered list of segments. When applied to the MPLSdataplanedata plane <xreftarget="I-D.ietf-spring-segment-routing-mpls"/>,target="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/>, each segment is an LSP (Label Switched Path) with an associated MPLS label value. Hence, label stacking is used to represent the ordered list ofsegmentssegments, and the label stack associated with an SR tunnel can be seen as nested LSPs (LSP hierarchy) in the MPLS architecture. </t><t><t pn="section-1-2"> Using label stacking to encode the list of segments has implications on the label stack depth. </t><t><t pn="section-1-3"> Traffic load-balancing over ECMP(Equal Cost Multi Path)(Equal-Cost Multipath) or LAGs (Link Aggregation Groups) is usually based on a hashing function. The local nodewhichthat performs the load-balancing is required to read some header fields in the incoming packets and thencomputescompute a hash based on those fields. The result of the hash is finally mapped to a list of outgoingnexthops.next hops. The hashing technique is required to perform a per-flow load-balancing andthusthus, prevents packet misordering. For IP traffic, the usual fields that are hashed are the source address, the destination address, the protocol type, and, if provided by the upper layer, the source port and destination port. </t><t><t pn="section-1-4"> The MPLS architecture brings some challenges when an LSR (Label Switching Router) tries to look up at header fields. An LSR(Label Switching Router)needs be able to look up at header fields that are beyond the MPLS label stack while the MPLS header does not provide any information about theupper layerupper-layer protocol. An LSR must perform a deeper inspection compared to an ingressrouterrouter, which could be challenging for some hardware. Entropylabel (EL)labels (ELs) <xreftarget="RFC6790"/> is a techniquetarget="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> are used in the MPLS data plane to provide entropy for load-balancing. The idea behind the entropy label is that the ingress router computes a hash based on several fields from a given packet and places the result in an additionallabel,label named "entropy label". Then, this entropy label can be used as part of the hash keys used by an LSR. Using the entropy label as part of the hash keys reduces the need for deep packet inspection in the LSR while keeping a good level of entropy in the load-balancing. When the entropy label is used, the keys used in the hashing functions are still a local configurationmattermatter, and an LSR may use solely the entropy label or a combination of multiple fields from the incoming packet. </t><t><t pn="section-1-5"> When using LSP hierarchies, there are implications on how <xreftarget="RFC6790"/>target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> should be applied. The current document addresses the case where a hierarchy is created at a single LSR as required by Segment Routing. </t><t><t pn="section-1-6"> Ause-caseuse case requiring load-balancing with SR is given in <xreftarget="usecase"/>.target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>. A recommended solution is described in <xreftarget="solution"/>target="solution" format="default" sectionFormat="of" derivedContent="Section 7"/> keeping in consideration the limitations of implementations when applying <xreftarget="RFC6790"/>target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> to deeper label stacks. Options that were considered to arrive at the recommended solution are documented for historical purposes in <xreftarget="other-options"/>.target="other-options" format="default" sectionFormat="of" derivedContent="Section 10"/>. </t> <sectiontitle="Requirements Language" toc="default"> <t>toc="include" numbered="true" removeInRFC="false" pn="section-1.1"> <name slugifiedName="name-requirements-language">Requirements Language</name> <t pn="section-1.1-1"> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119"/>target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xreftarget="RFC8174"/>target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> </section> <sectiontitle="Abbreviations and Terminology" toc="default"> <t> <list style="hanging"> <t>Adj-SID - Adjacencytoc="include" numbered="true" removeInRFC="false" pn="section-2"> <name slugifiedName="name-abbreviations-and-terminolo">Abbreviations and Terminology</name> <dl newline="false" spacing="normal" indent="10" pn="section-2-1"> <dt pn="section-2-1.1">Adj-SID</dt> <dd pn="section-2-1.2">Adjacency SegmentIdentifier</t> <t>ECMP - Equal Cost Multi Path</t> <t>EL - Entropy Label</t> <t>ELI - EntropyIdentifier</dd> <dt pn="section-2-1.3">ECMP</dt> <dd pn="section-2-1.4">Equal-Cost Multipath</dd> <dt pn="section-2-1.5">EL</dt> <dd pn="section-2-1.6">Entropy Label</dd> <dt pn="section-2-1.7">ELI</dt> <dd pn="section-2-1.8">Entropy LabelIndicator</t> <t>ELC - EntropyIndicator</dd> <dt pn="section-2-1.9">ELC</dt> <dd pn="section-2-1.10">Entropy LabelCapability</t> <t>ERLD - EntropyCapability</dd> <dt pn="section-2-1.11">ERLD</dt> <dd pn="section-2-1.12">Entropy Readable LabelDepth</t> <t>FEC - Forwarding Equivalent Class</t> <t>LAG - LinkDepth</dd> <dt pn="section-2-1.13">FEC</dt> <dd pn="section-2-1.14">Forwarding Equivalence Class</dd> <dt pn="section-2-1.15">LAG</dt> <dd pn="section-2-1.16">Link AggregationGroup</t> <t>LSP - LabelGroup</dd> <dt pn="section-2-1.17">LSP</dt> <dd pn="section-2-1.18">Label SwitchedPath</t> <t>LSR - LabelPath</dd> <dt pn="section-2-1.19">LSR</dt> <dd pn="section-2-1.20">Label SwitchingRouter</t> <t>MPLS - MultiprotocolRouter</dd> <dt pn="section-2-1.21">MPLS</dt> <dd pn="section-2-1.22">Multiprotocol LabelSwitching</t> <t>MSD - MaximumSwitching</dd> <dt pn="section-2-1.23">MSD</dt> <dd pn="section-2-1.24">Maximum SIDDepth</t> <t>Node-SID - NodeDepth</dd> <dt pn="section-2-1.25">Node SID</dt> <dd pn="section-2-1.26">Node SegmentIdentifier</t> <t>OAM - Operation, Administration and Maintenance</t> <t>RLD - ReadableIdentifier</dd> <dt pn="section-2-1.27">OAM</dt> <dd pn="section-2-1.28">Operations, Administration, and Maintenance</dd> <dt pn="section-2-1.29">RLD</dt> <dd pn="section-2-1.30">Readable LabelDepth</t> <t>SID - Segment Identifier</t> <t>SPT - ShortestDepth</dd> <dt pn="section-2-1.31">SID</dt> <dd pn="section-2-1.32">Segment Identifier</dd> <dt pn="section-2-1.33">SPT</dt> <dd pn="section-2-1.34">Shortest PathTree</t> <t>SR - Segment Routing</t> <t>SRGB - SegmentTree</dd> <dt pn="section-2-1.35">SR</dt> <dd pn="section-2-1.36">Segment Routing</dd> <dt pn="section-2-1.37">SRGB</dt> <dd pn="section-2-1.38">Segment Routing GlobalBlock</t> <t>VPN - VirtualBlock</dd> <dt pn="section-2-1.39">VPN</dt> <dd pn="section-2-1.40">Virtual PrivateNetwork</t> </list> </t>Network</dd> </dl> </section> <section anchor="usecase"title="Use-case requiring multipath load-balancing" toc="default"> <figure title="Figure 1:toc="include" numbered="true" removeInRFC="false" pn="section-3"> <name slugifiedName="name-use-case-requiring-multipat">Use Case Requiring Multipath Load-Balancing</name> <t pn="section-3-1"> Traffic engineeringuse-case"> <artwork> +------+ | | +-------| P3 |-----+ | +-----| |---+ | L3| |L4 +------+ L1| |L2 +----+ | | | | +--| P4 |--+ +-----+ +-----+ +-----+ | +----+ | +-----+ | S |-----| P1 |------------| P2 |--+ +--| D | | | | | | |--+ +--| | +-----+ +-----+ +-----+ | +----+ | +-----+ +--| P5 |--+ +----+ S=Source LSR, D=Destination LSR, P1,P2,P3,P4,P5=Transit LSRs, L1,L2,L3,L4=Links </artwork> </figure> <t> Traffic-engineeringis one of the applications of MPLS and is also a requirement for Segment Routing <xreftarget="RFC7855"/>.target="RFC7855" format="default" sectionFormat="of" derivedContent="RFC7855"/>. Consider the topology shown inFigure 1.<xref target="fig_TE_use_case" format="default" sectionFormat="of" derivedContent="Figure 1"/>. The LSR S requires data to be sent to LSR D along a traffic-engineered path that goes over the link L1. Good load-balancing is also required acrossequal costequal-cost paths (including parallel links). To steer traffic along a path that crosses link L1, the label stack that LSR S creates consists of a label to theNode-SIDNode SID of LSRP3,P3 stacked over the label for the Adj-SID (Adjacency Segment Identifier) of link L1 and that in turn is stacked over the label to theNode-SIDNode SID of LSR D. Forsimplicitysimplicity, lets assume that all LSRs use the same label space for Segment Routing (as a reminder, it is called the SRGB, Segment Routing Global Block). Let L_N-Px denote the label to be used to reach theNode-SIDNode SID of LSR Px. Let L_A-Ln denote the label used for the Adj-SID for link Ln. In our example, the LSR S must use the label stack <L_N-P3, L_A-L1, L_N-D>. However, to achieveagood load-balancing over theequal costequal-cost paths P2-P4-D,P2-P5-DP2-P5-D, and the parallel links L3 and L4, a mechanism such as entropy labels <xreftarget="RFC6790"/>target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> should be adapted for Segment Routing. Indeed, theSPRINGSource Packet Routing in Networking (SPRING) architecture with the MPLSdataplane (<xref target="I-D.ietf-spring-segment-routing-mpls"/>)data plane <xref target="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/> uses nested MPLS LSPs composing thesource routedsource-routed label stack. </t><t><figure anchor="fig_TE_use_case" align="left" suppress-title="false" pn="figure-1"> <name slugifiedName="name-traffic-engineering-use-cas">Traffic-Engineering Use Case</name> <artwork name="" type="" align="left" alt="" pn="section-3-2.1"> +------+ | | +-------| P3 |-----+ | +-----| |---+ | L3| |L4 +------+ L1| |L2 +----+ | | | | +--| P4 |--+ +-----+ +-----+ +-----+ | +----+ | +-----+ | S |-----| P1 |------------| P2 |--+ +--| D | | | | | | |--+ +--| | +-----+ +-----+ +-----+ | +----+ | +-----+ +--| P5 |--+ +----+ Key: S = Source LSR D = Destination LSR P1, P2, P3, P4, P5 = Transit LSRs L1, L2, L3, L4 = Links </artwork> </figure> <t pn="section-3-3"> An MPLS node may have limitations in the number of labels it can push. It may also have a limitation in the number of labels it can inspect when looking for hash keys during load-balancing. While the entropy label is normally inserted at the bottom of the transport tunnel, this may prevent an LSR from taking into account the EL in its load-balancing function if the EL is too deep in the stack. In a Segment Routing environment, it is important to define the considerations thatneedsneed to be taken into account when inserting an EL. Multiple ways to apply entropy labels were considered and are documented in <xreftarget="other-options"/>target="other-options" format="default" sectionFormat="of" derivedContent="Section 10"/> along with their trade-offs. A recommended solution is described in <xreftarget="solution"/>.target="solution" format="default" sectionFormat="of" derivedContent="Section 7"/>. </t> </section> <section anchor="erld_definition"title="Entropynumbered="true" toc="include" removeInRFC="false" pn="section-4"> <name slugifiedName="name-entropy-readable-label-dept">Entropy Readable LabelDepth"> <t>Depth</name> <t pn="section-4-1"> The Entropy Readable Label Depth (ERLD) is defined as the number of labels a router can both:<list style="letters"> <t>Read</t> <ol spacing="normal" type="a" start="1" pn="section-4-2"> <li pn="section-4-2.1" derivedCounter="a.">Read in an MPLS packet received on its incoming interface(s) (starting from the top of thestack).