<?xmlversion="1.0" encoding="US-ASCII"?>version='1.0' encoding='UTF-8'?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" []> <!-- [rfced] updated by Chris /09/05/19 --> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc strict="yes" ?> <?rfc toc="yes"?> <?rfc tocdepth="4"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes" ?> <?rfc compact="yes" ?> <?rfc subcompact="no" ?> <?rfc iprnotified="no" ?>"rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF" category="std"consensus="yes" number="XXXX" ipr="trust200902"> <!-- category values: std, bcp, info, exp, and historic ipr values: trust200902, noModificationTrust200902, noDerivativesTrust200902, or pre5378Trust200902 you can add the attributes updates="NNNN" and obsoletes="NNNN" they will automatically be output with "(if approved)"consensus="true" number="8691" docName="draft-ietf-ipwave-ipv6-over-80211ocb-52" ipr="trust200902" obsoletes="" updates="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 2.31.0 --> <front> <titleabbrev="IPv6-over-80211-OCB">abbrev="IPv6 over 802.11-OCB"> Basic Support for IPv6over IEEE Std 802.11Networks Operating Outside the Context of a Basic Service Set over IEEE Std 802.11 </title> <seriesInfo name="RFC" value="8691"/> <authorinitials='N.'initials="N." surname="Benamar"fullname='Nabil Benamar'>fullname="Nabil Benamar"> <organization>Moulay Ismail University of Meknes</organization> <address> <postal> <street> </street> <city> </city> <region> </region> <code> </code> <country> Morocco </country> </postal> <phone> +212670832236 </phone> <email> n.benamar@est.umi.ac.ma </email> </address> </author> <author initials="J."surname="Haerri" fullname="Jerome Haerri"> <organization>Eurecom</organization>surname="Härri" fullname="Jérôme Härri"> <organization>EURECOM</organization> <address> <postal> <street> </street><city> Sophia-Antipolis </city><city>Sophia-Antipolis</city> <region> </region><code> 06904 </code><code>06904</code> <country> France </country> </postal> <phone> +33493008134 </phone> <email> Jerome.Haerri@eurecom.fr </email> </address> </author> <author fullname="Jong-Hyouk Lee"initials="J.-H."initials="J." surname="Lee"><organization> Sangmyung University </organization><organization>Sangmyung University</organization> <address> <postal> <street> 31, Sangmyeongdae-gil, Dongnam-gu </street> <code> 31066 </code> <city> Cheonan </city> <country> Republic of Korea </country> </postal> <email> jonghyouk@smu.ac.kr </email> </address> </author> <author initials="T." surname="Ernst" fullname="ThierryErnst">ERNST"> <organization>YoGoKo</organization> <address> <postal><street> </street> <city> </city> <region> </region> <code> </code><street>1137A Avenue des Champs-Blancs</street> <city>CESON-SEVIGNE</city> <region></region> <code>35510</code> <country> France </country> </postal><phone> </phone><phone /> <email> thierry.ernst@yogoko.fr </email> </address> </author> <dateyear='2019' month="September"/> <!-- Meta-data Declarations -->year="2019" month="December"/> <area>Internet</area> <workgroup>IPWAVE Working Group</workgroup><!-- WG name at the upperleft corner of the doc, IETF is fine for individual submissions. If this element is not present, the default is "Network Working Group", which is used by the RFC Editor as a nod to the history of the IETF. --> <keyword> IPv6<keyword>IPv6 over802.11p, OCB, IPv6802.11p</keyword> <keyword>OCB</keyword> <keyword>IPv6 over802.11-OCB </keyword> <!-- Keywords will be incorporated into HTML output files in a meta tag but they have no effect on text or nroff output. If you submit your draft to the RFC Editor, the keywords will be used for the search engine. -->802.11-OCB</keyword> <abstract> <t> This document provides methods andsettings,settings for using IPv6 to communicate among nodes within range of one another over a single IEEE 802.11-OCB link. Support for these methods and settings require minimal changes to existing stacks. This document also describes limitations associated with using these methods. Optimizations and usage of IPv6 over more complex scenariosisare not covered in this specification andisare a subjectoffor future work. </t> </abstract> </front> <middle> <sectiontitle="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t> This document provides a baseline for using IPv6 to communicate among nodes in range of one another over a single IEEE 802.11-OCB link <xreftarget="IEEE-802.11-2016"/>target="IEEE-802.11-2016" format="default"/> (a.k.a.,"802.11p"802.11p; see Appendices <xreftarget='i802.11p'/>,target="i802.11p" format="counter"/>, <xreftarget='introduced-by-OCB'/>target="introduced-by-OCB" format="counter"/>, and <xreftarget='software-changes'/>)target="software-changes" format="counter"/>) with minimal changes to existing stacks. Moreover, the document identifies the limitations of such usage. Concretely, the document describes the layering of IPv6 networking on top of the IEEE Std 802.11 MAC layer or an IEEE Std 802.3 MAC layer with a frame translation underneath. The resulting stack is derived from IPv6 over Ethernet <xreftarget='RFC2464'/>,target="RFC2464" format="default"/> but operates over 802.11-OCB to provide at least P2P(Point to Point)(point-to-point) connectivity using IPv6NDNeighbor Discovery (ND) and link-local addresses. </t> <t> The IPv6 network layer operates on 802.11-OCB in the same manner as operating on the Ethernet with the following exceptions: </t><t> <list style='symbols'> <t><ul spacing="normal"> <li> Exceptions due to the different operation of the IPv6 network layer on 802.11than oncompared to the Ethernet. The operation of IP on Ethernet is described in <xreftarget='RFC1042'/>target="RFC1042" format="default"/> and <xreftarget='RFC2464'/>. </t> <t>target="RFC2464" format="default"/>. </li> <li> Exceptions due to the OCB nature of 802.11-OCB compared to 802.11. This has impacts on security, privacy, subnetstructurestructure, and movement detection. Security and privacy recommendations are discussed in Sections <xreftarget='Security'/>target="slaac" format="counter"/> and <xreftarget='slaac'/>.target="Security" format="counter"/>. The subnet structure is described in <xreftarget='subnet-structure'/>.target="subnet-structure" format="default"/>. The movement detection on OCB links is not described in this document. Likewise, NDExtensionsextensions andIPWAVEIP Wireless Access in Vehicular Environments (IPWAVE) optimizations for vehicular communications are not inscope.scope of this document. The expectation is that further specifications will be edited to cover more complex vehicular networking scenarios.</t> </list> </t></li> </ul> <t> The reader may refer to <xreftarget='IPWAVE-NETWORKING'/>target="I-D.ietf-ipwave-vehicular-networking" format="default"/> for an overview of problems related to running IPv6 over 802.11-OCB. It is out of scope of this document to reiteratethose.those problems. </t> </section> <sectiontitle="Terminology" anchor='terminology'>anchor="terminology" numbered="true" toc="default"> <name>Terminology</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14 <!-- <xref target="BCP14"/> -->BCP 14 <xref target="RFC2119"/> <xreftarget="RFC8174" />target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> <t> The document makes uses of the followingterms: IP-OBUterms:</t> <dl newline="true"> <dt>IP-OBU (Internet Protocol On-BoardUnit): anUnit):</dt> <dd>An IP-OBU denotes a computer situated in a vehicle such as a car, bicycle, or similar. It has at least one IP interface that runs in mode OCB of802.11,802.11 andthathas an "OBU" transceiver. See the definition of the term "OBU" insection<xreftarget='extra-terminology'/>. </t> <t> IP-RSUtarget="extra-terminology" format="default"/>.</dd> <dt>IP-RSU (IPRoad-Side Unit): anRoadside Unit):</dt> <dd>An IP-RSU is situated along the road. It has at least two distinct IP-enabled interfaces. The wireless PHY/MAC layer of at least one of its IP-enabled interfaces is configured to operate in 802.11-OCB mode. An IP-RSU communicates with the IP-OBUin the vehicleover an 802.11 wireless link operating in OCB mode. An IP-RSU is similar to an Access Network Router(ANR)(ANR), defined in <xreftarget="RFC3753"/>,target="RFC3753" format="default"/>, and a Wireless Termination Point(WTP)(WTP), defined in <xreftarget='RFC5415'/>. </t> <t> OCBtarget="RFC5415" format="default"/>.</dd> <dt>OCB (outside the context of abasic service setBasic Service Set -BSS):BSS):</dt> <dd>This is a mode of operation in which aSTAstation (STA) is not a member of a BSS and does not utilize IEEE Std 802.11 authentication, association, or dataconfidentiality. </t> <t> 802.11-OCB:confidentiality.</dd> <dt>802.11-OCB:</dt><dd> This refers to the mode specified in IEEE Std 802.11-2016 when the MIB attribute dot11OCBActivited is'true'. </t>'true'.</dd> </dl> </section> <sectiontitle="Communicationnumbered="true" toc="default"> <name>Communication ScenarioswhereWhere IEEE 802.11-OCB Linksare Used" >Are Used</name> <t>TheIEEE 802.11-OCB networks are used for vehicularcommunications,communications as 'Wireless Access in Vehicular Environments'. In particular, we refer the reader to <xreftarget='IPWAVE-NETWORKING'/>, thattarget="I-D.ietf-ipwave-vehicular-networking" format="default"/>, which lists some scenarios and requirements for IP in Intelligent Transportation Systems (ITS). </t> <t> The link model is the following: STA --- 802.11-OCB --- STA. In vehicular networks, STAs can be IP-RSUs and/or IP-OBUs. All links are assumed to beP2PP2P, and multiple links can be on one radio interface. While 802.11-OCB is clearlyspecified,specified and a legacy IPv6 stack can operate on such links, the use of the operating environment (vehicular networks) brings in new perspectives. </t> </section> <sectiontitle="IPv6numbered="true" toc="default"> <name>IPv6 over802.11-OCB">802.11-OCB</name> <sectiontitle="Maximumanchor="MTU" numbered="true" toc="default"> <name>Maximum Transmission Unit(MTU)" anchor="MTU">(MTU)</name> <t> The default MTU for IP packets on 802.11-OCB is inherited from <xreftarget='RFC2464'/> and is,target="RFC2464" format="default"/> and, as such, is 1500 octets. As noted in <xreftarget="RFC8200"/>,target="RFC8200" format="default"/>, every link on the Internet must have a minimum MTU of 1280octets, as well asoctets and must follow the other recommendations, especially with regard to fragmentation. </t> </section> <sectiontitle="Frame Format">numbered="true" toc="default"> <name>Frame Format</name> <t> IP packetsMUST<bcp14>MUST</bcp14> be transmitted over 802.11-OCB media as QoSDatadata frames whose format is specified in an IEEE 802.11 spec <xreftarget="IEEE-802.11-2016"></xref>.target="IEEE-802.11-2016" format="default"/>. </t> <t> The IPv6 packet transmitted on 802.11-OCBareis immediately preceded by a Logical Link Control (LLC) header and an 802.11 header. In the LLCheader,header and in accordance withtheEtherType Protocol Discrimination(EPD,(EPD; see <xreftarget='epd'/>),target="epd" format="default"/>), the value of the Type fieldMUST<bcp14>MUST</bcp14> be set to 0x86DD (IPv6). The mapping to the 802.11 data serviceSHOULD<bcp14>SHOULD</bcp14> use a 'priority' value of 1 (QoS with a 'Background' user priority), reserving higher priority values for safety-critical and time-sensitive traffic, including the ones listed in <xreftarget="ETSI-sec-archi"></xref>.target="ETSI-sec-archi" format="default"/>. </t> <t> To simplify the Application Programming Interface (API) between the operating system and the 802.11-OCB media, device driversMAY<bcp14>MAY</bcp14> implementIPv6-over-EthernetIPv6 over Ethernet as per <xreftarget='RFC2464'/>target="RFC2464" format="default"/> and then a frame translation from 802.3 to 802.11 in order to minimize the code changes. </t><!-- <t> --> <!-- <list style='hanging'> --> <!-- <t hangText="1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1"> --> <!-- <vspace/> --> <!-- is the binary representation of the EtherType value --> <!