<?xml version="1.0" encoding="US-ASCII"?>

<!-- [rfced] updated by Chris /07/23/19 -->

<?rfc toc="yes"?>
<?rfc tocompact="yes"?>
<?rfc tocdepth="3"?>
<?rfc tocindent="yes"?>
<?rfc symrefs="yes"?>
<?rfc sortrefs="yes"?>
<?rfc comments="yes"?>
<?rfc inline="yes"?>
<?rfc compact="yes"?>
<?rfc subcompact="no"?>

<!DOCTYPE rfc SYSTEM "rfc2629.dtd"> version='1.0' encoding='utf-8'?>
<rfc submissionType="IETF" xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="std" consensus="yes" number="XXXX" ipr="trust200902"> consensus="true" docName="draft-ietf-mpls-sr-over-ip-07" indexInclude="true" ipr="trust200902" number="8663" prepTime="2019-12-04T21:02:22" scripts="Common,Latin" sortRefs="true" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-mpls-sr-over-ip-07" rel="prev"/>
  <link href="https://dx.doi.org/10.17487/rfc8663" rel="alternate"/>
  <link href="urn:issn:2070-1721" rel="alternate"/>
  <front>
    <title abbrev="SR-MPLS over IP">SR-MPLS abbrev="SR-MPLS-over-IP">MPLS Segment Routing over IP</title>
    <seriesInfo name="RFC" value="8663" stream="IETF"/>
    <author fullname="Xiaohu Xu" initials="X." surname="Xu">
      <organization>Alibaba,
      <organization showOnFrontPage="true">Alibaba, Inc</organization>
      <address>
        <email>xiaohu.xxh@alibaba-inc.com</email>
      </address>
    </author>
    <author fullname="Stewart Bryant" initials="S." surname="Bryant ">
      <organization>Huawei</organization> surname="Bryant">
      <organization showOnFrontPage="true">Futurewei Technologies</organization>
      <address>
        <email>stewart.bryant@gmail.com</email>
      </address>
    </author>
    <author fullname="Adrian Farrel" initials="A." surname="Farrel ">
      <organization>Old surname="Farrel">
      <organization showOnFrontPage="true">Old Dog Consulting</organization>
      <address>
        <email>adrian@olddog.co.uk</email>
      </address>
    </author>
    <author fullname="Syed Hassan" initials="S." surname="Hassan">
      <organization>Cisco</organization>
      <organization showOnFrontPage="true">Cisco</organization>
      <address>
        <email>shassan@cisco.com</email>
      </address>
    </author>
    <author fullname="Wim Henderickx" initials="W" surname="Henderickx">
      <organization>Nokia</organization>
      <organization showOnFrontPage="true">Nokia</organization>
      <address>
        <email>wim.henderickx@nokia.com</email>
      </address>
    </author>
    <author fullname="Zhenbin Li" initials="Z." surname="Li">
      <organization>Huawei</organization>
      <organization showOnFrontPage="true">Huawei</organization>
      <address>
        <email>lizhenbin@huawei.com</email>
      </address>
    </author>
    <date year="2019" month="July"/>

<!-- [rfced] Please insert any keywords (beyond those that appear in
the title) for use on https://www.rfc-editor.org/search. -->

<keyword>example</keyword>

    <abstract>
      <t>MPLS month="12" year="2019"/>
    <keyword>MPLS-SR-over-IP, SR-MPLS-over-IP, MPLS-SR-over-UDP, SR-MPLS-over-UDP</keyword>
    <abstract pn="section-abstract">
      <t pn="section-abstract-1">MPLS Segment Routing (SR-MPLS) is an MPLS data plane-based a method of source routing paradigm in which the sender of a packet is allowed to partially
      or completely specify the route the packet takes
      through the network an MPLS data plane by imposing stacked a stack of MPLS labels on the packet.
      packet to specify the path together with any packet-specific
      instructions to be executed on it.

       SR-MPLS can be leveraged to realize a source routing source-routing mechanism across
       MPLS, IPv4, and IPv6 data planes by using an MPLS label stack as a source routing
       source-routing instruction set while making no changes to SR-MPLS
       specifications and interworking with SR-MPLS implementations.</t>

      <t>This
      <t pn="section-abstract-2">This document describes how SR-MPLS capable SR-MPLS-capable routers and IP-only
      routers can seamlessly co-exist coexist and interoperate through the use of
      SR-MPLS label stacks and IP encapsulation/tunneling such as MPLS-in-UDP MPLS-over-UDP
      as defined in RFC 7510.</t>
    </abstract>
    <boilerplate>
      <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1">
        <name slugifiedName="name-status-of-this-memo">Status of This Memo</name>
        <t pn="section-boilerplate.1-1">
            This is an Internet Standards Track document.
        </t>
        <t pn="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of
            RFC 7841.
        </t>
        <t pn="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <eref target="https://www.rfc-editor.org/info/rfc8663" brackets="none"/>.
        </t>
      </section>
      <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2">
        <name slugifiedName="name-copyright-notice">Copyright Notice</name>
        <t pn="section-boilerplate.2-1">
            Copyright (c) 2019 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        </t>
        <t pn="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.
        </t>
      </section>
    </boilerplate>
    <toc>
      <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1">
        <name slugifiedName="name-table-of-contents">Table of Contents</name>
        <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1">
          <li pn="section-toc.1-1.1">
            <t keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.1.2">
              <li pn="section-toc.1-1.1.2.1">
                <t keepWithNext="true" pn="section-toc.1-1.1.2.1.1"><xref derivedContent="1.1" format="counter" sectionFormat="of" target="section-1.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-terminology">Terminology</xref></t>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.2">
            <t keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-use-cases">Use Cases</xref></t>
          </li>
          <li pn="section-toc.1-1.3">
            <t keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-procedures-of-sr-mpls-over-">Procedures of SR-MPLS-over-IP</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2">
              <li pn="section-toc.1-1.3.2.1">
                <t keepWithNext="true" pn="section-toc.1-1.3.2.1.1"><xref derivedContent="3.1" format="counter" sectionFormat="of" target="section-3.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-forwarding-entry-constructi">Forwarding Entry Construction</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.1.2">
                  <li pn="section-toc.1-1.3.2.1.2.1">
                    <t keepWithNext="true" pn="section-toc.1-1.3.2.1.2.1.1"><xref derivedContent="3.1.1" format="counter" sectionFormat="of" target="section-3.1.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-fib-construction-example">FIB Construction Example</xref></t>
                  </li>
                </ul>
              </li>
              <li pn="section-toc.1-1.3.2.2">
                <t keepWithNext="true" pn="section-toc.1-1.3.2.2.1"><xref derivedContent="3.2" format="counter" sectionFormat="of" target="section-3.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-packet-forwarding-procedure">Packet-Forwarding Procedures</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.2.2">
                  <li pn="section-toc.1-1.3.2.2.2.1">
                    <t keepWithNext="true" pn="section-toc.1-1.3.2.2.2.1.1"><xref derivedContent="3.2.1" format="counter" sectionFormat="of" target="section-3.2.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-packet-forwarding-with-penu">Packet Forwarding with Penultimate Hop Popping</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.2.2.2">
                    <t keepWithNext="true" pn="section-toc.1-1.3.2.2.2.2.1"><xref derivedContent="3.2.2" format="counter" sectionFormat="of" target="section-3.2.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-packet-forwarding-without-p">Packet Forwarding without Penultimate Hop Popping</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.2.2.3">
                    <t keepWithNext="true" pn="section-toc.1-1.3.2.2.2.3.1"><xref derivedContent="3.2.3" format="counter" sectionFormat="of" target="section-3.2.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-additional-forwarding-proce">Additional Forwarding Procedures</xref></t>
                  </li>
                </ul>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.4">
            <t keepWithNext="true" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t>
          </li>
          <li pn="section-toc.1-1.5">
            <t keepWithNext="true" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t>
          </li>
          <li pn="section-toc.1-1.6">
            <t keepWithNext="true" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2">
              <li pn="section-toc.1-1.6.2.1">
                <t keepWithNext="true" pn="section-toc.1-1.6.2.1.1"><xref derivedContent="6.1" format="counter" sectionFormat="of" target="section-6.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t>
              </li>
              <li pn="section-toc.1-1.6.2.2">
                <t keepWithNext="true" pn="section-toc.1-1.6.2.2.1"><xref derivedContent="6.2" format="counter" sectionFormat="of" target="section-6.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.7">
            <t keepWithNext="true" pn="section-toc.1-1.7.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgements">Acknowledgements</xref></t>
          </li>
          <li pn="section-toc.1-1.8">
            <t keepWithNext="true" pn="section-toc.1-1.8.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-contributors">Contributors</xref></t>
          </li>
          <li pn="section-toc.1-1.9">
            <t keepWithNext="true" pn="section-toc.1-1.9.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.c"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t>
          </li>
        </ul>
      </section>
    </toc>
  </front>
  <middle>
    <section title="Introduction">
      <t>MPLS numbered="true" toc="include" removeInRFC="false" pn="section-1">
      <name slugifiedName="name-introduction">Introduction</name>
      <t pn="section-1-1">MPLS Segment Routing (SR-MPLS) <xref
      target="RFCYYYY"/> target="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/> is a method of source routing a packet through an
      MPLS data
      plane-based source routing paradigm in which plane. This is achieved by the sender of imposing a packet is
      allowed to stack of MPLS
      labels that partially or completely specify the route path that the packet takes
      through the network by imposing stacked MPLS labels is
      to take and any instructions to be executed on the packet. packet as it passes
      through the network.

      SR-MPLS uses an MPLS label stack to encode a source routing instruction
      set. sequence of source-routing
      instructions. This can be used to realize a source routing source-routing mechanism
      that can operate across MPLS, IPv4, and IPv6 data planes. This approach
      makes no changes to SR-MPLS specifications and allows interworking with
      SR-MPLS implementations. More specifically, the source routing
      instruction set information contained source-routing
      instructions in a source routed source-routed packet could be
      uniformly encoded as an MPLS label stack no matter regardless of whether the
      underlay is IPv4, IPv6 (including Segment Routing for IPv6 (SRv6) [RFC8354]), <xref target="RFC8354" format="default" sectionFormat="of" derivedContent="RFC8354"/>), or MPLS.</t>

      <t>This
      <t pn="section-1-2">This document describes how SR-MPLS capable SR-MPLS-capable routers and IP-only
      routers can seamlessly co-exist coexist and interoperate through the use of
      SR-MPLS label stacks and IP encapsulation/tunneling such as MPLS-in-UDP MPLS-over-UDP
      <xref target="RFC7510"/>.</t>

      <t><xref target="usecases"/> target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>.</t>
      <t pn="section-1-3"><xref target="usecases" format="default" sectionFormat="of" derivedContent="Section 2"/> describes various use
      cases for the tunneling SR-MPLS over IP. <xref target="procs"/> target="procs" format="default" sectionFormat="of" derivedContent="Section 3"/> describes a typical application scenario and how the
      packet forwarding happens.</t>
      <section anchor="Abbreviations_Terminology" title="Terminology">
        <t>This numbered="true" toc="include" removeInRFC="false" pn="section-1.1">
        <name slugifiedName="name-terminology">Terminology</name>
        <t pn="section-1.1-1">This memo makes use of the terms defined in <xref
        target="RFC3031"/> target="RFC3031" format="default" sectionFormat="of" derivedContent="RFC3031"/> and <xref
        target="RFCYYYY"/>.</t>

        <t>The target="RFC8660" format="default" sectionFormat="of" derivedContent="RFC8660"/>.</t>
        <t pn="section-1.1-2">
    The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
        "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>",
    "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>",
    "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>",
    "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and
        "OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document are to be
    interpreted as described in BCP
        14 BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xref target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all capitals, as
    shown here.</t> here.
        </t>
      </section>
    </section>
    <section anchor="usecases" title="Use Cases">
      <t>Tunneling numbered="true" toc="include" removeInRFC="false" pn="section-2">
      <name slugifiedName="name-use-cases">Use Cases</name>
      <t pn="section-2-1">Tunneling SR-MPLS using IPv4 and/or IPv6 (including SRv6) tunnels is
      useful at least in the use cases listed below. In all cases, this can be
      enabled using an IP tunneling mechanism such as MPLS-in-UDP MPLS-over-UDP as described
      in <xref target="RFC7510"/>. target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>. The tunnel selected MUST <bcp14>MUST</bcp14> have its remote end
      point
      endpoint (destination) address equal to the address of the next SR-MPLS
      capable
      node capable of SR-MPLS identified as being on the SR path (i.e., the
      egress of the active segment). The local end point endpoint (source) address is
      set to an address of the encapsulating node. <xref target="RFC7510"/> target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>
      gives further advice on how to set the source address if the UDP
      zero-checksum mode is used with MPLS-in-UDP. MPLS-over-UDP. Using UDP as the
      encapsulation may be particularly beneficial because it is agnostic of
      the underlying transport.</t>

      <t><list style="symbols">
          <t>Incremental
      <ul spacing="normal" bare="false" empty="false" pn="section-2-2">
        <li pn="section-2-2.1">
          <t pn="section-2-2.1.1">Incremental deployment of the SR-MPLS technology may be
          facilitated by tunneling SR-MPLS packets across parts of a network
          that are not SR-MPLS as shown in <xref target="islandsFig"/>. target="islandsFig" format="default" sectionFormat="of" derivedContent="Figure 1"/>. This
          demonstrates how islands of SR-MPLS may be connected across a legacy
          network. It may be particularly useful for joining sites (such as
          data centers).

