
RFC 8696
Using Pre-Shared Key (PSK) in the Cryptographic
Message Syntax (CMS)

Abstract
The invention of a large-scale quantum computer would pose a serious challenge for the
cryptographic algorithms that are widely deployed today. The Cryptographic Message Syntax
(CMS) supports key transport and key agreement algorithms that could be broken by the
invention of such a quantum computer. By storing communications that are protected with the
CMS today, someone could decrypt them in the future when a large-scale quantum computer
becomes available. Once quantum-secure key management algorithms are available, the CMS
will be extended to support the new algorithms if the existing syntax does not accommodate
them. This document describes a mechanism to protect today's communication from the future
invention of a large-scale quantum computer by mixing the output of key transport and key
agreement algorithms with a pre-shared key.

Stream: Internet Engineering Task Force (IETF)
RFC: 8696
Category: Standards Track
Published: December 2019
ISSN: 2070-1721
Author: R. Housley

Vigil Security

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8696

Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights
reserved.

Housley Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8696
https://www.rfc-editor.org/info/rfc8696

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 2

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

1.2. ASN.1

1.3. Version Numbers

2. Overview

3. keyTransPSK

4. keyAgreePSK

5. Key Derivation

6. ASN.1 Module

7. Security Considerations

8. Privacy Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Key Transport with PSK Example

A.1. Originator Processing Example

A.2. ContentInfo and AuthEnvelopedData

A.3. Recipient Processing Example

Appendix B. Key Agreement with PSK Example

B.1. Originator Processing Example

B.2. ContentInfo and AuthEnvelopedData

B.3. Recipient Processing Example

Acknowledgements

Author's Address

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 3

1. Introduction
The invention of a large-scale quantum computer would pose a serious challenge for the
cryptographic algorithms that are widely deployed today . It is an open question whether
or not it is feasible to build a large-scale quantum computer and, if so, when that might happen

. However, if such a quantum computer is invented, many of the cryptographic
algorithms and the security protocols that use them would become vulnerable.

The Cryptographic Message Syntax (CMS) supports key transport and key
agreement algorithms that could be broken by the invention of a large-scale quantum computer

. These algorithms include RSA , Diffie-Hellman , and Elliptic Curve
Diffie-Hellman (ECDH) . As a result, an adversary that stores CMS-protected
communications today could decrypt those communications in the future when a large-scale
quantum computer becomes available.

Once quantum-secure key management algorithms are available, the CMS will be extended to
support them if the existing syntax does not already accommodate the new algorithms.

In the near term, this document describes a mechanism to protect today's communication from
the future invention of a large-scale quantum computer by mixing the output of existing key
transport and key agreement algorithms with a pre-shared key (PSK). Secure communication can
be achieved today by mixing a strong PSK with the output of an existing key transport algorithm,
like RSA , or an existing key agreement algorithm, like Diffie-Hellman or
Elliptic Curve Diffie-Hellman (ECDH) . A security solution that is believed to be
quantum resistant can be achieved by using a PSK with sufficient entropy along with a quantum-
resistant key derivation function (KDF), like an HMAC-based key derivation function (HKDF)

, and a quantum-resistant encryption algorithm, like 256-bit AES . In this way,
today's CMS-protected communication can be resistant to an attacker with a large-scale quantum
computer.

In addition, there may be other reasons for including a strong PSK besides protection against the
future invention of a large-scale quantum computer. For example, there is always the possibility
of a cryptoanalytic breakthrough on one or more classic public key algorithms, and there are
longstanding concerns about undisclosed trapdoors in Diffie-Hellman parameters .
Inclusion of a strong PSK as part of the overall key management offers additional protection
against these concerns.

Note that the CMS also supports key management techniques based on symmetric key-encryption
keys and passwords, but they are not discussed in this document because they are already
quantum resistant. The symmetric key-encryption key technique is quantum resistant when used
with an adequate key size. The password technique is quantum resistant when used with a
quantum-resistant key derivation function and a sufficiently large password.

[S1994]

[NAS2019]

[RFC5652][RFC5083]

[C2PQ] [RFC8017] [RFC2631]
[RFC5753]

[RFC8017] [RFC2631]
[RFC5753]

[RFC5869] [AES]

[FGHT2016]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 4

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. ASN.1
CMS values are generated using ASN.1 , which uses the Basic Encoding Rules (BER) and the
Distinguished Encoding Rules (DER) .

[X680]
[X690]

1.3. Version Numbers
The major data structures include a version number as the first item in the data structure. The
version number is intended to avoid ASN.1 decode errors. Some implementations do not check
the version number prior to attempting a decode; then, if a decode error occurs, the version
number is checked as part of the error-handling routine. This is a reasonable approach; it places
error processing outside of the fast path. This approach is also forgiving when an incorrect
version number is used by the sender.

Whenever the structure is updated, a higher version number will be assigned. However, to
ensure maximum interoperability, the higher version number is only used when the new syntax
feature is employed. That is, the lowest version number that supports the generated syntax is
used.

2. Overview
The CMS enveloped-data content type and the CMS authenticated-enveloped-data
content type support both key transport and key agreement public key algorithms to
establish the key used to encrypt the content. No restrictions are imposed on the key transport or
key agreement public key algorithms, which means that any key transport or key agreement
algorithm can be used, including algorithms that are specified in the future. In both cases, the
sender randomly generates the content-encryption key, and then all recipients obtain that key.
All recipients use the sender-generated symmetric content-encryption key for decryption.

This specification defines two quantum-resistant ways to establish a symmetric key-encryption
key, which is used to encrypt the sender-generated content-encryption key. In both cases, the PSK
is used as one of the inputs to a key-derivation function to create a quantum-resistant key-
encryption key. The PSK be distributed to the sender and all of the recipients by some out-
of-band means that does not make it vulnerable to the future invention of a large-scale quantum
computer, and an identifier be assigned to the PSK. It is best if each PSK has a unique
identifier; however, if a recipient has more than one PSK with the same identifier, the recipient
can try each of them in turn. A PSK is expected to be used with many messages, with a lifetime of
weeks or months.

[RFC5652]
[RFC5083]

MUST

MUST

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 5

The content-encryption key or content-authenticated-encryption key is quantum resistant, and
the sender establishes it using these steps:

When using a key transport algorithm:

1. The content-encryption key or the content-authenticated-encryption key, called "CEK", is
generated at random.

2. The key-derivation key, called "KDK", is generated at random.
3. For each recipient, the KDK is encrypted in the recipient's public key, then the KDF is used to

mix the PSK and the KDK to produce the key-encryption key, called "KEK".
4. The KEK is used to encrypt the CEK.

When using a key agreement algorithm:

1. The content-encryption key or the content-authenticated-encryption key, called "CEK", is
generated at random.

2. For each recipient, a pairwise key-encryption key, called "KEK1", is established using the
recipient's public key and the sender's private key. Note that KEK1 will be used as a key-
derivation key.