-- 0x86DD. --> <!-- </t> --> <!-- </list> --> <!-- </t> --></section> <sectionanchor='ll' title='Link-Local Addresses'>anchor="ll" numbered="true" toc="default"> <name>Link-Local Addresses</name> <t> There are several types of IPv6 addresses <xreftarget='RFC4291'/>,target="RFC4291" format="default"/> <xreftarget='RFC4193'/>,target="RFC4193" format="default"/> that may be assigned to an 802.11-OCB interface. Among these types ofaddressesaddresses, only the IPv6 link-local addresses can be formed using an EUI-64 identifier,in particularparticularly during transitiontime,time (the period of timespentbefore an interface starts usinga differentan addressthandifferent from the LL one). </t> <t> If the IPv6 link-local address is formed using an EUI-64 identifier, then the mechanismoffor forming that address is the same mechanism as that used to form an IPv6 link-local address on Ethernet links. Moreover, regardless of whetheror notthe interface identifier is derived from the EUI-64 identifier, its length is 64bitsbits, as is the case for the Ethernet <xreftarget='RFC2464'/>.target="RFC2464" format="default"/>. </t> </section> <sectiontitle='Stateless Autoconfiguration' anchor='slaac'>anchor="slaac" numbered="true" toc="default"> <name>Stateless Autoconfiguration</name> <t> The steps a host takes in deciding how to autoconfigure its interfaces in IPv6 are described in <xreftarget='RFC4862'/>.target="RFC4862" format="default"/>. This section describes the formation of Interface Identifiers forIPv6 addresses of type'Global' or 'UniqueLocal'.Local' IPv6 addresses. Interface Identifiers for 'link-local' IPv6address of type 'Link-Local'addresses are discussed in <xreftarget='ll'/>.target="ll" format="default"/>. </t> <t> TheRECOMMENDED<bcp14>RECOMMENDED</bcp14> method for forming stable Interface Identifiers (IIDs) is described in <xreftarget='RFC8064'/>.target="RFC8064" format="default"/>. The method of forming IIDs described inSection 4 of<xreftarget='RFC2464'/> MAYtarget="RFC2464" sectionFormat="of" section="4"/> <bcp14>MAY</bcp14> be used during transition time,in particularparticularly for IPv6 link-local addresses. Regardless ofhowthe method used to form the IID, its length is 64 bits,similarelysimilarly to IPv6 over Ethernet <xreftarget='RFC2464'/>.target="RFC2464" format="default"/>. </t> <t> The bits in the IID have no specificmeaningmeaning, and the identifier should be treated as an opaque value. The bits 'Universal' and 'Group' in the identifier of an 802.11-OCBinterface are significant, as thisinterface, which is an IEEE link-layeraddress.address, are significant. The details of this significance are described in <xreftarget="RFC7136"/>.target="RFC7136" format="default"/>. </t> <t> Semantically opaque IIDs, instead of meaningful IIDs derived from a valid and meaningful MAC address (<xreftarget='RFC2464'/>, Section 4),target="RFC2464" sectionFormat="comma" section="4"/>), help avoid certain privacy risks (see the risks mentioned in <xreftarget='privacy-opaque-iid'/>).target="privacy-opaque-iid" format="default"/>). If semantically opaque IIDs are needed, they may be generated using the method for generating semantically opaque IIDs with IPv6 Stateless Address Autoconfiguration given in <xreftarget="RFC7217"/>.target="RFC7217" format="default"/>. Typically, an opaque IID is formed starting from identifiers differentthanfrom the MACaddresses,addresses and from cryptographically strong material. Thus,privacy sensitiveprivacy-sensitive information is absent from InterfaceIDs,IDs because it is impossible to calculate back the initial value from which the Interface ID was first generated. </t> <t><!-- A valid MAC address includes a unique identifier pointing to --> <!-- a company together with its postal address, and a unique --> <!-- number within that company MAC space (see the oui.txt file). --> <!-- The calculation operation of the MAC address back from a --> <!-- given meaningful Interface Identifier is straightforward --> <!-- (<xref target='RFC2464'/>, section 4). The Interface --> <!-- Identifier is part of an IPv6 address that is stored in IPv6 --> <!-- packets. --> </t> <t>Some applications that use IPv6 packets on 802.11-OCB links (among other link types) may benefit from IPv6 addresses whose IIDs don't change too often. It isRECOMMENDED<bcp14>RECOMMENDED</bcp14> to use the mechanisms described inRFC 7217<xref target="RFC7217"/> to permit the use ofStablestable IIDs that do not change within one subnet prefix. A possible source for theNet-Iface ParameterNet_Iface parameter is a virtual interfacename,name or logical interfacename,name that is decided by a local administrator. </t> </section> <sectiontitle='Address Mapping'>numbered="true" toc="default"> <name>Address Mapping</name> <t> Unicast and multicast address mappingMUST<bcp14>MUST</bcp14> follow the procedures specified for Ethernet interfacesspecifieddescribed in in Sections6<xref target="RFC2464" sectionFormat="bare" section="6"/> and7<xref target="RFC2464" sectionFormat="bare" section="7"/> of <xreftarget='RFC2464'/>.target="RFC2464"/>. </t> <sectiontitle='Addressnumbered="true" toc="default"> <name>Address Mapping --Unicast'>Unicast</name> <t> This document is scoped for Address Resolution (AR) and Duplicate Address Detection (DAD) per <xreftarget="RFC4862"/>.target="RFC4862" format="default"/>. </t> </section> <section anchor="address-mapping-multicast"title="Addressnumbered="true" toc="default"> <name>Address Mapping --Multicast">Multicast</name> <t> The multicast address mapping is performed according to the method specified insection 7 of<xreftarget='RFC2464'/>.section="7" target="RFC2464" sectionFormat="of"/>. The meaning of the value"3333""33-33" mentioned there is defined insection 2.3.1 of<xreftarget='RFC7042'/>.target="RFC7042" sectionFormat="of" section="2.3.1"/>. </t> <t> Transmitting IPv6 packets to multicast destinations over 802.11 links proved to have some performance issues <xreftarget='ieee802-MCAST'/>.target="I-D.ietf-mboned-ieee802-mcast-problems" format="default"/>. These issues may be exacerbated in OCB mode.A futureFuture improvement to this specification should consider solutions for these problems. </t> </section> </section> <sectiontitle='Subnet Structure' anchor='subnet-structure'>anchor="subnet-structure" numbered="true" toc="default"> <name>Subnet Structure</name> <t> When vehicles are in close range, a subnet may be formed over 802.11-OCB interfaces (not by their in-vehicle interfaces). A Prefix List conceptual data structure (<xreftarget='RFC4861'/> Section 5.1)target="RFC4861" sectionFormat="comma" section="5.1"/>) is maintained for each 802.11-OCB interface. </t> <t> The IPv6 Neighbor Discovery protocol (ND) requires reflexive properties (bidirectionalconnectivity)connectivity), which is generally, though not always, the case for P2P OCB links. IPv6 ND also requires transitive properties for DAD and AR, so an IPv6 subnet can be mapped on an OCB network only if all nodes in the network share a single physical broadcast domain. The extension to IPv6 ND operating on a subnet that covers multiple OCB links and does not fullyoverlapping (NBMA)overlap (i.e., non-broadcast multi-access (NBMA)) is not inscope.scope of this document. Finally, IPv6 ND requiresapermanent connectivity of all nodes in the subnet to defend theiraddresses,addresses -- in otherwordswords, very stable network conditions. </t> <t> The structure of this subnet isephemeral,ephemeral in that it is strongly influenced by the mobility of vehicles: the hidden terminal effectsappear;appear, and the 802.11 networks in OCB mode may be consideredas 'ad-hoc'ad hoc networks with an addressingmodelmodel, as described in <xreftarget='RFC5889'/>.target="RFC5889" format="default"/>. Onanotherthe other hand, the structure of the internal subnets in each vehicle is relatively stable. </t> <t> As recommended in <xreftarget='RFC5889'/>,target="RFC5889" format="default"/>, when the timing requirements are very strict (e.g., fast-drive-through IP-RSU coverage), no on-link subnet prefix should be configured on an 802.11-OCB interface. In such cases, the exclusive use of IPv6 link-local addresses isRECOMMENDED.<bcp14>RECOMMENDED</bcp14>. </t> <t> Additionally, even if the timing requirements are not very strict (e.g., the moving subnet formed by two following vehicles is stable, a fixed IP-RSU is absent), the subnet is disconnected from the Internet (i.e., a default route is absent), and the addressing peers are equally qualified (that is, it is impossible to determinethatwhether some vehicle owns and distributes addresses toothers)others), the use of link-local addresses isRECOMMENDED.<bcp14>RECOMMENDED</bcp14>. </t> <t> The baseline ND protocol <xreftarget='RFC4861'/> MUSTtarget="RFC4861" format="default"/> <bcp14>MUST</bcp14> be supported over 802.11-OCB links. Transmitting ND packets may prove to have some performanceissuesissues, as mentioned in <xreftarget='address-mapping-multicast'/>,target="address-mapping-multicast" format="default"/> and <xreftarget='nd-wireless'/>.target="nd-wireless" format="default"/>. These issues may be exacerbated in OCB mode. Solutions for these problems should consider the OCB mode of operation. Future solutions to OCB should consider solutions for avoiding broadcast. The best of current knowledge indicates the kinds of issues that may arise with ND in OCB mode; they are described in <xreftarget="nd-wireless"/>. </t> <!-- <t> --> <!-- The Neighbor Discovery protocol (ND) <xref --> <!-- target='RFC4861'/> is used over 802.11-OCB links. The --> <!-- reliability of the ND protocol over 802.11-OCB is the --> <!-- reliability of the delivery of ND multicast messages. This --> <!-- reliability is the same as the reliability of delivery of ND --> <!-- multicast messages over 802.11 links operated with a BSS ID. --> <!--target="nd-wireless" format="default"/>. </t>--><t> Protocols like Mobile IPv6 <xreftarget='RFC6275'/> ,target="RFC6275" format="default"/> <xreftarget='RFC3963'/>target="RFC3963" format="default"/> and DNAv6 <xreftarget='RFC6059'/>,target="RFC6059" format="default"/>, which depend onatimely movement detection, might need additional tuning work to handle the lack of link-layer notifications during handover. This topic is left for further study. </t><!--</section> </section> <section anchor="Security" numbered="true" toc="default"> <name>Security Considerations</name> <t>--> <!-- The operation of the Mobile IPv6 protocol over 802.11-OCB --> <!-- links is different than on other links. The Movement --> <!-- Detection operation (section 11.5.1 of <xref --> <!-- target='RFC6275'/>) can not rely on Neighbor Unreachability --> <!-- Detection operation of the Neighbor Discovery protocol, for --> <!-- the reason mentioned in the previous paragraph. Also, the --> <!-- 802.11-OCB link layer is not a lower layer that can provide --> <!-- an indication that a link layer handover has occured. The --> <!-- operation of the Mobile IPv6 protocol over 802.11-OCB is not --> <!-- specified in this document. --> <!