</t> <t>Usestack).</li> <li pn="section-4-2.2" derivedCounter="b.">Use in its load-balancingfunction.</t> </list> </t> <t>Thefunction.</li> </ol> <t pn="section-4-3">The ERLD means that the router will perform load-balancing using the ELlabelif the EL is placed within the first ERLD labels.</t><t>A<t pn="section-4-4">A router capable of reading N labels but not using an EL located within those N labelsMUST<bcp14>MUST</bcp14> consider its ERLD to be 0.</t><t><t pn="section-4-5"> In a distributed switching architecture, eachlinecardline card may have a different capability in terms of ERLD. For simplicity, an implementationMAY<bcp14>MAY</bcp14> use the minimum ERLD of alllinecardsline cards as the ERLD value for the system. </t><t>There<t pn="section-4-6">There may also be a case where a router has a fast switching path (handled by anASICApplication-Specific Integrated Circuit, or ASIC, or network processor) and a slow switching path (handled by a CPU) with a different ERLD for each switching path. Again, for simplicity's sake, an implementationMAY<bcp14>MAY</bcp14> use the minimum ERLD as the ERLD value for the system.</t><t>The<t pn="section-4-7">The drawback of using a single ERLD for a system lower than the capability of one or more specificcomponentcomponents is that it may increase the number of ELI/ELs inserted. This leads to an increase of the label stack size and may have an impact on the capability of the ingress node to push this label stack.</t><t>Examples:</t><t pn="section-4-8">Examples:</t> <figuretitle="Figure 2: Label stacksanchor="fig_label_stacks" align="left" suppress-title="false" pn="figure-2"> <name slugifiedName="name-label-stacks-with-eli-el">Label Stacks withELI/EL"> <artwork>ELI/EL</name> <artwork name="" type="" align="left" alt="" pn="section-4-9.1"> | Payload | +----------+ | Payload | | EL | P7 +----------+ +----------+ | Payload | | EL | | ELI | +----------+ +----------+ +----------+ | Payload | | EL | | ELI | | Label 50 | +----------+ +----------+ +----------+ +----------+ | Payload | | EL | | ELI | | Label 40 | | Label 40 | +----------+ +----------+ +----------+ +----------+ +----------+ | EL | | ELI | | Label 30 | | Label 30 | | Label 30 | +----------+ +----------+ +----------+ +----------+ +----------+ | ELI | | Label 20 | | Label 20 | | Label 20 | | Label 20 | +----------+ +----------+ +----------+ +----------+ +----------+ | Label 16 | | Label 16 | | Label 16 | | Label 16 | | Label 16 | P1 +----------+ +----------+ +----------+ +----------+ +----------+ Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 </artwork> </figure><t><t pn="section-4-10"> InFigure 2,<xref target="fig_label_stacks" format="default" sectionFormat="of" derivedContent="Figure 2"/>, we consider the displayed packets received on a router interface. We consider also a single ERLD value for the router.<list style="symbols"> <t>If</t> <ul spacing="normal" bare="false" empty="false" pn="section-4-11"> <li pn="section-4-11.1">If the router has an ERLD of 3, it will be able to load-balance Packet 1 displayed inFigure 2<xref target="fig_label_stacks" format="default" sectionFormat="of" derivedContent="Figure 2"/> using the EL as part of the load-balancing keys. The ERLD value of 3 means that the router can read and take into account the entropy label for load-balancing if it is placed between position 1 (top of the MPLS label stack) and position3.</t> <t>If3.</li> <li pn="section-4-11.2">If the router has an ERLD of 5, it will be able to load-balance Packets 1 to 3 inFigure 2<xref target="fig_label_stacks" format="default" sectionFormat="of" derivedContent="Figure 2"/> using the EL as part of the load-balancing keys. Packets 4 and 5 have the EL placed at a position greater than 5, so the router is not able to read it and use it as part of the load-balancingkeys.</t> <t>Ifkeys.</li> <li pn="section-4-11.3">If the router has an ERLD of 10, it will be able to load-balance all the packets displayed inFigure 2<xref target="fig_label_stacks" format="default" sectionFormat="of" derivedContent="Figure 2"/> using the EL as part of the load-balancingkeys.</t> </list> </t> <t>Tokeys.</li> </ul> <t pn="section-4-12">To allow an efficient load-balancing based on entropy labels, a router running SPRINGSHOULD<bcp14>SHOULD</bcp14> advertise its ERLD (or ERLDs), so all the other SPRING routers in the network are aware of its capability. How this advertisement is done is outside the scope of this document (see <xreftarget="erld"/>target="erld" format="default" sectionFormat="of" derivedContent="Section 7.2.1"/> for potential approaches). </t><t><t pn="section-4-13"> To advertise an ERLD value, a SPRING router:<list style="symbols"> <t>MUST</t> <ul spacing="normal" bare="false" empty="false" pn="section-4-14"> <li pn="section-4-14.1"> <bcp14>MUST</bcp14> be entropy label capable and, as a consequence,MUST<bcp14>MUST</bcp14> apply thedataplanedata-plane procedures defined in <xreftarget="RFC6790"/>.</t> <t>MUSTtarget="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/>.</li> <li pn="section-4-14.2"> <bcp14>MUST</bcp14> be able to read anELI/ELELI/EL, which is located within its ERLDvalue.</t> <t>MUSTvalue.</li> <li pn="section-4-14.3"> <bcp14>MUST</bcp14> take into account an EL within the first ERLD labels in its load-balancingfunction.</t> </list> </t>function.</li> </ul> </section> <section anchor="msd"title="Maximumnumbered="true" toc="include" removeInRFC="false" pn="section-5"> <name slugifiedName="name-maximum-sid-depth">Maximum SIDDepth"> <t>Depth</name> <t pn="section-5-1"> The Maximum SID Depth defines the maximum number of labels that a particular node can impose on a packet. This can include any kind of labels (service, entropy,transport...).transport, etc.). In an MPLS network, the MSD is a limit of the head-end of an SR tunnel or aBinding-SIDBinding SID anchor node that performs imposition of additional labels on an existing label stack. </t><t><t pn="section-5-2"> Depending on the number of MPLS operations (POP,SWAP...)SWAP, etc.) to be performed before the PUSH, the MSD can vary due to hardware or software limitations. As for the ERLD, different MSD limits can exist within a single node based on thelinecardline-card types used in a distributed switching system. Thus, the MSD is a per link and/orper nodeper-node property. </t><t><t pn="section-5-3"> An external controller can be used to program a label stack on a particular node. This nodeSHOULD<bcp14>SHOULD</bcp14> advertise its MSD to the controller in order to let the controller know the maximum label stack depth of the path computed that is supported on the head-end. How this advertisement is done is outside the scope of thisdocumentdocument. (<xreftarget="I-D.ietf-isis-segment-routing-msd"/>,target="RFC8476" format="default" sectionFormat="of" derivedContent="RFC8476"/>, <xreftarget="I-D.ietf-isis-segment-routing-msd"/>target="RFC8491" format="default" sectionFormat="of" derivedContent="RFC8491"/>, and <xreftarget="I-D.ietf-idr-bgp-ls-segment-routing-msd"/>target="I-D.ietf-idr-bgp-ls-segment-routing-msd" format="default" sectionFormat="of" derivedContent="MSD-BGP"/> provide examples of advertisement ofMSD).the MSD.) As the controller does not have the knowledge of the entire label stack to be pushed by the node, in addition to the MSD value, the nodeSHOULD<bcp14>SHOULD</bcp14> advertise the type of the MSD. For instance, the MSD value can represent the limit for pushing transport labels only while in reality the node can push an additional service label. As another example, the MSD value can represent the full limit of the node including all label types (transport, service,entropy...).entropy, etc.). This gives the ability for the controller to program a label stack while leaving room for the local node to add more labels (e.g., service,entropy,...)entropy, etc.) without reaching the hardware/software limit. If the node does not provide the meaning of the MSD value, the controller could program an LSP using a number of labels equal to the full limit of the node. When receiving this label stack from the controller, the ingress node may not be able to add any service (L2VPN, L3VPN,EVPN...)EVPN, etc.) label on top of this label stack. The consequence could be for the ingress node to drop service packets that should have been forwarded over the LSP. </t> <figuretitle="Figure 3"> <artwork>anchor="fig_packet" align="left" suppress-title="false" pn="figure-3"> <name slugifiedName="name-topology-illustrating-label">Topology Illustrating Label Stack Reduction</name> <artwork name="" type="" align="left" alt="" pn="section-5-4.1"> P7 ---- P8 ---- P9 / \ PE1 --- P1 --- P2 --- P3 --- P4 --- P5 --- P6 --- PE2 | \ |---->----> P10 \ | IP Pkt | \ | P11 --- P12 --- P13 100 10000 </artwork> </figure><t><t pn="section-5-5"> InFigure 3,<xref target="fig_packet" format="default" sectionFormat="of" derivedContent="Figure 3"/>, an IP packet comes into the MPLS network at PE1. All metrics are considered equal to 1 exceptP12-P13P12-P13, which is1000010000, andP11-P12P11-P12, which is 100. PE1 wants to steer the traffic using a SPRING path to PE2 alongPE1->P1->P7->P8->P9->P4->P5->P10->P11->P12->P13->PE2.PE1 -> P1 -> P7 -> P8 -> P9 -> P4 -> P5 -> P10 -> P11 -> P12 -> P13 -> PE2. By using Adj-SIDs only, PE1 (acting as an ingress LSR, also