          </t>
          <figure anchor="islandsFig"
              title="SR-MPLS in UDP align="left" suppress-title="false" pn="figure-1">
            <name slugifiedName="name-sr-mpls-over-udp-to-tunnel-">SR-MPLS-over-UDP to Tunnel Between between SR-MPLS Sites">
              <artwork><![CDATA[ Sites</name>
            <artwork name="" type="" align="left" alt="" pn="section-2-2.1.2.1">
                   ________________________
    _______       (                        )       _______
   (       )     (        IP Network        )     (       )
  ( SR-MPLS )   (                            )   ( SR-MPLS )
 (  Network  ) (                              ) (  Network  )
(         --------                          --------         )
(        | Border |    SR-in-UDP Tunnel    | Border |        )
(        | Router |========================| Router |        )
(        |   R1   |                        |   R2   |        )
(         --------                          --------         )
 (           ) (                              ) (           )
  (         )   (                            )   (         )
   (_______)     (                          )     (_______)
                  (________________________)
            ]]></artwork>
            </figure></t>

          <t>If
</artwork>
          </figure>
        </li>
        <li pn="section-2-2.2">If the encoding of entropy (<xref target="RFC6790"/> <xref target="RFC6790" format="default" sectionFormat="of" derivedContent="RFC6790"/> is desired, IP
          tunneling IP-tunneling mechanisms that allow the
        encoding of entropy, such as
          MPLS-in-UDP MPLS-over-UDP encapsulation <xref target="RFC7510"/> target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/> where the source port of the UDP
        header is used as an entropy field, may be used to maximize the
        utilization of ECMP Equal-Cost Multipath (ECMP) and/or LAG, Link Aggregation
        Groups (LAGs), especially when it is difficult to make use of the entropy label
        entropy-label mechanism. This is to be contrasted with <xref target="RFC4023" /> format="default" sectionFormat="of" derivedContent="RFC4023"/> where MPLS-in-IP MPLS-over-IP does not provide
        for an entropy mechanism. Refer to <xref
          target="ENTROPY-LABEL"/>) target="RFC8662" format="default" sectionFormat="of" derivedContent="RFC8662"/>) for more discussion about using entropy labels in SR-MPLS.</t>

          <t>Tunneling
        SR-MPLS.</li>
        <li pn="section-2-2.3">
          <t pn="section-2-2.3.1">Tunneling MPLS over IP provides a technology that enables SR Segment
          Routing (SR) in an IPv4 and/or IPv6 network where the routers do not
          support SRv6 capabilities <xref target="IPV6-SEGMENT"/> target="I-D.ietf-6man-segment-routing-header" format="default" sectionFormat="of" derivedContent="IPv6-SRH"/> and
          where MPLS forwarding is not an option. This is shown in <xref
          target="transitionFig"/>. target="transitionFig" format="default" sectionFormat="of" derivedContent="Figure 2"/>. </t>
          <figure anchor="transitionFig"
              title="SR-MPLS align="left" suppress-title="false" pn="figure-2">
            <name slugifiedName="name-sr-mpls-enabled-within-an-i">SR-MPLS Enabled Within within an IP Network">
              <artwork><![CDATA[ Network</name>
            <artwork name="" type="" align="left" alt="" pn="section-2-2.3.2.1">
                __________________________________
             __(           IP Network             )__
          __(                                        )__
         (               --        --        --         )
    --------   --   --  |SR|  --  |SR|  --  |SR|  --   --------
   | Ingress| |IR| |IR| |  | |IR| |  | |IR| |  | |IR| | Egress |
--->| Egress|
--&gt;| Router |===========|  |======|  |======|  |======| Router |---> Router|--&gt;
   |   SR   | |  | |  | |  | |  | |  | |  | |  | |  | |   SR  |
    --------   --   --  |  |  --  |  |  --  |  |  --   --------
         (__             --        --        --       __)
            (__                                    __)
               (__________________________________)

  Key:
    IR : IP-only Router
    SR : SR-MPLS-capable Router
    == : SR-MPLS in UDP SR-MPLS-over-UDP Tunnel

            ]]></artwork>
            </figure></t>

        </list></t>
</artwork>
          </figure>
        </li>
      </ul>
    </section>
    <section anchor="procs" title="Procedures numbered="true" toc="include" removeInRFC="false" pn="section-3">
      <name slugifiedName="name-procedures-of-sr-mpls-over-">Procedures of SR-MPLS over IP">
      <t>This SR-MPLS-over-IP</name>
      <t pn="section-3-1">This section describes the construction of forwarding information
      base (FIB) entries and the forwarding behavior that allow the deployment
      of SR-MPLS when some routers in the network are IP only (i.e., do not
      support SR-MPLS). Note that the examples in Sections <xref target="fibeg"/> target="fibeg" format="counter" sectionFormat="of" derivedContent="3.1.1"/> and <xref target="fwd"/> target="fwd" format="counter" sectionFormat="of" derivedContent="3.2"/> assume that
      OSPF or ISIS IS-IS is enabled: enabled; in fact, other mechanisms of discovery and
      advertisement could be used including other routing protocols (such as
      BGP) or a central controller.</t>
      <section anchor="fib" title="Forwarding numbered="true" toc="include" removeInRFC="false" pn="section-3.1">
        <name slugifiedName="name-forwarding-entry-constructi">Forwarding Entry Construction">
        <t>This sub-section Construction</name>
        <t pn="section-3.1-1">This subsection describes the how to construct the forwarding
        information base (FIB) entry on an SR-MPLS-capable router when some or
        all of the next-hops next hops along the shortest path towards a prefix Segment
        Identifier (prefix-SID) (Prefix-SID) are IP-only routers. <xref target="fibeg" /> format="default" sectionFormat="of" derivedContent="Section 3.1.1"/>
        provides a concrete example of how the process applies when using OSPF
        or ISIS.</t>

        <t>Consider IS-IS.</t>
        <t pn="section-3.1-2">Consider router A that receives a labeled packet with top label
        L(E) that corresponds to the prefix-SID Prefix-SID SID(E) of prefix P(E)
        advertised by router E. Suppose the i-th next-hop router (termed NHi)
        along the shortest path from router A toward SID(E) is not SR-MPLS
        capable while both routers A and E are SR-MPLS capable. The following
        processing steps apply:</t>

        <t>
          <list style="symbols">
            <t>Router
        <ul spacing="normal" bare="false" empty="false" pn="section-3.1-3">
          <li pn="section-3.1-3.1">Router E is SR-MPLS capable, so it advertises a Segment Routing
            Global Block (SRGB). The SRGB is defined in <xref target="RFC8402"/>. target="RFC8402" format="default" sectionFormat="of" derivedContent="RFC8402"/>.
            There are a number of ways that the advertisement can be achieved
            including IGPs, BGP, and configuration/management protocols. For
            example, see <xref target="DATACENTER-GATEWAY" />.</t>

            <t>When target="I-D.ietf-bess-datacenter-gateway" format="default" sectionFormat="of" derivedContent="DC-GATEWAY"/>.</li>
          <li pn="section-3.1-3.2">When Router E advertises the prefix-SID Prefix-SID SID(E) of prefix P(E) P(E), it MUST <bcp14>MUST</bcp14>
also advertise the encapsulation egress endpoint address and the tunnel encapsulation type of any
tunnel used to reach E.  This information is flooded domain wide.</t>

            <t>If wide.
</li>
          <li pn="section-3.1-3.3">If A and E are in different routing domains domains, then the information MUST <bcp14>MUST</bcp14>
            be flooded into both domains. How this is achieved depends on the
            advertisement mechanism being used. The objective is that router A
            knows the characteristics of router E that originated the
            advertisement of SID(E).</t>

            <t>Router SID(E).</li>
          <li pn="section-3.1-3.4">
            <t pn="section-3.1-3.4.1">Router A programs the FIB entry for prefix P(E) corresponding
            to the SID(E) according to whether a pop or swap action is advertised
            for the prefix. The resulting action may be:
              <list style="symbols">
                <t>pop
            </t>
            <ul spacing="normal" bare="false" empty="false" pn="section-3.1-3.4.2">
              <li pn="section-3.1-3.4.2.1">pop the top label</t>
                <t>swap label</li>
              <li pn="section-3.1-3.4.2.2">swap the top label to a value equal to SID(E) plus the
                  lower bound of the SRGB of E</t>
              </list></t>
          </list></t>

        <t>Once E</li>
            </ul>
          </li>
        </ul>
        <t pn="section-3.1-4">Once constructed, the FIB can be used by a router to tell it how to
        process packets. It encapsulates the packets according to the
        appropriate encapsulation advertised for the segment and then it sends
        the packets towards the next hop NHi.</t>
        <section anchor="fibeg" title="FIB numbered="true" toc="include" removeInRFC="false" pn="section-3.1.1">
          <name slugifiedName="name-fib-construction-example">FIB Construction Example">
          <t>This Example</name>
          <t pn="section-3.1.1-1">This section is non-normative and provides a worked example of how
          a FIB might be constructed using OSPF and ISIS IS-IS extensions. It is based
          on the process described in <xref target="fib" />.</t>

          <t>
            <list style="symbols">
              <t>Router format="default" sectionFormat="of" derivedContent="Section 3.1"/>.</t>
          <ul spacing="normal" bare="false" empty="false" pn="section-3.1.1-2">
            <li pn="section-3.1.1-2.1">Router E is SR-MPLS capable, so it advertises a Segment Routing
              Global Block (SRGB) using
              <xref target="OSPF-EXTENSIONS"/> target="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/> or
              <xref target="ISIS-EXTENSIONS"/>.</t>

              <t>When target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/>.</li>
            <li pn="section-3.1.1-2.2">When Router E advertises the prefix-SID Prefix-SID SID(E) of prefix P(E) P(E),
              it also advertises the encapsulation endpoint address and the tunnel
              type of any tunnel used to reach E using
              <xref target="ISIS-ENCAP"/> target="I-D.ietf-isis-encapsulation-cap" format="default" sectionFormat="of" derivedContent="ISIS-ENCAP"/> or
              <xref target="OSPF-ROUTER"/>.</t>