-- </t> --> </section> </section> <section anchor="Security" title="Security Considerations"> <t> Any security mechanism atAny security mechanism at the IP layer or above that may becarried outimplemented for the general case of IPv6 may also becarried outimplemented for IPv6 operating over 802.11-OCB. </t> <t> The OCB operation does not use existing 802.11 link-layer security mechanisms. There is no encryption applied below the network layer running on 802.11-OCB. At the application layer, the IEEE 1609.2 document <xreftarget="IEEE-1609.2"/>target="IEEE-1609.2" format="default"/> provides security services for certain applications to use; application-layer mechanisms are out of scope of this document. Onanotherthe other hand, a security mechanism provided at the networking layer, such as IPsec <xreftarget="RFC4301"/>,target="RFC4301" format="default"/>, may provide data security protection to a wider range of applications. </t> <t> 802.11-OCB does not provide any cryptographicprotection,protection because it operates outside the context of a BSS (no AssociationRequest/Response, noRequest/Response or Challenge messages). Therefore, an attacker can sniff or inject traffic while within range of a vehicle or IP-RSU (by setting an interface card's frequency to the proper range). Also, an attacker may notheedadhere to the legal limits for radio power and can use a very sensitive directional antenna; if attackerswishewish to attack a givenexchangeexchange, they do not necessarily need to be in close physical proximity. Hence, such a link is less protected than commonly used links(wired(a wired link or the aforementioned 802.11 links with link-layer security). </t><t> Therefore,<t>Therefore, any node can join asubnet,subnet and directly communicate with any nodes on thesubset to includesubset, including potentially impersonating another node. This design allows for a number of threats outlined inSection 3 of<xreftarget="RFC6959"/>.target="RFC6959" sectionFormat="of" section="3"/>. While not widely deployed,SeNDSEND <xreftarget="RFC3971"/>,target="RFC3971" format="default"/> <xreftarget="RFC3972"/>target="RFC3972" format="default"/> is a solution that can addressSpoof-Based Attack Vectors.spoof-based attack vectors. </t> <section anchor="Privacy"title="Privacy Considerations">numbered="true" toc="default"> <name>Privacy Considerations</name> <t> As with all Ethernet and 802.11 interface identifiers(<xref target='RFC7721'/>),<xref target="RFC7721" format="default"/>, the identifier of an 802.11-OCB interface may involve privacy, MAC addressspoofingspoofing, and IP hijacking risks. A vehicle embarking an IP-OBU whose egress interface is 802.11-OCB may expose itself to eavesdropping and subsequent correlation of data. This may reveal data considered private by the vehicle owner; there is a risk of being tracked. Inoutdoorsoutdoor public environments, where vehicles typically circulate, the privacy risks aremore importantgreater than inindoorsindoor settings. It is highly likely that attacker sniffers are deployed along routeswhichthat listen for IEEE frames, including IP packets, of vehicles passing by. For this reason, inthe802.11-OCB deployments, there is a strong necessity to use protection tools such as dynamically changing MAC addresses<xref target="mac-change"/>,(<xref target="mac-change" format="default"/>), semantically opaque InterfaceIdentifiersIdentifiers, and stable Interface Identifiers<xref target="slaac"/>.(<xref target="slaac" format="default"/>). An example of a change policy is to change the MAC address of the OCB interface each time the system boots up. This may help mitigate privacy risks to a certain level. Furthermore, for privacy concerns,(<xref target='RFC8065'/>)<xref target="RFC8065" format="default"/> recommends using anaddress generationaddress-generation scheme rather than generating addressesgeneratedfrom a fixed link-layer address. However, there are some specificities related to vehicles. Since roaming is an important characteristic of moving vehicles, the use of the same Link-Local Address over time can indicate the presence of the same vehicle in different places and thusleadslead to location tracking. Hence, a vehicle should get hints about a change of environment(e.g. ,(e.g., engine running, GPS,etc..)etc.) and renew the IID in its LLAs. </t> <section anchor="privacy-opaque-iid"title="Privacynumbered="true" toc="default"> <name>Privacy Risks of MeaningfulinfoInformation in InterfaceIDs">IDs</name> <t> The privacy risks of using MAC addresses displayed in Interface Identifiers are important.TheIPv6 packets can be captured easilyinon the Internet and on-linkinon public roads. For this reason, an attacker may realize many attacks on privacy. One such attack on 802.11-OCB is to capture,storestore, and correlateCompanycompany ID information present in the MAC addresses ofmanya large number of cars(e.g. listen(e.g., listening for RouterAdvertisements,Advertisements or other IPv6 application data packets, andrecordrecording the value of the source address in these packets). Further correlation of this information with other data captured by othermeans,means or other visual information(car color, others)(e.g., car color) may constitute privacy risks. </t> </section> </section> <sectiontitle="MACanchor="mac-change" numbered="true" toc="default"> <name>MAC Address and Interface IDGeneration" anchor="mac-change">Generation</name> <t> In 802.11-OCB networks, the MAC addresses may change duringwell definedwell-defined renumbering events.InAt the moment the MAC address is changed on an 802.11-OCBinterfaceinterface, all the Interface Identifiers of IPv6 addresses assigned to that interfaceMUST<bcp14>MUST</bcp14> change. </t> <t> Implementations should use a policy dictating when the MAC address is changed on the 802.11-OCB interface. For more information on the motivation of thispolicypolicy, please refer to the privacy discussion in <xreftarget='introduced-by-OCB'/>.target="introduced-by-OCB" format="default"/>. </t> <t> A 'randomized' MAC address has the following characteristics: </t><t> <list style="symbols" > <t> Bit<ul spacing="normal"> <li> The "Local/Global" bit is set to "locally administered".</t> <t> Bit</li> <li> The "Unicast/Multicast" bit is set to "Unicast".</t> <t></li> <li> The 46 remaining bits are set to a randomvalue,value using a random number generator that meets the requirements of <xref target="RFC4086"/>. </t> </list> </t>format="default"/>. </li> </ul> <t> To meet the randomization requirements for the 46 remaining bits, a hash function may be used. For example, the<xref target="SHA256"></xref>hash function defined in <xref target="SHA256" format="default"/> may be used with the input of a256 bit256-bit local secret, the 'nominal' MACAddressaddress of the interface, and a representation of the date and time of the renumbering event. </t> <t> A randomized Interface ID has the same characteristics of a randomized MACaddress,address except for the length in bits. </t> </section> <sectionanchor='pseudonym' title= 'Pseudonymization impactanchor="pseudonym" numbered="true" toc="default"> <name>Pseudonymization Impact onconfidentialityConfidentiality andtrust'>Trust</name> <t>Vehicles 'and drivers'Vehicle and drivers privacy relies on pseudonymization mechanisms such as the ones described in <xreftarget='mac-change'/>.target="mac-change" format="default"/>. This pseudonymization means that upper-layer protocols and applicationsSHOULD NOT<bcp14>SHOULD NOT</bcp14> rely on layer-2 or layer-3 addresses to assume that the other participant can be trusted. </t> </section> </section> <section anchor="IANA"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <t>No request to IANA.This document has no IANA actions. </t> </section><section anchor="Contributors" title="Contributors"> <t> Christian Huitema, Tony Li. </t> <t> Romain Kuntz contributed extensively about IPv6 handovers between links running outside the context of a BSS (802.11-OCB links). </t> <t> Tim Leinmueller contributed the idea of the use of IPv6 over 802.11-OCB</middle> <!-- *****BACK MATTER ***** --> <back> <displayreference target="I-D.ietf-mboned-ieee802-mcast-problems" to="IEEE802-MCAST"/> <displayreference target="I-D.ietf-ipwave-vehicular-networking" to="IPWAVE"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.1042.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2464.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4086.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4191.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4193.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4291.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4301.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4862.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5415.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6059.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6275.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7042.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7136.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7217.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8064.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/> <reference anchor="IEEE-802.11-2016" target="https://standards.ieee.org/findstds/standard/802.11-2016.html"> <front> <title> IEEE Standard fordistribution of certificates. </t> <t> Marios Makassikis, Jose Santa Lozano, Albin SeverinsonInformation technology - Telecommunications andAlexey Voronov provided significant feedback on the experience of using IP messages over 802.11-OCB in initial trials. </t> <t> Michelle Wetterwald contributed extensively the MTU discussion, offered the ETSI ITS perspective, and reviewed other parts of the document. </t> </section> <section anchor="Acknowledgements" title="Acknowledgements"> <t> The authors would like to thank Alexandre Petrescu for initiating this work and for being the lead author until the version 43 of this draft. </t> <t> The authors would like to thank Pascal Thubert for reviewing, proofreading and suggesting modifications of this document. </t> <t> The authors would like to thank Mohamed Boucadair for proofreading and suggesting modifications of this document. </t> <t> The authors would like to thank Eric Vyncke for reviewing suggesting modifications of this document. </t> <t> The authors would like to thank Witold Klaudel, Ryuji Wakikawa, Emmanuel Baccelli, John Kenney, John Moring, Francois Simon, Dan Romascanu, Konstantin Khait, Ralph Droms, Richard 'Dick' Roy, Ray Hunter, Tom Kurihara, Michal Sojka, Jan de Jongh, Suresh Krishnan, Dino Farinacci, Vincent Park, Jaehoon Paul Jeong, Gloria Gwynne, Hans-Joachim Fischer, Russ Housley, Rex Buddenberg, Erik Nordmark, Bob Moskowitz, Andrew Dryden, Georg Mayer, Dorothy Stanley, Sandra Cespedes, Mariano Falcitelli, Sri Gundavelli, Abdussalam Baryun, Margaret Cullen, Erik Kline, Carlos Jesus Bernardos Cano, Ronald in 't Velt, Katrin Sjoberg, Roland Bless, Tijink Jasja, Kevin Smith, Brian Carpenter, Julian Reschke, Mikael Abrahamsson, Dirk von Hugo, Lorenzo Colitti, Pascal Thubert, Ole Troan, Jinmei Tatuya, Joel Halpern, Eric Gray and William Whyte. Their valuable comments clarified particular issues and generally helped to improve the document. </t> <t> Pierre Pfister, Rostislav Lisovy, and others, wrote 802.11-OCB drivers for linuxinformation exchange between systems Local anddescribed how. </t> <t> For the multicast discussion, the authors would like to thank Owen DeLong, Joe Touch, Jen Linkova, Erik Kline, Brian Habermanmetropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) andparticipants to discussions in network working groups. </t> <t> The authors would like to thank participants to the Birds-of-a-Feather "Intelligent Transportation Systems" meetings held at IETF in 2016. </t> <t> Human Rights Protocol Considerations review by Amelia Andersdotter. </t> </section> </middle> <!-- *****BACK MATTER ***** --> <back> <references title="Normative References"> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.1042" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2464" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4086" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4191" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4193" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4291" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4301" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4861" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4862" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5415" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6059" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6275" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7042" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7136" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7217" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8064" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8200" ?