known as an I-LSR) will be required to push 10 labels on the IP packet received andthusthus, requires an MSD of 10. If the IP packet should be carried over an MPLS service like a regular layer 3 VPN, an additional service label should beimposed,imposed requiring an MSD of 11 for PE1. In addition, if PE1 wants to insert an ELI/EL for load-balancingpurpose,purposes, PE1 will need to push 13 labels on the IP packet requiring an MSD of 13. </t><t><t pn="section-5-6"> In the SPRING architecture,Node-SIDsNode SIDs orBinding-SIDsBinding SIDs can be used to reduce the label stack size. As an example, to steer the traffic on the same path as before, PE1 could use the following label stack: <Node_P9, Node_P5, Binding_P5, Node_PE2>. In thisexampleexample, we consider a combination ofNode-SIDsNode SIDs and aBinding-SIDBinding SID advertised by P5 that will stitch the traffic along the pathP10->P11->P12->P13.P10 -> P11 -> P12 -> P13. The instruction associated with theBinding-SIDBinding SID at P5 is thus to swap Binding_P5 to Adj_P12-P13 and then push <Adj_P11-P12, Node_P11>. P5 acts as a stitching node that pushes additional labels on an existing labelstack,stack; P5's MSD needs also to be taken into account and may limit the number of labels that can be imposed. </t> </section> <section anchor="stitching"title="LSP stitching usingnumbered="true" toc="include" removeInRFC="false" pn="section-6"> <name slugifiedName="name-lsp-stitching-using-the-bin">LSP Stitching Using theBinding-SID"> <t>Binding SID</name> <t pn="section-6-1"> TheBinding-SIDBinding SID allows binding a segment identifier to an existing LSP. As examples, theBinding-SIDBinding SID can represent an RSVP-TE tunnel, an LDP path (through themapping server advertisement),Mapping Server Advertisement), or a SPRING path. Each tail-end router of an MPLS LSP associated with aBinding-SIDBinding SID has its own entropy label capability. The entropy label capability of the associated LSP is advertised in thecontrol planecontrol-plane protocol used to signal the LSP. </t><t><t pn="section-6-2"> InFigure 4,<xref target="fig_stitching_example" format="default" sectionFormat="of" derivedContent="Figure 4"/>, we consider that:<list style="symbols"> <t>P6,</t> <ul spacing="normal" bare="false" empty="false" pn="section-6-3"> <li pn="section-6-3.1">P6, PE2, P10, P11, P12, and P13 are pure LDProuters.</t> <t>PE1,routers.</li> <li pn="section-6-3.2">PE1, P1, P2, P3, P4, P7, P8, and P9 are pure SPRINGrouters.</t> <t>P5routers.</li> <li pn="section-6-3.3">P5 is running SPRING andLDP.</t> <t>P5LDP.</li> <li pn="section-6-3.4">P5 acts as amapping serverMapping Server and advertisesPrefix SIDsPrefix-SIDs for the LDP FECs: an index value of 20 is used forPE2.</t> <t>AllPE2.</li> <li pn="section-6-3.5">All SPRING routers use an SRGB of [1000,1999].</t> <t>P61999].</li> <li pn="section-6-3.6">P6 advertises label 20 for the PE2FEC.</t> <t>TrafficFEC.</li> <li pn="section-6-3.7">Traffic from PE1 to PE2 uses the shortestpath.</t> </list> </t> <figure> <artwork>path.</li> </ul> <figure anchor="fig_stitching_example" align="left" suppress-title="false" pn="figure-4"> <name slugifiedName="name-example-illustrating-need-f">Example Illustrating Need for ELC Propagation</name> <artwork name="" type="" align="left" alt="" pn="section-6-4.1"> PE1 ----- P1 -- P2 -- P3 -- P4 ---- P5 --- P6 --- PE2-->--> +----+ +----+ +----+ +----+ IP Pkt | IP | | IP | | IP | | IP | +----+ +----+ +----+ +----+ |1020| |1020| | 20 | +----+ +----+ +----+ SPRING LDP </artwork> </figure><t>In<t pn="section-6-5">In terms of packet forwarding, by learning themapping-server advertisementMapping Server Advertisement from P5, PE1 imposes a label 1020 to an IP packet destined to PE2. SPRING routers along the shortest path to PE2 will switch the traffic until it reaches P5. P5 will perform the LSP stitching by swapping the SPRING label 1020 to the LDP label 20 advertised by thenexthopnext hop P6. P6 will finally forward the packet using the LDP label towards PE2.</t><t><t pn="section-6-6"> PE1 cannot push an ELI/EL for theBinding-SIDBinding SID without knowing that thetail-endtail end of the LSP associated with the binding (PE2) is entropy label capable. </t><t><t pn="section-6-7"> To accommodate the mix of signaling protocols involved during the stitching, the entropy label capabilitySHOULD<bcp14>SHOULD</bcp14> be propagated between the signaling domains. EachBinding-SID SHOULDBinding SID <bcp14>SHOULD</bcp14> have its own entropy label capability thatMUST<bcp14>MUST</bcp14> be inherited from the entropy label capability of the associated LSP. If the router advertising theBinding-SIDBinding SID does not know the ELC state of the target FEC, itMUST NOT<bcp14>MUST NOT</bcp14> set the ELC for theBinding-SID.Binding SID. An ingress nodeMUST NOT<bcp14>MUST NOT</bcp14> push an ELI/EL associated with aBinding-SIDBinding SID unless thisBinding-SIDBinding SID has the entropy label capability. How the entropy label capability is advertised for aBinding-SIDBinding SID is outside the scope of this document (see <xreftarget="erld"/>target="erld" format="default" sectionFormat="of" derivedContent="Section 7.2.1"/> for potential approaches). </t><t><t pn="section-6-8"> In our example, if PE2 is LDP entropy label capable, it will add the entropy label capability in its LDP advertisement. When P5 receives the FEC/label binding for PE2, it learns about the ELC and can set the ELC in themapping server advertisement. ThusMapping Server Advertisement. Thus, PE1 learns about the ELC of PE2 and may push an ELI/EL associated with theBinding-SID.Binding SID. </t><t><t pn="section-6-9"> The proposed solution only works if the SPRING router advertising theBinding-SIDBinding SID is also performing thedataplanedata-plane LSP stitching. In our example, if themapping serverMapping Server function is hosted on P8 instead of P5, P8 does not know about the ELC state of PE2's LDP FEC. As a consequence, it does not set the ELC for the associatedBinding-SID.Binding SID. </t> </section> <section anchor="solution"title="Insertiontoc="include" numbered="true" removeInRFC="false" pn="section-7"> <name slugifiedName="name-insertion-of-entropy-labels">Insertion ofentropy labelsEntropy Labels for SPRINGpath" toc="default">Path</name> <section anchor="overview"title="Overview"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-7.1"> <name slugifiedName="name-overview">Overview</name> <t pn="section-7.1-1"> The solution described in this section follows thedataplanedata-plane processing defined in <xreftarget="RFC6790"/>.target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/>. Within a SPRING path, a node may be ingress, egress, transit (regarding the entropy label processing described in <xreftarget="RFC6790"/>),target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/>), or it can be any combination of those. For example:<list style="symbols"> <t>The</t> <ul spacing="normal" bare="false" empty="false" pn="section-7.1-2"> <li pn="section-7.1-2.1">The ingress node of a SPRING domain can be an ingress node from an entropy labelperspective.</t> <t>Anyperspective.</li> <li pn="section-7.1-2.2">Any LSR terminating a segment of the SPRING path is an egress node (because it terminates the segment) but can also be a transit node if the SPRING path is not terminated because there is a subsequent SPRING MPLS label in thestack.</t> <t>Anystack.</li> <li pn="section-7.1-2.3">Any LSR processing aBinding-SIDBinding SID may be a transit node and an ingress node (because it may push additional labels when processing theBinding-SID).</t> </list> </t> <t>Binding SID).</li> </ul> <t pn="section-7.1-3"> As described earlier, an LSR may have a limitation (the ERLD) on the depth of the label stack that it can read and process in order to do multipath load-balancing based on entropy labels.</t><t>If<t pn="section-7.1-4">If an EL does not occur within the ERLD of an LSR in the label stack of an MPLS packet that it receives, then it would lead to poor load-balancing at that LSR.HenceHence, an ELI/EL pair must be within the ERLD of the LSR in order for the LSR to use the EL during load-balancing. </t><t><t pn="section-7.1-5"> Adding a single ELI/EL pair for the entire SPRING path can also lead to poor load-balancing as well because the ELI/EL may not occur within the ERLD of some LSR on the path (if too deep) or may not be present in the stack when it reaches some LSRs (if it is too shallow). </t><t><t pn="section-7.1-6"> In order for the EL to occur within the ERLD of LSRs along the path corresponding to a SPRING label stack, multiple <ELI, EL> pairsMAY<bcp14>MAY</bcp14> be inserted in this label stack. </t><t><t pn="section-7.1-7"> The insertion of an ELI/ELMUST<bcp14>MUST</bcp14> occur only with a SPRING label advertised by an LSR that advertised an ERLD (the LSR is entropy label capable) or with a SPRING label associated with aBinding-SIDBinding SID that has the ELC set. </t><t><t pn="section-7.1-8"> The ELs among multiple <ELI, EL> pairs inserted in the stackMAY<bcp14>MAY</bcp14> be the same or different. The LSR that inserts <ELI, EL> pairs can have limitations on the number of such pairs that it can insert and also the depth at which it can insert them. If, due to limitations, the inserted ELs are at positions such that an LSR along the path receives an MPLS packet without an EL in the label stack within that LSR's ERLD, then the load-balancing performed by that LSR would be poor. An implementationMAY<bcp14>MAY</bcp14> consider multiple criteria when inserting <ELI, EL> pairs. </t> <section anchor="ex1"title="Example 1 where the ingress node hasnumbered="true" toc="include" removeInRFC="false" pn="section-7.1.1"> <name slugifiedName="name-example-1-the-ingress-node-">Example 1: The Ingress Node Has asufficient MSD">Sufficient MSD</name> <figuretitle="Figure 5"> <artwork>anchor="fig_ex1" align="left" suppress-title="false" pn="figure-5"> <name slugifiedName="name-accommodating-msd-limitatio">Accommodating MSD Limitations</name> <artwork name="" type="" align="left" alt="" pn="section-7.1.1-1.1"> ECMP LAG LAG PE1 --- P1 --- P2 --- P3 --- P4 --- P5 --- P6 --- PE2 </artwork> </figure><t><t pn="section-7.1.1-2"> InFigure 5,<xref target="fig_ex1" format="default" sectionFormat="of" derivedContent="Figure 5"/>, PE1 wants to forward some MPLS VPN traffic over an explicit path to PE2 resulting in the following label stack to be pushed onto the received IP header: <Adj_P1P2, Adj_set_P2P3, Adj_P3P4, Adj_P4P5, Adj_P5P6, Adj_P6PE2, VPN_label>. PE1 is limited to push a maximum of 11 labels (MSD=11). P2,P3P3, and P6 have an ERLD of 3 while others have an ERLD of 10. </t><t><t pn="section-7.1.1-3"> PE1 can only add two ELI/EL pairs in the label stack due to its MSD limitation. It should insert them strategically to benefit load-balancing along the longest part of the path. </t><t><t pn="section-7.1.1-4"> PE1 can take into account multiple parameters when insertingELs,ELs; as examples:<list style="symbols"> <t>The</t> <ul spacing="normal" bare="false" empty="false" pn="section-7.1.1-5"> <li pn="section-7.1.1-5.1">The ERLD value advertised by transitnodes.