              <t>If target="I-D.ietf-ospf-encapsulation-cap" format="default" sectionFormat="of" derivedContent="OSPF-ENCAP"/>.</li>
            <li pn="section-3.1.1-2.3">
              <t pn="section-3.1.1-2.3.1">If A and E are in different domains domains, then the information is
              flooded into both domains and any intervening domains.
                <list style="symbols">
                  <t>The
              </t>
              <ul spacing="normal" bare="false" empty="false" pn="section-3.1.1-2.3.2">
                <li pn="section-3.1.1-2.3.2.1">The OSPF Tunnel Encapsulation Encapsulations TLV
                  <xref target="OSPF-ROUTER"/> target="I-D.ietf-ospf-encapsulation-cap" format="default" sectionFormat="of" derivedContent="OSPF-ENCAP"/> or the ISIS IS-IS
                  Tunnel Encapsulation Type sub-TLV
                  <xref target="ISIS-ENCAP"/> target="I-D.ietf-isis-encapsulation-cap" format="default" sectionFormat="of" derivedContent="ISIS-ENCAP"/> is flooded
                  domain-wide.</t>

                  <t>The
                  domain wide.</li>
                <li pn="section-3.1.1-2.3.2.2">The OSPF SID/label range SID/Label Range TLV
                  <xref target="OSPF-EXTENSIONS"/> target="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/> or
                  the ISIS IS-IS SR-Capabilities Sub-TLV sub-TLV
                  <xref target="ISIS-EXTENSIONS"/> target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/> is
                  advertised domain-wide domain wide so that router A knows the
                  characteristics of router E.</t>

                  <t>When E.</li>
                <li pn="section-3.1.1-2.3.2.3">
                  <t pn="section-3.1.1-2.3.2.3.1">When router E advertises the prefix P(E):
                    <list style="symbols">
                      <t>If
                  </t>
                  <ul spacing="normal" bare="false" empty="false" pn="section-3.1.1-2.3.2.3.2">
                    <li pn="section-3.1.1-2.3.2.3.2.1">If router E is running ISIS IS-IS, it uses the extended
                      reachability TLV (TLVs 135, 235, 236, 237) and associates
                      the IPv4/IPv6 or IPv4/IPv6 source router Source Router ID sub-TLV(s)
                      <xref target="RFC7794"/>.</t>

                      <t>If target="RFC7794" format="default" sectionFormat="of" derivedContent="RFC7794"/>.</li>
                    <li pn="section-3.1.1-2.3.2.3.2.2">If router E is running OSPF OSPF, it uses the OSPFv2 Extended
                      Prefix Opaque LSA Link-State Advertisement (LSA) <xref target="RFC7684"/> target="RFC7684" format="default" sectionFormat="of" derivedContent="RFC7684"/> and sets the
                      flooding scope to AS-wide.</t>
                    </list></t>

                  <t>If Autonomous System (AS) wide.</li>
                  </ul>
                </li>
                <li pn="section-3.1.1-2.3.2.4">If router E is running ISIS IS-IS and advertises the ISIS
                  capability IS-IS
                  Router CAPABILITY TLV (TLV 242) <xref target="RFC7981"/>, target="RFC7981" format="default" sectionFormat="of" derivedContent="RFC7981"/>, it sets the
                  "router-ID"
                  "Router ID" field to a valid value or includes an IPV6 IPv6
                  TE router-ID Router ID sub-TLV (TLV 12), or it does both. The "S" bit
                  (flooding scope) of the ISIS capability IS-IS Router CAPABILITY TLV (TLV 242) is set
                  to "1" .</t>
                </list></t>

              <t>Router "1".</li>
              </ul>
            </li>
            <li pn="section-3.1.1-2.4">
              <t pn="section-3.1.1-2.4.1">Router A programs the FIB entry for prefix P(E) corresponding
              to the SID(E) according to whether a pop or swap action is advertised
              for the prefix as follows:
                <list style="symbols">
                  <t>If
              </t>
              <ul spacing="normal" bare="false" empty="false" pn="section-3.1.1-2.4.2">
                <li pn="section-3.1.1-2.4.2.1">
                  <t pn="section-3.1.1-2.4.2.1.1">If the NP flag No-PHP (NP) Flag in OSPF or the P flag Persistent (P) Flag in ISIS IS-IS is clear:
                    <list style="empty">
                      <t>pop
                  </t>
                  <ul empty="true" spacing="normal" bare="false" pn="section-3.1.1-2.4.2.1.2">
                    <li pn="section-3.1.1-2.4.2.1.2.1">pop the top label</t>
                    </list></t>

                  <t>If label</li>
                  </ul>
                </li>
                <li pn="section-3.1.1-2.4.2.2">
                  <t pn="section-3.1.1-2.4.2.2.1">If the NP flag No-PHP (NP) Flag in OSPF or the P flag Persistent (P) Flag in ISIS IS-IS is set:
                    <list style="empty">
                      <t>swap
                  </t>
                  <ul empty="true" spacing="normal" bare="false" pn="section-3.1.1-2.4.2.2.2">
                    <li pn="section-3.1.1-2.4.2.2.2.1">swap the top label to a value equal to SID(E) plus the
                      lower bound of the SRGB of E</t>
                    </list></t>

                </list></t>

            </list></t>

          <t>When E</li>
                  </ul>
                </li>
              </ul>
            </li>
          </ul>
          <t pn="section-3.1.1-3">When forwarding the packet according to the constructed FIB entry entry, the
          router encapsulates the packet according to the encapsulation as advertised
          using the mechanisms described in <xref target="ISIS-ENCAP"/> target="I-D.ietf-isis-encapsulation-cap" format="default" sectionFormat="of" derivedContent="ISIS-ENCAP"/>
          or <xref target="OSPF-ROUTER"/>). target="I-D.ietf-ospf-encapsulation-cap" format="default" sectionFormat="of" derivedContent="OSPF-ENCAP"/>. It then sends the
          packets towards the next hop NHi.</t>

          <t>Note
          <t pn="section-3.1.1-4">Note that <xref target="RFC7510"/> target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/> specifies the use of port number 6635
          to indicate that the payload of a UDP packet is MPLS, and port number 6636 for
          MPLS-in-UDP
          MPLS-over-UDP utilizing DTLS. However, <xref target="ISIS-ENCAP"/> target="I-D.ietf-isis-encapsulation-cap" format="default" sectionFormat="of" derivedContent="ISIS-ENCAP"/>
          and <xref target="OSPF-ROUTER"/> target="I-D.ietf-ospf-encapsulation-cap" format="default" sectionFormat="of" derivedContent="OSPF-ENCAP"/> provide dynamic protocol
          mechanisms to configure the use of any Dynamic Port for a tunnel that uses UDP
          encapsulation. Nothing in this document prevents the use of an IGP or any other
          mechanism to negotiate the use of a Dynamic Port when UDP encapsulation is used
          for SR-MPLS, but if no such mechanism is used used, then the port numbers specified in
          <xref target="RFC7510"/> target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/> are used.</t>
        </section>
      </section>
      <section anchor="fwd" title="Packet Forwarding Procedures">
        <t><xref target="RFC7510"/> numbered="true" toc="include" removeInRFC="false" pn="section-3.2">
        <name slugifiedName="name-packet-forwarding-procedure">Packet-Forwarding Procedures</name>
        <t pn="section-3.2-1"><xref target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/> specifies an IP-based encapsulation for
        MPLS, i.e., MPLS-in-UDP. MPLS-over-UDP. This approach is applicable where IP-based
        encapsulation for MPLS is required and further fine-grained load
        balancing of MPLS packets over IP networks over Equal-Cost Multipath
        (ECMP)
        ECMP and/or Link Aggregation Groups (LAGs) LAGs is also required. This
        section provides details about the forwarding procedure when
        UDP encapsulation is adopted for SR-MPLS over IP. SR-MPLS-over-IP. Other encapsulation
        and tunnelling tunneling mechanisms can be applied using similar techniques,
        but for clarity clarity, this section uses UDP encapsulation as the exemplar.</t>

        <t>Nodes
        <t pn="section-3.2-2">Nodes that are SR-MPLS capable can process SR-MPLS packets. Not all
        of the nodes in an SR-MPLS domain are SR-MPLS capable. Some nodes may
        be "legacy routers" that cannot handle SR-MPLS packets but can forward
        IP packets. An SR-MPLS-capable A node MAY capable of SR-MPLS <bcp14>MAY</bcp14> advertise its capabilities
        using the IGP as described in <xref target="procs"/>. target="procs" format="default" sectionFormat="of" derivedContent="Section 3"/>. There are six
        types of node nodes in an SR-MPLS domain: <list style="symbols">
            <t>Domain </t>
        <ul spacing="normal" bare="false" empty="false" pn="section-3.2-3">
          <li pn="section-3.2-3.1">Domain ingress nodes that receive packets and encapsulate them
            for transmission across the domain. Those packets may be any
            payload protocol including native IP packets or packets that are
            already MPLS encapsulated.</t>

            <t>Legacy encapsulated.</li>
          <li pn="section-3.2-3.2">Legacy transit nodes that are IP routers but that are not
          SR-MPLS capable (i.e., are not able to perform segment
            routing).</t>

            <t>Transit Segment
          Routing).</li>
          <li pn="section-3.2-3.3">Transit nodes that are SR-MPLS capable but that are not
            identified by a SID in the SID stack.</t>

            <t>Transit stack.</li>
          <li pn="section-3.2-3.4">Transit nodes that are SR-MPLS capable and need to perform
            SR-MPLS routing because they are identified by a SID in the SID
            stack.</t>

            <t>The
            stack.</li>
          <li pn="section-3.2-3.5">The penultimate SR-MPLS capable node capable of SR-MPLS on the path that processes
            the last SID on the stack on behalf of the domain egress node.</t>

            <t>The node.</li>
          <li pn="section-3.2-3.6">The domain egress node that forwards the payload packet for
            ultimate delivery.</t>
          </list></t> delivery.</li>
        </ul>
        <section anchor="phpfwd"
                 title="Packet numbered="true" toc="include" removeInRFC="false" pn="section-3.2.1">
          <name slugifiedName="name-packet-forwarding-with-penu">Packet Forwarding with Penultimate Hop Popping">
          <t>The Popping</name>
          <t pn="section-3.2.1-1">The description in this section assumes that the label associated
          with each prefix-SID Prefix-SID is advertised by the owner of the prefix-SID Prefix-SID as
          a Penultimate Hop Popping Hop-Popping (PHP) label. That is, if one of the IGP
          flooding mechanisms is used, the NP flag NP-Flag in OSPF or the P flag P-Flag in
          ISIS
          IS-IS associated with the prefix-SID Prefix-SID is not set.</t>
          <figure anchor="phpfwdeg" title="Packet Forwarding align="left" suppress-title="false" pn="figure-3">
            <name slugifiedName="name-packet-forwarding-example-w">Packet-Forwarding Example with PHP"> PHP</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt="" pn="section-3.2.1-2.1">
 +-----+       +-----+       +-----+       +-----+       +-----+
 |  A  +-------+  B  +-------+  C  +-------+  D  +-------+  H  |
 +-----+       +--+--+       +--+--+       +--+--+       +-----+
                  |             |             |
                  |             |             |
               +--+--+       +--+--+       +--+--+
               |  E  +-------+  F  +-------+  G  |
               +-----+       +-----+       +-----+

      +--------+
      |IP(A->E)|
      |IP(A-&gt;E)|
      +--------+                 +--------+        +--------+
      |  UDP   |                 |IP(E->G)|        |IP(G->H)|                 |IP(E-&gt;G)|        |IP(G-&gt;H)|
      +--------+                 +--------+        +--------+
      |  L(G)  |                 |  UDP   |        |  UDP   |
      +--------+                 +--------+        +--------+
      |  L(H)  |                 |  L(H)  |        |Exp Null|
      +--------+                 +--------+        +--------+
      | Packet |     --->     ---&gt;        | Packet |  --->  ---&gt;  | Packet |
      +--------+                 +--------+        +--------+
            ]]></artwork>
</artwork>
          </figure>

