<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY RFC3209 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3209.xml"> <!ENTITY RFC3473 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3473.xml"> <!ENTITY RFC4216 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4216.xml"> <!ENTITY RFC4655 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4655.xml"> <!ENTITY RFC4726 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4726.xml"> <!ENTITY RFC5152 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5152.xml"> <!ENTITY RFC5440 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5440.xml"> <!ENTITY RFC5441 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5441.xml"> <!ENTITY RFC5520 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5520.xml"> <!ENTITY RFC5541 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5541.xml"> <!ENTITY RFC6805 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6805.xml"> <!ENTITY RFC3060 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3060.xml"> <!ENTITY RFC3460 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3460.xml"> <!ENTITY RFC3630 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3630.xml"> <!ENTITY RFC4090 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4090.xml"> <!ENTITY RFC4203 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4203.xml"> <!ENTITY RFC4920 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4920.xml"> <!ENTITY RFC5088 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5088.xml"> <!ENTITY RFC5089 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5089.xml"> <!ENTITY RFC5305 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5305.xml"> <!ENTITY RFC5307 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5307.xml"> <!ENTITY RFC5316 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5316.xml"> <!ENTITY RFC5392 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5392.xml"> <!ENTITY RFC5394 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5394.xml"> <!ENTITY RFC5521 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5521.xml"> <!ENTITY RFC5886 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5886.xml"> <!ENTITY RFC6007 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6007.xml"> <!ENTITY RFC6952 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6952.xml"> <!ENTITY RFC7334 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7334.xml"> <!ENTITY RFC7420 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7420.xml"> <!ENTITY RFC7525 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7525.xml"> <!ENTITY RFC7752 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7752.xml"> <!ENTITY RFC7897 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7897.xml"> <!ENTITY RFC8253 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8253.xml"> <!ENTITY RFC8453 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8453.xml"> ]>"rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF"docName="draft-ietf-pce-inter-area-as-applicability-08"category="info"ipr="trust200902">consensus="true" docName="draft-ietf-pce-inter-area-as-applicability-08" number="8694" ipr="trust200902" obsoletes="" updates="" xml:lang="en" sortRefs="false" symRefs="true" tocInclude="true" version="3"> <!-- xml2rfc v2v3 conversion 2.31.0 --> <!-- Generated by id2xml 1.5.0 on 2019-10-01T23:58:47Z --><?rfc compact="yes"?> <?rfc text-list-symbols="o*+-"?> <?rfc subcompact="no"?> <?rfc sortrefs="no"?> <?rfc symrefs="yes"?> <?rfc strict="yes"?> <?rfc toc="yes"?><front> <title abbrev="Applicability ofthe Path Computation El">Applicabilityof PCE to MPLS and GMPLS">Applicability of the Path Computation Element toInter-AreaInter-area and Inter-AS MPLS and GMPLS Traffic Engineering</title> <seriesInfo name="RFC" value="8694"/> <authorfullname="D.fullname="Daniel King" initials="D." surname="King"> <organization>Old Dog Consulting</organization> <address> <email>daniel@olddog.co.uk</email> </address> </author> <authorfullname="H. Zheng" initials="H." surname="Zheng"> <organization>Huawei Technologies</organization>fullname="郑好棉" asciiFullname="Haomian Zheng"> <organization ascii="Huawei Technologies">华为技术有限公司</organization> <address> <postal> <street ascii="H1, Huawei Xiliu Beipo Village, Songshan Lake">松山湖华为溪流背坡村H1</street> <city ascii="Dongguan">东莞</city> <region ascii="Guangdong">广东</region> <code>523808</code> <country ascii="China">中国</country> </postal> <email>zhenghaomian@huawei.com</email> </address> </author> <datemonth="September"month="December" year="2019"/> <workgroup>PCE Working Group</workgroup><abstract><t><abstract> <t> The Path Computation Element (PCE) may be used for computing services that traverse multi-area andmulti-ASmulti-Autonomous System (multi-AS) Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS)Traffic EngineeredTraffic-Engineered (TE) networks.</t> <t> This document examines the applicability of the PCE architecture, protocols, and protocol extensions for computing multi-area and multi-AS paths in MPLS and GMPLS networks.</t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="sect-1"><t>anchor="sect-1" numbered="true" toc="default"> <name>Introduction</name> <t> Computing paths across large multi-domain environments may require special computational components and cooperation between entities in different domains capable of complex path computation.</t> <t> Issues that may exist when routing in multi-domain networksinclude:</t> <t><list style="symbols"><t>Often thereinclude the following:</t> <ul spacing="normal"> <li>There is often a lack of full topology and TE information acrossdomains;</t> <t>Nodomains.</li> <li>No single node has the full visibility to determine an optimal or even feasible end-to-end path acrossdomains;</t> <t>Howdomains.</li> <li>Knowing how to evaluate and select the exit point and next domain boundary from adomain?</t> <t>How mightdomain.</li> <li>Understanding how the ingress nodedeterminedetermines which domains should be used for the end-to-endpath?</t> </list> </t>path.</li> </ul> <t>OftenAn information exchange across multiple domains is often limited due to the lack of trust relationship, security issues, or scalabilityissuesissues, even if there is a trust relationship between domains.</t> <t> The Path Computation Element (PCE) <xreftarget="RFC4655"/>target="RFC4655" format="default"/> provides an architecture and a set of functional components to address the problemspace,space and the issues highlighted above.</t> <t> A PCE may be used to compute end-to-end paths across multi-domain environments using a per-domain path computation technique <xreftarget="RFC5152"/>.target="RFC5152" format="default"/>. Theso calledso-called backward recursivepathPCE-based computation (BRPC) mechanism <xreftarget="RFC5441"/>target="RFC5441" format="default"/> defines aPCE-basedpath computation procedure to compute inter-domain constrained Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS)Traffic EngineeredTraffic-Engineered (TE) networks. However, both per-domain and BRPC techniques assume that the sequence of domains to be crossed from source to destination is known, either fixed by the network operator or obtained by other means.</t> <t> In more advanced deployments (including multi-area andmulti- Autonomousmulti-Autonomous System (multi-AS)environments)environments), the sequence of domains may not be known inadvanceadvance, and the choice of domains in theend-to- endend-to-end domain sequence might be critical to the determination of an optimal end-to-end path. In thiscasecase, the use of theHierarchicalhierarchical PCE <xreftarget="RFC6805"/>target="RFC6805" format="default"/> architecture and mechanisms may be used to discover the intra-area path and select the optimal end-to-end domain sequence.</t> <t> This document describes the processes and procedures available when using the PCE architecture andprotocols,protocols for computing inter-area and inter-AS MPLS and GMPLSTraffic EngineeredTraffic-Engineered paths.