</t> <t>Thenodes.</li> <li pn="section-7.1.1-5.2">The requirement of load-balancing for a particular labelvalue.</t> <t>Anyvalue.</li> <li pn="section-7.1.1-5.3">Any service provider preference: favor beginning of the path or end of thepath.</t> </list> </t> <t>path.</li> </ul> <t pn="section-7.1.1-6"> InFigure 5,<xref target="fig_ex1" format="default" sectionFormat="of" derivedContent="Figure 5"/>, a good strategy may be to use the following stack <Adj_P1P2, Adj_set_P2P3, ELI1, EL1, Adj_P3P4, Adj_P4P5, Adj_P5P6, Adj_P6PE2, ELI2, EL2, VPN_label>. The original stack requests P2 to forward based onaan L3adjacency setadjacency-set that will require load-balancing.ThereforeTherefore, it is important to ensure that P2 can load-balance correctly. As P2 has a limited ERLD of 3, an ELI/EL must be inserted just after the label that P2 will use to forward. On the path to PE2, P3 has also a limited ERLD, but P3 will forward based on a regular adjacency segment that may not require load-balancing.ThereforeTherefore, it does not seem important to ensure that P3 can do load-balancing despite its limited ERLD. The next nodes along the forwarding path have a high ERLD that does not cause any issue, except P6. Moreover, P6 is using some LAGs to PE2 and so is expected to load-balance. It becomes important to insert a new ELI/EL just after the P6 forwarding label. </t><t><t pn="section-7.1.1-7"> In the case above, the ingress nodehadwas able to support a sufficient MSD to ensure end-to-end load-balancing while taking into account the path attributes. However, there might be cases where the ingress node may not have the necessary label imposition capacity. </t> </section> <section anchor="ex2"title="Example 2 where the ingress node does not havenumbered="true" toc="include" removeInRFC="false" pn="section-7.1.2"> <name slugifiedName="name-example-2-the-ingress-node-">Example 2: The Ingress Node Does Not Have asufficient MSD">Sufficient MSD</name> <figuretitle="Figure 6"> <artwork>anchor="fig_ex2" align="left" suppress-title="false" pn="figure-6"> <name slugifiedName="name-msd-considerations">MSD Considerations</name> <artwork name="" type="" align="left" alt="" pn="section-7.1.2-1.1"> ECMP LAG ECMP ECMP PE1 --- P1 --- P2 --- P3 --- P4 --- P5 --- P6 --- P7 --- P8 --- PE2 </artwork> </figure><t><t pn="section-7.1.2-2"> InFigure 6,<xref target="fig_ex2" format="default" sectionFormat="of" derivedContent="Figure 6"/>, PE1 wants to forward MPLS VPN traffic over an explicit path to PE2 resulting in the following label stack to be pushed onto the IP header: <Adj_P1P2, Adj_set_P2P3, Adj_P3P4, Adj_P4P5, Adj_P5P6, Adj_set_P6P7, Adj_P7P8; Adj_set_P8PE2, VPN_label>. PE1 is limited to push a maximum of 11 labels. P2,P3P3, and P6 have an ERLD of 3 while others have an ERLD of 15. </t><t><t pn="section-7.1.2-3"> Using a similar strategy as the previous case may lead to a dilemma, as PE1 can only push a single ELI/EL while we may need a minimum of three to load-balance the end-to-end path. An optimized stack that would enable end-to-end load-balancing may be: <Adj_P1P2, Adj_set_P2P3, ELI1, EL1, Adj_P3P4, Adj_P4P5, Adj_P5P6, Adj_set_P6P7, ELI2, EL2, Adj_P7P8, Adj_set_P8PE2, ELI3, EL3, VPN_label>. </t><t><t pn="section-7.1.2-4"> A decision needs to be taken to favor some part of the path for load-balancing considering that load-balancing may not work on the other parts. A service provider may decide to place the ELI/EL after the P6 forwarding label as it will allow P4 and P6 to load-balance. Placing the ELI/EL at the bottom of the stack is also a possibility enabling load-balancing for P4 and P8. </t> </section> </section> <section anchor="el_placement"title="Considerationsnumbered="true" toc="include" removeInRFC="false" pn="section-7.2"> <name slugifiedName="name-considerations-for-the-plac">Considerations for theplacementPlacement ofentropy labels"> <t>Entropy Labels</name> <t pn="section-7.2-1"> The sample cases described in the previous section showed that ELI/EL placement when the maximum number of labels to be pushed is limited is not an easydecisiondecision, and multiple criteria may be taken into account. </t><t><t pn="section-7.2-2"> This section describes some considerations that an implementationMAY<bcp14>MAY</bcp14> take into account when placing ELI/ELs. This list of criteria is not considered exhaustive and an implementationMAY<bcp14>MAY</bcp14> take into account additional criteria ortie-breakerstiebreakers that are not documented here. As the insertion of ELI/ELs is performed by the ingress node, having ingress nodes that do not use the same criteria does not cause an interoperability issue. However, from a network design and operation perspective, it is better to have all ingress routers using the same criteria. </t><t><t pn="section-7.2-3"> An implementationSHOULD<bcp14>SHOULD</bcp14> try to maximize the possibility of load-balancing along the path by inserting an ELI/EL where multipleequal costequal-cost paths are available and minimize the number of ELI/ELs that need to be inserted. In case of a trade-off, an implementationSHOULD<bcp14>SHOULD</bcp14> provide flexibility to the operator to select the criteria to be considered when placing ELI/ELs or specify asub-objectivesubobjective for optimization. </t> <figuretitle="Figure 7"> <artwork>anchor="fig_consid_sample" align="left" suppress-title="false" pn="figure-7"> <name slugifiedName="name-msd-trade-offs">MSD Trade-Offs</name> <artwork name="" type="" align="left" alt="" pn="section-7.2-4.1"> 2 2 PE1 -- P1 -- P2 --P3 --- P4 --- P5 -- ... -- P8 -- P9 -- PE2 | | P3'--- P4'--- P5' </artwork> </figure><t> Figure 7<t pn="section-7.2-5"><xref target="fig_consid_sample" format="default" sectionFormat="of" derivedContent="Figure 7"/> will be used as reference in the following subsections. All metrics are equal to1,1 except P3-P4 andP4-P5P4-P5, which have a metric 2. We consider the MSD of nodes to be the full limit of label imposition (including service labels, entropylabelslabels, and transport labels). </t> <section anchor="erld"title="ERLD value"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-7.2.1"> <name slugifiedName="name-erld-value">ERLD Value</name> <t pn="section-7.2.1-1"> As mentioned in <xreftarget="overview"/>,target="overview" format="default" sectionFormat="of" derivedContent="Section 7.1"/>, the ERLD value is an important parameter to consider when inserting an ELI/EL. If an ELI/EL does not fall within the ERLD of a node on the path, the node will not be able to load-balance the traffic efficiently. </t><t><t pn="section-7.2.1-2"> The ERLD value can be advertised viaprotocolsprotocols, and those extensions are described in separate documents (for instance, <xreftarget="I-D.ietf-isis-mpls-elc"/>target="I-D.ietf-isis-mpls-elc" format="default" sectionFormat="of" derivedContent="ISIS-ELC"/> and <xreftarget="I-D.ietf-ospf-mpls-elc"/>).target="I-D.ietf-ospf-mpls-elc" format="default" sectionFormat="of" derivedContent="OSPF-ELC"/>). </t><t><t pn="section-7.2.1-3"> Let's consider a path from PE1 to PE2 using the following stack pushed by PE1: <Adj_P1P2, Node_P9, Adj_P9PE2, Service_label>. </t><t><t pn="section-7.2.1-4"> Using the ERLD as an input parameter can help to minimize the number of required ELI/EL pairs to be inserted. An ERLD value must be retrieved for each SPRING label in the label stack. </t><t><t pn="section-7.2.1-5"> For a label bound to an adjacency segment, the ERLD is the ERLD of the node that has advertised the adjacency segment. In the example above, the ERLD associated with Adj_P1P2 would be the ERLD of routerP1P1, as P1 will perform the forwarding based on the Adj_P1P2 label. </t><t><t pn="section-7.2.1-6"> For a label bound to a node segment, multiple strategiesMAY<bcp14>MAY</bcp14> be implemented. An implementationMAY<bcp14>MAY</bcp14> try to evaluate the minimum ERLD value along the node segment path. If an implementation cannot find the minimum ERLD along the path of the segment or does not support the computation of the minimum ERLD, itSHOULD<bcp14>SHOULD</bcp14> instead use the ERLD of the tail-end node. Using the ERLD of thetail-endtail end of the node segment mimics the behavior of <xreftarget="RFC6790"/>target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> where the ingress takes only care of the egress of the LSP. In the example above, if the implementation supports computation of minimum ERLD along the path, the ERLD associated with label Node_P9 would be the minimum ERLD between nodes {P2,P3,P4 ..., P8}. If the implementation does not support the computation of minimum ERLD, it will consider the ERLD of P9 (tail-end node of Node_P9 SID). While providing the more optimal ELI/EL placement, evaluating the minimum ERLD increases the complexity of ELI/EL insertion. As the path to theNode-SIDNode SID may change over time, a recomputation of the minimum ERLD is required for each topology change. This recomputation may require the positions of the ELI/ELs to change. </t><t><t pn="section-7.2.1-7"> For a label bound to abinding segment,Binding Segment, if thebinding segmentBinding Segment describes a path, an implementationMAY<bcp14>MAY</bcp14> also try to evaluate the minimum ERLD along this path. If the implementation cannot find the minimum ERLD along the path of the segment or does not support this evaluation, itSHOULD<bcp14>SHOULD</bcp14> instead use the ERLD of the node advertising theBinding-SID.Binding SID. As for the node segment, evaluating the minimum ERLD adds complexity in the ELI/EL insertion process. </t> </section> <section anchor="sid-type"title="Segment type"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-7.2.2"> <name