          <t>In
          <t pn="section-3.2.1-3">In the example shown in <xref target="phpfwdeg"/>, target="phpfwdeg" format="default" sectionFormat="of" derivedContent="Figure 3"/>, assume that
          routers A, E, G G, and H are SR-MPLS-capable capable of SR-MPLS while the remaining
          routers (B, C, D D, and F) are only capable of forwarding IP packets.
          Routers A, E, G, and H advertise their Segment Routing related
          information, such as via IS-IS or OSPF.</t>

          <t>Now
          <t pn="section-3.2.1-4">Now assume that router A (the Domain ingress) wants to send a
          packet to router H (the Domain egress) via the explicit path
          {E-&gt;G-&gt;H}. Router A will impose an MPLS label stack on the
          packet that corresponds to that explicit path. Since the next hop
          toward router E is only IP-capable IP capable (B is a legacy transit node),
          router A replaces the top label (that indicated router E) with a
          UDP-based tunnel for MPLS (i.e., MPLS-over-UDP <xref
          target="RFC7510"/>) target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>) to router E and then sends the packet. In other
          words, router A pops the top label and then encapsulates the MPLS
          packet in a UDP tunnel to router E.</t>

          <t>When
          <t pn="section-3.2.1-5">When the IP-encapsulated MPLS packet arrives at router E (which
          is an SR-MPLS-capable a transit node), node capable of SR-MPLS), router E strips the IP-based
          tunnel header and then processes the decapsulated MPLS packet. The top
          label indicates that the packet must be forwarded toward router G.
          Since the next hop toward router G is only IP-capable, IP capable, router E
          replaces the current top label with an MPLS-over-UDP tunnel toward
          router G and sends it out. That is, router E pops the top label and
          then encapsulates the MPLS packet in a UDP tunnel to router G.</t>

          <t>When
          <t pn="section-3.2.1-6">When the packet arrives at router G, router G will strip the
          IP-based tunnel header and then process the decapsulated MPLS
          packet. The top label indicates that the packet must be forwarded
          toward router H. Since the next hop toward router H is only
          IP-capable
          IP capable (D is a legacy transit router), router G would replace
          the current top label with an MPLS-over-UDP tunnel toward router H
          and send it out. However, since router G reaches the bottom of the
          label stack (G is the penultimate SR-MPLS capable node capable of SR-MPLS on the path) path),
          this would leave the original packet that router A wanted to send to
          router H encapsulated in UDP as if it was MPLS (i.e., with a UDP
          header and destination port indicating MPLS) even though the
          original packet could have been any protocol. That is, the final
          SR-MPLS has been popped exposing the payload packet.</t>

          <t>To
          <t pn="section-3.2.1-7">To handle this, when a router (here it is router G) pops the
          final SR-MPLS label, it inserts an explicit null NULL label <xref
          target="RFC3032"/> target="RFC3032" format="default" sectionFormat="of" derivedContent="RFC3032"/> before encapsulating the packet in an
          MPLS-over-UDP tunnel toward router H and sending it out. That is,
          router G pops the top label, discovers it has reached the bottom of
          stack, pushes an explicit null NULL label, and then encapsulates the MPLS
          packet in a UDP tunnel to router H.</t>
        </section>
        <section anchor="nophpfwd"
                 title="Packet numbered="true" toc="include" removeInRFC="false" pn="section-3.2.2">
          <name slugifiedName="name-packet-forwarding-without-p">Packet Forwarding without Penultimate Hop Popping">
          <t><xref target="nophpfwdeg"/> Popping</name>
          <t pn="section-3.2.2-1"><xref target="nophpfwdeg" format="default" sectionFormat="of" derivedContent="Figure 4"/> demonstrates the packet walk in the
          case where the label associated with each prefix-SID Prefix-SID advertised by
          the owner of the prefix-SID Prefix-SID is not a Penultimate Hop Popping Hop-Popping (PHP)
          label (e.g., the the NP flag NP-Flag in OSPF or the P flag P-Flag in ISIS IS-IS
          associated with the prefix-SID Prefix-SID is set). Apart from the PHP function function,
          the roles of the routers is are unchanged from <xref
          target="phpfwd"/>.</t> target="phpfwd" format="default" sectionFormat="of" derivedContent="Section 3.2.1"/>.</t>
          <figure anchor="nophpfwdeg"
                  title="Packet Forwarding align="left" suppress-title="false" pn="figure-4">
            <name slugifiedName="name-packet-forwarding-example-wi">Packet-Forwarding Example without PHP"> PHP</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt="" pn="section-3.2.2-2.1">
 +-----+       +-----+       +-----+        +-----+        +-----+
 |  A  +-------+  B  +-------+  C  +--------+  D  +--------+  H  |
 +-----+       +--+--+       +--+--+        +--+--+        +-----+
                  |             |              |
                  |             |              |
               +--+--+       +--+--+        +--+--+
               |  E  +-------+  F  +--------+  G  |
               +-----+       +-----+        +-----+

      +--------+
      |IP(A->E)|
      |IP(A-&gt;E)|
      +--------+                 +--------+
      |  UDP   |                 |IP(E->G)|                 |IP(E-&gt;G)|
      +--------+                 +--------+        +--------+
      |  L(E)  |                 |  UDP   |        |IP(G->H)|        |IP(G-&gt;H)|
      +--------+                 +--------+        +--------+
      |  L(G)  |                 |  L(G)  |        |  UDP   |
      +--------+                 +--------+        +--------+
      |  L(H)  |                 |  L(H)  |        |  L(H)  |
      +--------+                 +--------+        +--------+
      | Packet |     --->     ---&gt;        | Packet |  --->  ---&gt;  | Packet |
      +--------+                 +--------+        +--------+
            ]]></artwork>
</artwork>
          </figure>

          <t>As
          <t pn="section-3.2.2-3">As can be seen from the figure, the SR-MPLS label for each
          segment is left in place until the end of the segment where it is
          popped and the next instruction is processed.</t>
        </section>
        <section anchor="addnlfwd" title="Additional numbered="true" toc="include" removeInRFC="false" pn="section-3.2.3">
          <name slugifiedName="name-additional-forwarding-proce">Additional Forwarding Procedures">
          <t><list style="hanging">
              <t hangText="Non-MPLS Interfaces:">Although Procedures</name>
          <dl newline="false" spacing="normal" pn="section-3.2.3-1">
            <dt pn="section-3.2.3-1.1">Non-MPLS Interfaces:</dt>
            <dd pn="section-3.2.3-1.2">Although the description in
              the previous two sections is based on the use of prefix-SIDs, Prefix-SIDs,
              tunneling SR-MPLS packets is useful when the top label of a
              received SR-MPLS packet indicates an adjacency-SID Adjacency SID and the
              corresponding adjacent node to that adjacency-SID Adjacency SID is not capable
              of MPLS forwarding but can still process SR-MPLS packets. In
              this scenario scenario, the top label would be replaced by an IP tunnel
              toward that adjacent node and then forwarded over the
              corresponding link indicated by the adjacency-SID.</t>

              <t hangText="When to use IP-based Tunnels:">The Adjacency SID.</dd>
            <dt pn="section-3.2.3-1.3">When to Use IP-Based Tunnels:</dt>
            <dd pn="section-3.2.3-1.4">The description in
              the previous two sections is based on the assumption that
              an MPLS-over-UDP tunnel is used when the nexthop next hop towards the next
              segment is not MPLS-enabled. MPLS enabled. However, even in the case where the
              nexthop
              next hop towards the next segment is MPLS-capable, MPLS capable, an
              MPLS-over-UDP tunnel towards the next segment could still be
              used instead due to local policies. For instance, in the example
              as described in <xref target="nophpfwdeg"/>, target="nophpfwdeg" format="default" sectionFormat="of" derivedContent="Figure 4"/>, assume F is now an
              SR-MPLS-capable a
	      transit node capable of SR-MPLS while all the other assumptions
              remain unchanged: unchanged; since F is not identified by a SID in the stack
              and an MPLS-over-UDP tunnel is preferred to an MPLS LSP
              according to local policies, router E replaces the current
              top label with an MPLS-over-UDP tunnel toward router G and send sends
              it out. (Note that if an MPLS LSP was preferred, the packet
              would be forwarded as native SR-MPLS.)</t>

              <t hangText="IP SR-MPLS.)</dd>
            <dt pn="section-3.2.3-1.5">IP Header Fields:">When Fields:</dt>
            <dd pn="section-3.2.3-1.6">When encapsulating an MPLS
              packet in UDP, the resulting packet is further encapsulated in
              IP for transmission. IPv4 or IPv6 may be used according to the
              capabilities of the network. The address fields are set as
              described in <xref target="usecases"/>. target="usecases" format="default" sectionFormat="of" derivedContent="Section 2"/>. The other IP header
              fields (such as the ECN field <xref target="RFC6040"/>, the DSCP
              code point <xref target="RFC2983"/>, target="RFC6040" format="default" sectionFormat="of" derivedContent="RFC6040"/>, the
              Differentiated Services Code Point (DSCP) <xref target="RFC2983" format="default" sectionFormat="of" derivedContent="RFC2983"/>, or IPv6 Flow Label) on each UDP-encapsulated
              segment SHOULD <bcp14>SHOULD</bcp14> be configurable according to the
              operator&apos;s policy: operator's
              policy; they may be copied from the header of the incoming
              packet; they may be promoted from the header of the payload
              packet; they may be set according to instructions programmed to
              be associated with the SID; or they may be configured dependent
              on the outgoing interface and payload. The TTL field setting in
              the encapsulating packet header is handled as described in [RFC7510]
              <xref target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>, which refers to [RFC4023].</t>

              <t hangText="Entropy and ECMP:">When <xref target="RFC4023" format="default" sectionFormat="of" derivedContent="RFC4023"/>.</dd>
            <dt pn="section-3.2.3-1.7">Entropy and ECMP:</dt>
            <dd pn="section-3.2.3-1.8">When encapsulating an MPLS
              packet with an IP tunnel header that is capable of encoding
              entropy (such as <xref target="RFC7510"/>), target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>), the corresponding
              entropy field (the source port in the case of a UDP tunnel) MAY <bcp14>MAY</bcp14>
              be filled with an entropy value that is generated by the
              encapsulator to uniquely identify a flow. However, what
              constitutes a flow is locally determined by the encapsulator. For
              instance, if the MPLS label stack contains at least one entropy
              label and the encapsulator is capable of reading that entropy
              label, the entropy label value could be directly copied to the
              source port of the UDP header. Otherwise, the encapsulator may
              have to perform a hash on the whole label stack or the five-tuple
              of the SR-MPLS payload if the payload is determined as an IP packet.
              To avoid re-performing recalculating the hash or hunting for the entropy label
              each time the packet is encapsulated in a UDP tunnel tunnel, it MAY <bcp14>MAY</bcp14> be
              desirable that the entropy value contained in the incoming
              packet (i.e., the UDP source port value) is retained when
              stripping the UDP header and is re-used reused as the entropy value of
              the outgoing packet.</t>