</t> <t>This documentThe scope of this document does not includediscussion ondiscussions of deployment scenarios for stateful PCE, active PCE, remotely initiated PCE, or PCE as a central controller(PCECC) deployment scenarios.</t>(PCECC). </t> <sectiontitle="Domains" anchor="sect-1.1"><t>anchor="sect-1.1" numbered="true" toc="default"> <name>Domains</name> <t> Generally, a domain can be defined as a separate administrative, geographic, or switching environment within the network. A domain may be further defined as a zone of routing or computational ability. Under thesedefinitionsdefinitions, a domain might be categorized as an Autonomous System (AS) or an Interior Gateway Protocol (IGP) area (as per <xreftarget="RFC4726"/>target="RFC4726" format="default"/> and <xreftarget="RFC4655"/>).</t>target="RFC4655" format="default"/>).</t> <t> For the purposes of this document, a domain is considered to be a collection of network elements within an area or AS that has a common sphere of address management or path computational responsibility. Wholly or partially overlapping domains are not within the scope of this document.</t> <t> In the context of GMPLS, a particularly important example of a domain is the Automatically Switched Optical Network (ASON) subnetwork <xreftarget="G-8080"/>.target="G-8080" format="default"/>. In this case, computation of an end-to-end path requires the selection of nodes and links within a parent domain where some nodes may, in fact, be subnetworks. Furthermore, a domain might be an ASON routing area <xreftarget="G-7715"/>.target="G-7715" format="default"/>. A PCE may perform the path computation function of an ASONrouting controllerRouting Controller as described in <xreftarget="G-7715-2"/>.</t>target="G-7715-2" format="default"/>.</t> <t> It is assumed that the PCE architecture is not applied to a large group of domains, such as the Internet.</t> </section> <sectiontitle="Path Computation" anchor="sect-1.2"><t>anchor="sect-1.2" numbered="true" toc="default"> <name>Path Computation</name> <t> For the purpose of this document, it is assumed thatthepath computation is the sole responsibility of the PCE as per the architecture defined in <xreftarget="RFC4655"/>.target="RFC4655" format="default"/>. When a path isrequiredrequired, the Path Computation Client (PCC) will send a request to the PCE. The PCE will apply the requiredconstraints andconstraints, compute apathpath, and return a response to the PCC. In the context of thisdocumentdocument, it may be necessary for the PCE toco-operatecooperate with other PCEs in adjacent domains (as per BRPC <xreftarget="RFC5441"/>)target="RFC5441" format="default"/>) orcooperatewith aParentparent PCE (as per <xreftarget="RFC6805"/>).</t>target="RFC6805" format="default"/>).</t> <t> It is entirely feasible that an operator could compute a path across multiple domains without the use of a PCE if the relevant domain information is available to the network planner or network management platform. The definition of what relevant information is required to perform this network planning operation and how that information is discovered and applied is outside the scope of this document.</t> <sectiontitle="PCE-basedanchor="sect-1.2.1" numbered="true" toc="default"> <name>PCE-Based Path ComputationProcedure" anchor="sect-1.2.1"><t>Procedure</name> <t> As highlighted, the PCE is an entity capable of computing an inter-domain TE path upon receiving a request from a PCC. There could be a single PCE perdomain,domain or a single PCE responsible for all domains. A PCE may or may not reside on the same node as the requesting PCC. A path may be computed by either a single PCE node or a set of distributed PCE nodes that collaborate during path computation.</t> <t> According to <xreftarget="RFC4655"/> defines thattarget="RFC4655" format="default"/>, a PCC should send a path computation request to a particularPCE,PCE using <xreftarget="RFC5440"/>target="RFC5440" format="default"/> (PCC-to-PCE communication). This negates the need to broadcast a request to all the PCEs. Each PCC can maintain information about the computation capabilities of thePCEs,PCEs it is aware of. The PCC-PCE capability awareness can be configured using static configurations or by automatic and dynamic PCE discovery procedures.</t> <t> If a network path is required, the PCC will send a path computation request to the PCE. A PCE may then compute the end-to-end path if it is aware of the topology and TE information required to compute the entire path. If the PCE is unable to compute the entire path, the PCE architecture providesco-operativecooperative PCE mechanisms for the resolution of path computation requests when an individual PCE does not have sufficient TE visibility.</t> <t> End-to-end path segments may be kept confidential through the application ofpath keys,Path-Keys to protect partial or full path information. Apath key thatPath-Key is a token that replaces a path segment in an explicit route. Thepath keyPath-Key mechanism is described in <xreftarget="RFC5520"/></t>target="RFC5520" format="default"/>.</t> </section> </section> <sectiontitle="Trafficanchor="sect-1.3" numbered="true" toc="default"> <name>Traffic Engineering Aggregation andAbstraction" anchor="sect-1.3"><t>Abstraction</name> <t> Networks are often constructed from multiple areas or ASes that are interconnected via multiple interconnect points. To maintain network confidentiality andscalabilityscalability, the TE properties of each area and AS are not generallyadvertizedadvertised outside each specific area or AS.</t> <t> TE aggregation or abstraction provide a mechanism to hide information but may cause failed path setups or the selection of suboptimalend-to-endend- to-end paths <xreftarget="RFC4726"/>.target="RFC4726" format="default"/>. The aggregation process may also have significant scaling issues for networks with many possible routes and multiple TE metrics. Flooding TE information breaks confidentiality and does not scale in the routing protocol.</t> <t> The PCE architecture and associated mechanisms provide a solution to avoid the use of TE aggregation and abstraction.</t> </section> <sectiontitle="Traffic Engineeredanchor="sect-1.4" numbered="true" toc="default"> <name>Traffic-Engineered Label SwitchedPaths" anchor="sect-1.4"><t>Paths</name> <t> This document highlights the PCE techniques and mechanisms that exist for establishing TE packet and opticalLSPsLabel Switched Paths (LSPs) across multiple areas (inter-area TE LSP) and ASes (inter-AS TE LSP). In this context and within the remainder of this document, we consider all LSPs to beconstraint-basedconstraint based and traffic engineered.</t> <t> Three signaling options are defined for setting up an inter-area or inter-AS LSP <xreftarget="RFC4726"/>:</t> <t><list style="symbols"><t>Contiguous LSP</t> <t>Stitched LSP</t> <t>Nested LSP</t> </list> </t>target="RFC4726" format="default"/>:</t> <ul spacing="normal"> <li>Contiguous LSP</li> <li>Stitched LSP</li> <li>Nested LSP</li> </ul> <t> All three signaling methods are applicable to the architectures and procedures discussed in this document.</t> </section> <sectiontitle="Inter-areaanchor="sect-1.5" numbered="true" toc="default"> <name>Inter-area andInter-AS CapableInter-AS-capable PCEDiscovery" anchor="sect-1.5"><t>Discovery</name> <t> When using a PCE-based approach for inter-area and inter-AS path computation, a PCE in one area or AS may need to learn information related tointer-AS capableinter-AS-capable PCEs located in other ASes. The PCE discovery mechanism defined in <xreftarget="RFC5088"/>target="RFC5088" format="default"/> and <xreftarget="RFC5089"/>target="RFC5089" format="default"/> facilitates the discovery ofPCEs,PCEs and disclosure of information related to inter-area andinter-AS capableinter-AS-capable PCEs.