3. For each recipient, the KDF is used to mix the PSK and the pairwise KEK1, and the result is
called "KEK2".

4. For each recipient, the pairwise KEK2 is used to encrypt the CEK.

As specified in , recipient information for additional key management
techniques is represented in the OtherRecipientInfo type. Two key management techniques are
specified in this document, and they are each identified by a unique ASN.1 object identifier.

The first key management technique, called "keyTransPSK" (see Section 3), uses a key transport
algorithm to transfer the key-derivation key from the sender to the recipient, and then the key-
derivation key is mixed with the PSK using a KDF. The output of the KDF is the key-encryption
key, which is used for the encryption of the content-encryption key or content-authenticated-
encryption key.

The second key management technique, called "keyAgreePSK" (see Section 4), uses a key
agreement algorithm to establish a pairwise key-encryption key. This pairwise key-encryption
key is then mixed with the PSK using a KDF to produce a second pairwise key-encryption key,
which is then used to encrypt the content-encryption key or content-authenticated-encryption
key.

Section 6.2.5 of [RFC5652]

3. keyTransPSK
Per-recipient information using keyTransPSK is represented in the KeyTransPSKRecipientInfo
type, which is indicated by the id-ori-keyTransPSK object identifier. Each instance of
KeyTransPSKRecipientInfo establishes the content-encryption key or content-authenticated-
encryption key for one or more recipients that have access to the same PSK.

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc5652#section-6.2.5

The id-ori-keyTransPSK object identifier is:

The KeyTransPSKRecipientInfo type is:

The fields of the KeyTransPSKRecipientInfo type have the following meanings:

• version is the syntax version number. The version be 0. The CMSVersion type is
described in .

• pskid is the identifier of the PSK used by the sender. The identifier is an OCTET STRING, and
it need not be human readable.

• kdfAlgorithm identifies the key-derivation algorithm and any associated parameters used by
the sender to mix the key-derivation key and the PSK to generate the key-encryption key. The
KeyDerivationAlgorithmIdentifier is described in .

• keyEncryptionAlgorithm identifies a key-encryption algorithm used to encrypt the content-
encryption key. The KeyEncryptionAlgorithmIdentifier is described in

.
• ktris contains one KeyTransRecipientInfo type for each recipient; it uses a key transport

algorithm to establish the key-derivation key. That is, the encryptedKey field of
KeyTransRecipientInfo contains the key-derivation key instead of the content-encryption key.
KeyTransRecipientInfo is described in .

• encryptedKey is the result of encrypting the content-encryption key or the content-
authenticated-encryption key with the key-encryption key. EncryptedKey is an OCTET
STRING.

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-keyTransPSK OBJECT IDENTIFIER ::= { id-ori 1 }

 KeyTransPSKRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 pskid PreSharedKeyIdentifier,
 kdfAlgorithm KeyDerivationAlgorithmIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 ktris KeyTransRecipientInfos,
 encryptedKey EncryptedKey }

 PreSharedKeyIdentifier ::= OCTET STRING

 KeyTransRecipientInfos ::= SEQUENCE OF KeyTransRecipientInfo

MUST
Section 10.2.5 of [RFC5652]

Section 10.1.6 of [RFC5652]

Section 10.1.3 of
[RFC5652]

Section 6.2.1 of [RFC5652]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc5652#section-10.2.5
https://www.rfc-editor.org/rfc/rfc5652#section-10.1.6
https://www.rfc-editor.org/rfc/rfc5652#section-10.1.3
https://www.rfc-editor.org/rfc/rfc5652#section-6.2.1

4. keyAgreePSK
Per-recipient information using keyAgreePSK is represented in the KeyAgreePSKRecipientInfo
type, which is indicated by the id-ori-keyAgreePSK object identifier. Each instance of
KeyAgreePSKRecipientInfo establishes the content-encryption key or content-authenticated-
encryption key for one or more recipients that have access to the same PSK.

The id-ori-keyAgreePSK object identifier is:

The fields of the KeyAgreePSKRecipientInfo type have the following meanings:

• version is the syntax version number. The version be 0. The CMSVersion type is
described in .

• pskid is the identifier of the PSK used by the sender. The identifier is an OCTET STRING, and
it need not be human readable.

• originator is a CHOICE with three alternatives specifying the sender's key agreement public
key. Implementations support all three alternatives for specifying the sender's public
key. The sender uses their own private key and the recipient's public key to generate a
pairwise key-encryption key. A KDF is used to mix the PSK and the pairwise key-encryption
key to produce a second key-encryption key. The OriginatorIdentifierOrKey type is described
in .

• ukm is optional. With some key agreement algorithms, the sender provides a User Keying
Material (UKM) to ensure that a different key is generated each time the same two parties
generate a pairwise key. Implementations accept a KeyAgreePSKRecipientInfo
SEQUENCE that includes a ukm field. Implementations that do not support key agreement
algorithms that make use of UKMs gracefully handle the presence of UKMs. The
UserKeyingMaterial type is described in .

• kdfAlgorithm identifies the key-derivation algorithm and any associated parameters used by
the sender to mix the pairwise key-encryption key and the PSK to produce a second key-
encryption key of the same length as the first one. The KeyDerivationAlgorithmIdentifier is
described in .

• keyEncryptionAlgorithm identifies a key-encryption algorithm used to encrypt the content-
encryption key or the content-authenticated-encryption key. The
KeyEncryptionAlgorithmIdentifier type is described in .

 id-ori-keyAgreePSK OBJECT IDENTIFIER ::= { id-ori 2 }
The KeyAgreePSKRecipientInfo type is:

 KeyAgreePSKRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 pskid PreSharedKeyIdentifier,
 originator [0] EXPLICIT OriginatorIdentifierOrKey,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 kdfAlgorithm KeyDerivationAlgorithmIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys }

MUST
Section 10.2.5 of [RFC5652]

MUST

Section 6.2.2 of [RFC5652]

MUST

MUST
Section 10.2.6 of [RFC5652]

Section 10.1.6 of [RFC5652]

Section 10.1.3 of [RFC5652]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc5652#section-10.2.5
https://www.rfc-editor.org/rfc/rfc5652#section-6.2.2
https://www.rfc-editor.org/rfc/rfc5652#section-10.2.6
https://www.rfc-editor.org/rfc/rfc5652#section-10.1.6
https://www.rfc-editor.org/rfc/rfc5652#section-10.1.3

• recipientEncryptedKeys includes a recipient identifier and encrypted key for one or more
recipients. The KeyAgreeRecipientIdentifier is a CHOICE with two alternatives specifying the
recipient's certificate, and thereby the recipient's public key, that was used by the sender to
generate a pairwise key-encryption key. The encryptedKey is the result of encrypting the
content-encryption key or the content-authenticated-encryption key with the second
pairwise key-encryption key. EncryptedKey is an OCTET STRING. The
RecipientEncryptedKeys type is defined in . Section 6.2.2 of [RFC5652]

5. Key Derivation
Many KDFs internally employ a one-way hash function. When this is the case, the hash function
that is used is indirectly indicated by the KeyDerivationAlgorithmIdentifier. HKDF is
one example of a KDF that makes use of a hash function.