              <t hangText="Congestion Considerations:">Section 5 of packet.</dd>
            <dt pn="section-3.2.3-1.9">Congestion Considerations:</dt>
            <dd pn="section-3.2.3-1.10">
              <xref target="RFC7510" /> sectionFormat="of" section="5" format="default" derivedLink="https://rfc-editor.org/rfc/rfc7510#section-5" derivedContent="RFC7510"/> provides a detailed analysis of the
              implications of congestion in MPLS-over-UDP systems and builds
              on section 3.1.3 of <xref target="RFC8085" /> that sectionFormat="of" section="3.1.3" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8085#section-3.1.3" derivedContent="RFC8085"/>, which describes
              the congestion implications of UDP tunnels. All of those
              considerations apply to SR-MPLS-over-UDP tunnels as described
              in this document. In particular, it should be noted that the
              traffic carried in SR-MPLS flows is likely to be IP traffic.</t>
            </list></t> traffic.</dd>
          </dl>
        </section>
      </section>
    </section>
    <section anchor="IANA" title="IANA Considerations">
      <t>This numbered="true" toc="include" removeInRFC="false" pn="section-4">
      <name slugifiedName="name-iana-considerations">IANA Considerations</name>
      <t pn="section-4-1">This document makes has no requests for IANA action.</t> actions.</t>
    </section>
    <section anchor="Security" title="Security Considerations">
      <t>The numbered="true" toc="include" removeInRFC="false" pn="section-5">
      <name slugifiedName="name-security-considerations">Security Considerations</name>
      <t pn="section-5-1">The security consideration of <xref target="RFC8354"/> target="RFC8354" format="default" sectionFormat="of" derivedContent="RFC8354"/> (which redirects
      the reader to <xref target="RFC5095" />) format="default" sectionFormat="of" derivedContent="RFC5095"/>) and <xref target="RFC7510"/> target="RFC7510" format="default" sectionFormat="of" derivedContent="RFC7510"/>
      apply. DTLS <xref target="RFC6347"/> SHOULD target="RFC6347" format="default" sectionFormat="of" derivedContent="RFC6347"/> <bcp14>SHOULD</bcp14> be used where security is
      needed on an MPLS-SR-over-UDP SR-MPLS-over-UDP segment including when the IP segment crosses
      the public Internet or some other untrusted environment. <xref target="RFC8402" /> format="default" sectionFormat="of" derivedContent="RFC8402"/>
      provides security considerations for Segment Routing, and Section 8.1 of that
      document <xref target="RFC8402" sectionFormat="of" section="8.1" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8402#section-8.1" derivedContent="RFC8402"/> is particularly applicable to SR-MPLS.</t>

      <t>It
      <t pn="section-5-2">It is difficult for an attacker to pass a raw MPLS encoded MPLS-encoded packet
      into a network network, and operators have considerable experience at in excluding
      such packets at the network boundaries, for example example, by excluding all
      packets that are revealed to be carrying an MPLS packet as the payload
      of IP tunnels. Further discussion of MPLS security is found in
      <xref target="RFC5920" />.</t>

      <t>It format="default" sectionFormat="of" derivedContent="RFC5920"/>.</t>
      <t pn="section-5-3">It is easy for a network ingress node to detect any attempt to smuggle an IP
      packet into the network since it would see that the UDP destination port
      was set to MPLS, and such filtering SHOULD <bcp14>SHOULD</bcp14> be applied. If, however, the
      mechanisms described in <xref target="OSPF-EXTENSIONS"/> target="RFC8665" format="default" sectionFormat="of" derivedContent="RFC8665"/>
      or <xref target="ISIS-EXTENSIONS"/> target="RFC8667" format="default" sectionFormat="of" derivedContent="RFC8667"/> are applied,
      a wider variety of UDP port numbers might be in use making port filtering
      harder.</t>

      <t>SR
      <t pn="section-5-4">SR packets not having a destination address terminating in the network
      would be transparently carried and would pose no different security risk to
      the network under consideration than any other traffic.</t>

      <t>Where control plane
      <t pn="section-5-5">Where control-plane techniques are used (as described in <xref
      target="procs"/>), target="procs" format="default" sectionFormat="of" derivedContent="Section 3"/>), it is important that these protocols are adequately
      secured for the environment in which they are run as discussed in
      <xref target="RFC6862" /> format="default" sectionFormat="of" derivedContent="RFC6862"/> and <xref target="RFC5920" />.</t>
    </section>

    <section title="Contributors">
      <figure>
        <artwork><![CDATA[Ahmed Bashandy
Individual
Email: abashandy.ietf@gmail.com

Clarence Filsfils
Cisco
Email: cfilsfil@cisco.com

John Drake
Juniper
Email: jdrake@juniper.net

Shaowen Ma
Mellanox Technologies
Email: mashaowen@gmail.com

Mach Chen
Huawei
Email: mach.chen@huawei.com

Hamid Assarpour
Broadcom
Email:hamid.assarpour@broadcom.com

Robert Raszuk
Bloomberg LP
Email: robert@raszuk.net

Uma Chunduri
Huawei
Email: uma.chunduri@gmail.com

Luis M. Contreras
Telefonica I+D
Email: luismiguel.contrerasmurillo@telefonica.com

Luay Jalil
Verizon
Email: luay.jalil@verizon.com

Gunter Van De Velde
Nokia
Email: gunter.van_de_velde@nokia.com

Tal Mizrahi
Marvell
Email: talmi@marvell.com

Jeff Tantsura
Individual
Email: jefftant@gmail.com

        ]]></artwork>
      </figure>
    </section>

    <section anchor="Acknowledgements" title="Acknowledgements">
      <t>Thanks to Joel Halpern, Bruno Decraene, Loa Andersson,
      Ron Bonica, Eric Rosen, Jim Guichard, Gunter Van De Velde,
      Andy Malis, Robert Sparks, and Al Morton for their insightful
      comments on this draft.</t>

      <t>Additional thanks to Mirja Kuehlewind, Alvaro Retana, Spencer Dawkins,
      Benjamin Kaduk, Martin Vigoureux, Suresh Krishnan, and &#x00C9;ric Vyncke
      for careful reviews and resulting comments.</t> format="default" sectionFormat="of" derivedContent="RFC5920"/>.</t>
    </section>
  </middle>
  <back>
    <displayreference target="I-D.ietf-bess-datacenter-gateway" to="DC-GATEWAY"/>
    <displayreference target="I-D.ietf-ospf-encapsulation-cap" to="OSPF-ENCAP"/>
    <displayreference target="I-D.ietf-isis-encapsulation-cap" to="ISIS-ENCAP"/>
    <displayreference target="I-D.ietf-6man-segment-routing-header" to="IPv6-SRH"/>
    <references title="Normative References">
      <?rfc include="reference.RFC.2119"?>

      <?rfc include="reference.RFC.3031"?>

      <?rfc include="reference.RFC.3032"?>

      <?rfc include="reference.RFC.4023"?>

      <?rfc include="reference.RFC.5095"?>

      <?rfc include="reference.RFC.6040"?>

      <?rfc include="reference.RFC.6347"?>

      <?rfc include="reference.RFC.7510"?>

      <?rfc include="reference.RFC.7684"?>

      <?rfc include="reference.RFC.7794"?>

      <?rfc include="reference.RFC.7981"?>

      <?rfc include="reference.RFC.8174"?>

      <?rfc include="reference.RFC.8402"?>

<!-- <?rfc include="reference.I-D.ietf-spring-segment-routing-mpls"?>; companion document RFC YYYY--> pn="section-6">
      <name slugifiedName="name-references">References</name>
      <references pn="section-6.1">
        <name slugifiedName="name-normative-references">Normative References</name>
        <reference anchor='RFCYYYY'> anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119">
          <front>
<title>Segment Routing with MPLS data plane</title>

<author initials='A' surname='Bashandy' fullname='Ahmed Bashandy'>
    <organization />
</author>

<author initials='C' surname='Filsfils' fullname='Clarence Filsfils'>
    <organization />
</author>

<author initials='S' surname='Previdi' fullname='Stefano Previdi'>
    <organization />
</author>

<author initials='B' surname='Decraene' fullname='Bruno Decraene'>
    <organization />
</author>

<author initials='S' surname='Litkowski' fullname='Stephane Litkowski'>
    <organization />
</author>
            <title>Key words for use in RFCs to Indicate Requirement Levels</title>
            <author initials='R' surname='Shakir' fullname='Rob Shakir'> initials="S." surname="Bradner" fullname="S. Bradner">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='May' day='1' year='2019' />

<abstract><t>Segment Routing (SR) leverages year="1997" month="March"/>
            <abstract>
              <t>In many standards track documents several words are used to signify the source routing paradigm.  A node steers a packet through a controlled set of instructions, called segments, by prepending requirements in the packet with an SR header.  In the MPLS dataplane, the SR header is instantiated through a label stack. specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the forwarding behavior to allow instantiating SR over the MPLS dataplane.</t></abstract> Internet Community, and requests discussion and suggestions for improvements.</t>
            </abstract>
          </front>
          <seriesInfo name="BCP" value="14"/>
          <seriesInfo name="RFC" value="YYYY"/> value="2119"/>
          <seriesInfo name="DOI" value="10.17487/RFCYYYY"/> value="10.17487/RFC2119"/>
        </reference>

    </references>

    <references title="Informative References">

      <?rfc include="reference.RFC.2983"?>

      <?rfc include="reference.RFC.5920"?>

      <?rfc include="reference.RFC.6790"?>

      <?rfc include="reference.RFC.6862"?>

      <?rfc include="reference.RFC.8085"?>

      <?rfc include="reference.RFC.8354"?>

<!-- <?rfc include="reference.I-D.ietf-bess-datacenter-gateway"?>; I-D Exists -->
        <reference anchor='DATACENTER-GATEWAY'> anchor="RFC3031" target="https://www.rfc-editor.org/info/rfc3031" quoteTitle="true" derivedAnchor="RFC3031">
          <front>
<title>Gateway Auto-Discovery and Route Advertisement
            <title>Multiprotocol Label Switching Architecture</title>
            <author initials="E." surname="Rosen" fullname="E. Rosen">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="A." surname="Viswanathan" fullname="A. Viswanathan">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R." surname="Callon" fullname="R. Callon">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2001" month="January"/>
            <abstract>
              <t>This document specifies the architecture for Segment Routing Enabled Domain Interconnection</title> Multiprotocol Label Switching (MPLS).  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="3031"/>
          <seriesInfo name="DOI" value="10.17487/RFC3031"/>
        </reference>
        <reference anchor="RFC3032" target="https://www.rfc-editor.org/info/rfc3032" quoteTitle="true" derivedAnchor="RFC3032">
          <front>
            <title>MPLS Label Stack Encoding</title>
            <author initials="E." surname="Rosen" fullname="E. Rosen">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials='A' surname='Farrel' fullname='Adrian Farrel'> initials="D." surname="Tappan" fullname="D. Tappan">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='J' surname='Drake' fullname='John Drake'> initials="G." surname="Fedorkow" fullname="G. Fedorkow">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='E' surname='Rosen' fullname='Eric Rosen'> initials="Y." surname="Rekhter" fullname="Y. Rekhter">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='K' surname='Patel' fullname='Keyur Patel'> initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='L' surname='Jalil' fullname='Luay Jalil'> initials="T." surname="Li" fullname="T. Li">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="A." surname="Conta" fullname="A. Conta">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='February' day='26' year='2019' />

<abstract><t>Data centers are critical components of year="2001" month="January"/>
            <abstract>
              <t>This document specifies the infrastructure encoding to be used by network operators to provide services to their customers.  Data centers are attached an LSR in order to the Internet or a backbone network by gateway routers.  One transmit labeled packets on Point-to-Point Protocol (PPP) data center typically has more than one gateway for commercial, load balancing, links, on LAN data links, and resiliency reasons.  Segment Routing is a popular protocol mechanism for use within a possibly on other data center, but links as well.  This document also specifies rules and procedures for steering traffic that flows between two data center sites.  In order that one data center site may load balance processing the traffic it sends to another data center site, various fields of the label stack encoding.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="3032"/>
          <seriesInfo name="DOI" value="10.17487/RFC3032"/>
        </reference>
        <reference anchor="RFC4023" target="https://www.rfc-editor.org/info/rfc4023" quoteTitle="true" derivedAnchor="RFC4023">
          <front>
            <title>Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE)</title>
            <author initials="T." surname="Worster" fullname="T. Worster">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="Y." surname="Rekhter" fullname="Y. Rekhter">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="E." surname="Rosen" fullname="E. Rosen" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2005" month="March"/>
            <abstract>
              <t>Various applications of MPLS make use of label stacks with multiple entries.  In some cases, it needs is possible to know replace the complete set top label of gateway routers at the remote data center, the points of connection from those gateways to the backbone network, and the connectivity across stack with an IP-based encapsulation, thereby enabling the backbone network.  Segment Routing may also be operated in other domains, such as access networks.  Those domains also need application to be connected across backbone run over networks through gateways. that do not have MPLS enabled in their core routers.  This document defines a mechanism using the BGP Tunnel Encapsulation attribute to allow each gateway router to advertise the routes to the prefixes in the Segment Routing domains to which it provides access, specifies two IP-based encapsulations: MPLS-in-IP and also to advertise on behalf of each other gateway to the same Segment MPLS-in-GRE (Generic Routing domain.</t></abstract> Encapsulation).  Each of these is applicable in some circumstances. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-bess-datacenter-gateway-02' /> name="RFC" value="4023"/>
          <seriesInfo name="DOI" value="10.17487/RFC4023"/>
        </reference>