</t> </section> <sectiontitle="Objective Functions" anchor="sect-1.6"><t>anchor="sect-1.6" numbered="true" toc="default"> <name>Objective Functions</name> <t> An Objective Function (OF) <xreftarget="RFC5541"/>,target="RFC5541" format="default"/> or a set ofOFs,OFs specifies the intentions of the path computation and so defines the"optimality","optimality" in the context of the computation request.</t> <t> An OF specifies the desired outcome of a computation.An OFIt does not describe or specify the algorithm to use. Also, an implementation may apply anyalgorithm,algorithm or set ofalgorithms,algorithms to achieve the result indicated by the OF. A number of general OFs are specified in <xreftarget="RFC5541"/>.</t>target="RFC5541" format="default"/>.</t> <t> Various OFs may be included in the PCE computation request to satisfy the policies encoded or configured at the PCC, and a PCE may be subject to policy in determining whether it meets the OFs included in the computation request or whether it applies its own OFs.</t> <t> During inter-domain path computation, the selection of a domain sequence, the computation of each (per-domain) path fragment, and the determination of the end-to-end path may each be subject to different OFs andpolicy.</t>policies. </t> </section> </section> <sectiontitle="Terminology" anchor="sect-2"><t>anchor="sect-2" numbered="true" toc="default"> <name>Terminology</name> <t> This document also uses the terminology defined in <xreftarget="RFC4655"/>target="RFC4655" format="default"/> and <xreftarget="RFC5440"/>.target="RFC5440" format="default"/>. Additional terminology is defined below:<list style="hanging" hangIndent="6"> <t hangText="ABR:"></t> <dl newline="false" spacing="normal" indent="6"> <dt>ABR:</dt> <dd> IGP Area BorderRouter,Router -- a router that is attached to more than one IGP area.</t> <t hangText="ASBR:"></dd> <dt>ASBR:</dt> <dd> Autonomous System BorderRouter,Router -- a router used to connect together ASes of a different or the same Service Provider via one or more inter-AS links.</t> <t hangText="Inter-area</dd> <dt>Inter-area TELSP:">LSP:</dt> <dd> A TE LSP whose path transits through two or more IGP areas.</t> <t hangText="Inter-AS</dd> <dt>Inter-AS MPLS TELSP:">LSP:</dt> <dd> A TE LSP whose path transits through two or more ASes or sub-ASes (BGPconfederations </t> <t hangText="SRLG:">confederations) </dd> <dt>SRLG:</dt> <dd> Shared Risk LinkGroup.</t> <t hangText="TED:">Group.</dd> <dt>TED:</dt> <dd> Traffic Engineering Database, which contains the topology and resource information of the domain. The TED may be fed by Interior Gateway Protocol (IGP) extensions or potentially by other means.</t> </list> </t></dd> </dl> </section> <sectiontitle="Issuesanchor="sect-3" numbered="true" toc="default"> <name>Issues andConsiderations" anchor="sect-3"><section title="Multi-homing" anchor="sect-3.1"><t>Considerations</name> <section anchor="sect-3.1" numbered="true" toc="default"> <name>Multihoming</name> <t> Networks constructed from multi-areas or multi-AS environments may have multiple interconnect points(multi-homing).(multihoming). End-to-end path computations may need to use different interconnect points to avoid asingle pointsingle-point failure disrupting both the primary and backup services.</t> </section> <sectiontitle="Destination Location" anchor="sect-3.2"><t> Theanchor="sect-3.2" numbered="true" toc="default"> <name>Destination Location</name> <t> A PCC asking for an inter-domain path computation is typically aware of the identity of the destination node. If the PCC is aware of the destination domain, it may supply the destination domain information as part of the path computation request. However, if the PCC does not know the destinationdomaindomain, this information must be determined by another method.</t> </section> <sectiontitle="Domain Confidentiality" anchor="sect-3.3"><t> Whereanchor="sect-3.3" numbered="true" toc="default"> <name>Domain Confidentiality</name> <t> When the end-to-end path crosses multiple domains, it may be possible that each domain (AS or area)areis administered by separate ServiceProviders, it would break confidentiality rules forProviders. Thus, if a PCEto supplysupplies a path segment to a PCE in another domain,thus disclosingit may break confidentiality rules and could disclose AS-internal topology information.</t> <t> If confidentiality is required between domains (ASes and areas) belonging to different Service Providers, then cooperating PCEs cannot exchange pathsegments or elsesegments; otherwise, the receiving PCE or PCC will be able to see the individual hops through another domain.</t> <t> This topic is discussed further inSection 8<xref target="sect-8"/> of this document.</t> </section> </section> <sectiontitle="Domain Topologies" anchor="sect-4"><t>anchor="sect-4" numbered="true" toc="default"> <name>Domain Topologies</name> <t> Constraint-based inter-domain path computation is a fundamental requirement for operatingtraffic engineeredtraffic-engineered MPLS <xreftarget="RFC3209"/>target="RFC3209" format="default"/> and GMPLS <xreftarget="RFC3473"/> networks,target="RFC3473" format="default"/> networks in inter-area and inter-AS (multi-domain) environments. Path computation across multi-domain networks is complex and requires computationalco-operationalcooperational entities like the PCE.</t> <sectiontitle="Selectinganchor="sect-4.1" numbered="true" toc="default"> <name>Selecting DomainPaths" anchor="sect-4.1"><t>Paths</name> <t> Where the sequence of domains is known a priori, various techniques can be employed to derive an optimal multi-domain path. If the domains are connected to a simple path with no branches and single links between alldomains,domains or if the preferred points of interconnectionisare also known, thePer-Domain Path Computationper-domain path computation <xreftarget="RFC5152"/>target="RFC5152" format="default"/> technique may be used. Where there are multiple connections between domains and there is no preference for the choice of points of interconnection, BRPC <xreftarget="RFC5441"/>target="RFC5441" format="default"/> can be used to derive an optimal path.</t> <t> When the sequence of domains is not known inadvance,advance or the end-to-end path will have to navigate a mesh of small domains (especially typical in optical networks), the optimum path may be derived through the application of aHierarchicalhierarchical PCE <xreftarget="RFC6805"/>.</t>target="RFC6805" format="default"/>.</t> </section> <sectiontitle="Domain Sizes" anchor="sect-4.2"><t>anchor="sect-4.2" numbered="true" toc="default"> <name>Domain Sizes</name> <t> Veryfrequentlyfrequently, network domains are composed of dozens or hundreds of network elements. These network elements are usually interconnected in a partial-meshfashion,fashion to provide survivability against dualfailures,failures and to benefit from thetraffic engineeringtraffic-engineering capabilitiesfromof MPLS and GMPLS protocols. Network operator feedback in the development of the document highlighted that the node degree (the number of neighbors per node) typically ranges from 3 to 10 (4-5 is quite common).</t> </section> <sectiontitle="Domain Diversity" anchor="sect-4.3"><t>anchor="sect-4.3" numbered="true" toc="default"> <name>Domain Diversity</name> <t> Domain and path diversity may also be required when computing end-to-end paths. Domain diversity should facilitate the selection of paths that share ingress and egressdomains,domains but do not share transit domains. Therefore, there must be a method allowing the inclusion or exclusion of specific domains when computing end-to-end paths.</t> </section> <sectiontitle="Synchronizedanchor="sect-4.4" numbered="true" toc="default"> <name>Synchronized PathComputations" anchor="sect-4.4"><t>Computations</name> <t> In some scenarios, it would be beneficial for the operator to rely on the capability of the PCE to perform synchronized path computation.