Other KDFs internally employ an encryption algorithm. When this is the case, the encryption that
is used is indirectly indicated by the KeyDerivationAlgorithmIdentifier. For example, AES-128-
CMAC can be used for randomness extraction in a KDF as described in .

A KDF has several input values. This section describes the conventions for using the KDF to
compute the key-encryption key for KeyTransPSKRecipientInfo and KeyAgreePSKRecipientInfo.
For simplicity, the terminology used in the HKDF specification is used here.

The KDF inputs are:

• IKM is the input keying material; it is the symmetric secret input to the KDF. For
KeyTransPSKRecipientInfo, it is the key-derivation key. For KeyAgreePSKRecipientInfo, it is
the pairwise key-encryption key produced by the key agreement algorithm.

• salt is an optional non-secret random value. Many KDFs do not require a salt, and the
KeyDerivationAlgorithmIdentifier assignments for HKDF do not offer a parameter
for a salt. If a particular KDF requires a salt, then the salt value is provided as a parameter of
the KeyDerivationAlgorithmIdentifier.

• L is the length of output keying material in octets; the value depends on the key-encryption
algorithm that will be used. The algorithm is identified by the
KeyEncryptionAlgorithmIdentifier. In addition, the OBJECT IDENTIFIER portion of the
KeyEncryptionAlgorithmIdentifier is included in the next input value, called "info".

• info is optional context and application specific information. The DER encoding of
CMSORIforPSKOtherInfo is used as the info value, and the PSK is included in this structure.
Note that EXPLICIT tagging is used in the ASN.1 module that defines this structure. For
KeyTransPSKRecipientInfo, the ENUMERATED value of 5 is used. For
KeyAgreePSKRecipientInfo, the ENUMERATED value of 10 is used. CMSORIforPSKOtherInfo is
defined by the following ASN.1 structure:

[RFC5869]

[NIST2018]

[RFC5869]

[RFC8619]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc5652#section-6.2.2

The fields of type CMSORIforPSKOtherInfo have the following meanings:

• psk is an OCTET STRING; it contains the PSK.
• keyMgmtAlgType is either set to 5 or 10. For KeyTransPSKRecipientInfo, the ENUMERATED

value of 5 is used. For KeyAgreePSKRecipientInfo, the ENUMERATED value of 10 is used.
• keyEncryptionAlgorithm is the KeyEncryptionAlgorithmIdentifier, which identifies the

algorithm and provides algorithm parameters, if any.
• pskLength is a positive integer; it contains the length of the PSK in octets.
• kdkLength is a positive integer; it contains the length of the key-derivation key in octets. For

KeyTransPSKRecipientInfo, the key-derivation key is generated by the sender. For
KeyAgreePSKRecipientInfo, the key-derivation key is the pairwise key-encryption key
produced by the key agreement algorithm.

The KDF output is:

• OKM is the output keying material, which is exactly L octets. The OKM is the key-encryption
key that is used to encrypt the content-encryption key or the content-authenticated-
encryption key.

An acceptable KDF accept IKM, L, and info inputs; an acceptable KDF also accept salt
and other inputs. All of these inputs influence the output of the KDF. If the KDF requires a
salt or other inputs, then those inputs be provided as parameters of the
KeyDerivationAlgorithmIdentifier.

 CMSORIforPSKOtherInfo ::= SEQUENCE {
 psk OCTET STRING,
 keyMgmtAlgType ENUMERATED {
 keyTrans (5),
 keyAgree (10) },
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 pskLength INTEGER (1..MAX),
 kdkLength INTEGER (1..MAX) }

MUST MAY
MUST

MUST

6. ASN.1 Module
This section contains the ASN.1 module for the two key management techniques defined in this
document. This module imports types from other ASN.1 modules that are defined in
and .

[RFC5912]
[RFC6268]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 10

<CODE BEGINS>

CMSORIforPSK-2019
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-ori-psk-2019(69) }

DEFINITIONS EXPLICIT TAGS ::=
BEGIN

-- EXPORTS All

IMPORTS

AlgorithmIdentifier{}, KEY-DERIVATION
 FROM AlgorithmInformation-2009 -- [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

OTHER-RECIPIENT, OtherRecipientInfo, CMSVersion,
KeyTransRecipientInfo, OriginatorIdentifierOrKey,
UserKeyingMaterial, RecipientEncryptedKeys, EncryptedKey,
KeyDerivationAlgorithmIdentifier, KeyEncryptionAlgorithmIdentifier
 FROM CryptographicMessageSyntax-2010 -- [RFC6268]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-2009(58) } ;
--
-- OtherRecipientInfo Types (ori-)
--

SupportedOtherRecipInfo OTHER-RECIPIENT ::= {
 ori-keyTransPSK |
 ori-keyAgreePSK,
 ... }

--
-- Key Transport with Pre-Shared Key
--

ori-keyTransPSK OTHER-RECIPIENT ::= {
 KeyTransPSKRecipientInfo IDENTIFIED BY id-ori-keyTransPSK }

id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

id-ori-keyTransPSK OBJECT IDENTIFIER ::= { id-ori 1 }

KeyTransPSKRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 pskid PreSharedKeyIdentifier,
 kdfAlgorithm KeyDerivationAlgorithmIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 ktris KeyTransRecipientInfos,
 encryptedKey EncryptedKey }

PreSharedKeyIdentifier ::= OCTET STRING

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 11

KeyTransRecipientInfos ::= SEQUENCE OF KeyTransRecipientInfo

--
-- Key Agreement with Pre-Shared Key
--

ori-keyAgreePSK OTHER-RECIPIENT ::= {
 KeyAgreePSKRecipientInfo IDENTIFIED BY id-ori-keyAgreePSK }

id-ori-keyAgreePSK OBJECT IDENTIFIER ::= { id-ori 2 }
KeyAgreePSKRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 pskid PreSharedKeyIdentifier,
 originator [0] EXPLICIT OriginatorIdentifierOrKey,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 kdfAlgorithm KeyDerivationAlgorithmIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys }

--
-- Structure to provide 'info' input to the KDF,
-- including the Pre-Shared Key
--

CMSORIforPSKOtherInfo ::= SEQUENCE {
 psk OCTET STRING,
 keyMgmtAlgType ENUMERATED {
 keyTrans (5),
 keyAgree (10) },
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 pskLength INTEGER (1..MAX),
 kdkLength INTEGER (1..MAX) }

END
<CODE ENDS>

7. Security Considerations
The security considerations related to the CMS enveloped-data content type in and the
security considerations related to the CMS authenticated-enveloped-data content type in

 continue to apply.