> <!-- [rfced] [IEEE-802.11-2016] This URL is correct -->Physical Layer (PHY) Specifications </title> <seriesInfo name="IEEE Standard" value="802.11-2016"/> <author> <organization>IEEE</organization> </author> <date month="December" year="2016"/> </front> </reference> </references> <references> <name>Informative References</name> <referenceanchor="IEEE-802.11-2016" >anchor="IEEE-802.11-2007" target="https://ieeexplore.ieee.org/document/4248378"> <front> <title> IEEE Standard802.11-2016 - IEEE Standardfor Information Technology - Telecommunications andinformation exchange between systemsInformation Exchange Between Systems - Local andmetropolitan area networksMetropolitan Area Networks - SpecificrequirementsRequirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)Specifications. Status - Active Standard. Description retrieved freely; the document itself is also freely available, but with some difficulty (requires registration); description and document retrieved on April 8th, 2019, starting from URL https://standards.ieee.org/findstds/standard/802.11-2016.htmlSpecifications </title><author/> <date/><seriesInfo name="IEEE Standard" value="802.11-2007"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2007.373646"/> <author><organization>IEEE</organization></author> <date month="June" year="2007"/> </front> </reference><!-- <?rfc --> <!-- include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.BCP.14" --> <!-- ?> --> </references> <references title="Informative References"> <!-- [rfced] [IEEE-802.11p-2010] The URL listed below is no longer valid. Found URL: https://standards.ieee.org/standard/802_11p-2010.html but must pay<reference anchor="IEEE-802.11-2012" target="https://ieeexplore.ieee.org/document/6419735"> <front> <title> IEEE Standard fordownload. Also found https://ieeexplore.ieee.org/document/5514475 DOI: 10.1109/IEEESTD.2010.5514475 -->Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications </title> <seriesInfo name="IEEE Standard" value="802.11-2012"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2012.6178212"/> <author><organization>IEEE</organization></author> <date month="March" year="2012"/> </front> </reference> <referenceanchor="IEEE-802.11p-2010" >anchor="IEEE-802.3-2012" target="https://ieeexplore.ieee.org/document/6419735"> <front> <title> IEEEStd 802.11p (TM)-2010,Standard for Ethernet </title> <seriesInfo name="IEEE Standard" value="802.3-2012"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2012.6419735"/> <author><organization>IEEE</organization></author> <date month="December" year="2012"/> </front> </reference> <reference anchor="IEEE-802.11p-2010" target="https://standards.ieee.org/standard/802_11p-2010.html"> <front> <title> IEEE Standard for InformationTechnologytechnology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 6: Wireless Access in VehicularEnvironments; document freely available at URL http://standards.ieee.org/getieee802/download/802.11p-2010.pdf retrieved on September 20th, 2013.Environments </title><author/> <date/><seriesInfo name="IEEE Standard" value="802.11p-2010"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2010.5514475"/> <author><organization>IEEE</organization></author> <date month="July" year="2010"/> </front> </reference><!-- [rfced] [SHA256] URL below is to version published in 2002. Newer version published in 2015 can be found at https://csrc.nist.gov/publications/detail/fips/180/4/final --><reference anchor="SHA256">target="https://csrc.nist.gov/publications/detail/fips/180/4/final"> <front><title> Secure<title>Secure Hash Standard(SHS), National(SHS)</title> <seriesInfo name="FIPS" value="180-4" /> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.180-4" /> <author><organization>National Institute of Standards andTechnology. https://csrc.nist.gov/CSRC/media/Publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf </title> <author/> <date/>Technology</organization></author> <date month="August" year="2015"/> </front> </reference><!-- [rfced] [IEEE-1609.2] URL is correct DOI: 10.1109/IEEESTD.2016.7426684 --><referenceanchor="IEEE-1609.2">anchor="IEEE-1609.2" target="http://ieeexplore.ieee.org/document/7426684"> <front> <title> IEEESA - 1609.2-2016 - IEEEStandard for Wireless Access in VehicularEnvironments (WAVE) -- SecurityEnvironments--Security Services for Applications and ManagementMessages. Example URL http://ieeexplore.ieee.org/document/7426684/ accessed on August 17th, 2017. </title> <author/> <date/> </front> </reference> <!-- <reference anchor="IEEE-1609.3"> --> <!-- <front> --> <!-- <title> --> <!-- IEEE SA - 1609.3-2016 - IEEE Standard for Wireless Access --> <!-- in Vehicular Environments (WAVE) - Networking Services. --> <!-- Example URL http://ieeexplore.ieee.org/document/7458115/ --> <!-- accessed on August 17th, 2017. --> <!-- </title> --> <!-- <author/> --> <!-- <date/> --> <!-- </front> --> <!-- </reference> --> <!-- <reference anchor="IEEE-1609.4"> --> <!-- <front> --> <!-- <title> --> <!-- IEEE SA - 1609.4-2016 - IEEE Standard for Wireless Access --> <!-- in Vehicular Environments (WAVE) - Multi-Channel --> <!-- Operation. Example URL --> <!-- http://ieeexplore.ieee.org/document/7435228/ accessed on --> <!-- August 17th, 2017. --> <!--Messages </title>--> <!-- <author/> --> <!-- <date/> --> <!--<seriesInfo name="IEEE Standard" value="1609.2-2016"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7426684"/> <author><organization>IEEE</organization></author> <date month="March" year="2016"/> </front>--> <!--</reference>--> <!-- [rfced] [IEEE-1609.3] URL below is correct DOI: 10.1109/IEEESTD.2016.7458115 --><referenceanchor="IEEE-1609.3">anchor="IEEE-1609.3" target="http://ieeexplore.ieee.org/document/7458115"> <front> <title> IEEESA - 1609.3-2016 - IEEEStandard for Wireless Access in Vehicular Environments (WAVE) -- NetworkingServices. Example URL http://ieeexplore.ieee.org/document/7458115/ accessed on August 17th, 2017.Services </title><author/> <date/><seriesInfo name="IEEE Standard" value="1609.3-2016"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7458115"/> <author><organization>IEEE</organization></author> <date month="April" year="2016"/> </front> </reference><!-- [rfced] [IEEE-1609.4] URL below is correct DOI: 10.1109/IEEESTD.2016.7435228 --><referenceanchor="IEEE-1609.4">anchor="IEEE-1609.4" target="http://ieeexplore.ieee.org/document/7435228"> <front> <title> IEEESA - 1609.4-2016 - IEEEStandard for Wireless Access in Vehicular Environments (WAVE) -- Multi-ChannelOperation. Example URL http://ieeexplore.ieee.org/document/7435228/ accessed on August 17th, 2017.Operation </title><author/> <date/><seriesInfo name="IEEE Standard" value="1609.4-2016"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7435228"/> <author><organization>IEEE</organization></author> <date month="March" year="2016"/> </front> </reference><!-- [rfced] [ETSI-sec-archi] This URL is correct --><referenceanchor="ETSI-sec-archi">anchor="ETSI-sec-archi" target="http://www.etsi.org/deliver/etsi_ts/102900_102999/102940/01.02.01_60/ts_102940v010201p.pdf"> <front> <title>ETSI TS 102 940 V1.2.1 (2016-11), ETSI Technical Specification,Intelligent Transport Systems (ITS); Security; ITS communications security architecture and securitymanagement, November 2016. Downloaded on September 9th, 2017, freely available from ETSI website at URL http://www.etsi.org/deliver/etsi_ts/102900_102999/102940/01.02.01_60/ts_102940v010201p.pdfmanagement </title> <seriesInfo name="ETSI" value="TS 102 940 V1.2.1"/> <author/><date/><date month="November" year="2016"/> </front> </reference><!--<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-ipwave-vehicular-networking.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-mboned-ieee802-mcast-problems.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3753.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3963.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3971.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3972.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5889.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6959.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7721.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8065.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8505.xml"/> <referenceanchor="fcc-cc" > --> <!-- <front> --> <!-- <title> --> <!-- 'Report and Order, Before the Federal Communications --> <!-- Commission Washington, D.C. 20554', FCC 03-324, Released --> <!-- on February 10, 2004, document FCC-03-324A1.pdf, --> <!-- document freely available at URL --> <!-- http://www.its.dot.gov/exit/fcc_edocs.htm downloaded on --> <!-- October 17th, 2013. --> <!-- </title> --> <!-- <author/> --> <!-- <date/> --> <!-- </front> --> <!-- </reference> --> <!-- <reference anchor="fcc-cc-172-184" > --> <!-- <front> --> <!-- <title> --> <!-- 'Memorandum Opinion and Order, Before the Federal --> <!-- Communications Commission Washington, D.C. 20554', FCC --> <!-- 06-10, Released on July 26, 2006, document --> <!-- FCC-06-110A1.pdf, document freely available at URL --> <!-- http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-06-110A1.pdf --> <!-- downloaded on June 5th, 2014. --> <!-- </title> --> <!-- <author/> --> <!-- <date/> --> <!-- </front> --> <!-- </reference> --> <!-- <reference anchor="etsi-302663-v1.2.1p-2013" > --> <!-- <front> --> <!-- <title> --> <!-- Intelligent Transport Systems (ITS); Access layer --> <!-- specification for Intelligent Transport Systems --> <!-- operating in the 5 GHz frequency band, 2013-07, document --> <!-- en_302663v010201p.pdf, document freely available at URL --> <!-- http://www.etsi.org/deliver/etsi_en/302600_302699/302663/ --> <!-- 01.02.01_60/en_302663v010201p.pdf downloaded on October --> <!-- 17th, 2013. --> <!-- </title> --> <!-- <author/> --> <!-- <date/> --> <!-- </front> --> <!-- </reference> --> <!-- <reference anchor="etsi-draft-102492-2-v1.1.1-2006" > --> <!-- <front> --> <!-- <title> --> <!-- Electromagnetic compatibility and Radio spectrum Matters --> <!-- (ERM); Intelligent Transport Systems (ITS); Part 2: --> <!-- Technical characteristics for pan European harmonized --> <!-- communications equipment operating in the 5 GHz --> <!-- frequency range intended for road safety and traffic --> <!-- management, and for non-safety related ITS applications; --> <!-- System Reference Document, Draft ETSI TR 102 492-2 --> <!-- V1.1.1, 2006-07, document tr_10249202v010101p.pdf freely --> <!-- available at URL --> <!-- http://www.etsi.org/deliver/etsi_tr/102400_102499/ --> <!-- 10249202/01.01.01_60/tr_10249202v010101p.pdf downloaded --> <!-- on October 18th, 2013. --> <!-- </title> --> <!-- <author/> --> <!-- <date/> --> <!-- </front> --> <!-- </reference> --> <!-- <reference anchor="TS103097" > --> <!-- <front> --> <!-- <title> --> <!-- Intelligent Transport Systems (ITS); Security; Security --> <!-- header and certificate formats; document freely --> <!-- available at URL --> <!-- http://www.etsi.org/deliver/etsi_ts/103000_103099/103097/01.01.01_60/ts_103097v010101p.pdf --> <!-- retrieved on July 08th, 2016. --> <!-- </title> --> <!-- <author/> --> <!-- <date/> --> <!-- </front> --> <!-- </reference> --> <!-- <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-ipwave-vehicular-networking" ?