slugifiedName="name-segment-type">Segment Type</name> <t pn="section-7.2.2-1"> Depending on the type of segment a particular label is bound to, an implementation can deduce that this particular label will be subject to load-balancing on the path. </t> <section anchor="node-sid"title="Node-SID"> <t>numbered="true" toc="exclude" removeInRFC="false" pn="section-7.2.2.1"> <name slugifiedName="name-node-sid">Node SID</name> <t pn="section-7.2.2.1-1"> An MPLS label bound to aNode-SIDNode SID represents a path that may cross multiple hops. Load-balancing may be needed on the node starting this path but also on any node along the path. </t><t><t pn="section-7.2.2.1-2"> InFigure 7,<xref target="fig_consid_sample" format="default" sectionFormat="of" derivedContent="Figure 7"/>, let's consider a path from PE1 to PE2 using the following stack pushed by PE1: <Adj_P1P2, Node_P9, Adj_P9PE2, Service_label>. </t><t><t pn="section-7.2.2.1-3"> If, for example, PE1 is limited to push 6 labels, it can add a single ELI/EL within the label stack. An operator may want to favor a placement that would allow load-balancing along theNode-SIDNode SID path. InFigure 7, P3<xref target="fig_consid_sample" format="default" sectionFormat="of" derivedContent="Figure 7"/>, P3, which is along theNode-SID pathNode SID path, requires load-balancing between two equal-cost paths. </t><t><t pn="section-7.2.2.1-4"> An implementationMAY<bcp14>MAY</bcp14> try to evaluate if load-balancing is really required within a node segment path. This could be done by running an additional SPT (Shortest Path Tree) computation andanalysinganalyzing of the node segment path to prevent a node segment that does not really require load-balancing from being preferred when placing ELI/ELs. Such inspection may be time consuming for implementations and without a 100% guarantee, as a node segment path may use LAGs that are invisible to the IP topology. As a simpler approach, an implementationMAY<bcp14>MAY</bcp14> consider that a label bound to aNode-SIDNode SID will be subject to load-balancing andrequiresrequire anELI/EL.ELI/EL. </t> </section> <section anchor="adj-sid1"title="Adjacency-set SID"> <t>numbered="true" toc="exclude" removeInRFC="false" pn="section-7.2.2.2"> <name slugifiedName="name-adjacency-set-sid">Adjacency-Set SID</name> <t pn="section-7.2.2.2-1"> An adjacency-set is an Adj-SID that refers to a set of adjacencies. When an adjacency-set segment is used within a label stack, an implementation can deduce that load-balancing is expected at the node that advertised this adjacency segment. An implementationMAY<bcp14>MAY</bcp14> favor the insertion of an ELI/EL after the Adj-SID representing an adjacency-set. </t> </section> <section anchor="adj-sid2"title="Adjacency-SID representingnumbered="true" toc="exclude" removeInRFC="false" pn="section-7.2.2.3"> <name slugifiedName="name-adjacency-sid-representing-">Adjacency SID Representing asingleSingle IPlink"> <t>Link</name> <t pn="section-7.2.2.3-1"> When an adjacency segment representing a single IP link is used within a label stack, an implementation can deduce that load-balancing may not be expected at the node that advertised this adjacency segment. </t><t><t pn="section-7.2.2.3-2"> An implementationMAY<bcp14>MAY</bcp14> NOT place an ELI/EL after a regular Adj-SID in order to favor the insertion of ELI/ELs following other segments. </t><t><t pn="section-7.2.2.3-3"> Readers should note that an adjacency segment representing a single IP link may require load-balancing. This is the case when a LAG (L2 bundle) is implemented between two IP nodes and the L2 bundle SR extensions <xreftarget="I-D.ietf-isis-l2bundles"/>target="RFC8668" format="default" sectionFormat="of" derivedContent="RFC8668"/> are not implemented. In such a case, it could be useful to insert an ELI/EL in a readable position for the LSR advertising the label associated with the adjacency segment. To communicate the requirement for load-balancing for a particularAdjacency-SIDAdjacency SID to ingress nodes, a user can enforce the use of the L2 bundle SR extensions defined in <xreftarget="I-D.ietf-isis-l2bundles"/>target="RFC8668" format="default" sectionFormat="of" derivedContent="RFC8668"/> or can declare the single adjacency as an adjacency-set. </t> </section> <section anchor="adj-sid3"title="Adjacency-SID representingnumbered="true" toc="exclude" removeInRFC="false" pn="section-7.2.2.4"> <name slugifiedName="name-adjacency-sid-representing-a">Adjacency SID Representing asingle linkSingle Link within an L2bundle"> <t>Bundle</name> <t pn="section-7.2.2.4-1"> When the L2 bundle SR extensions <xreftarget="I-D.ietf-isis-l2bundles"/>target="RFC8668" format="default" sectionFormat="of" derivedContent="RFC8668"/> are used, adjacency segments may be advertised for each member of the bundle. In this case, an implementation can deduce that load-balancing is not expected on the LSR advertising this segment andMAY<bcp14>MAY</bcp14> NOT insert an ELI/EL after the corresponding label. </t> </section> <section anchor="adj-sid4"title="Adjacency-SID representingnumbered="true" toc="exclude" removeInRFC="false" pn="section-7.2.2.5"> <name slugifiedName="name-adjacency-sid-representing-an">Adjacency SID Representing an L2bundle"> <t>Bundle</name> <t pn="section-7.2.2.5-1"> When the L2 bundle SR extensions <xreftarget="I-D.ietf-isis-l2bundles"/>target="RFC8668" format="default" sectionFormat="of" derivedContent="RFC8668"/> are used, an adjacency segment may be advertised to represent the bundle. In this case, an implementation can deduce that load-balancing is expected on the LSR advertising this segment andMAY<bcp14>MAY</bcp14> insert an ELI/EL after the corresponding label. </t> </section> </section> <sectiontitle="Maximizing numbernumbered="true" toc="include" removeInRFC="false" pn="section-7.2.3"> <name slugifiedName="name-maximizing-number-of-lsrs-t">Maximizing Number of LSRsthat will load-balance"> <t>That Will Load-Balance</name> <t pn="section-7.2.3-1"> When placing ELI/ELs, an implementationMAY<bcp14>MAY</bcp14> optimize the number of LSRs that both need to load-balance (i.e., haveECMP paths)ECMPs) and that will be able to perform load-balancing (i.e., the ELlabelis within their ERLD). </t><t><t pn="section-7.2.3-2"> Let's consider a path from PE1 to PE2 using the following stack pushed by PE1: <Adj_P1P2, Node_P9, Adj_P9PE2, Service_label>. All routers have an ERLD of10,10 except P1 andP2P2, which have an ERLD of 4. PE1 is able to push 6 labels, so only a single ELI/EL can be added. </t><t><t pn="section-7.2.3-3"> In the example above, adding an ELI/EL after Adj_P1P2 will only allow load-balancing atP1P1, while inserting it afterAdj_PE2P9,Adj_PE2P9 will allow load-balancing atP2,P3P2, P3 ... P9 andmaximizingmaximize the number of LSRs that can perform load-balancing. </t> </section> <sectiontitle="Preferencenumbered="true" toc="include" removeInRFC="false" pn="section-7.2.4"> <name slugifiedName="name-preference-for-a-part-of-th">Preference for apartPart of thepath"> <t>Path</name> <t pn="section-7.2.4-1"> An implementationMAY<bcp14>MAY</bcp14> allow the user to favor a part of the end-to-end path when the number of ELI/ELs that can be pushed is not enough to cover the entire path. As an example, a service provider may want to favor load-balancing at the beginning of the path or at the end of the path, so the implementation favors putting the ELI/ELs near the top ornear ofthe bottom of the stack. </t> </section> <sectiontitle="Combining criteria"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-7.2.5"> <name slugifiedName="name-combining-criteria">Combining Criteria</name> <t pn="section-7.2.5-1"> An implementationMAY<bcp14>MAY</bcp14> combine multiple criteria to determine the best ELI/ELs placement. However, combining too many criteria could lead to implementation complexity and high resource consumption. Each time the network topology changes, a new evaluation of the ELI/EL placement will be necessary for each impactedLSPs.LSP. </t> </section> </section> </section> <section anchor="algo-example"title="A simple example algorithm" toc="default"> <t>toc="include" numbered="true" removeInRFC="false" pn="section-8"> <name slugifiedName="name-a-simple-example-algorithm">A Simple Example Algorithm</name> <t pn="section-8-1"> A simple implementation might take into account the ERLD when placing ELI/EL while trying to minimize the number of ELI/ELs inserted and trying to maximize the number of LSRs that can load-balance. </t><t><t pn="section-8-2"> The example algorithm is based on the following considerations:<list style="symbols"> <t>An</t> <ul spacing="normal" bare="false" empty="false" pn="section-8-3"> <li pn="section-8-3.1">An LSR that can insert a limited number of <ELI, EL> pairs should insert such pairs deeper in thestack.</t> <t>Anstack.</li> <li pn="section-8-3.2">An LSR should try to insert <ELI, EL> pairs at positions to maximize the number of transit LSRs for which the EL occurs within the ERLD of thoseLSRs.</t> <t>AnLSRs.</li> <li pn="section-8-3.3">An LSR should try to insert the minimum number of such pairs while trying to satisfy the abovecriteria.</t> </list> </t> <t>criteria.