Implementations of the key derivation function must compute the entire result, which, in this
specification, is a key-encryption key, before outputting any portion of the result. The resulting
key-encryption key must be protected. Compromise of the key-encryption key may result in the
disclosure of all content-encryption keys or content-authenticated-encryption keys that were
protected with that keying material; this, in turn, may result in the disclosure of the content. Note
that there are two key-encryption keys when a PSK with a key agreement algorithm is used, with
similar consequences for the compromise of either one of these keys.

[RFC5652]

[RFC5083]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 12

Implementations must protect the PSK, key transport private key, agreement private key, and
key-derivation key. Compromise of the PSK will make the encrypted content vulnerable to the
future invention of a large-scale quantum computer. Compromise of the PSK and either the key
transport private key or the agreement private key may result in the disclosure of all contents
protected with that combination of keying material. Compromise of the PSK and the key-
derivation key may result in the disclosure of all contents protected with that combination of
keying material.

A large-scale quantum computer will essentially negate the security provided by the key
transport algorithm or the key agreement algorithm, which means that the attacker with a large-
scale quantum computer can discover the key-derivation key. In addition, a large-scale quantum
computer effectively cuts the security provided by a symmetric key algorithm in half. Therefore,
the PSK needs at least 256 bits of entropy to provide 128 bits of security. To match that same level
of security, the key derivation function needs to be quantum resistant and produce a key-
encryption key that is at least 256 bits in length. Similarly, the content-encryption key or content-
authenticated-encryption key needs to be at least 256 bits in length.

When using a PSK with a key transport or a key agreement algorithm, a key-encryption key is
produced to encrypt the content-encryption key or content-authenticated-encryption key. If the
key-encryption algorithm is different than the algorithm used to protect the content, then the
effective security is determined by the weaker of the two algorithms. If, for example, content is
encrypted with 256-bit AES and the key is wrapped with 128-bit AES, then, at most, 128 bits of
protection are provided. Implementers must ensure that the key-encryption algorithm is as
strong or stronger than the content-encryption algorithm or content-authenticated-encryption
algorithm.

The selection of the key-derivation function imposes an upper bound on the strength of the
resulting key-encryption key. The strength of the selected key-derivation function should be at
least as strong as the key-encryption algorithm that is selected. NIST SP 800-56C Revision 1

 offers advice on the security strength of several popular key-derivation functions.

Implementers should not mix quantum-resistant key management algorithms with their non-
quantum-resistant counterparts. For example, the same content should not be protected with
KeyTransRecipientInfo and KeyTransPSKRecipientInfo. Likewise, the same content should not be
protected with KeyAgreeRecipientInfo and KeyAgreePSKRecipientInfo. Doing so would make the
content vulnerable to the future invention of a large-scale quantum computer.

Implementers should not send the same content in different messages, one using a quantum-
resistant key management algorithm and the other using a non-quantum-resistant key
management algorithm, even if the content-encryption key is generated independently. Doing so
may allow an eavesdropper to correlate the messages, making the content vulnerable to the
future invention of a large-scale quantum computer.

This specification does not require that PSK be known only by the sender and recipients. The PSK
may be known to a group. Since confidentiality depends on the key transport or key agreement
algorithm, knowledge of the PSK by other parties does not inherently enable eavesdropping.
However, group members can record the traffic of other members and then decrypt it if they

[NIST2018]

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 13

ever gain access to a large-scale quantum computer. Also, when many parties know the PSK,
there are many opportunities for theft of the PSK by an attacker. Once an attacker has the PSK,
they can decrypt stored traffic if they ever gain access to a large-scale quantum computer in the
same manner as a legitimate group member.

Sound cryptographic key hygiene is to use a key for one and only one purpose. Use of the
recipient's public key for both the traditional CMS and the PSK-mixing variation specified in this
document would be a violation of this principle; however, there is no known way for an attacker
to take advantage of this situation. That said, an application should enforce separation whenever
possible. For example, a purpose identifier for use in the X.509 extended key usage certificate
extension could be identified in the future to indicate that a public key should only be
used in conjunction with or without a PSK.

Implementations must randomly generate key-derivation keys as well as content-encryption keys
or content-authenticated-encryption keys. Also, the generation of public/private key pairs for the
key transport and key agreement algorithms rely on random numbers. The use of inadequate
pseudorandom number generators (PRNGs) to generate cryptographic keys can result in little or
no security. An attacker may find it much easier to reproduce the PRNG environment that
produced the keys, searching the resulting small set of possibilities, rather than brute-force
searching the whole key space. The generation of quality random numbers is difficult.
offers important guidance in this area.

Implementers should be aware that cryptographic algorithms become weaker with time. As new
cryptanalysis techniques are developed and computing performance improves, the work factor
to break a particular cryptographic algorithm will be reduced. Therefore, cryptographic
algorithm implementations should be modular, allowing new algorithms to be readily inserted.
That is, implementers should be prepared for the set of supported algorithms to change over
time.

The security properties provided by the mechanisms specified in this document can be validated
using formal methods. A ProVerif proof in shows that an attacker with a large-scale
quantum computer that is capable of breaking the Diffie-Hellman key agreement algorithm
cannot disrupt the delivery of the content-encryption key to the recipient and that the attacker
cannot learn the content-encryption key from the protocol exchange.

[RFC5280]

[RFC4086]

[H2019]

8. Privacy Considerations
An observer can see which parties are using each PSK simply by watching the PSK key
identifiers. However, the addition of these key identifiers does not really weaken the privacy
situation. When key transport is used, the RecipientIdentifier is always present, and it clearly
identifies each recipient to an observer. When key agreement is used, either the
IssuerAndSerialNumber or the RecipientKeyIdentifier is always present, and these clearly
identify each recipient.

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 14

[RFC2119]

[RFC5083]

10. References

10.1. Normative References

, , ,
, , March 1997,
.

,
, , , November 2007,

.

9. IANA Considerations
One object identifier for the ASN.1 module in Section 6 was assigned in the "SMI Security for S/
MIME Module Identifier (1.2.840.113549.1.9.16.0)" registry :

One new entry has been added in the "SMI Security for S/MIME Mail Security
(1.2.840.113549.1.9.16)" registry :

A new registry titled "SMI Security for S/MIME Other Recipient Info Identifiers
(1.2.840.113549.1.9.16.13)" has been created.

Updates to the new registry are to be made according to the Specification Required policy as
defined in . The expert is expected to ensure that any new values identify additional
RecipientInfo structures for use with the CMS. Object identifiers for other purposes should not be
assigned in this arc.