>; I-D Exists --> <reference anchor='IPWAVE-NETWORKING'> <front> <title>IP Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases</title> <author initials='J' surname='Jeong' fullname='Jaehoon Jeong'> <organization /> </author> <date month='July' day='20' year='2019' /> <abstract><t>This document discusses the problem statement and use cases of IP- based vehicular networking for Intelligent Transportation Systems (ITS). The main scenarios of vehicular communications are vehicle- to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to- everything (V2X) communications. First, this document explains use cases using V2V, V2I, and V2X networking. Next, it makes a problem statement about key aspects in IP-based vehicular networking, such as IPv6 Neighbor Discovery, Mobility Management, and Security & Privacy. For each key aspect, this document specifies requirements in IP-based vehicular networking, and suggests the direction of solutions satisfying those requirements.</t></abstract> </front> <seriesInfo name='Work in Progress,' value='draft-ietf-ipwave-vehicular-networking-11' /> </reference> <!-- <?rfc --> <!-- include="http://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-tsvwg-ieee-802-11" --> <!-- ?> --> <!-- <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.hinden-6man-rfc2464bis" ?> --> <!-- <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-mboned-ieee802-mcast-problems" ?>; Publication Requested --> <reference anchor='ieee802-MCAST'> <front> <title>Multicast Considerations over IEEE 802 Wireless Media</title> <author initials='C' surname='Perkins' fullname='Charles Perkins'> <organization /> </author> <author initials='M' surname='McBride' fullname='Mike McBride'> <organization /> </author> <author initials='D' surname='Stanley' fullname='Dorothy Stanley'> <organization /> </author> <author initials='W' surname='Kumari' fullname='Warren Kumari'> <organization /> </author> <author initials='J' surname='Zuniga' fullname='Juan Zuniga'> <organization /> </author> <date month='August' day='13' year='2019' /> <abstract><t>Well-known issues with multicast have prevented the deployment of multicast in 802.11 and other local-area wireless environments. This document offers guidance on known limitations and problems with wireless multicast. Also described are certain multicast enhancement features that have been specified by the IETF and by IEEE 802 for wireless media, as well as some operational choices that can be taken to improve the performaceanchor="CFR-90.7" target="https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.90&rgn=div5#se47.5.90_17"> <front> <title>Electronic Code ofthe network. Finally, some recommendations are provided about the usage and combinationFederal Regulations</title> <author><organization>e-CFR</organization></author> </front> <refcontent>Title 47, CFR 90.7 - Definitions</refcontent> </reference> <reference anchor="CFR-95" target="https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.95&rgn=div5"> <front> <title>Electronic Code ofthese features and operational choices.</t></abstract>Federal Regulations</title> <author><organization>e-CFR</organization></author> </front><seriesInfo name='Work in Progress,' value='draft-ietf-mboned-ieee802-mcast-problems-08' /><refcontent>Title 47, CFR 95 - PERSONAL RADIO SERVICES</refcontent> </reference> <reference anchor="CFR-90" target="https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.90&rgn=div5"> <front> <title>Electronic Code of Federal Regulations</title> <author><organization>e-CFR</organization></author> </front> <refcontent>Title 47, Part 90 - PRIVATE LAND MOBILE RADIO SERVICES</refcontent> </reference><?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3753" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3963" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3971" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3972" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5889" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6959" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7721" ?> <?rfc include="http://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8065" ?></references> </references> <sectiontitle= "802.11p" anchor='i802.11p'>anchor="i802.11p" numbered="true" toc="default"> <name>802.11p</name> <t> The term "802.11p" is an earlier definition. Thebehaviourbehavior of "802.11p" networks is rolled inthe document IEEE Std 802.11-2016.<xref target="IEEE-802.11-2016" format="default"/>. In thatdocumentdocument, the term802.11p"802.11p" disappears. Instead, each 802.11p feature is conditioned by the IEEE Management Information Base (MIB) attribute "OCBActivated" <xreftarget="IEEE-802.11-2016"/>.target="IEEE-802.11-2016" format="default"/>. Whenever OCBActivated is set totrue"true", the IEEE Std 802.11-OCB state is activated. For example, an 802.11 STAtion operating outside the context of abasic service setBSS has the OCBActivated flag set. Such a station, when it has the flag set, uses a BSS identifier equal to ff:ff:ff:ff:ff:ff. </t> </section> <sectiontitle="Aspects introducedanchor="introduced-by-OCB" numbered="true" toc="default"> <name>Aspects Introduced bytheOCBmodeMode to802.11" anchor='introduced-by-OCB'>802.11</name> <t> IntheIEEE 802.11-OCB mode, all nodes in the wireless range can directly communicate with each other without involving authentication or association procedures. In OCB mode, the manner in which channels are selected and used is simplified compared to when in BSS mode. Contrary to BSS mode, at the link layer, it is necessary tosetstatically set the same channel number (or frequency) on two stations that need to communicate with each other (in BSSmodemode, this channel set operation is performed automatically during 'scanning'). The manner in which stations set their channel number in OCB mode is not specified in this document. Stations STA1 and STA2 can exchange IP packets only if they are setonto the same channel. At the IP layer, they then discover each other by using the IPv6 Neighbor Discovery protocol. The allocation of a particular channel for a particular use is defined statically in standards authored by ETSI(in Europe),in Europe, the FCC in the United States of America, and similarorganisationsorganizations in South Korea,JapanJapan, and other parts of the world. </t> <t> Briefly, the IEEE 802.11-OCB mode has the following properties:<list style="symbols"> <t></t> <ul spacing="normal"> <li> The use by each node of a 'wildcard'BSSIDBSS identifier (BSSID) (i.e., each bit of the BSSID is set to1) </t> <t>1). </li> <li> No IEEE 802.11Beaconbeacon frames aretransmitted </t> <t>transmitted. </li> <li> No authentication is required in order to be able tocommunicate</t> <t>communicate.</li> <li> No association is needed in order to be able tocommunicate</t> <t>communicate.</li> <li> No encryption is provided in order to be able tocommunicate</t> <t>communicate.</li> <li> Flag dot11OCBActivated is set totrue </t> </list>"true". </li> </ul> <t> All the nodes in the radio communication range (IP-OBU and IP-RSU) receive all the messages transmitted (IP-OBU and IP-RSU) within the radiocommunicationscommunication range. Theeventual conflict(s) are resolved by theMAC CDMAfunction.function resolves any eventual conflict(s). </t> <t> The message exchange diagram in <xreftarget='fig:mess-exch'/>target="fig_mess-exch" format="default"/> illustrates a comparison between traditional 802.11 and 802.11 in OCB mode. The 'Data' messages can be IP packets such as HTTP or others. Other 802.11 management and control frames(non IP)(non-IP) may be transmitted, as specified in the 802.11 standard.For information, theThe names of these messages as currently specified by the 802.11 standard are listed in <xreftarget="OCB-messages"/>.target="OCB-messages" format="default"/>. </t><t><figuretitle='Differenceanchor="fig_mess-exch"> <name>Difference betweenmessages exchangedMessages Exchanged on 802.11(left)(Left) and 802.11-OCB(right)' anchor='fig:mess-exch' align="center">(Right)</name> <artworkalign="center"> <![CDATA[align="center" name="" type="" alt=""><![CDATA[ STA AP STA1 STA2 | | | | |<------ Beacon -------| |<------ Data -------->| | | | | |---- Probe Req. ----->| |<------ Data -------->| |<--- Probe Res. ------| | | | | |<------ Data -------->| |---- Auth Req. ------>| | | |<--- Auth Res. -------| |<------ Data -------->| | | | | |---- Asso Req. ------>| |<------ Data -------->| |<--- Asso Res. -------| | | | | |<------ Data -------->| |<------ Data -------->| | | |<------ Data -------->| |<------ Data -------->| (i) 802.11 Infrastructure mode (ii) 802.11-OCB mode]]> </artwork>]]></artwork> </figure></t><t> Theinterface802.11-OCB interface was specified inIEEE Std 802.11p (TM) -2010<xreftarget="IEEE-802.11p-2010"/> as an amendment to IEEE Std 802.11 (TM) -2007, titled "Amendmenttarget="IEEE-802.11p-2010" format="default"/>, Amendment 6: Wireless Access in VehicularEnvironments".Environments, as an amendment to <xref target="IEEE-802.11-2007"/>. Since then, this amendment has been integratedin IEEE 802.11(TM) -2012into <xref target="IEEE-802.11-2012"/> and-2016<xreftarget="IEEE-802.11-2016"/>.target="IEEE-802.11-2016" format="default"/>. </t> <t> Indocument 802.11-2016,<xref target="IEEE-802.11p-2010" format="default"/>, anything qualified specifically as"OCBActivated","OCBActivated" or "outside the context of a basic service" that is set to betrue, then it is"true" actuallyreferringrefers to OCB aspects introduced to 802.11. </t> <t> In order to delineate the aspects introduced by 802.11-OCB to 802.11, we refer to the earlier <xreftarget="IEEE-802.11p-2010"/>.target="IEEE-802.11p-2010" format="default"/>. The amendment is concerned with vehicular communications, where the wireless link is similar to that of Wireless LAN (using a PHY layer specified by802.11a/b/g/n),802.11a/b/g/n) butwhichneeds to cope with the high mobility factor inherent in scenarios of communications between movingvehicles,vehicles and between vehicles and fixed infrastructure deployed along roads. While 'p' is a letter identifying the Amendment, just like'a, b, g''a', 'b', 'g', and 'n' are, 'p' is concerned more with MACmodifications,modifications anda littleis slightly concerned with PHY modifications; the others are mainly about PHY modifications. It is possible in practice to combine a 'p' MAC with an 'a' PHY by operating outside the context of a BSS withOFDMOrthogonal Frequency Division Multiplexing (OFDM) at5.4GHz5.4 GHz and5.9GHz.5.9 GHz. </t> <t> The 802.11-OCB links are specified to becompatibleasmuchcompatible as possible with thebehaviourbehavior of 802.11a/b/g/n and future generation IEEE WLAN links. From the IP perspective, an 802.11-OCB MAC layer offers practically the same interface to IP asthe802.11a/b/g/n and 802.3. A packet sent by an IP-OBU may be received by one or multiple IP-RSUs. The link-layer resolution is performed by using the IPv6 Neighbor Discovery protocol. </t> <t> To support this similarity statement (IPv6 is layered on top of LLC on top of802.11-OCB,802.11-OCB in the same way that IPv6 is layered on top of LLC on top of 802.11a/b/g/n (for WLAN) orlayeredon top of LLC on top of 802.3 (forEthernet))Ethernet)), it is useful to analyze the differences between the 802.11-OCB and 802.11 specifications. During this analysis, we note that whereas 802.11-OCB lists relatively complex and numerous changes to the MAC layer (and verylittlefew to the PHY layer), there are only a few characteristicswhichthat may be important for an implementation transmitting IPv6 packets on 802.11-OCB links. </t> <t> The most important 802.11-OCBpoint whichaspect that influences the IPv6 functioning is the OCB characteristic; an additional, less directinfluence,influence is the maximum bandwidth afforded by the PHY modulation/demodulation methods and channel access specified by 802.11-OCB. The maximum bandwidth theoretically possible in 802.11-OCB is 54 Mbit/s (when using, for example, the following parameters: a 20 MHz channel; modulation of 64-QAM; a coding rate Ris 3/4); in practiceofIP-over-802.11-OCB3/4). With regard to IP over 802.11-OCB, in practice, a commonly observed figure is12Mbit/s;12 Mbit/s; this bandwidth allows the operation of a wide range of protocols relying on IPv6. </t><t> <list style='symbols'> <t><ul spacing="normal"> <li> OperationOutsideoutside theContextcontext of a BSS (OCB):the (earlier 802.11p)The 802.11-OCB links (previously 802.11p) are operated without aBasic Service Set (BSS).BSS. This means thatthe framesIEEE 802.11Beacon,beacon, Association Request/Response, Authentication Request/Response, andsimilar,similar frames are not used. The used identifier of BSS (BSSID) always has a hexadecimal valuealwaysof 0xffffffffffff (48 '1' bits, represented as MAC addressff:ff:ff:ff:ff:ff, or otherwiseff:ff:ff:ff:ff:ff; otherwise, the 'wildcard' BSSID), as opposed to an arbitrary BSSID value set by an administrator(e.g.