</t> <t> Synchronized path computations, known as Synchronization VECtors(SVECs)(SVECs), are used for dependent path computations. SVECs are defined in <xreftarget="RFC5440"/>target="RFC5440" format="default"/>, and <xreftarget="RFC6007"/>target="RFC6007" format="default"/> provides an overviewforof the use of the PCE SVEC list for synchronized path computations when computing dependent requests.</t> <t> InH-PCEhierarchical PCE (H-PCE) deployments, a child PCE will be able to request both dependent and synchronizeddomain diverse end to enddomain-diverse end-to-end paths from its parent PCE.</t> </section> <sectiontitle="Domainanchor="sect-4.5" numbered="true" toc="default"> <name>Domain Inclusion orExclusion" anchor="sect-4.5"><t>Exclusion</name> <t> A domain sequence is an ordered sequence of domains traversed to reach the destination domain. A domain sequence may be supplied during path computation to guide the PCEs or are derived via the use ofHierarchicalhierarchical PCE (H-PCE).</t> <t> During multi-domain path computation, a PCC may request specific domains to be included or excluded in the domain sequence using the Include Route Object (IRO) <xreftarget="RFC5440"/>target="RFC5440" format="default"/> and Exclude Route Object (XRO) <xreftarget="RFC5521"/>.target="RFC5521" format="default"/>. The use of Autonomous Number (AS) as an abstract node representing a domain is defined in <xreftarget="RFC3209"/>.target="RFC3209" format="default"/>. <xreftarget="RFC7897"/>target="RFC7897" format="default"/> specifies newsub-objectssubobjects to include or exclude domains such as an IGP area or a4-Byte4-byte AS number.</t> <t> An operator may also need to avoid a path that uses specified nodes for administrativereasons, or ifreasons. If a specific connectivity service is required to have a 1+1 protection capability, twocompletelyseparate disjoint paths must be established. A mechanism known as Shared Risk Link Group (SRLG) information may be used to ensure path diversity.</t> </section> </section> <sectiontitle="Applicabilityanchor="sect-5" numbered="true" toc="default"> <name>Applicability of the PCE to Inter-area TrafficEngineering" anchor="sect-5"><t>Engineering</name> <t> As networks increase in size and complexity, it may be required to introduce scaling methods to reduce the amount of information flooded within the network and make the network more manageable. An IGP hierarchy is designed to improve IGP scalability by dividing the IGP domain into areas and limiting the flooding scope of topology information to within area boundaries. This restricts visibility of the area to routers in a single area. If a router needs to compute the route to a destination located in another area, a method would be required to compute a path across area boundaries.</t> <t> In order to support multiple vendors in anetwork,network in cases where data orcontrol planecontrol-plane technologies cannot interoperate, it is useful to divide the network into vendor domains. Each vendor domain is an IGP area, and the flooding scope of the topology (as well as any other relevant information) is limited to the area boundaries.</t> <t> Per-domain path computation <xreftarget="RFC5152"/>target="RFC5152" format="default"/> exists to provide a method of inter-area path computation. The per-domain solution is based on loose hop routing with an Explicit Route Object (ERO) expansion on each Area Border Router (ABR). This allows an LSP to be established using a constrainedpath, howeverpath. However, at least two issues exist:</t><t><list style="symbols"><t>This<ul spacing="normal"> <li>This method does not guarantee an optimal constrainedpath.</t> <t>Thepath.</li> <li>The method may require several crankback signaling messages, as per <xreftarget="RFC4920"/>,target="RFC4920" format="default"/>, increasing signaling traffic and delaying the LSPsetup.</t> </list> </t>setup.</li> </ul> <t>ThePCE-based architecture <xreftarget="RFC4655"/>target="RFC4655" format="default"/> is designed to solve inter-area path computation problems. The issue of limited topology visibility is resolved by introducing path computation entities that are able to cooperate in order to establish LSPs with the source and destinations located in different areas.</t> <sectiontitle="Inter-area Routing" anchor="sect-5.1"><t>anchor="sect-5.1" numbered="true" toc="default"> <name>Inter-area Routing</name> <t> An inter-area TE-LSP is an LSP that transits through at least two IGP areas. In a multi-area network, topology visibility remains local to a given area for scaling and privacypurposes, apurposes. A node in one area will not be able to compute an end-to-end path across multiple areas without the use of a PCE.</t> <sectiontitle="Areaanchor="sect-5.1.1" numbered="true" toc="default"> <name>Area Inclusion andExclusion" anchor="sect-5.1.1"><t>Exclusion</name> <t> The BRPC method <xreftarget="RFC5441"/>target="RFC5441" format="default"/> of path computation provides a more optimal method to specify inclusion or exclusion of an ABR. Using the BRPCprocedureprocedure, an end-to-end path is recursively computed in reverse from the destinationdomain,domain towards the source domain. Using this method, an operator might decide if an area must be included or excluded from the inter-area path computation.</t> </section> <sectiontitle="Strictanchor="sect-5.1.2" numbered="true" toc="default"> <name>Strict Explicit Path and LoosePath" anchor="sect-5.1.2"><t>Path</name> <t> A strict explicitPathpath is defined as a set of strict hops, while a loose path is defined as a set of at least one loose hop and zero or more strict hops. It may be useful toindicate, during the path computation request, ifindicate whether a strict explicit path is requiredor not.during the path computation request. An inter-area path may be strictly explicit or loose (e.g., a list of ABRs as loose hops).</t> <t> A PCC request to a PCE does allowtheindication of whether a strict explicit path across specific areas (<xreftarget="RFC7897"/>)target="RFC7897" format="default"/>) is required ordesired,desired orifwhether the path request is loose.</t> </section> <sectiontitle="Inter-Areaanchor="sect-5.1.3" numbered="true" toc="default"> <name>Inter-Area Diverse PathComputation" anchor="sect-5.1.3"><t>Computation</name> <t> It may be necessary to compute a path that is partially or entirelydiverse,diverse from a previously computedpath,path to avoid fate sharing of a primary service with a corresponding backup service. There are various levels of diversity in the context of an inter-area network:</t><t><list style="symbols"><t>Per-area<ul spacing="normal"> <li>Per-area diversity(intra-area(the intra-area path segments are a link,nodenode, or SRLGdisjoint.</t> <t>Inter-areadisjoint).</li> <li>Inter-area diversity(end-to-end(the end-to-end inter-area paths are a link,nodenode, or SRLGdisjoint).</t> </list> </t>disjoint).</li> </ul> <t> Note that two paths may bedisjointdisjointed in the backbone area butnon- disjointnon-disjointed in peripheral areas. Also, two paths may be nodedisjointdisjointed within areas but may share ABRs, in which case path segments within an areaisare nodedisjoint,disjointed but end-to-end paths are notnode-disjoint. Per-Domainnode disjointed. Per-domain <xreftarget="RFC5152"/>,target="RFC5152" format="default"/>, BRPC <xreftarget="RFC5441"/>target="RFC5441" format="default"/>, and H-PCE <xreftarget="RFC6805"/>target="RFC6805" format="default"/> mechanisms all support the capability to compute diverse paths across multi-area topologies.