</li> </ul> <t pn="section-8-4"> The pseudocode of the example algorithm is shown below. </t> <figuretitle="Figure 8: Example algorithmalign="left" suppress-title="false" pn="figure-8"> <name slugifiedName="name-example-algorithm-to-insert">Example Algorithm toinsertInsert <ELI, EL>pairsPairs in alabel stack"> <artwork>Label Stack</name> <sourcecode type="pseudocode" markers="false" pn="section-8-5.1"> Initialize the current EL insertion point to the bottom-most label in the stack that is EL-capable while (local-node can push more <ELI,EL> pairs OR insertion point is not above label stack) { insert an <ELI,EL> pair below current insertion point move new insertion point up from current insertion point until ((last inserted EL is below the ERLD) AND (ERLD>> 2) AND (new insertion point is EL-capable)) set current insertion point to new insertion point }</artwork></sourcecode> </figure><t><t pn="section-8-6"> When this algorithm is applied to the example described in <xreftarget="usecase"/>,target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>, it will result in ELs being inserted in twopositions,positions; one after the label L_N-D and another after L_N-P3. Thus, the resulting label stack would be <L_N-P3, ELI, EL, L_A-L1, L_N-D, ELI,EL>EL>. </t> </section> <section anchor="deployment"title="Deployment Considerations"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-9"> <name slugifiedName="name-deployment-considerations">Deployment Considerations</name> <t pn="section-9-1"> As long as LSR nodedataplanedata-plane capabilities are limited (number of labels that can bepushed,pushed or number of labels that can be inspected), hop-by-hop load-balancing ofSPRING encapsulatedSPRING-encapsulated flows will require trade-offs. </t><t><t pn="section-9-2"> The entropy label is still a good and usable solution as it allows load-balancing without having to perform deep packet inspection on each LSR:itIt does not seem reasonable to have an LSR inspecting UDP ports within a GRE tunnel carried over a15 label15-label SPRING tunnel. </t><t><t pn="section-9-3"> Due to the limited capacity of reading a deep stack of MPLS labels, multiple ELI/ELs may be required within thestackstack, which directly impacts the capacity of the head-end to push a deep stack: each ELI/EL inserted requires two additional labels to be pushed. </t><t><t pn="section-9-4"> Placement strategies of ELI/ELs are required to find the best trade-off. Multiple criteria could be taken intoaccountaccount, and some level of customization (by the user) is required to accommodate different deployments. Since analyzing the path of each destination to determine the best ELI/EL placement may be time consuming for the control plane, we encourage implementations to find the best trade-off between simplicity, resource consumption, and load-balancing efficiency. </t><t><t pn="section-9-5"> In the future, hardware and software capacity may increasedataplanedata-plane capabilities and may remove some of these limitations, increasing load-balancing capability using entropy labels. </t> </section> <section anchor="other-options"title="Options considered"> <t>Differentnumbered="true" toc="include" removeInRFC="false" pn="section-10"> <name slugifiedName="name-options-considered">Options Considered</name> <t pn="section-10-1">Different options that were considered to arrive at the recommended solution are documented in this section. </t><t><t pn="section-10-2"> These options are detailed here only for historical purposes. </t> <sectiontitle="Singlenumbered="true" toc="include" removeInRFC="false" pn="section-10.1"> <name slugifiedName="name-single-el-at-the-bottom-of-">Single EL at thebottomBottom of thestack"> <t>Stack</name> <t pn="section-10.1-1"> In this option, a single EL is used for the entire label stack. The source LSR S encodes the entropy label at the bottom of the label stack. In the example described in <xreftarget="usecase"/>,target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>, it will result in the label stack at LSR S to look like <L_N-P3, L_A-L1, L_N-D, ELI, EL> <remaining packet header>. Note that the notation in <xreftarget="RFC6790"/>target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> is used to describe the label stack. An issue with this approach is that as the label stack grows due an increase in the number of SIDs, the EL goes correspondingly deeper in the label stack. Hence, transit LSRs have to access a larger number of bytes in the packet header when making forwarding decisions. In the example described in <xreftarget="usecase"/>,target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>, if we consider that the LSR P1 has an ERLD of 3, P1 would load-balance traffic poorly on the parallel links L3 and L4 since the EL is below the ERLD of P1. A load-balanced network design using this approach must ensure that all intermediate LSRs have the capability to read the maximum label stack depth as required for the application that usessource routedsource-routed stacking. </t><t><t pn="section-10.1-2"> This option was rejected since there exist a number of hardware implementationswhichthat have a low maximum readable label depth. Choosing this option can lead to a loss of load-balancing using EL in a significant part of the network when that is a critical requirement in a service-provider network. </t> </section> <sectiontitle="Annumbered="true" toc="include" removeInRFC="false" pn="section-10.2"> <name slugifiedName="name-an-el-per-segment-in-the-st">An EL persegmentSegment in thestack"> <t>Stack</name> <t pn="section-10.2-1"> In this option, each segment/label in the stack can be given its own EL. When load-balancing is required to direct traffic on a segment, the source LSR pushes an <ELI, EL> before pushing the label associated to thissegment .segment. In the example described in <xreftarget="usecase"/>,target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>, the source label stack that is LSR S encodedlabel stackwould be <L_N-P3, ELI, EL, L_A-L1, L_N-D, ELI,EL>EL>, where all the ELs can be the same. Accessing the EL at an intermediate LSR is independent of the depth of the label stack andhencehence, independent of the specific application that usessource routedsource-routed tunnels with label stacking. A drawback is that the depth of the label stack grows significantly, almost 3 times as the number of labels in the label stack. The network design should ensure that source LSRs have the capability to push such a deep label stack. Also, the bandwidth overhead and potential MTU issues of deep label stacks should be considered in the network design. </t><t><t pn="section-10.2-2"> This option was rejected due to the existence of hardware implementations that can push a limited number of labels on the label stack. Choosing this option would result in a hardware requirement to push two additional labels per tunnel label.HenceHence, it would restrict the number of tunnels that can be stacked inaan LSP andhencehence, constrain the types of LSPs that can be created. This was considered unacceptable. </t> </section> <sectiontitle="A re-usablenumbered="true" toc="include" removeInRFC="false" pn="section-10.3"> <name slugifiedName="name-a-reusable-el-for-a-stack-o">A Reusable EL for astackStack oftunnels"> <t>Tunnels</name> <t pn="section-10.3-1"> In thisoptionoption, an LSR that terminates a tunnelre-usesreuses the EL of the terminated tunnel for the next inner tunnel. It does this by storing the EL from the outer tunnel when that tunnel is terminated andre- insertingreinserting it below the next inner tunnel label during thelabel swaplabel-swap operation. The LSR that stacks tunnels should insert an EL below the outermost tunnel. It should not insert ELs for any inner tunnels. Also, the penultimate hop LSR of a segment must not pop the ELI and EL even though they are exposed as the top labels since the terminating LSR of that segment wouldre-usereuse the EL for the next segment. </t><t><t pn="section-10.3-2"> In <xreftarget="usecase"/> above,target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>, the source label stack that is LSR S encodedlabel stackwould be <L_N-P3, ELI, EL, L_A-L1,L_N-D>.L_N-D>. At P1, the outgoing label stack would be <L_N-P3, ELI, EL, L_A-L1, L_N-D> after it has load-balanced to one of the links L3 or L4. AtP3P3, the outgoing label stack would be <L_N-D, ELI, EL>. At P2, the outgoing label stack would be <L_N-D, ELI, EL> and it would load-balance to one of thenexthopnext-hop LSRs P4 or P5. Accessing the EL at an intermediate LSR (e.g., P1) is independent of the depth of the label stack andhencehence, independent of the specificuse-caseuse case to which the label stack is applied. </t><t><t pn="section-10.3-3"> This option was rejected due to the significant change inlabel swaplabel-swap operations that would be required for existing hardware. </t> </section> <sectiontitle="ELnumbered="true" toc="include" removeInRFC="false" pn="section-10.4"> <name slugifiedName="name-el-at-top-of-stack">EL attopTop ofstack"> <t>Stack</name> <t pn="section-10.4-1"> A slight variant of there-usablereusable EL option is to keep the EL at the top of the stack rather than below the tunnel label. In this case, each LSR that is not terminating a segment should continue to keep the received EL at the top of the stack when forwarding the packet along the segment. An LSR that terminates a segment should use the EL from the terminated segment at the top of the stack when forwarding onto the next segment. </t><t><t pn="section-10.4-2"> This option was rejected due to the significant change in label swap operations that would be required for existing hardware. </t> </section> <sectiontitle="ELsnumbered="true" toc="include" removeInRFC="false" pn="section-10.5"> <name slugifiedName="name-els-at-readable-label-stack">ELs atreadable label stack depths"> <t>Readable Label Stack Depths</name> <t pn="section-10.5-1"> In thisoptionoption, the source LSR inserts ELs for tunnels in the label stack at depths such that each LSR along the path that mustload balanceload-balance is able to access at least one EL. Note that the source LSR may have to insert multiple ELs in the label stack at different depths for this to work since intermediate LSRs may have differing capabilities in accessing the depth of a label stack. The label stack depth access value of intermediate LSRs must be known to create such a label stack. How this value is determined is outside the scope of this document. This value can be advertised using a protocol such as an IGP. </t><t><t pn="section-10.5-2"> Applying this method to the example in <xreftarget="usecase"/> above,target="usecase" format="default" sectionFormat="of" derivedContent="Section 3"/>, if LSR P1 needs to have the EL within a depth of 4, then the source label stack that is LSR S encodedlabel stackwould be <L_N-P3, ELI, EL, L_A-L1, L_N-D, ELI,EL>EL>, where all the ELs would typically have the same value. </t><t><t pn="section-10.5-3"> In the case where the ERLD has different values along the path and the LSR that is inserting <ELI, EL> pairs has no limit on how many pairs it can insert, and it knows the appropriate positions in the stack where they should be inserted, this option is the same as the recommended solution in <xreftarget="solution"/>.target="solution" format="default" sectionFormat="of" derivedContent="Section 7"/>. </t><t><t pn="section-10.5-4"> Note that a refinement of thissolutionsolution, which balances the number of pushed labels against the desiredentropyentropy, is the solution