(e.g., 'My-Home-AccessPoint'). The OCB operation- namely-- namely, the lack of beacon-based scanning and lack of authentication--- should be taken into account when the Mobile IPv6 protocol <xreftarget='RFC6275'/>target="RFC6275" format="default"/> and the protocols for IP layer security <xreftarget='RFC4301'/>target="RFC4301" format="default"/> are used. The way these protocols adapt to OCB is not described in this document.</t> <t></li> <li> Timing Advertisement: This is a new message defined in802.11-OCB, which802.11-OCB that does not exist in 802.11a/b/g/n. This message is used by stations to inform other stations about the value of time. It is similar to the timeasdelivered by aGNSS system (Galileo,Global Navigation Satellite System (GNSS) (e.g., Galileo, GPS,...)etc.) or by a cellular system. This message is optional for implementation.</t> <t></li> <li> Frequency range:thisThis is a characteristic of the PHYlayer, withlayer; it has almost no impact on the interface between MAC and IP. However, it is worth considering that the frequency range is regulated by a regional authority (ARCEP, ECC/CEPT based on ENs from ETSI, FCC, etc.); as part of the regulation process, specific applications are associated with specific frequency ranges. In the case of 802.11-OCB, the regulator associates a set of frequencyranges,ranges or slots within aband,band to the use of applications of vehicularcommunications,communications in a band known as"5.9GHz"."5.9 GHz". The5.9GHz5.9 GHz band is different from the2.4GHz2.4 GHz and5GHz5 GHz bands used by Wireless LAN. However, as with Wireless LAN, the operation of 802.11-OCB in"5.9GHz"5.9 GHz bandsis exempt from owningdoes not require a license in the EU (inUSthe5.9GHzUS, the 5.9 GHz is a licensed band of spectrum; for the fixedinfrastructure aninfrastructure, explicit FCC authorization is required; for an on-boarddevicedevice, a 'licensed-by-rule' conceptapplies:applies, where rule certification conformity isrequired.)required). Technical conditions are differentthanfrom those of thebands "2.4GHz""2.4 GHz" or"5GHz"."5 GHz" bands. The allowed powerlevels, and implicitlylevels and, implicitly, the maximum allowed distance betweenvehicles,vehicles isof 33dBm33 dBm for 802.11-OCB (inEurope),Europe) compared to 20 dBm for Wireless LAN 802.11a/b/g/n; this leads to a maximum distance of approximately1km,1 km compared to approximately50m.50 m. Additionally, specific conditions related to congestion avoidance, jamming avoidance, and radar detection are imposed on the use of DSRC (in the US) and on the use of frequencies for Intelligent Transportation Systems (inEU),the EU) compared to Wireless LAN (802.11a/b/g/n).</t> <t></li> <li> 'Half-rate' encoding:asAs the frequency range, this parameter is related toPHY,PHY and thushasdoes not have much impact on the interface between the IP layer and the MAC layer.</t> <t></li> <li> In vehicular communications using 802.11-OCB links, there are strong privacy requirements with respect to addressing. While the 802.11-OCB standard does not specify anything in particular with respect to MAC addresses, in thesesettingssettings, thereexistsis a strong need for a dynamic change of these addresses (as opposed to the non-vehicular settings--- real wall protection--- where fixed MAC addresses do not currently posesomeprivacy risks). This is further described in <xreftarget="Security"/>.target="Security" format="default"/>. A relevant function is described indocuments IEEE 1609.3-2016<xreftarget="IEEE-1609.3"/>target="IEEE-1609.3" format="default"/> andIEEE 1609.4-2016<xreftarget="IEEE-1609.4"/>. </t> </list> </t>target="IEEE-1609.4" format="default"/>. </li> </ul> </section> <sectiontitle="Changesanchor="software-changes" numbered="true" toc="default"> <name>Changes Needed ona software driveran 802.11a Software Driver tobecome aBecome an 802.11-OCBdriver" anchor="software-changes">Driver</name> <t> The 802.11p amendment modifies both the 802.11 stack's physical and MAClayerslayers, but all the induced modifications can be quite easily obtained by modifying an existing 802.11aad-hocad hoc stack. </t> <t>ConditionsThe conditions fora802.11a hardware to be compliant with 802.11-OCBcompliant: <list style='symbols'> <t>are as follows: </t> <ul spacing="normal"> <li> The PHY entity shall be anorthogonal frequency division multiplexing (OFDM)OFDM system. It must support the frequency bands on which the regulator recommends the use of ITScommunications,communications -- forexampleexample, using an IEEE 802.11-OCBlayer, in France: 5875MHzlayer of 5875 MHz to5925MHz. </t> <t>5925 MHz in France. </li> <li> The OFDM system must provide a "half-clocked" operation using 10 MHz channel spacings.</t> <t></li> <li> The chip transmit spectrum mask must be complianttowith the "Transmit spectrum mask" from the IEEE 802.11p amendment (but experimental environmentstolerate otherwise). </t> <t>do not require compliance). </li> <li> The chip should be able to transmit up to 44.8 dBm when usedby the US governmentin the UnitedStates,States and up to 33 dBm in Europe; other regional conditions apply.</t> </list> </t></li> </ul> <t> Changes needed on the network stack in OCBmode: <list style='symbols'>mode are as follows: </t> <ul spacing="normal"> <li> <t> Physical layer:<list style='symbols'> <t></t> <ul spacing="normal"> <li> Orthogonal frequency-division multiple access The chip must use the Orthogonal Frequency Division Multiple Access(OFDM)(OFDMA) encoding mode.</t> <t></li> <li> The chip must be setinto half-mode rate mode (the internal clock frequency is divided by two).</t> <t></li> <li> The chip must use dedicated channels and should allow the use of higher emission powers. This may require modifications to the local computer file that describes regulatory domainsrules,rules if used by the kernel to enforce local specific restrictions. Such modifications to the local computer file must respect the location-specific regulatory rules.</t> </list></li> </ul></li> <li><t> MAC layer:<list style='symbols'> <t></t> <ul spacing="normal"> <li> All management frames (beacons, join, leave, and others) emission and reception must bedisableddisabled, except for frames of subtype Action and Timing Advertisement (defined below).</t> <t></li> <li> No encryption key or method must be used.</t> <t></li> <li> Packet emission and reception must be performed as inad-hoc mode,ad hoc mode using the wildcard BSSID (ff:ff:ff:ff:ff:ff).</t> <t></li> <li> The functions related to joining a BSS (Association Request/Response) andforauthentication (Authentication Request/Reply, Challenge) are not called.</t> <t></li> <li> The beacon interval is always set to 0 (zero).</t> <t></li> <li> Timing Advertisement frames, defined in the amendment, should be supported. The upper layer should be able to trigger such frames emission andtoretrieve information contained in the received Timing Advertisements.</t> </list> </t> </list> </t></li> </ul> </li> </ul> </section> <sectiontitle='Protocol Layering' anchor='epd'>anchor="epd" numbered="true" toc="default"> <name>Protocol Layering</name> <t> A more theoretical and detailed view of layerstacking,stacking and interfaces between the IP layer and 802.11-OCBlayers,layers is illustrated in <xreftarget='fig:epd'/>.target="fig_epd" format="default"/>. The IP layer operates on top oftheEtherType Protocol Discrimination(EPD); this Discrimination(EPD). This discrimination layer is described inIEEE Std 802.3-2012; the<xref target="IEEE-802.3-2012"/>. The interface between IPv6 and EPD is the LLC_SAP (Link Layer Control Service Access Point). </t><t><figurealign="center" title='EtherTypeanchor="fig_epd"> <name>EtherType ProtocolDiscrimination' anchor='fig:epd'>Discrimination</name> <artworkalign="center"> <![CDATA[align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv6 | +-+-+-+-+-+-{ }+-+-+-+-+-+-+-+ { LLC_SAP } 802.11-OCB +-+-+-+-+-+-{ }+-+-+-+-+-+-+-+ Boundary | EPD | | | | | MLME | | +-+-+-{ MAC_SAP }+-+-+-| MLME_SAP | | MAC Sublayer | | | 802.11-OCB | and ch. coord. | | SME | Services +-+-+-{ PHY_SAP }+-+-+-+-+-+-+-| | | | PLME | | | PHY Layer | PLME_SAP | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]> </artwork>]]></artwork> </figure></t></section> <sectiontitle="Design Considerations" anchor="design-considerations">anchor="design-considerations" numbered="true" toc="default"> <name>Design Considerations</name> <t> The networks defined by 802.11-OCB are in many ways similar to other networks of the 802.11 family. In theory, the transportation of IPv6 over 802.11-OCB could be very similar to the operation of IPv6 over other networks of the 802.11 family. However, the high mobility, strong linkasymmetryasymmetry, and very short connection makes the 802.11-OCB link significantly different from other 802.11 networks. Also,theautomotive applications have specific requirements for reliability,securitysecurity, and privacy, which further add to the particularity of the 802.11-OCB link. </t> </section> <sectiontitle='IEEEanchor="OCB-messages" numbered="true" toc="default"> <name>IEEE 802.11 Messages Transmitted in OCBmode' anchor="OCB-messages">Mode</name> <t>For information, atAt the time of writing, this is the list of IEEE 802.11 messages that may be transmitted in OCB mode,i.e.i.e., when dot11OCBActivated is true in a STA:<list style='symbols'> <t></t> <ul spacing="normal"> <li> The STA may send management frames of subtype Action and, if the STA maintains a TSF Timer, subtype TimingAdvertisement; </t> <t>Advertisement. </li> <li> The STA may send controlframes,frames except those of subtype PS-Poll, CF-End, and CF-End plusCFAck; </t> <t>CFAck. </li> <li> The STAMUST<bcp14>MUST</bcp14> send data frames of subtype QoS Data.