</t> </section> </section> </section> <sectiontitle="Applicabilityanchor="sect-6" numbered="true" toc="default"> <name>Applicability of the PCE to Inter-AS TrafficEngineering" anchor="sect-6"><t>Engineering</name> <t> As discussed insection 4 (Applicability of the PCE to Inter-area Traffic Engineering)<xref target="sect-5" format="default"/> (<xref target="sect-5" format="title" />), it is necessary to divide the network into smaller administrative domains, or ASes. If an LSR within an AS needs to compute a path across an AS boundary, it must also use an inter-AS computation technique. <xreftarget="RFC5152"/>target="RFC5152" format="default"/> defines mechanisms for the computation of inter-domain TE LSPs using network elements along the signaling paths to compute per-domain constrained path segments.</t> <t> The PCE was designed to be capable of computing MPLS and GMPLS paths across AS boundaries. This section outlines the features of a PCE-enabled solution for computing inter-AS paths.</t> <sectiontitle="Inter-AS Routing" anchor="sect-6.1"><section title="ASanchor="sect-6.1" numbered="true" toc="default"> <name>Inter-AS Routing</name> <section anchor="sect-6.1.1" numbered="true" toc="default"> <name>AS Inclusion andExclusion" anchor="sect-6.1.1"><t>Exclusion</name> <t> <xreftarget="RFC5441"/>target="RFC5441" format="default"/> allows thespecifyingspecification ofinclusion or exclusion of anAS oran ASBR.ASBR inclusion or exclusion. Using this method, an operator might decideifwhether an AS must beincludeincluded orexcludeexcluded from the inter-AS path computation. Exclusion and/or inclusion could also be specified at any step in the LSP path computation process by a PCE (within the BRPCalgorithm)algorithm), but the best practice would be to specify them at the edge. In opposition to the strict and loose path, AS inclusion or exclusion doesn't impose topology disclosure as ASes and their interconnection are publicentity as well as their interconnection.</t>entities.</t> </section> </section> <sectiontitle="Inter-ASanchor="sect-6.2" numbered="true" toc="default"> <name>Inter-AS BandwidthGuarantees" anchor="sect-6.2"><t>Guarantees</name> <t> Many operators with multi-AS domains will have deployed the MPLS-TEDiffServDiffserv either across their entire network or at the domain edges on CE-PE links. In situations where strictQOSQoS bounds are required, admission control inside the network may also be required.</t> <t> When the propagation delay can be bounded, the performance targets, such as maximum one-way transitdelaydelay, may be guaranteed by providing bandwidth guarantees along theDiffServ-enabled path, theseDiffserv-enabled path. These requirements are described in <xreftarget="RFC4216"/>.</t>target="RFC4216" format="default"/>.</t> <t> One typical example of the requirements in <xreftarget="RFC4216"/>target="RFC4216" format="default"/> is to provide bandwidth guarantees over an end-to-end path for VoIP traffic classified as an EF (Expedited Forwarding) class in aDiffServ-enabledDiffserv-enabled network. Inthe casecases where the EF path is extended across multiple ASes, an inter-AS bandwidth guarantee would be required.</t> <t> Another case for an inter-AS bandwidth guarantee is the requirementfor guaranteeingto guarantee a certain amount of transit bandwidth across one or multiple ASes.</t> </section> <sectiontitle="Inter-AS Recovery" anchor="sect-6.3"><t>anchor="sect-6.3" numbered="true" toc="default"> <name>Inter-AS Recovery</name> <t> During a path computation process, a PCC request may contain the requirement to compute a backup LSP for protecting the primary LSP, such as 1+1 protection. A single LSP or multiple backup LSPs may also be used for a group of primaryLSPs,LSPs; this is typically known as m:n protection.</t> <t> Other inter-AS recovery mechanisms include <xreftarget="RFC4090"/>target="RFC4090" format="default"/>, which addsfast re-routeFast Reroute (FRR) protection to an LSP. So, the PCE could be used to trigger computation of backup tunnels in order to protectInter-ASinter-AS connectivity.</t> <t> Inter-AS recovery clearly requires backup LSPs for serviceprotectionprotection, but it would also be advisable to have multiple PCEs deployed for path computation redundancy, especially for service restoration in the event of catastrophic network failure.</t> </section> <sectiontitle="Inter-ASanchor="sect-6.4" numbered="true" toc="default"> <name>Inter-AS PCE PeeringPolicies" anchor="sect-6.4"><t>Policies</name> <t> Like BGP peering policies, inter-AS PCE peering policiesis a requirementare required for an operator. In an inter-AS BRPC process, the PCE must cooperate in order to compute the end-to-end LSP.So,Therefore, the AS path must not only follow technical constraints,e.g.e.g., bandwidth availability, but also the policies defined by the operator.</t> <t>TypicallyTypically, PCE interconnections at an AS level must follow the agreed contract obligations, also known as peering agreements. The PCE peering policies are the result of the contract negotiation and govern the relation between the differentPCE.</t>PCEs.</t> </section> </section> <sectiontitle="Multi-domainanchor="sect-7" numbered="true" toc="default"> <name>Multi-domain PCE DeploymentOptions" anchor="sect-7"><section title="TrafficOptions</name> <section anchor="sect-7.1" numbered="true" toc="default"> <name>Traffic Engineering Database andSynchronization" anchor="sect-7.1"><t>Synchronization</name> <t> An optimal path computation requires knowledge of the available network resources, including nodes and links, constraints, link connectivity, available bandwidth, and link costs. The PCE operates on a view of the network topology as presented by a TED. As discussed in <xreftarget="RFC4655"/>target="RFC4655" format="default"/>, the TED used by a PCE may belearntlearned by the relevant IGP extensions.</t> <t> Thus, the PCE may operate its TEDisby participating in the IGP running in the network. In an MPLS-TE network, this would require OSPF-TE <xreftarget="RFC3630"/>target="RFC3630" format="default"/> or ISIS-TE <xreftarget="RFC5305"/>.target="RFC5305" format="default"/>. In a GMPLSnetworknetwork, it would utilize the GMPLS extensions to OSPF and IS-IS defined in <xreftarget="RFC4203"/>target="RFC4203" format="default"/> and <xreftarget="RFC5307"/>. Inter-astarget="RFC5307" format="default"/>. Inter-AS connectivity information may be populated via <xreftarget="RFC5316"/>target="RFC5316" format="default"/> and <xreftarget="RFC5392"/>.</t>target="RFC5392" format="default"/>.</t> <t> An alternative method toprovideproviding network topology and resource information is offered by <xreftarget="RFC7752"/>,target="RFC7752" format="default"/>, which is described in the following section.</t> <sectiontitle="Applicabilityanchor="sect-7.1.1" numbered="true" toc="default"> <name>Applicability of BGP-LS toPCE" anchor="sect-7.1.1"><t>PCE</name> <t> The concept of the exchange of TE information between Autonomous Systems (ASes) is discussed in <xreftarget="RFC7752"/>.target="RFC7752" format="default"/>. The information exchanged in this way could be the full TE information from the AS, an aggregation of that information, or a representation of the potential connectivity across the AS. Furthermore, that information could be updated frequently (for example, for every new LSP that is set up across the AS) or only at threshold-crossing events.</t> <t> In an H-PCE deployment, the parent PCE will require the inter-domain topology and link status between child domains. This information may belearntlearned by a BGP-LS speaker and provided to the parentPCE, furthermorePCE. Furthermore, link-stateperformanceperformance, including delay, availablebandwidthbandwidth, and utilizedbandwidthbandwidth, may also be provided to the parent PCE for optimal path link selection.</t> </section> </section> <sectiontitle="Pre-Planninganchor="sect-7.2" numbered="true" toc="default"> <name>Pre-planning and Management-BasedSolutions" anchor="sect-7.2"><t>Solutions</name> <t> Offline path computation is performed ahead oftime,time before the LSP setup is requested. That means that it is requestedby,by or performed as partof,of an Operation Support System (OSS) management application. This model can be seen inSection 5.5 of<xreftarget="RFC4655"/>.