Two assignments were made in the new "SMI Security for S/MIME Other Recipient Info
Identifiers (1.2.840.113549.1.9.16.13)" registry with references to this document:

[IANA]

 id-mod-cms-ori-psk-2019 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) mod(0) 69 }

[IANA]

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

[RFC8126]

[IANA]

 id-ori-keyTransPSK OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) id-ori(13) 1 }

 id-ori-keyAgreePSK OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) id-ori(13) 2 }

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Housley, R. "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-
Data Content Type" RFC 5083 DOI 10.17487/RFC5083 <https://
www.rfc-editor.org/info/rfc5083>

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 15

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5083

[RFC5652]

[RFC5912]

[RFC6268]

[RFC8126]

[RFC8174]

[X680]

[X690]

[AES]

[C2PQ]

[FGHT2016]

[H2019]

[IANA]

[NAS2019]

, , , ,
, September 2009, .

,
, , , June 2010,

.

,
,

, , July 2011,
.

,
, , , , June

2017, .

, ,
, , , May 2017,

.

,
, , August 2015.

,

, , August 2015.

10.2. Informative References

,
, , , November 2001,

.

, ,
, , 25 November 2019,

.

,
, , October

2016, .

,
, , May 2019,

.

,
, , .

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Hoffman, P. and J. Schaad "New ASN.1 Modules for the Public Key Infrastructure
Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912 <https://
www.rfc-editor.org/info/rfc5912>

Schaad, J. and S. Turner "Additional New ASN.1 Modules for the Cryptographic
Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)"
RFC 6268 DOI 10.17487/RFC6268 <https://www.rfc-editor.org/info/
rfc6268>

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

ITU-T "Information technology -- Abstract Syntax Notation One (ASN.1):
Specification of basic notation" ITU-T Recommendation X.680

ITU-T "Information technology -- ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690

National Institute of Standards and Technology "Advanced Encryption Standard
(AES)" DOI 10.6028/NIST.FIPS.197 NIST PUB 197 <https://
doi.org/10.6028/NIST.FIPS.197>

Hoffman, P. "The Transition from Classical to Post-Quantum Cryptography"
Work in Progress Internet-Draft, draft-hoffman-c2pq-06
<https://tools.ietf.org/html/draft-hoffman-c2pq-06>

Fried, J., Gaudry, P., Heninger, N., and E. Thome "A kilobit hidden SNFS discrete
logarithm computation" Cryptology ePrint Archive Report 2016/961

<https://eprint.iacr.org/2016/961.pdf>

Hammell, J. "Subject: [lamps] WG Last Call for draft-ietf-lamps-cms-mix-with-
psk"" message to the IETF mailing list <https://mailarchive.ietf.org/
arch/msg/spasm/_6d_4jp3sOprAnbU2fp_yp_-6-k>

IANA "Structure of Management Information (SMI) Numbers (MIB Module
Registrations)" <https://www.iana.org/assignments/smi-numbers>

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 16

https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://tools.ietf.org/html/draft-hoffman-c2pq-06
https://eprint.iacr.org/2016/961.pdf
https://mailarchive.ietf.org/arch/msg/spasm/_6d_4jp3sOprAnbU2fp_yp_-6-k
https://mailarchive.ietf.org/arch/msg/spasm/_6d_4jp3sOprAnbU2fp_yp_-6-k
https://www.iana.org/assignments/smi-numbers

[NIST2018]

[RFC2631]

[RFC4086]

[RFC5280]

[RFC5753]

[RFC5869]

[RFC8017]

[RFC8619]

[S1994]

,
, , 2019,

.

,
, ,

April 2018,
.

, , ,
, June 1999, .

,
, , , , June 2005,

.

,

, , , May 2008,
.

,
, , , January

2010, .

,
, , , May 2010,

.

,
, , ,

November 2016, .

,
, , , June 2019,

.

,
,

, November 1994.

National Academies of Sciences, Engineering, and Medicine "Quantum
Computing: Progress and Prospects" DOI 10.17226/25196 <https://
doi.org/10.17226/25196>

Barker, E., Chen, L., and R. Davis "Recommendation for Key-Derivation Methods
in Key-Establishment Schemes" NIST Special Publication 800-56C Revision 1

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-56Cr1.pdf>

Rescorla, E. "Diffie-Hellman Key Agreement Method" RFC 2631 DOI 10.17487/
RFC2631 <https://www.rfc-editor.org/info/rfc2631>

Eastlake 3rd, D., Schiller, J., and S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Turner, S. and D. Brown "Use of Elliptic Curve Cryptography (ECC) Algorithms in
Cryptographic Message Syntax (CMS)" RFC 5753 DOI 10.17487/RFC5753

<https://www.rfc-editor.org/info/rfc5753>

Krawczyk, H. and P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Housley, R. "Algorithm Identifiers for the HMAC-based Extract-and-Expand Key
Derivation Function (HKDF)" RFC 8619 DOI 10.17487/RFC8619
<https://www.rfc-editor.org/info/rfc8619>

Shor, P. "Algorithms for Quantum Computation: Discrete Logarithms and
Factoring" Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pp. 124-134"

Appendix A. Key Transport with PSK Example
This example shows the establishment of an AES-256 content-encryption key using:

• a pre-shared key of 256 bits;
• key transport using RSA PKCS#1 v1.5 with a 3072-bit key;
• key derivation using HKDF with SHA-384; and
• key wrap using AES-256-KEYWRAP.

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 17

https://doi.org/10.17226/25196
https://doi.org/10.17226/25196
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf
https://www.rfc-editor.org/info/rfc2631
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5753
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8619

In real-world use, the originator would encrypt the key-derivation key in their own RSA public
key as well as the recipient's public key. This is omitted in an attempt to simplify the example.

A.1. Originator Processing Example
The pre-shared key known to Alice and Bob, in hexadecimal, is:

The identifier assigned to the pre-shared key is:

Alice obtains Bob's public key:

Bob's RSA public key has the following key identifier:

Alice randomly generates a content-encryption key:

Alice randomly generates a key-derivation key:

Alice encrypts the key-derivation key in Bob's public key:

 c244cdd11a0d1f39d9b61282770244fb0f6befb91ab7f96cb05213365cf95b15

 ptf-kmc:13614122112

 -----BEGIN PUBLIC KEY-----
 MIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIBigKCAYEA3ocW14cxncPJ47fnEjBZ
 AyfC2lqapL3ET4jvV6C7gGeVrRQxWPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JH
 Keeza+itfuhsz3yifgeEpeK8T+SusHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqq
 vS3jg/VO+OPnZbofoHOOevt8Q/roahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx
 2AHHZJevo3nmRnlgJXo6mE00E/6qkhjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0v
 SH7qUl8/vN13y4UOFkn8hM4kmZ6bJqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39a
 uLNnH3EXdXaV1tk75H3qC7zJaeGWMJyQfOE3YfEGRKn8fxubji716D8UecAxAzFy
 FL6m1JiOyV5acAiOpxN14qRYZdHnXOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fS
 whSZG7VNf+vgNWTLNYSYLI04KiMdulnvU6ds+QPz+KKtAgMBAAE=
 -----END PUBLIC KEY-----