described in <xreftarget="solution"/>.target="solution" format="default" sectionFormat="of" derivedContent="Section 7"/>. </t> </section> </section> <sectiontitle="Acknowledgements"> <t>The authors would like to thank John Drake, Loa Andersson, Curtis Villamizar, Greg Mirsky, Markus Jork, Kamran Raza, Carlos Pignataro, Bruno Decraene, Chris Bowers, Nobo Akiya, Daniele Ceccarelli and Joe Clarke for their review comments and suggestions.toc="include" numbered="true" removeInRFC="false" pn="section-11"> <name slugifiedName="name-iana-considerations">IANA Considerations</name> <t pn="section-11-1"> This document has no IANA actions. </t> </section> <sectiontitle="Contributors"> <figure> <artwork> Xiaohu Xu Huawei Email: xuxiaohu@huawei.com Wim Hendrickx Nokia Email: wim.henderickx@nokia.com Gunter Van De Velde Nokia Email: gunter.van_de_velde@nokia.com Acee Lindem Cisco Email: acee@cisco.com </artwork> </figure> </section> <section title="IANA Considerations" toc="default"> <t> This memo includes no request to IANA. Note to RFC Editor: Remove this section before publication. </t> </section> <section title="Security Considerations" toc="default"> <t>Comparedtoc="include" numbered="true" removeInRFC="false" pn="section-12"> <name slugifiedName="name-security-considerations">Security Considerations</name> <t pn="section-12-1">Compared to <xreftarget="RFC6790"/>,target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/>, this document introduces the notion ofERLD, MSDERLD and MSD, and may require an ingress node to push multipleELI/EL.ELIs/ELs. These changesdoesdo not introduce any new security considerations beyond those already listed in <xreftarget="RFC6790"/>.target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/>. </t> </section> </middle> <back> <displayreference target="I-D.ietf-idr-bgp-ls-segment-routing-msd" to="MSD-BGP"/> <displayreference target="I-D.ietf-isis-mpls-elc" to="ISIS-ELC"/> <displayreference target="I-D.ietf-ospf-mpls-elc" to="OSPF-ELC"/> <referencestitle="Normative References"> &RFC2119; &RFC6790; &RFC8174; &SR; &SR-MPLS; </references>pn="section-13"> <name slugifiedName="name-references">References</name> <referencestitle="Informative References"> &ISIS-ELC; &OSPF-ELC; &SR-L2-BUNDLES; &RFC7855; &ISIS-MSD; &OSPF-MSD; &BGP-MSD; </references>pn="section-13.1"> <name slugifiedName="name-normative-references">Normative References</name> <reference anchor="RFC6790" target="https://www.rfc-editor.org/info/rfc6790" quoteTitle="true" derivedAnchor="RFC6790"> <front> <title>The Use of Entropy Labels in MPLS Forwarding</title> <author initials="K." surname="Kompella" fullname="K. Kompella"> <organization showOnFrontPage="true"/> </author> <author initials="J." surname="Drake" fullname="J. Drake"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Amante" fullname="S. Amante"> <organization showOnFrontPage="true"/> </author> <author initials="W." surname="Henderickx" fullname="W. Henderickx"> <organization showOnFrontPage="true"/> </author> <author initials="L." surname="Yong" fullname="L. Yong"> <organization showOnFrontPage="true"/> </author> <date year="2012" month="November"/> <abstract> <t>Load balancing is a powerful tool for engineering traffic across a network. This memo suggests ways of improving load balancing across MPLS networks using the concept of "entropy labels". It defines the concept, describes why entropy labels are useful, enumerates properties of entropy labels that allow maximal benefit, and shows how they can be signaled and used for various applications. This document updates RFCs 3031, 3107, 3209, and 5036. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="6790"/> <seriesInfo name="DOI" value="10.17487/RFC6790"/> </reference> <reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels</title> <author initials="S." surname="Bradner" fullname="S. Bradner"> <organization showOnFrontPage="true"/> </author> <date year="1997" month="March"/> <abstract> <t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author initials="B." surname="Leiba" fullname="B. Leiba"> <organization showOnFrontPage="true"/> </author> <date year="2017" month="May"/> <abstract> <t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RFC8402" target="https://www.rfc-editor.org/info/rfc8402" quoteTitle="true" derivedAnchor="RFC8402"> <front> <title>Segment Routing Architecture</title> <author initials="C." surname="Filsfils" fullname="C. Filsfils" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Previdi" fullname="S. Previdi" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="L." surname="Ginsberg" fullname="L. Ginsberg"> <organization showOnFrontPage="true"/> </author> <author initials="B." surname="Decraene" fullname="B. Decraene"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Litkowski" fullname="S. Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Shakir" fullname="R. Shakir"> <organization showOnFrontPage="true"/> </author> <date year="2018" month="July"/> <abstract> <t>Segment Routing (SR) leverages the source routing paradigm. A node steers a packet through an ordered list of instructions, called "segments". A segment can represent any instruction, topological or service based. A segment can have a semantic local to an SR node or global within an SR domain. SR provides a mechanism that allows a flow to be restricted to a specific topological path, while maintaining per-flow state only at the ingress node(s) to the SR domain.</t> <t>SR can be directly applied to the MPLS architecture with no change to the forwarding plane. A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack of labels. The segment to process is on the top of the stack. Upon completion of a segment, the related label is popped from the stack.</t> <t>SR can be applied to the IPv6 architecture, with a new type of routing header. A segment is encoded as an IPv6 address. An ordered list of segments is encoded as an ordered list of IPv6 addresses in the routing header. The active segment is indicated by the Destination Address (DA) of the packet. The next active segment is indicated by a pointer in the new routing header.</t> </abstract> </front> <seriesInfo name="RFC" value="8402"/> <seriesInfo name="DOI" value="10.17487/RFC8402"/> </reference> <reference anchor="RFC8660" target="https://www.rfc-editor.org/info/rfc8660" quoteTitle="true" derivedAnchor="RFC8660"> <front> <title>Segment Routing with the MPLS Data Plane</title> <author initials="A" surname="Bashandy" fullname="Ahmed Bashandy" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="C" surname="Filsfils" fullname="Clarence" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Previdi" fullname="Stefano Previdi"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Litkowski" fullname="Stephane Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="R" surname="Shakir" fullname="Rob Shakir"> <organization showOnFrontPage="true"/> </author> <date month="December" year="2019"/> </front> <seriesInfo name="RFC" value="8660"/> <seriesInfo name="DOI" value="10.17487/RFC8660"/> </reference> </references> <references pn="section-13.2"> <name slugifiedName="name-informative-references">Informative References</name> <reference anchor="I-D.ietf-isis-mpls-elc" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-isis-mpls-elc-10" derivedAnchor="ISIS-ELC"> <front> <title>Signaling Entropy Label Capability and Entropy Readable Label Depth Using IS-IS</title> <author initials="X" surname="Xu" fullname="Xiaohu Xu"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Kini" fullname="Sriganesh Kini"> <organization showOnFrontPage="true"/> </author> <author initials="P" surname="Psenak" fullname="Peter Psenak"> <organization showOnFrontPage="true"/> </author> <author initials="C" surname="Filsfils" fullname="Clarence Filsfils"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Litkowski" fullname="Stephane Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="M" surname="Bocci" fullname="Matthew Bocci"> <organization showOnFrontPage="true"/> </author> <date month="October" day="21" year="2019"/> <abstract> <t>Multiprotocol Label Switching (MPLS) has defined a mechanism to load- balance traffic flows using Entropy Labels (EL). An ingress Label Switching Router (LSR) cannot insert ELs for packets going into a given Label Switched Path (LSP) unless an egress LSR has indicated via signaling that it has the capability to process ELs, referred to as Entropy Label Capability (ELC), on that tunnel. In addition, it would be useful for ingress LSRs to know each LSR's capability for reading the maximum label stack depth and performing EL-based load- balancing, referred to as Entropy Readable Label Depth (ERLD). This document defines a mechanism to signal these two capabilities using IS-IS. These mechanisms are particularly useful, where label advertisements are done via protocols like IS-IS.</t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-isis-mpls-elc-10"/> <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-isis-mpls-elc-10.txt"/> <refcontent>Work in Progress</refcontent> </reference> <reference anchor="I-D.ietf-ospf-mpls-elc" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-ospf-mpls-elc-12" derivedAnchor="OSPF-ELC"> <front> <title>Signaling Entropy Label Capability and Entropy Readable Label-stack Depth Using OSPF</title> <author initials="X" surname="Xu" fullname="Xiaohu Xu"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Kini" fullname="Sriganesh Kini"> <organization showOnFrontPage="true"/> </author> <author initials="P" surname="Psenak" fullname="Peter Psenak"> <organization showOnFrontPage="true"/> </author> <author initials="C" surname="Filsfils" fullname="Clarence Filsfils"> <organization showOnFrontPage="true"/> </author> <author initials="S" surname="Litkowski" fullname="Stephane Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="M" surname="Bocci" fullname="Matthew Bocci"> <organization showOnFrontPage="true"/> </author> <date month="October" day="25" year="2019"/> <abstract> <t>Multiprotocol Label Switching (MPLS) has defined a mechanism to load- balance traffic flows using Entropy Labels (EL). An ingress Label Switching Router (LSR) cannot insert ELs for packets going into a given tunnel unless an egress LSR has indicated via signaling that it has the capability to process ELs, referred to as Entropy Label Capability (ELC), on that tunnel. In addition, it would be useful for ingress LSRs to know each LSR's capability of reading the maximum label stack depth and performing EL-based load-balancing, referred to as Entropy Readable Label Depth (ERLD). This document defines a mechanism to signal these two capabilities using OSPF and OSPFv3. These mechanism is particularly useful in the environment where Segment Routing (SR) is used, where label advertisements are done via protocols like OSPF and OSPFv3.