</t>target="RFC4655" section="5.5" sectionFormat="of"/>.</t> <t> The offline model is particularly appropriatetofor long-lived LSPs (such as those present in a transport network) or for planned responses to network failures. In these scenarios, more planning is normally a feature of LSP provisioning.</t><figure><artwork><![CDATA[<t> The management system may also use a PCE and BRPC to pre-plan an AS sequence, and the source domain PCE and per-domain path computation to be used when the actual end-to-end path is required. This model may also be used where the operator wishes to retain full manual control of the placement of LSPs, using the PCE only as a computation tool to assist theoperator,operator and not as part of an automated network.]]></artwork> </figure></t> <t> In environments where operators peer with each other to provideend- to-endend-to-end paths, the operator responsible for each domain must agreeto whaton the extent to which paths must be pre-planned or manually controlled.</t> </section> </section> <sectiontitle="Domain Confidentiality" anchor="sect-8"><t>anchor="sect-8" numbered="true" toc="default"> <name>Domain Confidentiality</name> <t> This section discusses the techniques thatco-operatingcooperating PCEs can use to compute inter-domain paths without each domain disclosing sensitive internal topology information (such as explicit nodes or links within the domain) to the other domains.</t> <t> Confidentiality typically applies to inter-provider (inter-AS) PCE communication. Where the TE LSP crosses multiple domains (ASes or areas), the path may be computed by multiple PCEs that cooperatetogether.together, with each local PCE responsible for computing a segment of the path. With each local PCE responsible for computing a segment of the path.</t> <t> In situations where ASes are administered by separate Service Providers, it would break confidentiality rules for a PCE to supplyapath segment details to a PCE responsible for another domain, thus disclosing AS-internal or area topology information.</t> <sectiontitle="Loose Hops" anchor="sect-8.1"><t>anchor="sect-8.1" numbered="true" toc="default"> <name>Loose Hops</name> <t> A method for preserving the confidentiality of the path segment is for the PCE to return a path containing a loose hop in place of the segment that must be kept confidential. The concept of loose and strict hops for the route of a TE LSP is described in <xreftarget="RFC3209"/>.</t>target="RFC3209" format="default"/>.</t> <t> <xreftarget="RFC5440"/>target="RFC5440" format="default"/> supports the use of paths with loosehops, and it is a local policy decision at a PCEhops; whether it returns a full explicit path with strict hops or uses loosehops.hops is a local policy decision at a PCE. A path computation request may require an explicit path with stricthops,hops or may allow loosehopshops, as detailed in <xreftarget="RFC5440"/>.</t>target="RFC5440" format="default"/>.</t> </section> <sectiontitle="Confidentialanchor="sect-8.2" numbered="true" toc="default"> <name>Confidential Path Segments andPath Keys" anchor="sect-8.2"><t>Path-Keys</name> <t> <xreftarget="RFC5520"/>target="RFC5520" format="default"/> defines the concept and mechanism of a Path-Key. A Path-Key is a token that replaces the path segment information in an explicit route. The Path-Key allows the explicit route information to be encoded and is contained in thePCEPPath Computation Element Communication Protocol (PCEP) (<xreftarget="RFC5440"/>)target="RFC5440" format="default"/>) messages exchanged between the PCE and PCC.</t> <t> This Path-Key technique allows explicit route information to be used for end-to-end pathcomputation,computation without disclosing internal topology information between domains.</t> </section> </section> <sectiontitle="Point-to-Multipoint" anchor="sect-9"><t>anchor="sect-9" numbered="true" toc="default"> <name>Point to Multipoint</name> <t> For inter-domain point-to-multipoint application scenarios using MPLS-TE LSPs, the complexity of domain sequences, domain policies, and the choice and number of domain interconnects is magnified compared to point-to-point path computations. As the size of the network grows, the number of leaves and branchesincrease,increases, further increasing the complexity of the overall path computation problem. A solution for managing point-to-multipoint path computations may be achieved using the PCE inter-domain point-to-multipoint path computation <xreftarget="RFC7334"/>target="RFC7334" format="default"/> procedure.</t> </section> <sectiontitle="Optical Domains" anchor="sect-10"><t>anchor="sect-10" numbered="true" toc="default"> <name>Optical Domains</name> <t> The InternationalTelecommunicationsTelecommunication Union (ITU) defines the ASON architecture in <xreftarget="G-8080"/>.target="G-8080" format="default"/>. <xreftarget="G-7715"/>target="G-7715" format="default"/> defines the routing architecture for ASON and introduces a hierarchical architecture. In this architecture, the Routing Areas (RAs) have a hierarchical relationship between different routing levels, which means a parent (or higher level) RA can contain multiple child RAs. The interconnectivity of the lower RAs is visible to the higher-level RA.</t> <t> In the ASON framework, a path computation request is termed aRoute Query.route query. This query is executed before signaling is used to establish anLSPLSP, which is termed a Switched Connection (SC) or a Soft Permanent Connection (SPC). <xreftarget="G-7715-2"/>target="G-7715-2" format="default"/> defines the requirements and architecture for the functions performed by Routing Controllers (RC) during the operation of remote routequeries - anqueries. An RC is synonymous with a PCE.</t> <t> In the ASON routing environment, an RC responsible for an RA may communicate with its neighbor RC to request the computation of an end-to-end path across several RAs. The path computation components and sequences are defined as follows:</t><t><list style="symbols"><t>Remote<ul spacing="normal"> <li>Remote route query. An operation where arouting controllerRouting Controller communicates with anotherrouting controller,Routing Controller, which does not have the same set of layer resources, in order to compute a routing path in a collaborativemanner.</t> <t>Routemanner.</li> <li>Route query requester. The connection controller or RC that sends a route query message to arouting controller requesting forRouting Controller that requests one or more routing pathsthat satisfysatisfying a set of routingconstraints.</t> <t>Routeconstraints.</li> <li>Route query responder. An RC that performs the path computation upon reception of a route query message from arouting controllerRouting Controller or connection controller,sendingand sends a response back at the end ofcomputation.</t> </list> </t>the computation.</li> </ul> <t> When computing an end-to-end connection, the route may be computed by a single RC or multiple RCs in a collaborativemannermanner, and the two scenarios can be considered a centralized remote route query model and a distributed remote route query model. RCs in an ASON environment can also use the hierarchical PCE <xreftarget="RFC6805"/>target="RFC6805" format="default"/> model tomatchfully match the ASON hierarchical routing model.</t> <sectiontitle="Abstractionanchor="sect-10.1" numbered="true" toc="default"> <name>Abstraction and Control of TE Networks(ACTN)" anchor="sect-10.1"><t>(ACTN)</name> <t> Where a single operator operates multiple TE domains (including opticalenvironments) thenenvironments), an Abstraction and Control of TE Networks (ACTN) framework <xreftarget="RFC8453"/>target="RFC8453" format="default"/> may be used to create an abstracted (virtualized network) view ofunderlay interconnectedunderlay-interconnected domains. This underlay connectivity is thenbeexposed to higher-layer control entities and applications.