 9eeb67c9b95a74d44d2f16396680e801b5cba49c

 c8adc30f4a3e20ac420caa76a68f5787c02ab42afea20d19672fd963a5338e83

 df85af9e3cebffde6e9b9d24263db31114d0a8e33a0d50e05eb64578ccde81eb

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 18

Alice produces a 256-bit key-encryption key with HKDF using SHA-384; the secret value is the
key-derivation key; and the 'info' is the DER-encoded CMSORIforPSKOtherInfo structure with the
following values:

The DER encoding of CMSORIforPSKOtherInfo produces 58 octets:

The HKDF output is 256 bits:

Alice uses AES-KEY-WRAP to encrypt the 256-bit content-encryption key with the key-encryption
key:

Alice encrypts the content using AES-256-GCM with the content-encryption key. The 12-octet
nonce used is:

 52693f12140c91dea2b44c0b7936f6be46de8a7bfab072bcb6ecfd56b06a9f65
 1bd4669d336aef7b449e5cd9b151893b7c7a3b8e364394840b0a5434cbf10e1b
 5670aefd074faf380665d204fb95153543346f36c2125dba6f4d23d2bc61434b
 5e36ff72b3eafe57c6cf7f74924c309f174b0b8753554b58ed33a8848d707a98
 c0c2b1ddcfd09e31fe213ca0a48dd157bd7d842e85cc76f77710d58efeaa0525
 c651bcd1410fb47534ecabaf5ab7daabed809d4b97220caf6d4929c5fb684f7b
 b8692e6e70332ff9b3f7c11d6cac51d4a35593173d48f80ca843b89789d625e7
 997ad7d674d25a2a7d165a5f39b3cb6358e937bdb02ac8a524ac93113cedd9ad
 c68263025c0bb0997d716e58d4d7b69739bf591f3e71c7678dc0df96f3df9e8a
 a5738f4f9ce21489f300e040891b20b2ab6d9051b3c2e68efa2fa9799a706878
 d5f462018c021d6669ed649f9acdf78476810198bfb8bd41ffedc585eafa957e
 ea1d3625e4bed376e7ae49718aee2f575c401a26a29941d8da5b7ee9aca36471

 0 56: SEQUENCE {
 2 32: OCTET STRING
 : C2 44 CD D1 1A 0D 1F 39 D9 B6 12 82 77 02 44 FB
 : 0F 6B EF B9 1A B7 F9 6C B0 52 13 36 5C F9 5B 15
36 1: ENUMERATED 5
39 11: SEQUENCE {
41 9: OBJECT IDENTIFIER aes256-wrap (2 16 840 1 101 3 4 1 45)
 : }
52 1: INTEGER 32
55 1: INTEGER 32
 : }

 30380420c244cdd11a0d1f39d9b61282770244fb0f6befb91ab7f96cb0521336
 5cf95b150a0105300b060960864801650304012d020120020120

 f319e9cebb35f1c6a7a9709b8760b9d0d3e30e16c5b2b69347e9f00ca540a232

 ea0947250fa66cd525595e52a69aaade88efcf1b0f108abe291060391b1cdf59
 07f36b4067e45342

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 19

The content plaintext is:

The resulting ciphertext is:

The resulting 12-octet authentication tag is:

 cafebabefacedbaddecaf888

 48656c6c6f2c20776f726c6421

 9af2d16f21547fcefed9b3ef2d

 a0e5925cc184e0172463c44c

A.2. ContentInfo and AuthEnvelopedData
Alice encodes the AuthEnvelopedData and the ContentInfo and sends the result to Bob. The
resulting structure is:

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 20

 0 650: SEQUENCE {
 4 11: OBJECT IDENTIFIER
 : authEnvelopedData (1 2 840 113549 1 9 16 1 23)
 17 633: [0] {
 21 629: SEQUENCE {
 25 1: INTEGER 0
 28 551: SET {
 32 547: [4] {
 36 11: OBJECT IDENTIFIER
 : keyTransPSK (1 2 840 113549 1 9 16 13 1)
 49 530: SEQUENCE {
 53 1: INTEGER 0
 56 19: OCTET STRING 'ptf-kmc:13614122112'
 77 13: SEQUENCE {
 79 11: OBJECT IDENTIFIER
 : hkdf-with-sha384 (1 2 840 113549 1 9 16 3 29)
 : }
 92 11: SEQUENCE {
 94 9: OBJECT IDENTIFIER
 : aes256-wrap (2 16 840 1 101 3 4 1 45)
 : }
 105 432: SEQUENCE {
 109 428: SEQUENCE {
 113 1: INTEGER 2
 116 20: [0]
 : 9E EB 67 C9 B9 5A 74 D4 4D 2F 16 39 66 80 E8 01
 : B5 CB A4 9C
 138 13: SEQUENCE {
 140 9: OBJECT IDENTIFIER
 : rsaEncryption (1 2 840 113549 1 1 1)
 151 0: NULL
 : }
 153 384: OCTET STRING
 : 52 69 3F 12 14 0C 91 DE A2 B4 4C 0B 79 36 F6 BE
 : 46 DE 8A 7B FA B0 72 BC B6 EC FD 56 B0 6A 9F 65
 : 1B D4 66 9D 33 6A EF 7B 44 9E 5C D9 B1 51 89 3B
 : 7C 7A 3B 8E 36 43 94 84 0B 0A 54 34 CB F1 0E 1B
 : 56 70 AE FD 07 4F AF 38 06 65 D2 04 FB 95 15 35
 : 43 34 6F 36 C2 12 5D BA 6F 4D 23 D2 BC 61 43 4B
 : 5E 36 FF 72 B3 EA FE 57 C6 CF 7F 74 92 4C 30 9F
 : 17 4B 0B 87 53 55 4B 58 ED 33 A8 84 8D 70 7A 98
 : C0 C2 B1 DD CF D0 9E 31 FE 21 3C A0 A4 8D D1 57
 : BD 7D 84 2E 85 CC 76 F7 77 10 D5 8E FE AA 05 25
 : C6 51 BC D1 41 0F B4 75 34 EC AB AF 5A B7 DA AB
 : ED 80 9D 4B 97 22 0C AF 6D 49 29 C5 FB 68 4F 7B
 : B8 69 2E 6E 70 33 2F F9 B3 F7 C1 1D 6C AC 51 D4
 : A3 55 93 17 3D 48 F8 0C A8 43 B8 97 89 D6 25 E7
 : 99 7A D7 D6 74 D2 5A 2A 7D 16 5A 5F 39 B3 CB 63
 : 58 E9 37 BD B0 2A C8 A5 24 AC 93 11 3C ED D9 AD
 : C6 82 63 02 5C 0B B0 99 7D 71 6E 58 D4 D7 B6 97
 : 39 BF 59 1F 3E 71 C7 67 8D C0 DF 96 F3 DF 9E 8A
 : A5 73 8F 4F 9C E2 14 89 F3 00 E0 40 89 1B 20 B2
 : AB 6D 90 51 B3 C2 E6 8E FA 2F A9 79 9A 70 68 78
 : D5 F4 62 01 8C 02 1D 66 69 ED 64 9F 9A CD F7 84
 : 76 81 01 98 BF B8 BD 41 FF ED C5 85 EA FA 95 7E
 : EA 1D 36 25 E4 BE D3 76 E7 AE 49 71 8A EE 2F 57
 : 5C 40 1A 26 A2 99 41 D8 DA 5B 7E E9 AC A3 64 71