<!-- <?rfc include="reference.I-D.ietf-ospf-segment-routing-extensions"?>; RFC Ed Queue -->
        <reference anchor='OSPF-EXTENSIONS'> anchor="RFC5095" target="https://www.rfc-editor.org/info/rfc5095" quoteTitle="true" derivedAnchor="RFC5095">
          <front>
<title>OSPF Extensions for Segment Routing</title>

<author initials='P' surname='Psenak' fullname='Peter Psenak' role="editor">
    <organization />
</author>

<author initials='S' surname='Previdi' fullname='Stefano Previdi' role="editor">
    <organization />
</author>

<author initials='C' surname='Filsfils' fullname='Clarence Filsfils'>
    <organization />
</author>

<author initials='H' surname='Gredler' fullname='Hannes Gredler'>
    <organization />
</author>
            <title>Deprecation of Type 0 Routing Headers in IPv6</title>
            <author initials='R' surname='Shakir' fullname='Rob Shakir'> initials="J." surname="Abley" fullname="J. Abley">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='W' surname='Henderickx' fullname='Wim Henderickx'> initials="P." surname="Savola" fullname="P. Savola">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='J' surname='Tantsura' fullname='Jeff Tantsura'> initials="G." surname="Neville-Neil" fullname="G. Neville-Neil">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='December' day='5' year='2018' />

<abstract><t>Segment year="2007" month="December"/>
            <abstract>
              <t>The functionality provided by IPv6's Type 0 Routing (SR) allows Header can be exploited in order to achieve traffic amplification over a flexible definition of end-to-end paths within IGP topologies by encoding paths as sequences of topological sub-paths, called "segments".  These segments are advertised by remote path for the link-state routing protocols (IS-IS and OSPF). purposes of generating denial-of-service traffic.  This draft describes document updates the OSPFv2 extensions required for Segment Routing.</t></abstract> IPv6 specification to deprecate the use of IPv6 Type 0 Routing Headers, in light of this security concern.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-ospf-segment-routing-extensions-27' /> name="RFC" value="5095"/>
          <seriesInfo name="DOI" value="10.17487/RFC5095"/>
        </reference>

<!-- <?rfc include="reference.I-D.ietf-isis-segment-routing-extensions"?>; RFC Ed Queue -->
        <reference anchor='ISIS-EXTENSIONS'> anchor="RFC6040" target="https://www.rfc-editor.org/info/rfc6040" quoteTitle="true" derivedAnchor="RFC6040">
          <front>
<title>IS-IS Extensions for Segment Routing</title>

<author initials='S' surname='Previdi' fullname='Stefano Previdi' role="editor">
    <organization />
</author>

<author initials='L' surname='Ginsberg' fullname='Les Ginsberg' role="editor">
    <organization />
</author>

<author initials='C' surname='Filsfils' fullname='Clarence Filsfils'>
    <organization />
</author>

<author initials='A' surname='Bashandy' fullname='Ahmed Bashandy'>
    <organization />
</author>

<author initials='H' surname='Gredler' fullname='Hannes Gredler'>
    <organization />
</author>

<author initials='B' surname='Decraene' fullname='Bruno Decraene'>
            <title>Tunnelling of Explicit Congestion Notification</title>
            <author initials="B." surname="Briscoe" fullname="B. Briscoe">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='May' day='19' year='2019' />

<abstract><t>Segment Routing (SR) allows for a flexible definition of end-to-end paths within IGP topologies by encoding paths as sequences of topological sub-paths, called "segments".  These segments are advertised by year="2010" month="November"/>
            <abstract>
              <t>This document redefines how the link-state routing protocols (IS-IS and OSPF).  This draft describes explicit congestion notification (ECN) field of the necessary IS-IS extensions that need IP header should be constructed on entry to and exit from any IP-in-IP tunnel.  On encapsulation, it updates RFC 3168 to bring all IP-in-IP tunnels (v4 or v6) into line with RFC 4301 IPsec ECN processing.  On decapsulation, it updates both RFC 3168 and RFC 4301 to add new behaviours for previously unused combinations of inner and outer headers.  The new rules ensure the ECN field is correctly propagated across a tunnel whether it is used to signal one or two severity levels of congestion; whereas before, only one severity level was supported.  Tunnel endpoints can be introduced updated in any order without affecting pre-existing uses of the ECN field, thus ensuring backward compatibility.  Nonetheless, operators wanting to support two severity levels (e.g., for Segment Routing operating pre-congestion notification -- PCN) can require compliance with this new specification.  A thorough analysis of the reasoning for these changes and the implications is included.  In the unlikely event that the new rules do not meet a specific need, RFC 4774 gives guidance on an MPLS data-plane.</t></abstract> designing alternate ECN semantics, and this document extends that to include tunnelling issues.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-isis-segment-routing-extensions-25' /> name="RFC" value="6040"/>
          <seriesInfo name="DOI" value="10.17487/RFC6040"/>
        </reference>

<!-- <?rfc include="reference.I-D.ietf-ospf-encapsulation-cap"?>; RFC Ed Queue -->
        <reference anchor='OSPF-ROUTER'> anchor="RFC6347" target="https://www.rfc-editor.org/info/rfc6347" quoteTitle="true" derivedAnchor="RFC6347">
          <front>
<title>The Tunnel Encapsulations OSPF Router Information</title>

<author initials='X' surname='Xu' fullname='Xiaohu Xu' role="editor">
    <organization />
</author>

<author initials='B' surname='Decraene' fullname='Bruno Decraene' role="editor">
    <organization />
</author>

<author initials='R' surname='Raszuk' fullname='Robert Raszuk'>
    <organization />
</author>

<author initials='L' surname='Contreras' fullname='Luis Contreras'>
            <title>Datagram Transport Layer Security Version 1.2</title>
            <author initials="E." surname="Rescorla" fullname="E. Rescorla">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="N." surname="Modadugu" fullname="N. Modadugu">
              <organization />
</author>

<author initials='L' surname='Jalil' fullname='Luay Jalil'>
    <organization /> showOnFrontPage="true"/>
            </author>
            <date month='October' day='10' year='2017' />

<abstract><t>Networks use tunnels for a variety of reasons.  A large variety year="2012" month="January"/>
            <abstract>
              <t>This document specifies version 1.2 of tunnel types are defined and the tunnel encapsulator router needs Datagram Transport Layer Security (DTLS) protocol.  The DTLS protocol provides communications privacy for datagram protocols.  The protocol allows client/server applications to select communicate in a type of tunnel which way that is supported by the tunnel decapsulator router.  This document defines how designed to advertise, in OSPF Router Information Link State Advertisement (LSAs), prevent eavesdropping, tampering, or message forgery.  The DTLS protocol is based on the list Transport Layer Security (TLS) protocol and provides equivalent security guarantees.  Datagram semantics of tunnel encapsulations supported the underlying transport are preserved by the tunnel decapsulator.</t></abstract> DTLS protocol.  This document updates DTLS 1.0 to work with TLS version 1.2.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-ospf-encapsulation-cap-09' /> name="RFC" value="6347"/>
          <seriesInfo name="DOI" value="10.17487/RFC6347"/>
        </reference>

<!-- <?rfc include="reference.I-D.ietf-isis-encapsulation-cap"?>; Expired -->
        <reference anchor='ISIS-ENCAP'> anchor="RFC7510" target="https://www.rfc-editor.org/info/rfc7510" quoteTitle="true" derivedAnchor="RFC7510">
          <front>
<title>Advertising Tunnelling Capability
            <title>Encapsulating MPLS in IS-IS</title>

<author initials='X' surname='Xu' fullname='Xiaohu Xu' role="editor">
    <organization />
</author> UDP</title>
            <author initials='B' surname='Decraene' fullname='Bruno Decraene'> initials="X." surname="Xu" fullname="X. Xu">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='R' surname='Raszuk' fullname='Robert Raszuk'> initials="N." surname="Sheth" fullname="N. Sheth">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='U' surname='Chunduri' fullname='Uma Chunduri'> initials="L." surname="Yong" fullname="L. Yong">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='L' surname='Contreras' fullname='Luis Contreras'> initials="R." surname="Callon" fullname="R. Callon">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='L' surname='Jalil' fullname='Luay Jalil'> initials="D." surname="Black" fullname="D. Black">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='April' day='24' year='2017' />

<abstract><t>Some networks use tunnels year="2015" month="April"/>
            <abstract>
              <t>This document specifies an IP-based encapsulation for a variety of reasons.  A large variety of tunnel types are defined and the ingress needs MPLS, called MPLS-in-UDP for situations where UDP (User Datagram Protocol) encapsulation is preferred to select direct use of MPLS, e.g., to enable UDP-based ECMP (Equal-Cost Multipath) or link aggregation.  The MPLS- in-UDP encapsulation technology must only be deployed within a type single network (with a single network operator) or networks of tunnel which an adjacent set of cooperating network operators where traffic is supported by managed to avoid congestion, rather than over the egress.  This document defines how Internet where congestion control is required.  Usage restrictions apply to advertise egress tunnel capabilities in IS-IS Router Capability TLV.</t></abstract> MPLS-in-UDP usage for traffic that is not congestion controlled and to UDP zero checksum usage with IPv6.</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-isis-encapsulation-cap-01' /> name="RFC" value="7510"/>
          <seriesInfo name="DOI" value="10.17487/RFC7510"/>
        </reference>

<!-- <?rfc include="reference.I-D.ietf-mpls-spring-entropy-label"?>; RFC Ed Queue -->
        <reference anchor='ENTROPY-LABEL'> anchor="RFC7684" target="https://www.rfc-editor.org/info/rfc7684" quoteTitle="true" derivedAnchor="RFC7684">
          <front>
<title>Entropy label for SPRING tunnels</title>
            <title>OSPFv2 Prefix/Link Attribute Advertisement</title>
            <author initials='S' surname='Kini' fullname='Sriganesh Kini'> initials="P." surname="Psenak" fullname="P. Psenak">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='K' surname='Kompella' fullname='Kireeti Kompella'> initials="H." surname="Gredler" fullname="H. Gredler">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='S' surname='Sivabalan' fullname='Siva Sivabalan'> initials="R." surname="Shakir" fullname="R. Shakir">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='S' surname='Litkowski' fullname='Stephane Litkowski'> initials="W." surname="Henderickx" fullname="W. Henderickx">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='R' surname='Shakir' fullname='Rob Shakir'> initials="J." surname="Tantsura" fullname="J. Tantsura">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='J' surname='Tantsura' fullname='Jeff Tantsura'> initials="A." surname="Lindem" fullname="A. Lindem">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='July' day='16' year='2018' />

<abstract><t>Segment Routing (SR) leverages the source routing paradigm.  A node steers a packet through an ordered list of instructions, called segments.  Segment Routing year="2015" month="November"/>
            <abstract>
              <t>OSPFv2 requires functional extension beyond what can readily be applied to done with the Multi Protocol Label Switching (MPLS) data plane.  Entropy label (EL) is a technique used fixed-format Link State Advertisements (LSAs) as described in MPLS to improve load-balancing. RFC 2328.  This document examines and describes how ELs are to defines OSPFv2 Opaque LSAs based on Type-Length-Value (TLV) tuples that can be applied used to Segment Routing MPLS.</t></abstract> associate additional attributes with prefixes or links.  Depending on the application, these prefixes and links may or may not be advertised in the fixed-format LSAs.  The OSPFv2 Opaque LSAs are optional and fully backward compatible.</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-mpls-spring-entropy-label-12' /> name="RFC" value="7684"/>
          <seriesInfo name="DOI" value="10.17487/RFC7684"/>
        </reference>