</t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-ospf-mpls-elc-12"/> <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-ospf-mpls-elc-12.txt"/> <refcontent>Work in Progress</refcontent> </reference> <reference anchor="RFC8668" target="https://www.rfc-editor.org/info/rfc8668" quoteTitle="true" derivedAnchor="RFC8668"> <front> <title>Advertising Layer 2 Bundle Member Link Attributes in IS-IS</title> <author initials="L" surname="Ginsberg" fullname="Les Ginsberg"> <organization showOnFrontPage="true"/> </author> <author initials="A" surname="Bashandy" fullname="Ahmed Bashandy"> <organization showOnFrontPage="true"/> </author> <author initials="C" surname="Filsfils" fullname="Clarence Filsfils"> <organization showOnFrontPage="true"/> </author> <author initials="M" surname="Nanduri" fullname="Mohan Nanduri"> <organization showOnFrontPage="true"/> </author> <author initials="E" surname="Aries" fullname="Ebben Aries"> <organization showOnFrontPage="true"/> </author> <date month="December" year="2019"/> </front> <seriesInfo name="RFC" value="8668"/> <seriesInfo name="DOI" value="10.17487/RFC8668"/> </reference> <reference anchor="RFC7855" target="https://www.rfc-editor.org/info/rfc7855" quoteTitle="true" derivedAnchor="RFC7855"> <front> <title>Source Packet Routing in Networking (SPRING) Problem Statement and Requirements</title> <author initials="S." surname="Previdi" fullname="S. Previdi" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Filsfils" fullname="C. Filsfils" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="B." surname="Decraene" fullname="B. Decraene"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Litkowski" fullname="S. Litkowski"> <organization showOnFrontPage="true"/> </author> <author initials="M." surname="Horneffer" fullname="M. Horneffer"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Shakir" fullname="R. Shakir"> <organization showOnFrontPage="true"/> </author> <date year="2016" month="May"/> <abstract> <t>The ability for a node to specify a forwarding path, other than the normal shortest path, that a particular packet will traverse, benefits a number of network functions. Source-based routing mechanisms have previously been specified for network protocols but have not seen widespread adoption. In this context, the term "source" means "the point at which the explicit route is imposed"; therefore, it is not limited to the originator of the packet (i.e., the node imposing the explicit route may be the ingress node of an operator's network).</t> <t>This document outlines various use cases, with their requirements, that need to be taken into account by the Source Packet Routing in Networking (SPRING) architecture for unicast traffic. Multicast use cases and requirements are out of scope for this document.</t> </abstract> </front> <seriesInfo name="RFC" value="7855"/> <seriesInfo name="DOI" value="10.17487/RFC7855"/> </reference> <reference anchor="RFC8476" target="https://www.rfc-editor.org/info/rfc8476" quoteTitle="true" derivedAnchor="RFC8476"> <front> <title>Signaling Maximum SID Depth (MSD) Using OSPF</title> <author initials="J." surname="Tantsura" fullname="J. Tantsura"> <organization showOnFrontPage="true"/> </author> <author initials="U." surname="Chunduri" fullname="U. Chunduri"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Aldrin" fullname="S. Aldrin"> <organization showOnFrontPage="true"/> </author> <author initials="P." surname="Psenak" fullname="P. Psenak"> <organization showOnFrontPage="true"/> </author> <date year="2018" month="December"/> <abstract> <t>This document defines a way for an Open Shortest Path First (OSPF) router to advertise multiple types of supported Maximum SID Depths (MSDs) at node and/or link granularity. Such advertisements allow entities (e.g., centralized controllers) to determine whether a particular Segment Identifier (SID) stack can be supported in a given network. This document only refers to the Signaling MSD as defined in RFC 8491, but it defines an encoding that can support other MSD types. Here, the term "OSPF" means both OSPFv2 and OSPFv3.</t> </abstract> </front> <seriesInfo name="RFC" value="8476"/> <seriesInfo name="DOI" value="10.17487/RFC8476"/> </reference> <reference anchor="RFC8491" target="https://www.rfc-editor.org/info/rfc8491" quoteTitle="true" derivedAnchor="RFC8491"> <front> <title>Signaling Maximum SID Depth (MSD) Using IS-IS</title> <author initials="J." surname="Tantsura" fullname="J. Tantsura"> <organization showOnFrontPage="true"/> </author> <author initials="U." surname="Chunduri" fullname="U. Chunduri"> <organization showOnFrontPage="true"/> </author> <author initials="S." surname="Aldrin" fullname="S. Aldrin"> <organization showOnFrontPage="true"/> </author> <author initials="L." surname="Ginsberg" fullname="L. Ginsberg"> <organization showOnFrontPage="true"/> </author> <date year="2018" month="November"/> <abstract> <t>This document defines a way for an Intermediate System to Intermediate System (IS-IS) router to advertise multiple types of supported Maximum SID Depths (MSDs) at node and/or link granularity. Such advertisements allow entities (e.g., centralized controllers) to determine whether a particular Segment ID (SID) stack can be supported in a given network. This document only defines one type of MSD: Base MPLS Imposition. However, it defines an encoding that can support other MSD types. This document focuses on MSD use in a network that is Segment Routing (SR) enabled, but MSD may also be useful when SR is not enabled.</t> </abstract> </front> <seriesInfo name="RFC" value="8491"/> <seriesInfo name="DOI" value="10.17487/RFC8491"/> </reference> <reference anchor="I-D.ietf-idr-bgp-ls-segment-routing-msd" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-idr-bgp-ls-segment-routing-msd-09" derivedAnchor="MSD-BGP"> <front> <title>Signaling MSD (Maximum SID Depth) using Border Gateway Protocol Link-State</title> <author initials="J" surname="Tantsura" fullname="Jeff Tantsura"> <organization showOnFrontPage="true"/> </author> <author initials="U" surname="Chunduri" fullname="Uma Chunduri"> <organization showOnFrontPage="true"/> </author> <author initials="K" surname="Talaulikar" fullname="Ketan Talaulikar"> <organization showOnFrontPage="true"/> </author> <author initials="G" surname="Mirsky" fullname="Gregory Mirsky"> <organization showOnFrontPage="true"/> </author> <author initials="N" surname="Triantafillis" fullname="Nikos Triantafillis"> <organization showOnFrontPage="true"/> </author> <date month="October" day="15" year="2019"/> <abstract> <t>This document defines a way for a Border Gateway Protocol Link-State (BGP-LS) speaker to advertise multiple types of supported Maximum SID Depths (MSDs) at node and/or link granularity. Such advertisements allow entities (e.g., centralized controllers) to determine whether a particular Segment Identifier (SID) stack can be supported in a given network.</t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-idr-bgp-ls-segment-routing-msd-09"/> <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp-ls-segment-routing-msd-09.txt"/> <refcontent>Work in Progress</refcontent> </reference> </references> </references> <section numbered="false" toc="include" removeInRFC="false" pn="section-appendix.a"> <name slugifiedName="name-acknowledgements">Acknowledgements</name> <t pn="section-appendix.a-1">The authors would like to thank John Drake, Loa Andersson, Curtis Villamizar, Greg Mirsky, Markus Jork, Kamran Raza, Carlos Pignataro, Bruno Decraene, Chris Bowers, Nobo Akiya, Daniele Ceccarelli, and Joe Clarke for their review, comments, and suggestions. </t> </section> <section numbered="false" toc="include" removeInRFC="false" pn="section-appendix.b"> <name slugifiedName="name-contributors">Contributors</name> <artwork name="" type="" align="left" alt="" pn="section-appendix.b-1"> Xiaohu Xu Huawei Email: xuxiaohu@huawei.com </artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.b-2"> Wim Hendrickx Nokia Email: wim.henderickx@nokia.com </artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.b-3"> Gunter Van de Velde Nokia Email: gunter.van_de_velde@nokia.com </artwork> <artwork name="" type="" align="left" alt="" pn="section-appendix.b-4"> Acee Lindem Cisco Email: acee@cisco.com </artwork> </section> <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.c"> <name slugifiedName="name-authors-addresses">Authors' Addresses</name> <author initials="S" surname="Kini" fullname="Sriganesh Kini"> <organization showOnFrontPage="true"/> <address> <postal> <street/> <city/> <region/> <code/> <country/> </postal> <email>sriganeshkini@gmail.com</email> </address> </author> <author initials="K" surname="Kompella" fullname="Kireeti Kompella"> <organization showOnFrontPage="true">Juniper</organization> <address> <postal> <street/> <city/> <region/> <code/> <country/> </postal> <email>kireeti@juniper.net</email> </address> </author> <author initials="S" surname="Sivabalan" fullname="Siva Sivabalan"> <organization showOnFrontPage="true">Cisco</organization> <address> <postal> <street/> <city/> <region/> <code/> <country/> </postal> <email>msiva@cisco.com</email> </address> </author> <author initials="S" surname="Litkowski" fullname="Stephane Litkowski"> <organization showOnFrontPage="true">Orange</organization> <address> <postal> <street/> <city/> <region/> <code/> <country/> </postal> <email>slitkows.ietf@gmail.com</email> </address> </author> <author initials="R" surname="Shakir" fullname="Rob Shakir"> <organization showOnFrontPage="true">Google</organization> <address> <postal> <street/> <city/> <region/> <code/> <country/> </postal> <email>robjs@google.com</email> </address> </author> <author initials="J" surname="Tantsura" fullname="Jeff Tantsura"> <organization showOnFrontPage="true">Apstra, Inc.</organization> <address> <postal> <street/> <city/> <region/> <code/> <country/> </postal> <email>jefftant.ietf@gmail.com</email> </address> </author> </section> </back> </rfc>