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 21

 : }
 : }
 541 40: OCTET STRING
 : EA 09 47 25 0F A6 6C D5 25 59 5E 52 A6 9A AA DE
 : 88 EF CF 1B 0F 10 8A BE 29 10 60 39 1B 1C DF 59
 : 07 F3 6B 40 67 E4 53 42
 : }
 : }
 : }
 583 55: SEQUENCE {
 585 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
 596 27: SEQUENCE {
 598 9: OBJECT IDENTIFIER
 : aes256-GCM (2 16 840 1 101 3 4 1 46)
 609 14: SEQUENCE {
 611 12: OCTET STRING
 : CA FE BA BE FA CE DB AD DE CA F8 88
 : }
 : }
 625 13: [0]
 : 9A F2 D1 6F 21 54 7F CE FE D9 B3 EF 2D
 : }
 640 12: OCTET STRING A0 E5 92 5C C1 84 E0 17 24 63 C4 4C
 : }
 : }
 : }

A.3. Recipient Processing Example
Bob's private key is:

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 22

Bob decrypts the key-derivation key with his RSA private key:

Bob produces a 256-bit key-encryption key with HKDF using SHA-384; the secret value is the key-
derivation key; and the 'info' is the DER-encoded CMSORIforPSKOtherInfo structure with the
same values as shown in Appendix A.1. The HKDF output is 256 bits:

 -----BEGIN RSA PRIVATE KEY-----
 MIIG5AIBAAKCAYEA3ocW14cxncPJ47fnEjBZAyfC2lqapL3ET4jvV6C7gGeVrRQx
 WPDwl+cFYBBR2ej3j3/0ecDmu+XuVi2+s5JHKeeza+itfuhsz3yifgeEpeK8T+Su
 sHhn20/NBLhYKbh3kiAcCgQ56dpDrDvDcLqqvS3jg/VO+OPnZbofoHOOevt8Q/ro
 ahJe1PlIyQ4udWB8zZezJ4mLLfbOA9YVaYXx2AHHZJevo3nmRnlgJXo6mE00E/6q
 khjDHKSMdl2WG6mO9TCDZc9qY3cAJDU6Ir0vSH7qUl8/vN13y4UOFkn8hM4kmZ6b
 JqbZt5NbjHtY4uQ0VMW3RyESzhrO02mrp39auLNnH3EXdXaV1tk75H3qC7zJaeGW
 MJyQfOE3YfEGRKn8fxubji716D8UecAxAzFyFL6m1JiOyV5acAiOpxN14qRYZdHn
 XOM9DqGIGpoeY1UuD4Mo05osOqOUpBJHA9fSwhSZG7VNf+vgNWTLNYSYLI04KiMd
 ulnvU6ds+QPz+KKtAgMBAAECggGATFfkSkUjjJCjLvDk4aScpSx6+Rakf2hrdS3x
 jwqhyUfAXgTTeUQQBs1HVtHCgxQd+qlXYn3/qu8TeZVwG4NPztyi/Z5yB1wOGJEV
 3k8N/ytul6pJFFn6p48VM01bUdTrkMJbXERe6g/rr6dBQeeItCaOK7N5SIJH3Oqh
 9xYuB5tH4rquCdYLmt17Tx8CaVqU9qPY3vOdQEOwIjjMV8uQUR8rHSO9KkSj8AGs
 Lq9kcuPpvgJc2oqMRcNePS2WVh8xPFktRLLRazgLP8STHAtjT6SlJ2UzkUqfDHGK
 q/BoXxBDu6L1VDwdnIS5HXtL54ElcXWsoOyKF8/ilmhRUIUWRZFmlS1ok8IC5IgX
 UdL9rJVZFTRLyAwmcCEvRM1asbBrhyEyshSOuN5nHJi2WVJ+wSHijeKl1qeLlpMk
 HrdIYBq4Nz7/zXmiQphpAy+yQeanhP8O4O6C8e7RwKdpxe44su4Z8fEgA5yQx0u7
 8yR1EhGKydX5bhBLR5Cm1VM7rT2BAoHBAP/+e5gZLNf/ECtEBZjeiJ0VshszOoUq
 haUQPA+9Bx9pytsoKm5oQhB7QDaxAvrn8/FUW2aAkaXsaj9F+/q30AYSQtExai9J
 fdKKook3oimN8/yNRsKmhfjGOj8hd4+GjX0qoMSBCEVdT+bAjjry8wgQrqReuZnu
 oXU85dmb3jvv0uIczIKvTIeyjXE5afjQIJLmZFXsBm09BG87Ia5EFUKly96BOMJh
 /QWEzuYYXDqOFfzQtkAefXNFW21Kz4Hw2QKBwQDeiGh4lxCGTjECvG7fauMGlu+q
 DSdYyMHif6t6mx57eS16EjvOrlXKItYhIyzW8Kw0rf/CSB2j8ig1GkMLTOgrGIJ1
 0322o50FOr5oOmZPueeR4pOyAP0fgQ8DD1L3JBpY68/8MhYbsizVrR+Ar4jM0f96
 W2bF5Xj3h+fQTDMkx6VrCCQ6miRmBUzH+ZPs5n/lYOzAYrqiKOanaiHy4mjRvlsy
 mjZ6z5CG8sISqcLQ/k3Qli5pOY/v0rdBjgwAW/UCgcEAqGVYGjKdXCzuDvf9EpV4
 mpTWB6yIV2ckaPOn/tZi5BgsmEPwvZYZt0vMbu28Px7sSpkqUuBKbzJ4pcy8uC3I
 SuYiTAhMiHS4rxIBX3BYXSuDD2RD4vG1+XM0h6jVRHXHh0nOXdVfgnmigPGz3jVJ
 B8oph/jD8O2YCk4YCTDOXPEi8Rjusxzro+whvRR+kG0gsGGcKSVNCPj1fNISEte4
 gJId7O1mUAAzeDjn/VaS/PXQovEMolssPPKn9NocbKbpAoHBAJnFHJunl22W/lrr
 ppmPnIzjI30YVcYOA5vlqLKyGaAsnfYqP1WUNgfVhq2jRsrHx9cnHQI9Hu442PvI
 x+c5H30YFJ4ipE3eRRRmAUi4ghY5WgD+1hw8fqyUW7E7l5LbSbGEUVXtrkU5G64T
 UR91LEyMF8OPATdiV/KD4PWYkgaqRm3tVEuCVACDTQkqNsOOi3YPQcm270w6gxfQ
 SOEy/kdhCFexJFA8uZvmh6Cp2crczxyBilR/yCxqKOONqlFdOQKBwFbJk5eHPjJz
 AYueKMQESPGYCrwIqxgZGCxaqeVArHvKsEDx5whI6JWoFYVkFA8F0MyhukoEb/2x
 2qB5T88Dg3EbqjTiLg3qxrWJ2OxtUo8pBP2I2wbl2NOwzcbrlYhzEZ8bJyxZu5i1
 sYILC8PJ4Qzw6jS4Qpm4y1WHz8e/ElW6VyfmljZYA7f9WMntdfeQVqCVzNTvKn6f
 hg6GSpJTzp4LV3ougi9nQuWXZF2wInsXkLYpsiMbL6Fz34RwohJtYA==
 -----END RSA PRIVATE KEY-----