<!-- <?rfc include="reference.I-D.ietf-6man-segment-routing-header"?>; AD Evaluation::Revised I-D Needed for 2 days -->
        <reference anchor='IPV6-SEGMENT'> anchor="RFC7794" target="https://www.rfc-editor.org/info/rfc7794" quoteTitle="true" derivedAnchor="RFC7794">
          <front>
<title>IPv6 Segment Routing Header (SRH)</title>

<author initials='C' surname='Filsfils' fullname='Clarence Filsfils' role="editor">
    <organization />
</author>
            <title>IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability</title>
            <author initials='D' surname='Dukes' fullname='Darren Dukes' initials="L." surname="Ginsberg" fullname="L. Ginsberg" role="editor">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='S' surname='Previdi' fullname='Stefano Previdi'> initials="B." surname="Decraene" fullname="B. Decraene">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='J' surname='Leddy' fullname='John Leddy'> initials="S." surname="Previdi" fullname="S. Previdi">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='S' surname='Matsushima' fullname='Satoru Matsushima'> initials="X." surname="Xu" fullname="X. Xu">
              <organization /> showOnFrontPage="true"/>
            </author>
            <author initials='d' surname='daniel.voyer@bell.ca' fullname='daniel.voyer@bell.ca'> initials="U." surname="Chunduri" fullname="U. Chunduri">
              <organization /> showOnFrontPage="true"/>
            </author>
            <date month='June' day='13' year='2019' />

<abstract><t>Segment Routing can be applied year="2016" month="March"/>
            <abstract>
              <t>This document introduces new sub-TLVs to the support advertisement of IPv4 and IPv6 data plane using a new type prefix attribute flags and the source router ID of Routing Extension Header.  This document describes the Segment Routing Extension Header and how it is used by Segment Routing capable nodes.</t></abstract> router that originated a prefix advertisement.</t>
            </abstract>
          </front>
          <seriesInfo name='Work in Progress,' value='draft-ietf-6man-segment-routing-header-21' />
</reference>