</t> <t> ACTN describes the method and procedure for coordinating the underlay per-domainPhysicalProvisioning Network Controllers (PNCs), which may be PCEs, via a hierarchical model to facilitate setup of end-to-end connections acrossinter-connectedinterconnected TE domains.</t> </section> </section> <sectiontitle="Policy" anchor="sect-11"><t>anchor="sect-11" numbered="true" toc="default"> <name>Policy</name> <t> Policy is important in the deployment of new services and the operation of the network. <xreftarget="RFC5394"/>target="RFC5394" format="default"/> provides a framework forPCE- basedPCE-based policy-enabled path computation. This framework is based on the Policy Core Information Model (PCIM) as defined in <xreftarget="RFC3060"/>target="RFC3060" format="default"/> and further extended by <xreftarget="RFC3460"/>.</t>target="RFC3460" format="default"/>.</t> <t> When using a PCE to compute inter-domain paths, policy may be invoked byspecifying:</t> <t><list style="symbols"><t>Eachspecifying the following:</t> <ul spacing="normal"> <li>Each PCC must select which computations it willbe requested torequest from aPCE;</t> <t>EachPCE.</li> <li>Each PCC must select which PCEs it willuse;</t> <t>Eachuse.</li> <li>Each PCE must determine which PCCs are allowed to use its services and for whatcomputations;</t> <t>Thecomputations.</li> <li>The PCE must determine how to collect the information in its TED, whom to trust for that information, and how to refresh/update theinformation;</t> <t>Eachinformation.</li> <li>Each PCE must determine which objective functions andwhichalgorithms toapply.</t> </list> </t>apply.</li> </ul> </section> <sectiontitle="Manageability Considerations" anchor="sect-12"><t>anchor="sect-12" numbered="true" toc="default"> <name>Manageability Considerations</name> <t> General PCE management considerations are discussed in <xreftarget="RFC4655"/>.target="RFC4655" format="default"/>. In the case of multi-domains within a single service provider network, the management responsibility for each PCE would most likely be handled by the same service provider. In the case of multiple ASes within different service provider networks, it will likely be necessary for each PCE to be configured and managed separately by each participating service provider, with policy being implemented based on a previously agreed set of principles.</t> <sectiontitle="Controlanchor="sect-12.1" numbered="true" toc="default"> <name>Control of Function andPolicy" anchor="sect-12.1"><t>Policy</name> <t> As perPCEP<xreftarget="RFC5440"/>target="RFC5440" format="default"/>, PCEP implementationallowallows the user to configure a number of PCEP session parameters. These are detailed insection 8.1 of<xreftarget="RFC5440"/>.</t>target="RFC5440" section="8.1" sectionFormat="of"/>.</t> <t> In H-PCEdeploymentsdeployments, the administrative entity responsible for the management of the parent PCEs for multi-areas would typically be a single service provider. Inthemultiple ASes (managed by different service providers), it may be necessary for a third party to manage the parent PCE.</t> </section> <sectiontitle="Informationanchor="sect-12.2" numbered="true" toc="default"> <name>Information and DataModels" anchor="sect-12.2"><t>Models</name> <t> A PCEP MIB module is defined in <xreftarget="RFC7420"/> thattarget="RFC7420" format="default"/>, which describes managed objects for modelingofPCEPcommunicationcommunication, including:</t><t><list style="symbols"><t>PCEP<ul spacing="normal"> <li>PCEP client configuration andstatus,</t> <t>PCEPstatus.</li> <li>PCEP peer configuration andinformation,</t> <t>PCEPinformation.</li> <li>PCEP session configuration andinformation,</t> <t>Notificationsinformation.</li> <li>Notifications to indicate PCEP sessionchanges.</t> </list> </t>changes.</li> </ul> <t> A YANG module for PCEP has also been proposed <xreftarget="PCEP-YANG"/>.</t>target="I-D.ietf-pce-pcep-yang" format="default"/>.</t> <t> An H-PCE MIBmodule,module or YANG datamodel,model will be required to report parent PCE and child PCE information, including:</t><t><list style="symbols"><t>parent<ul spacing="normal"> <li>Parent PCE configuration andstatus,</t> <t>childstatus.</li> <li>Child PCE configuration andinformation,</t> <t>notificationsinformation.</li> <li>Notifications to indicate session changes between parent PCEs and childPCEs, and</t> <t>notificationPCEs.</li> <li>Notification of parent PCE TED updates andchanges.</t> </list> </t>changes.</li> </ul> </section> <sectiontitle="Livenessanchor="sect-12.3" numbered="true" toc="default"> <name>Liveness Detection andMonitoring" anchor="sect-12.3"><t>Monitoring</name> <t> PCEP includes a keepalive mechanism to check the liveliness of a PCEP peer and a notification procedure allowing a PCE to advertise its overloaded state to a PCC. In a multi-domainenvironmentenvironment, <xreftarget="RFC5886"/>target="RFC5886" format="default"/> provides the procedures necessary to monitor the liveliness andperformancesperformance of a given PCE chain.</t> </section> <sectiontitle="Verifyinganchor="sect-12.4" numbered="true" toc="default"> <name>Verifying CorrectOperation" anchor="sect-12.4"><t>Operation</name> <t> It is important to verify the correct operation ofPCEP,PCEP. <xreftarget="RFC5440"/>target="RFC5440" format="default"/> specifies the monitoring of key parameters. These parameters are detailed in <xreftarget="RFC5520"/>.</t>target="RFC5520" format="default"/>.</t> </section> <sectiontitle="Impactanchor="sect-12.5" numbered="true" toc="default"> <name>Impact on NetworkOperation" anchor="sect-12.5"><t>Operation</name> <t> <xreftarget="RFC5440"/>target="RFC5440" format="default"/> states that in order to avoid any unacceptable impact on network operations, a PCEP implementation should allow a limit to be placed on the number of sessions that can be set up on a PCEPspeaker,speaker and that it may also be practical to place a limit on the rate of messages sent by a PCC and receivedmyby the PCE.</t> </section> </section> <sectiontitle="Security Considerations" anchor="sect-13"><t>anchor="sect-13" numbered="true" toc="default"> <name>Security Considerations</name> <t> PCEPSecuritysecurity considerations are discussed in <xreftarget="RFC5440"/>target="RFC5440" format="default"/> and <xreftarget="RFC6952"/>target="RFC6952" format="default"/>. Potential vulnerabilities include spoofing, snooping,falsificationfalsification, and using PCEP as a mechanism for denial of service attacks.</t> <t> As PCEP operates over TCP, it may make use of TCP security encryption mechanisms, such as Transport Layer Security (TLS) and TCP Authentication Option (TCP-AO). Usage of these security mechanisms for PCEP is described in <xreftarget="RFC8253"/>,target="RFC8253" format="default"/>, and recommendations and best current practices are described in <xreftarget="RFC7525"/>.</t>target="RFC7525" format="default"/>.</t> <sectiontitle="Multi-domain Security" anchor="sect-13.1"><t>anchor="sect-13.1" numbered="true" toc="default"> <name>Multi-domain Security</name> <t> Any multi-domain operation necessarily involves the exchange of information across domain boundaries. Thisdoes representrepresents a significant security and confidentiality risk.</t> <t> It is expected that PCEP is used between PCCs and PCEsbelongingthat belong to the same administrativeauthority, andauthority while also using one of the aforementioned encryption mechanisms. Furthermore, PCEP allows individual PCEs to maintain the confidentiality of their domain path information using path-keys.</t> </section> </section> <sectiontitle="IANA Considerations" anchor="sect-14"><t>anchor="sect-14" numbered="true" toc="default"> <name>IANA Considerations</name> <t> This documentmakeshas norequests forIANAaction.