</t> </list> </t></li> </ul> </section> <sectiontitle='Examplesanchor="example-packets" numbered="true" toc="default"> <name>Examples of PacketFormats' anchor="example-packets">Formats</name> <t> This section describes an example of an IPv6Packetpacket captured overaan IEEE 802.11-OCB link. </t> <t> By way ofexampleexample, we show that there is no modification in the headers when transmitted over 802.11-OCB networks--- they are transmitted like any other 802.11 and Ethernet packets. </t> <t> We describe an experimentoffor capturing an IPv6 packet on an 802.11-OCB link. In the topology depicted in <xreftarget='topo'/>,target="topo" format="default"/>, the packet is an IPv6 Router Advertisement. This packet is emitted by aRouterrouter on its 802.11-OCB interface. The packet is captured on theHost,host using a network protocol analyzer(e.g. Wireshark); the(e.g., Wireshark). The capture is performed in two different modes: direct mode and'monitor'monitor mode. The topology used during the capture is depicted below. </t> <t> The packet is captured on theHost.host. TheHosthost is an IP-OBU containing an 802.11 interface in Peripheral Component Interconnect (PCI) Express formatPCI express(anITRIIndustrial Technology Research Institute (ITRI) product). The kernel runs the ath5k software driver with modifications for OCB mode. The capture tool is Wireshark. The file format forsavesaving andanalyzeanalyzing is'pcap'..pcap. The packet is generated by theRouter. The Routerrouter, which is an IP-RSU(ITRI(an ITRI product). </t><t><figurealign="center" title='Topologyanchor="topo"> <name>Topology forcapturingCapturing IPpacketsPackets on802.11-OCB' anchor='topo'>802.11-OCB</name> <artworkalign="center"> <![CDATA[align="center" name="" type="" alt=""><![CDATA[ +--------+ +-------+ | | 802.11-OCB Link | | ---| Router |--------------------------------| Host | | | | | +--------+ +-------+]]> </artwork>]]></artwork> </figure></t><t> During several capture operations running from a few moments to several hours, nomessagemessages relevant to the BSSID contexts were captured(no Association(Association Request/Response, Authentication Req/Resp,Beacon).or beacon). This shows that the operation of 802.11-OCB is outside the context of a BSSID. </t> <t> Overall, the captured message is identicalwithto a capture of an IPv6 packet emitted onaan 802.11b interface. The contents areprecisely similar.exactly the same. </t> <sectiontitle="Capturenumbered="true" toc="default"> <name>Capture in MonitorMode">Mode</name> <t> The IPv6 RA packet captured in monitor mode is illustrated below. Theradio tapRadiotap header provides more flexibility for reporting the characteristics of frames. The RadiotapHeaderheader is prepended by this particular stack and operating system on theHosthost machine to the RA packet received from the network (the RadiotapHeaderheader is not present on the air). The implementation-dependent RadiotapHeaderheader is useful for piggybacking PHY information from the chip's registers as data in a packet that is understandable by userland applications usingSocketsocket interfaces (the PHY interface can be, forexample:example, power levels, data rate, or the ratio of signal to noise). </t> <t> The packet present on the air is formed by the IEEE 802.11 DataHeader,header, Logical Link ControlHeader,header, IPv6 BaseHeaderheader, and ICMPv6Header.header. </t><t><figurealign="center"> <artwork align="center"> <![CDATA[ Radiotapanchor="figA"> <name>Radiotap Headerv0v0</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Header Revision| Header Pad | HeaderlengthLength | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PresentflagsFlags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Data Rate | Pad | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+IEEE]]></artwork> </figure> <figure anchor="figB"> <name>IEEE 802.11 DataHeaderHeader</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type/Subtype and Frame Ctrl | Duration | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Receiver Address... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ... Receiver Address | Transmitter Address... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ... Transmitter Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | BSSId...ID... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ... BSSIdID | Frag Number and Seq Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Logical-Link]]></artwork></figure> <figure anchor="figC"> <name>Logical Link ControlHeaderHeader</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DSAP |I| SSAP |C| ControlfieldField | Org.code...Code... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ... Organizational Code | Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+IPv6]]></artwork></figure> <figure anchor="figD"> <name>IPv6 BaseHeaderHeader</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Traffic Class | Flow Label | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Payload Length | Next Header | Hop Limit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Source Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Destination Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Router Advertisement]]></artwork></figure> <figure anchor="figE"> <name>Router Advertisement</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Cur Hop Limit |M|O| Reserved | Router Lifetime | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reachable Time | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Retrans Timer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options ... +-+-+-+-+-+-+-+-+-+-+-+-]]> </artwork> </figure> </t>]]></artwork></figure> <t> The value of the Data Rate field in the Radiotap header is set to 6 Mb/s. This indicates the rate at which this RA was received. </t> <t> The value of the TransmitteraddressAddress in the IEEE 802.11 DataHeaderheader is set to a48bit48-bit value. The value of the destination address is 33:33:00:00:00:1 (all-nodes multicast address). The value of the BSSIdID field is ff:ff:ff:ff:ff:ff, which is recognized by the network protocol analyzer as being "broadcast". The Fragment number andsequenceSequence number fieldsaretogether are set to 0x90C6. </t> <t> The value of the Organization Code field in theLogical-LinkLogical Link ControlHeaderheader is set to 0x0, recognized as "Encapsulated Ethernet". The value of the Type field is 0x86DD (hexadecimal86DD, or otherwise86DD; otherwise, #86DD), recognized as "IPv6". </t> <t> A Router Advertisement is periodically sent by the router to multicast group address ff02::1. It isan icmpICMP packet type 134. The IPv6 Neighbor Discovery's Router Advertisement message contains an 8-bit field reserved for single-bit flags, as described in <xreftarget="RFC4861"/>.target="RFC4861" format="default"/>. </t> <t> The IPv6 header contains thelink locallink-local address of the router (source) configured via the EUI-64 algorithm, and the destination address is set to ff02::1. </t> <t> The Ethernet Type field in thelogical-link controlLogical Link Cntrol header is set to0x86dd0x86dd, which indicates that the frame transports an IPv6 packet. In the IEEE 802.11 data, the destination address is33:33:00:00:00:0133:33:00:00:00:01, which is the corresponding multicast MAC address. The BSSidID is a broadcast address of ff:ff:ff:ff:ff:ff. Due to the short link duration between vehicles and the roadside infrastructure, there is no need in IEEE 802.11-OCB to wait for the completion of association and authentication procedures before exchanging data. IEEE 802.11-OCB enabled nodes use the wildcard BSSID (a value of all 1s) and may start communicating as soon as they arrive on the communication channel. </t> </section> <sectiontitle="Capturenumbered="true" toc="default"> <name>Capture in NormalMode">Mode</name> <t> The same IPv6 Router Advertisement packet described above (monitor mode) is captured on theHost,host inthe Normal mode,normal mode and is depicted below. </t><t><figurealign="center"> <artwork align="center"> <![CDATA[ Ethernetanchor="figF"> <name>Ethernet IIHeaderHeader</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ...Destination | Source... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ...Source | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+IPv6]]></artwork></figure> <figure anchor="figG"> <name>IPv6 BaseHeaderHeader</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Traffic Class | Flow Label | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Payload Length | Next Header | Hop Limit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Source Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Destination Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Router Advertisement]]></artwork></figure> <figure anchor="figH"> <name>Router Advertisement</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Cur Hop Limit |M|O| Reserved | Router Lifetime | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reachable Time | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Retrans Timer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Options ... +-+-+-+-+-+-+-+-+-+-+-+-]]> </artwork> </figure> </t>]]></artwork></figure> <t> One notices that the RadiotapHeader,header, the IEEE 802.11 DataHeaderheader, and theLogical-LinkLogical Link ControlHeadersheaders are not present. On the other hand, a new header named the Ethernet IIHeaderheader is present. </t> <t> The Destination and Source addresses in the Ethernet II header contain the same values as thefieldsReceiver Address and Transmitter Address fields present in the IEEE 802.11 DataHeaderheader in the"monitor"monitor mode capture. </t> <t> The value of the Type field in the Ethernet II header is 0x86DD (recognized as "IPv6"); this value is the samevalueas the value of thefieldType field in theLogical-LinkLogical Link ControlHeaderheader in the"monitor"monitor mode capture. </t> <t> The knowledgeable experimenter will no doubt notice the similarity of this Ethernet IIHeaderheader with a capture in normal mode on a pure Ethernet cable interface. </t> <t> A frame translation is inserted on top of a pure IEEE 802.11 MAClayer,layer in order to adaptpackets,packets before delivering the payload data to the applications. It adapts 802.11 LLC/MAC headers to Ethernet II headers.In further detail,Specifically, this adaptation consistsinof the elimination of the Radiotap,802.11802.11, and LLCheaders,headers andinthe insertion of the Ethernet II header. In this way, IPv6 runs straight over LLC over the 802.11-OCB MAC layer; this is further confirmed by the use of the unique Type 0x86DD. </t> </section> </section> <sectiontitle='Extra Terminology' anchor='extra-terminology'>anchor="extra-terminology" numbered="true" toc="default"> <name>Extra Terminology</name> <t> The following terms are defined outside the IETF. They are used to define the main terms in themainterminology<xref target='terminology'/>.section (<xref target="terminology" format="default"/>). </t><t> DSRC<dl newline="true"> <dt>DSRC (Dedicated Short RangeCommunication): a term defined outside the IETF. TheCommunication):</dt> <dd>The US Federal Communications Commission (FCC) Dedicated Short Range Communication (DSRC) is defined in the Code of Federal Regulations (CFR) 47, Parts 90 <xref target="CFR-90"/> and95.95 <xref target="CFR-95"/>. This Code isreferredreferenced in the definitions below. At the time of the writing of thisInternet Draft,document, the last update of this Code was datedOctober 1st, 2010. </t> <t> DSRCSDecember 6, 2019.</dd> <dt>DSRCS (Dedicated Short-Range CommunicationsServices): a term defined outside the IETF. The use of radioServices):</dt><dd> Radio techniques are used to transfer data over short distances between roadside and mobile units, between mobile units, and between portable and mobile units to perform operations related to the improvement of traffic flow, traffic safety, and other intelligent transportation service applications in a variety of environments. DSRCS systems may also transmit status and instructional messages related to the unitsinvolve. [Ref. 47 CFR 90.7 - Definitions] </t> <t> OBUinvolved. <xref target="CFR-90.7"/></dd> <dt>OBU (On-BoardUnit): a term defined outside the IETF. AnUnit):</dt><dd>An On-Board Unit is a DSRCS transceiver that is normally mounted in or on avehicle,vehicle orwhich in some instancesmay be a portableunit.unit in some instances. An OBU can be operational while a vehicle or person is either mobile or stationary. The OBUs receive and contend for time to transmit on one or more radio frequency (RF) channels. Except where specifically excluded, OBU operation is permitted wherever vehicle operation or human passage is permitted. The OBUs mounted in vehicles are licensed by rule under part 95 ofthe respective chapter<xref target="CFR-95"/> and communicate with Roadside Units (RSUs) and other OBUs. Portable OBUs are also licensed by rule under part 95 ofthe respective chapter.<xref target="CFR-95"/>. OBU operations in the Unlicensed National Information Infrastructure(UNII)(U-NII) Bands follow the rules in those bands.- [CFR 90.7 - Definitions]. </t> <t> RSU (Road-Side Unit): a term defined outside of IETF. A<xref target="CFR-90.7"/> </dd> <dt>RSU (Roadside Unit):</dt><dd>A Roadside Unit is a DSRC transceiver that is mounted along a road or pedestrian passageway. An RSU may also be mounted on a vehicle orismay be hand carried, but it may only operate when the vehicle orhand- carriedhand-carried unit is stationary. Perhaps Furthermore, an RSUoperating under the respectgive partis restricted to the location where it is licensed to operate. However, portable orhand-heldhandheld RSUs are permitted to operate where they do not interfere with a site-licensed operation.AAn RSU broadcasts data to OBUs or exchanges data with OBUs in its communications zone. An RSU also provides channel assignments and operating instructions to OBUs in its communicationszone,zone when required.