    </references> name="RFC" value="7794"/>
          <seriesInfo name="DOI" value="10.17487/RFC7794"/>
        </reference>
        <reference anchor="RFC7981" target="https://www.rfc-editor.org/info/rfc7981" quoteTitle="true" derivedAnchor="RFC7981">
          <front>
            <title>IS-IS Extensions for Advertising Router Information</title>
            <author initials="L." surname="Ginsberg" fullname="L. Ginsberg">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S." surname="Previdi" fullname="S. Previdi">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="M." surname="Chen" fullname="M. Chen">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2016" month="October"/>
            <abstract>
              <t>This document defines a new optional Intermediate System to Intermediate System (IS-IS) TLV named CAPABILITY, formed of multiple sub-TLVs, which allows a router to announce its capabilities within an IS-IS level or the entire routing domain.  This document obsoletes RFC 4971.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7981"/>
          <seriesInfo name="DOI" value="10.17487/RFC7981"/>
        </reference>
        <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174">
          <front>
            <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
            <author initials="B." surname="Leiba" fullname="B. Leiba">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2017" month="May"/>
            <abstract>
              <t>RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.</t>
            </abstract>
          </front>
          <seriesInfo name="BCP" value="14"/>
          <seriesInfo name="RFC" value="8174"/>
          <seriesInfo name="DOI" value="10.17487/RFC8174"/>
        </reference>
        <reference anchor="RFC8402" target="https://www.rfc-editor.org/info/rfc8402" quoteTitle="true" derivedAnchor="RFC8402">
          <front>
            <title>Segment Routing Architecture</title>
            <author initials="C." surname="Filsfils" fullname="C. Filsfils" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S." surname="Previdi" fullname="S. Previdi" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L." surname="Ginsberg" fullname="L. Ginsberg">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="B." surname="Decraene" fullname="B. Decraene">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S." surname="Litkowski" fullname="S. Litkowski">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R." surname="Shakir" fullname="R. Shakir">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2018" month="July"/>
            <abstract>
              <t>Segment Routing (SR) leverages the source routing paradigm.  A node steers a packet through an ordered list of instructions, called "segments".  A segment can represent any instruction, topological or service based.  A segment can have a semantic local to an SR node or global within an SR domain.  SR provides a mechanism that allows a flow to be restricted to a specific topological path, while maintaining per-flow state only at the ingress node(s) to the SR domain.</t>
              <t>SR can be directly applied to the MPLS architecture with no change to the forwarding plane.  A segment is encoded as an MPLS label.  An ordered list of segments is encoded as a stack of labels.  The segment to process is on the top of the stack.  Upon completion of a segment, the related label is popped from the stack.</t>
              <t>SR can be applied to the IPv6 architecture, with a new type of routing header.  A segment is encoded as an IPv6 address.  An ordered list of segments is encoded as an ordered list of IPv6 addresses in the routing header.  The active segment is indicated by the Destination Address (DA) of the packet.  The next active segment is indicated by a pointer in the new routing header.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8402"/>
          <seriesInfo name="DOI" value="10.17487/RFC8402"/>
        </reference>
        <reference anchor="RFC8660" target="https://www.rfc-editor.org/info/rfc8660" quoteTitle="true" derivedAnchor="RFC8660">
          <front>
            <title>Segment Routing with the MPLS Data Plane</title>
            <seriesInfo name="RFC" value="8660"/>
            <seriesInfo name="DOI" value="10.17487/RFC8660"/>
            <author initials="A" surname="Bashandy" fullname="Ahmed Bashandy">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="C" surname="Filsfils" fullname="Clarence Filsfils">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Previdi" fullname="Stefano Previdi">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="B" surname="Decraene" fullname="Bruno Decraene">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Litkowski" fullname="Stephane Litkowski">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R" surname="Shakir" fullname="Rob Shakir">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="December" year="2019"/>
          </front>
        </reference>
      </references>
      <references pn="section-6.2">
        <name slugifiedName="name-informative-references">Informative References</name>
        <reference anchor="I-D.ietf-bess-datacenter-gateway" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-bess-datacenter-gateway-04" derivedAnchor="DC-GATEWAY">
          <front>
            <title>Gateway Auto-Discovery and Route Advertisement for Segment Routing Enabled Domain Interconnection</title>
            <author initials="A" surname="Farrel" fullname="Adrian Farrel">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="J" surname="Drake" fullname="John Drake">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="E" surname="Rosen" fullname="Eric Rosen">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="K" surname="Patel" fullname="Keyur Patel">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L" surname="Jalil" fullname="Luay Jalil">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="August" day="21" year="2019"/>
            <abstract>
              <t>Data centers are critical components of the infrastructure used by network operators to provide services to their customers.  Data centers are attached to the Internet or a backbone network by gateway routers.  One data center typically has more than one gateway for commercial, load balancing, and resiliency reasons.  Segment Routing is a popular protocol mechanism for use within a data center, but also for steering traffic that flows between two data center sites.  In order that one data center site may load balance the traffic it sends to another data center site, it needs to know the complete set of gateway routers at the remote data center, the points of connection from those gateways to the backbone network, and the connectivity across the backbone network.  Segment Routing may also be operated in other domains, such as access networks.  Those domains also need to be connected across backbone networks through gateways.  This document defines a mechanism using the BGP Tunnel Encapsulation attribute to allow each gateway router to advertise the routes to the prefixes in the Segment Routing domains to which it provides access, and also to advertise on behalf of each other gateway to the same Segment Routing domain.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ietf-bess-datacenter-gateway-04"/>
          <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-bess-datacenter-gateway-04.txt"/>
          <refcontent>Work in Progress</refcontent>
        </reference>
        <reference anchor="I-D.ietf-6man-segment-routing-header" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-26" derivedAnchor="IPv6-SRH">
          <front>
            <title>IPv6 Segment Routing Header (SRH)</title>
            <author initials="C" surname="Filsfils" fullname="Clarence Filsfils">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="D" surname="Dukes" fullname="Darren Dukes">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Previdi" fullname="Stefano Previdi">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="J" surname="Leddy" fullname="John Leddy">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Matsushima" fullname="Satoru Matsushima">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="D" surname="Voyer" fullname="Daniel Voyer">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="October" day="22" year="2019"/>
            <abstract>
              <t>Segment Routing can be applied to the IPv6 data plane using a new type of Routing Extension Header called the Segment Routing Header. This document describes the Segment Routing Header and how it is used by Segment Routing capable nodes.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ietf-6man-segment-routing-header-26"/>
          <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-6man-segment-routing-header-26.txt"/>
          <refcontent>Work in Progress</refcontent>
        </reference>
        <reference anchor="I-D.ietf-isis-encapsulation-cap" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-isis-encapsulation-cap-01" derivedAnchor="ISIS-ENCAP">
          <front>
            <title>Advertising Tunnelling Capability in IS-IS</title>
            <author initials="X" surname="Xu" fullname="Xiaohu Xu">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="B" surname="Decraene" fullname="Bruno Decraene">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R" surname="Raszuk" fullname="Robert Raszuk">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="U" surname="Chunduri" fullname="Uma Chunduri">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L" surname="Contreras" fullname="Luis Contreras">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L" surname="Jalil" fullname="Luay Jalil">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="April" day="24" year="2017"/>
            <abstract>
              <t>Some networks use tunnels for a variety of reasons.  A large variety of tunnel types are defined and the ingress needs to select a type of tunnel which is supported by the egress.  This document defines how to advertise egress tunnel capabilities in IS-IS Router Capability TLV.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ietf-isis-encapsulation-cap-01"/>
          <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-isis-encapsulation-cap-01.txt"/>
          <refcontent>Work in Progress</refcontent>
        </reference>
        <reference anchor="I-D.ietf-ospf-encapsulation-cap" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-ospf-encapsulation-cap-09" derivedAnchor="OSPF-ENCAP">
          <front>
            <title>The Tunnel Encapsulations OSPF Router Information</title>
            <author initials="X" surname="Xu" fullname="Xiaohu Xu">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="B" surname="Decraene" fullname="Bruno Decraene">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R" surname="Raszuk" fullname="Robert Raszuk">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L" surname="Contreras" fullname="Luis Contreras">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L" surname="Jalil" fullname="Luay Jalil">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="October" day="10" year="2017"/>
            <abstract>
              <t>Networks use tunnels for a variety of reasons.  A large variety of tunnel types are defined and the tunnel encapsulator router needs to select a type of tunnel which is supported by the tunnel decapsulator router.  This document defines how to advertise, in OSPF Router Information Link State Advertisement (LSAs), the list of tunnel encapsulations supported by the tunnel decapsulator.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ietf-ospf-encapsulation-cap-09"/>
          <format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-ospf-encapsulation-cap-09.txt"/>
          <refcontent>Work in Progress</refcontent>
        </reference>
        <reference anchor="RFC2983" target="https://www.rfc-editor.org/info/rfc2983" quoteTitle="true" derivedAnchor="RFC2983">
          <front>
            <title>Differentiated Services and Tunnels</title>
            <author initials="D." surname="Black" fullname="D. Black">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2000" month="October"/>
            <abstract>
              <t>This document considers the interaction of Differentiated Services (diffserv) with IP tunnels of various forms.  This memo provides information for the Internet community.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="2983"/>
          <seriesInfo name="DOI" value="10.17487/RFC2983"/>
        </reference>
        <reference anchor="RFC5920" target="https://www.rfc-editor.org/info/rfc5920" quoteTitle="true" derivedAnchor="RFC5920">
          <front>
            <title>Security Framework for MPLS and GMPLS Networks</title>
            <author initials="L." surname="Fang" fullname="L. Fang" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2010" month="July"/>
            <abstract>
              <t>This document provides a security framework for Multiprotocol Label Switching (MPLS) and Generalized Multiprotocol Label Switching (GMPLS) Networks.  This document addresses the security aspects that are relevant in the context of MPLS and GMPLS.  It describes the security threats, the related defensive techniques, and the mechanisms for detection and reporting.  This document emphasizes RSVP-TE and LDP security considerations, as well as inter-AS and inter-provider security considerations for building and maintaining MPLS and GMPLS networks across different domains or different Service Providers.  This document is not an Internet Standards Track  specification; it is published for informational purposes.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="5920"/>
          <seriesInfo name="DOI" value="10.17487/RFC5920"/>
        </reference>
        <reference anchor="RFC6790" target="https://www.rfc-editor.org/info/rfc6790" quoteTitle="true" derivedAnchor="RFC6790">
          <front>
            <title>The Use of Entropy Labels in MPLS Forwarding</title>
            <author initials="K." surname="Kompella" fullname="K. Kompella">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="J." surname="Drake" fullname="J. Drake">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S." surname="Amante" fullname="S. Amante">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="W." surname="Henderickx" fullname="W. Henderickx">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L." surname="Yong" fullname="L. Yong">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2012" month="November"/>
            <abstract>
              <t>Load balancing is a powerful tool for engineering traffic across a network.  This memo suggests ways of improving load balancing across MPLS networks using the concept of "entropy labels".  It defines the concept, describes why entropy labels are useful, enumerates properties of entropy labels that allow maximal benefit, and shows how they can be signaled and used for various applications.  This document updates RFCs 3031, 3107, 3209, and 5036.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6790"/>
          <seriesInfo name="DOI" value="10.17487/RFC6790"/>
        </reference>
        <reference anchor="RFC6862" target="https://www.rfc-editor.org/info/rfc6862" quoteTitle="true" derivedAnchor="RFC6862">
          <front>
            <title>Keying and Authentication for Routing Protocols (KARP) Overview, Threats, and Requirements</title>
            <author initials="G." surname="Lebovitz" fullname="G. Lebovitz">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="M." surname="Bhatia" fullname="M. Bhatia">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="B." surname="Weis" fullname="B. Weis">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2013" month="March"/>
            <abstract>
              <t>Different routing protocols employ different mechanisms for securing protocol packets on the wire.  While most already have some method for accomplishing cryptographic message authentication, in many cases the existing methods are dated, vulnerable to attack, and employ cryptographic algorithms that have been deprecated.  The "Keying and               Authentication for Routing Protocols" (KARP) effort aims to overhaul and improve these mechanisms.  This document does not contain protocol specifications.  Instead, it defines the areas where protocol specification work is needed.  This document is a companion document to RFC 6518, "Keying and Authentication for Routing Protocols (KARP) Design Guidelines"; together they form the guidance and instruction KARP design teams will use to review and overhaul routing protocol transport security.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6862"/>
          <seriesInfo name="DOI" value="10.17487/RFC6862"/>
        </reference>
        <reference anchor="RFC8085" target="https://www.rfc-editor.org/info/rfc8085" quoteTitle="true" derivedAnchor="RFC8085">
          <front>
            <title>UDP Usage Guidelines</title>
            <author initials="L." surname="Eggert" fullname="L. Eggert">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="G." surname="Fairhurst" fullname="G. Fairhurst">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="G." surname="Shepherd" fullname="G. Shepherd">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2017" month="March"/>
            <abstract>
              <t>The User Datagram Protocol (UDP) provides a minimal message-passing transport that has no inherent congestion control mechanisms.  This document provides guidelines on the use of UDP for the designers of applications, tunnels, and other protocols that use UDP.  Congestion control guidelines are a primary focus, but the document also provides guidance on other topics, including message sizes, reliability, checksums, middlebox traversal, the use of Explicit Congestion Notification (ECN), Differentiated Services Code Points (DSCPs), and ports.</t>
              <t>Because congestion control is critical to the stable operation of the Internet, applications and other protocols that choose to use UDP as an Internet transport must employ mechanisms to prevent congestion collapse and to establish some degree of fairness with concurrent traffic.  They may also need to implement additional mechanisms, depending on how they use UDP.</t>
              <t>Some guidance is also applicable to the design of other protocols (e.g., protocols layered directly on IP or via IP-based tunnels), especially when these protocols do not themselves provide congestion control.</t>
              <t>This document obsoletes RFC 5405 and adds guidelines for multicast UDP usage.</t>
            </abstract>
          </front>
          <seriesInfo name="BCP" value="145"/>
          <seriesInfo name="RFC" value="8085"/>
          <seriesInfo name="DOI" value="10.17487/RFC8085"/>
        </reference>
        <reference anchor="RFC8354" target="https://www.rfc-editor.org/info/rfc8354" quoteTitle="true" derivedAnchor="RFC8354">
          <front>
            <title>Use Cases for IPv6 Source Packet Routing in Networking (SPRING)</title>
            <author initials="J." surname="Brzozowski" fullname="J. Brzozowski">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="J." surname="Leddy" fullname="J. Leddy">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="C." surname="Filsfils" fullname="C. Filsfils">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R." surname="Maglione" fullname="R. Maglione" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="M." surname="Townsley" fullname="M. Townsley">
              <organization showOnFrontPage="true"/>
            </author>
            <date year="2018" month="March"/>
            <abstract>
              <t>The Source Packet Routing in Networking (SPRING) architecture describes how Segment Routing can be used to steer packets through an IPv6 or MPLS network using the source routing paradigm.  This document illustrates some use cases for Segment Routing in an IPv6-only environment.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8354"/>
          <seriesInfo name="DOI" value="10.17487/RFC8354"/>
        </reference>
        <reference anchor="RFC8662" target="https://www.rfc-editor.org/info/rfc8662" quoteTitle="true" derivedAnchor="RFC8662">
          <front>
            <title>Entropy Label for Source Packet Routing in Networking (SPRING) Tunnels</title>
            <seriesInfo name="RFC" value="8662"/>
            <seriesInfo name="DOI" value="10.17487/RFC8662"/>
            <author initials="S" surname="Kini" fullname="Sriganesh Kini">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="K" surname="Kompella" fullname="Kireeti Kompella">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Sivabalan" fullname="Siva Sivabalan">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Litkowski" fullname="Stephane Litkowski">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R" surname="Shakir" fullname="Rob Shakir">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="J" surname="Tantsura" fullname="Jeff Tantsura">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="December" year="2019"/>
          </front>
        </reference>
        <reference anchor="RFC8665" target="https://www.rfc-editor.org/info/rfc8665" quoteTitle="true" derivedAnchor="RFC8665">
          <front>
            <title>OSPF Extensions for Segment Routing</title>
            <seriesInfo name="RFC" value="8665"/>
            <seriesInfo name="DOI" value="10.17487/RFC8665"/>
            <author initials="P" surname="Psenak" fullname="Peter Psenak" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="S" surname="Previdi" fullname="Stefano Previdi" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="C" surname="Filsfils" fullname="Clarence Filsfils">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="H" surname="Gredler" fullname="Hannes Gredler">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="R" surname="Shakir" fullname="Rob Shakir">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="W" surname="Henderickx" fullname="Wim Henderickx">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="J" surname="Tantsura" fullname="Jeff Tantsura">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="December" year="2019"/>
          </front>
        </reference>
        <reference anchor="RFC8667" target="https://www.rfc-editor.org/info/rfc8667" quoteTitle="true" derivedAnchor="RFC8667">
          <front>
            <title>IS-IS Extensions for Segment Routing</title>
            <seriesInfo name="RFC" value="8667"/>
            <seriesInfo name="DOI" value="10.17487/RFC8667"/>
            <author initials="S" surname="Previdi" fullname="Stefano Previdi" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="L" surname="Ginsberg" fullname="Les Ginsberg" role="editor">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="C" surname="Filsfils" fullname="Clarence Filsfils">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="A" surname="Bashandy" fullname="Ahmed Bashandy">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="H" surname="Gredler" fullname="Hannes Gredler">
              <organization showOnFrontPage="true"/>
            </author>
            <author initials="B" surname="Decraene" fullname="Bruno Decraene">
              <organization showOnFrontPage="true"/>
            </author>
            <date month="December" year="2019"/>
          </front>
        </reference>
      </references>
    </references>
    <section anchor="Acknowledgements" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.a">
      <name slugifiedName="name-acknowledgements">Acknowledgements</name>
      <t pn="section-appendix.a-1">Thanks to Joel Halpern, Bruno Decraene, Loa Andersson,
      Ron Bonica, Eric Rosen, Jim Guichard, Gunter Van De Velde,
      Andy Malis, Robert Sparks, and Al Morton for their insightful
      comments on this document.</t>
      <t pn="section-appendix.a-2">Additional thanks to Mirja Kuehlewind, Alvaro Retana, Spencer Dawkins,
      Benjamin Kaduk, Martin Vigoureux, Suresh Krishnan, and Eric Vyncke
      for careful reviews and resulting comments.</t>
    </section>
    <section numbered="false" toc="include" removeInRFC="false" pn="section-appendix.b">
      <name slugifiedName="name-contributors">Contributors</name>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-1">
Ahmed Bashandy
Individual
Email: abashandy.ietf@gmail.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-2">
Clarence Filsfils
Cisco
Email: cfilsfil@cisco.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-3">
John Drake
Juniper
Email: jdrake@juniper.net
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-4">
Shaowen Ma
Mellanox Technologies
Email: mashaowen@gmail.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-5">
Mach Chen
Huawei
Email: mach.chen@huawei.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-6">
Hamid Assarpour
Broadcom
Email:hamid.assarpour@broadcom.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-7">
Robert Raszuk
Bloomberg LP
Email: robert@raszuk.net
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-8">
Uma Chunduri
Huawei
Email: uma.chunduri@gmail.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-9">
Luis M. Contreras
Telefonica I+D
Email: luismiguel.contrerasmurillo@telefonica.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-10">
Luay Jalil
Verizon
Email: luay.jalil@verizon.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-11">
Gunter Van De Velde
Nokia
Email: gunter.van_de_velde@nokia.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-12">
Tal Mizrahi
Marvell
Email: talmi@marvell.com
</artwork>
      <artwork name="" type="" align="left" alt="" pn="section-appendix.b-13">
Jeff Tantsura
Apstra, Inc.
Email: jefftant.ietf@gmail.com
</artwork>
    </section>
    <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.c">
      <name slugifiedName="name-authors-addresses">Authors' Addresses</name>
      <author fullname="Xiaohu Xu" initials="X." surname="Xu">
        <organization showOnFrontPage="true">Alibaba, Inc</organization>
        <address>
          <email>xiaohu.xxh@alibaba-inc.com</email>
        </address>
      </author>
      <author fullname="Stewart Bryant" initials="S." surname="Bryant">
        <organization showOnFrontPage="true">Futurewei Technologies</organization>
        <address>
          <email>stewart.bryant@gmail.com</email>
        </address>
      </author>
      <author fullname="Adrian Farrel" initials="A." surname="Farrel">
        <organization showOnFrontPage="true">Old Dog Consulting</organization>
        <address>
          <email>adrian@olddog.co.uk</email>
        </address>
      </author>
      <author fullname="Syed Hassan" initials="S." surname="Hassan">
        <organization showOnFrontPage="true">Cisco</organization>
        <address>
          <email>shassan@cisco.com</email>
        </address>
      </author>
      <author fullname="Wim Henderickx" initials="W" surname="Henderickx">
        <organization showOnFrontPage="true">Nokia</organization>
        <address>
          <email>wim.henderickx@nokia.com</email>
        </address>
      </author>
      <author fullname="Zhenbin Li" initials="Z." surname="Li">
        <organization showOnFrontPage="true">Huawei</organization>
        <address>
          <email>lizhenbin@huawei.com</email>
        </address>
      </author>
    </section>
  </back>
</rfc>