</t> </section> <section title="Acknowledgements" anchor="sect-15"><t> The author would like to thank Adrian Farrel for his review, and Meral Shirazipour and Francisco Javier Jimenex Chico for their comments.</t>actions.</t> </section> </middle> <back><references title="Normative References"> &RFC3209; &RFC3473; &RFC4216; &RFC4655; &RFC4726; &RFC5152; &RFC5440; &RFC5441; &RFC5520; &RFC5541; &RFC6805;<displayreference target="I-D.ietf-pce-pcep-yang" to="PCEP-YANG"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3209.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3473.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4216.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4655.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4726.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5152.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5440.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5441.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5520.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5541.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6805.xml"/> </references><references title="Informative References"> &RFC3060; &RFC3460; &RFC3630; &RFC4090; &RFC4203; &RFC4920; &RFC5088; &RFC5089; &RFC5305; &RFC5307; &RFC5316; &RFC5392; &RFC5394; &RFC5521; &RFC5886; &RFC6007;<references> <name>Informative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3060.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3460.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3630.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4090.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4203.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4920.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5088.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5089.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5305.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5307.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5316.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5392.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5394.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5521.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5886.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6007.xml"/> <!-- [G-8080] URL https://www.itu.int/rec/T-REC-G.8080-201202-I/en --> <referenceanchor="G-8080"><front>anchor="G-8080"> <front> <title>Architecture for the automatically switched opticalnetwork (ASON)</title>network</title> <seriesInfo name="ITU-T Recommendation" value="G.8080/Y.1304"/> <author><organization>ITU-T Recommendation G.8080/Y.1304</organization><organization>ITU-T</organization> </author><date/><date month="February" year="2012"/> </front> </reference> <!-- [G-7715] URL https://datatracker.ietf.org/documents/LIAISON/G-7715.htm --> <!-- this reference has been updated per https://www.itu.int/rec/T-REC-G.7715/en. --> <referenceanchor="G-7715"><front>anchor="G-7715"> <front> <title>Architecture andRequirementsrequirements for routing in theAutomatically Switched Optical Network (ASON)</title>automatically switched optical networks</title> <seriesInfo name="ITU-T Recommendation" value="G.7715/Y.1706" /> <author><organization>ITU-T Recommendation G.7715 (2002)</organization><organization>ITU-T</organization> </author><date/><date month="June" year="2002"/> </front> </reference> <!-- [G-7715-2] https://www.itu.int/rec/T-REC-G.7715.2-200702-I/en --> <referenceanchor="G-7715-2"><front>anchor="G-7715-2"> <front> <title>ASON routing architecture and requirements for remote route query</title> <seriesInfo name="ITU-T Recommendation" value="G.7715.2/Y.1706.2"/> <author><organization>ITU-T Recommendation G.7715.2 (2007)</organization> </author> <date/> </front> </reference> &RFC6952; &RFC7334; &RFC7420; &RFC7525; &RFC7752; &RFC7897; &RFC8253; &RFC8453; <reference anchor="PCEP-YANG"><front> <title>A YANG Data Model for Path Computation Element Communications Protocol (PCEP)</title> <author fullname="D. Dhody" initials="D." surname="Dhody"> </author> <author fullname="J. Hardwick" initials="J." surname="Hardwick"> </author> <author fullname="V. Beeram" initials="V." surname="Beeram"> </author> <author fullname="J. Tantsura" initials="J." surname="Tantsura"><organization>ITU-T</organization> </author> <datemonth="October" year="2018"/>month="February" year="2007"/> </front><seriesInfo name="work" value="in progress"/></reference> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6952.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7334.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7420.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7525.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7752.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7897.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8253.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8453.xml"/> <!-- draft-ietf-pce-pcep-yang-13: I-D exists --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-pce-pcep-yang.xml"/> </references> </references> <sectiontitle="Contributors" anchor="sect-17"><figure><artwork><![CDATA[ Dhruv Dhody Huawei Technologies Divyashreeanchor="acks" numbered="false" toc="default"> <name>Acknowledgements</name> <t> The author would like to thank <contact fullname="Adrian Farrel"/> for his review and <contact fullname="Meral Shirazipour"/> and <contact fullname="Francisco Javier Jiménez Chico" /> for their comments.</t> </section> <section anchor="contributors" numbered="false" toc="default"> <name>Contributors</name> <contact fullname="Dhruv Dhody" > <organization>Huawei Technologies</organization> <address> <postal> <street>Divyashree Techno Park,Whitefield Bangalore, Karnataka 560066 India Email: dhruv.ietf@gmail.com Quintin Zhao Huawei Technology 125Whitefield</street> <city>Bangalore</city> <region>Karnataka</region><code>560066</code> <country>India</country> </postal> <email>dhruv.ietf@gmail.com</email> </address> </contact> <contact fullname="Quintin Zhao"> <organization>Huawei Technologies</organization> <address> <postal> <street>125 Nagog TechnologyPark Acton, MA 01719 US Email: qzhao@huawei.com Julien Meuric France Telecom 2,Park</street> <city>Acton</city> <region>MA</region><code>01719</code> <country>United States of America</country> </postal> <email>qzhao@huawei.com</email> </address> </contact> <contact fullname="Julien Meuric"> <organization>France Telecom</organization> <address> <postal> <street>2, avenuePierre-Marzin 22307 Lannion Cedex Email: julien.meuric@orange-ftgroup.com Olivier Dugeon France Telecom 2,Pierre-Marzin</street> <city>Lannion Cedex</city><code>22307</code> <country>France</country> </postal> <email>julien.meuric@orange.com</email> </address> </contact> <contact fullname="Olivier Dugeon"> <organization>France Telecom</organization> <address> <postal> <street>2, avenuePierre-Marzin 22307 Lannion Cedex Email: olivier.dugeon@orange-ftgroup.com Jon Hardwick Metaswitch Networks 100Pierre-Marzin</street> <city>Lannion Cedex</city><code>22307</code> <country>France</country> </postal> <email>olivier.dugeon@orange.com</email> </address> </contact> <contact fullname="Jon Hardwick" > <organization>Metaswitch Networks</organization> <address> <postal> <street>100 ChurchStreet Enfield, Middlesex United Kingdom Email: jonathan.hardwick@metaswitch.com Oscar GonzalezStreet</street> <city>Enfield</city> <code>EN2 6BQ</code> <country>United Kingdom</country> </postal> <email>jonathan.hardwick@metaswitch.com</email> </address> </contact> <contact fullname="Óscar González deDios Telefonica I+D EmilioDios"> <organization>Telefonica I+D</organization> <address> <postal> <street>Emilio Vargas6, Madrid Spain Email: ogondio@tid.es ]]></artwork> </figure>6</street> <city>Madrid</city> <country>Spain</country> </postal> <email>oscar.gonzalezdedios@telefonica.com</email> </address> </contact> </section><section title="Author's Addresses" anchor="sect-18"/></back> </rfc>