- [CFR 90.7 - Definitions]. </t><xref target="CFR-90.7"/> </dd> </dl> </section> <sectiontitle='Neighboranchor="nd-wireless" numbered="true" toc="default"> <name>Neighbor Discovery (ND) Potential Issues in WirelessLinks' anchor='nd-wireless'>Links</name> <t> IPv6 Neighbor Discovery (IPv6 ND)[RFC4861][RFC4862]<xref target="RFC4861"/> <xref target="RFC4862"/> was designed for point-to-point and transitlinkslinks, such as Ethernet, with the expectation ofacheap and reliable support for multicast from the lower layer.Section 3.2 of RFC 4861<xref target="RFC4861" section="3.2" sectionFormat="of"/> indicates that the operation onShared Mediashared media and onnon-broadcast multi-access (NBMA)NBMA networks require additional support, e.g., forAddress Resolution (AR)AR andduplicate address detection (DAD),DAD, which depend on multicast. An infrastructureless radio network such as OCB shares properties with bothShared Mediashared media and NBMAnetworks,networks and then adds its own complexity, e.g., from movement and interference that allow only transient and non-transitive reachability between any set of peers. </t> <t> The uniqueness of an address within a scoped domain is a key pillar of IPv6 and is thebasebasis for unicast IP communication.RFC 4861<xref target="RFC4861"/> details the DAD method toavoid thatprevent an addressisfrom being duplicated. For alink locallink-local address, the scope is the link, whereas for aGlobally Reachable addressglobally reachable address, the scope is much larger. The underlying assumption for DAD to operate correctly is that the node that owns an IPv6 address can reach any other node within the scope at the time it claims its address, which is done by sending aNSNeighbor Solicitation (NS) multicast message, and can hear any future claim for that address by another party within the scope for the duration of the address ownership. </t> <t> In the case of OCB, there is a potentially a need to define a scope that is compatible withDAD, and thatDAD. The scope cannot be the set of nodes that a transmitter can reach at a particulartime,time because that set varies all the time and does not meet the DAD requirements for alink locallink-local address thatcould possiblycan be usedanytime,anytime and anywhere. The generic expectation of a reliable multicast is not ensured, and the operation of DAD and AR(Address Resolution)as specified byRFC 4861<xref target="RFC4861"/> cannot be guaranteed. Moreover, multicast transmissions that rely on broadcast are not only unreliable but are also often detrimental to unicast traffic (see[draft-ietf-mboned-ieee802-mcast-problems]).<xref target="I-D.ietf-mboned-ieee802-mcast-problems" format="default"/>). </t> <t> Early experience indicates that it should be possible to exchange IPv6 packets over OCB while relying on IPv6 ND alone for DAD and AR (Address Resolution) in good conditions. In the absence of a correct DAD operation, a node that relies only on IPv6 ND for AR and DAD over OCB should ensure that the addresses that it uses are unique by meansothersother than DAD. It must be noted that deriving an IPv6 address from aglobally unique MAC address has this property butglobally unique MAC address has this property but may yield privacy issues. </t> <t> <xref target="RFC8505"/> provides a more recent approach to IPv6 ND, in particular DAD. <xref target="RFC8505"/> is designed to fit wireless and otherwise constrained networks whereby multicast and/or continuous access to the medium may not be guaranteed. <xref target="RFC8505" sectionFormat="comma" section="5.6"/> ("Link-Local Addresses and Registration") indicates that the scope of uniqueness for a link-local address is restricted to a pair of nodes that uses it to communicate and provides a method to assert the uniqueness and resolve the link-layer address using a unicast exchange. </t> <t> <xref target="RFC8505"/> also enables a router (acting as a 6LR) to own a prefix and act as a registrar (acting as a 6LBR) for addresses within the associated subnet. A peer host (acting as a 6LN) registers an address derived from that prefix and can use it for the lifetime of the registration. The prefix is advertised as not on-link, which means that the 6LN uses the 6LR to relay its packets within the subnet, and participation to the subnet is constrained to the time of reachability to the 6LR. Note that an RSU that provides internet connectivity <bcp14>MAY</bcp14> announce a default router preference <xref target="RFC4191" format="default"/>, whereas a car that does not provide that connectivity <bcp14>MUST NOT</bcp14> do so. This operation presents similarities to that of an access point, but at Layer 3. This is why <xref target="RFC8505"/> is well suited for wireless in general. </t> <t> Support of <xref target="RFC8505"/> may be implemented on OCB. OCB nodes that support <xref target="RFC8505"/> <bcp14>SHOULD</bcp14> support the 6LN operation in order to act as a host and mayyield privacy issues. </t> <t> RFC 8505 provides a more recent approach to IPv6 NDsupport the 6LR and 6LBR operations inparticular DAD. RFC 8505 is designedorder tofit wirelessact as a router andotherwise constrained networks whereby multicast and/or continuous accessin particular tothe medium may notown a prefix that can beguaranteed. RFC 8505 Section 5.6 "Link-Local Addresses and Registration" indicatesused by hosts thatthe scope of uniquenessare compliant with <xref target="RFC8505"/> fora link localaddressis restrictedautoconfiguration and registration. </t> </section> <section anchor="Acknowledgements" numbered="false" toc="default"> <name>Acknowledgements</name> <t> The authors would like toa pairthank <contact fullname="Alexandre Petrescu"/> for initiating this work and for being the lead author up to draft version 43 ofnodes that use itthis document. </t> <t> The authors would like to thank <contact fullname="Pascal Thubert"/> for reviewing, proofreading, and suggesting modifications for this document. </t> <t> The authors would like tocommunicate,thank <contact fullname="Mohamed Boucadair"/> for proofreading andprovides a methodsuggesting modifications for this document. </t> <t> The authors would like toassertthank <contact fullname="Eric Vyncke"/> for reviewing theuniquenesssuggesting modifications of this document. </t> <t> The authors would like to thank <contact fullname="Witold Klaudel"/>, <contact fullname="Ryuji Wakikawa"/>, <contact fullname="Emmanuel Baccelli"/>, <contact fullname="John Kenney"/>, <contact fullname="John Moring"/>, <contact fullname="Francois Simon"/>, <contact fullname="Dan Romascanu"/>, <contact fullname="Konstantin Khait"/>, <contact fullname="Ralph Droms"/>, <contact fullname="Richard 'Dick' Roy"/>, <contact fullname="Ray Hunter"/>, <contact fullname="Tom Kurihara"/>, <contact fullname="Michal Sojka"/>, <contact fullname="Jan de Jongh"/>, <contact fullname="Suresh Krishnan"/>, <contact fullname="Dino Farinacci"/>, <contact fullname="Vincent Park"/>, <contact fullname="Jaehoon Paul Jeong"/>, <contact fullname="Gloria Gwynne"/>, <contact fullname="Hans-Joachim Fischer"/>, <contact fullname="Russ Housley"/>, <contact fullname="Rex Buddenberg"/>, <contact fullname="Erik Nordmark"/>, <contact fullname="Bob Moskowitz"/>, <contact fullname="Andrew Dryden"/>, <contact fullname="Georg Mayer"/>, <contact fullname="Dorothy Stanley"/>, <contact fullname="Sandra Cespedes"/>, <contact fullname="Mariano Falcitelli"/>, <contact fullname="Sri Gundavelli"/>, <contact fullname="Abdussalam Baryun"/>, <contact fullname="Margaret Cullen"/>, <contact fullname="Erik Kline"/>, <contact fullname="Carlos Jesus Bernardos Cano"/>, <contact fullname="Ronald in 't Velt"/>, <contact fullname="Katrin Sjoberg"/>, <contact fullname="Roland Bless"/>, <contact fullname="Tijink Jasja"/>, <contact fullname="Kevin Smith"/>, <contact fullname="Brian Carpenter"/>, <contact fullname="Julian Reschke"/>, <contact fullname="Mikael Abrahamsson"/>, <contact fullname="Dirk von Hugo"/>, <contact fullname="Lorenzo Colitti"/>, <contact fullname="Pascal Thubert"/>, <contact fullname="Ole Troan"/>, <contact fullname="Jinmei Tatuya"/>, <contact fullname="Joel Halpern"/>, <contact fullname="Eric Gray"/>, and <contact fullname="William Whyte"/>. Their valuable comments clarified particular issues andresolvegenerally helped to improve thelink-Layer address using a unicast exchange.document. </t> <t>RFC 8505 also enables a router (acting as a 6LR) to own a prefix<contact fullname="Pierre Pfister"/>, <contact fullname="Rostislav Lisovy"/>, andact as a registrar (acting as a 6LBR)others wrote 802.11-OCB drivers foraddresses withinLinux. </t> <t> For theassociated subnet. A peer host (acting as a 6LN) registers an address derived from that prefixmulticast discussion, the authors would like to thank <contact fullname="Owen DeLong"/>, <contact fullname="Joe Touch"/>, <contact fullname="Jen Linkova"/>, <contact fullname="Erik Kline"/>, <contact fullname="Brian Haberman"/>, andcan use it forparticipants to discussions in network working groups. </t> <t> The authors would like to thank thelifetimeparticipants of theregistration.Birds-of-a-Feather "Intelligent Transportation Systems" meetings held at IETF in 2016. </t> <t> Theprefix is advertised as not onlink, which means that the 6LN useshuman rights protocol considerations review was done by <contact fullname="Amelia Andersdotter"/>. </t> <t>The work of <contact fullname="Jong-Hyouk Lee"/> was supported by the6LR to relay its packets withinNational Research Foundation of Korea (NRF) grant funded by thesubnet,Korea government (MSIT) (NRF-2018R1A4A1025632).</t> <t>The work of <contact fullname="Jérôme Härri"/> was supported by EURECOM industrial members, namely BMW Group, IABG, Monaco Telecom, Orange, SAP andparticipation toSymantec. This RFC reflects thesubnet is constrained toview of thetimeIPWAVE WG and does not necessarily reflect the official policy or position ofreachabilityEURECOM industrial members.</t> </section> <section anchor="Contributors" numbered="false" toc="default"> <name>Contributors</name> <t> <contact fullname="Christian Huitema"/> and <contact fullname="Tony Li"/> contributed to this document. </t> <t> <contact fullname="Romain Kuntz"/> contributed extensively regarding IPv6 handovers between links running outside the6LR. Note that RSU that provides internet connectivity MAY announce a default router preference <xref target='RFC4191'/>, whereascontext of acar that does not provide that connectivity MUST NOT do so. This operation presents similarities with thatBSS (802.11-OCB links). </t> <t> <contact fullname="Tim Leinmueller"/> contributed the idea ofan access point, but at Layer-3. This is why RFC 8505 well-suitedthe use of IPv6 over 802.11-OCB forwireless in general.the distribution of certificates. </t> <t>Support of RFC 8505 may be implemented<contact fullname="Marios Makassikis"/>, <contact fullname="Jose Santa Lozano"/>, <contact fullname="Albin Severinson"/>, and <contact fullname="Alexey Voronov"/> provided significant feedback onOCB. OCB nodes that support RFC 8505 SHOULD supportthe6LN operationexperience of using IP messages over 802.11-OCB inorderinitial trials. </t> <t> <contact fullname="Michelle Wetterwald"/> contributed extensively toact as a host, and may supportthe6LR and 6LBR operations in order to act as a router and in particular own a prefix that can be used by RFC 8505-compliant hosts for address autoconfigurationMTU discussion, offered the ETSI ITS perspective, andregistration.reviewed other parts of the document. </t> </section> </back> </rfc>