 df85af9e3cebffde6e9b9d24263db31114d0a8e33a0d50e05eb64578ccde81eb

 f319e9cebb35f1c6a7a9709b8760b9d0d3e30e16c5b2b69347e9f00ca540a232

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 23

Bob uses AES-KEY-WRAP to decrypt the content-encryption key with the key-encryption key; the
content-encryption key is:

Bob decrypts the content using AES-256-GCM with the content-encryption key and checks the
received authentication tag. The 12-octet nonce used is:

The 12-octet authentication tag is:

The received ciphertext content is:

The resulting plaintext content is:

 c8adc30f4a3e20ac420caa76a68f5787c02ab42afea20d19672fd963a5338e83

 cafebabefacedbaddecaf888

 a0e5925cc184e0172463c44c

 9af2d16f21547fcefed9b3ef2d

 48656c6c6f2c20776f726c6421

Appendix B. Key Agreement with PSK Example
This example shows the establishment of an AES-256 content-encryption key using:

• a pre-shared key of 256 bits;
• key agreement using ECDH on curve P-384 and X9.63 KDF with SHA-384;
• key derivation using HKDF with SHA-384; and
• key wrap using AES-256-KEYWRAP.

In real-world use, the originator would treat themselves as an additional recipient by performing
key agreement with their own static public key and the ephemeral private key generated for this
message. This is omitted in an attempt to simplify the example.

B.1. Originator Processing Example
The pre-shared key known to Alice and Bob, in hexadecimal, is:

 4aa53cbf500850dd583a5d9821605c6fa228fb5917f87c1c078660214e2d83e4

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 24

The identifier assigned to the pre-shared key is:

Alice randomly generates a content-encryption key:

Alice obtains Bob's static ECDH public key:

It has a key identifier of:

Alice generates an ephemeral ECDH key pair on the same curve:

Alice computes a shared secret called "Z" using Bob's static ECDH public key and her ephemeral
ECDH private key; Z is:

Alice computes the pairwise key-encryption key, called "KEK1", from Z using the X9.63 KDF with
the ECC-CMS-SharedInfo structure with the following values:

 ptf-kmc:216840110121

 937b1219a64d57ad81c05cc86075e86017848c824d4e85800c731c5b7b091033

 -----BEGIN PUBLIC KEY-----
 MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEScGPBO9nmUwGrgbGEoFY9HR/bCo0WyeY
 /dePQVrwZmwN2yMJmO2d1kWCvLTz8U7atinxyIRe9CV54yau1KWU/wbkhPDnzuSM
 YkcpxMGo32z3JetEloW5aFOja13vv/W5
 -----END PUBLIC KEY-----

 e8218b98b8b7d86b5e9ebdc8aeb8c4ecdc05c529

 -----BEGIN EC PRIVATE KEY-----
 MIGkAgEBBDCMiWLG44ik+L8cYVvJrQdLcFA+PwlgRF+Wt1Ab25qUh8OB7OePWjxp
 /b8P6IOuI6GgBwYFK4EEACKhZANiAAQ5G0EmJk/2ks8sXY1kzbuG3Uu3ttWwQRXA
 LFDJICjvYfr+yTpOQVkchm88FAh9MEkw4NKctokKNgpsqXyrT3DtOg76oIYENpPb
 GE5lJdjPx9sBsZQdABwlsU0Zb7P/7i8=
 -----END EC PRIVATE KEY-----

 3f015ed0ff4b99523a95157bbe77e9cc0ee52fcffeb7e41eac79d1c11b6cc556
 19cf8807e6d800c2de40240fe0e26adc

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 25

The DER encoding of ECC-CMS-SharedInfo produces 23 octets:

The X9.63 KDF output is the 256-bit KEK1:

Alice produces the 256-bit KEK2 with HKDF using SHA-384; the secret value is KEK1; and the
'info' is the DER-encoded CMSORIforPSKOtherInfo structure with the following values:

The DER encoding of CMSORIforPSKOtherInfo produces 58 octets:

The HKDF output is the 256-bit KEK2:

Alice uses AES-KEY-WRAP to encrypt the content-encryption key with the KEK2; the wrapped key
is:

 0 21: SEQUENCE {
 2 11: SEQUENCE {
 4 9: OBJECT IDENTIFIER aes256-wrap (2 16 840 1 101 3 4 1 45)
 : }
15 6: [2] {
17 4: OCTET STRING 00 00 00 20
 : }
 : }

 3015300b060960864801650304012da206040400000020

 27dc25ddb0b425f7a968ceada80a8f73c6ccaab115baafcce4a22a45d6b8f3da

 0 56: SEQUENCE {
 2 32: OCTET STRING
 : 4A A5 3C BF 50 08 50 DD 58 3A 5D 98 21 60 5C 6F
 : A2 28 FB 59 17 F8 7C 1C 07 86 60 21 4E 2D 83 E4
36 1: ENUMERATED 10
39 11: SEQUENCE {
41 9: OBJECT IDENTIFIER aes256-wrap (2 16 840 1 101 3 4 1 45)
 : }
52 1: INTEGER 32
55 1: INTEGER 32
 : }

 303804204aa53cbf500850dd583a5d9821605c6fa228fb5917f87c1c07866021
 4e2d83e40a010a300b060960864801650304012d020120020120

 7de693ee30ae22b5f8f6cd026c2164103f4e1430f1ab135dc1fb98954f9830bb

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 26

Alice encrypts the content using AES-256-GCM with the content-encryption key. The 12-octet
nonce used is:

The plaintext is:

The resulting ciphertext is:

The resulting 12-octet authentication tag is:

 229fe0b45e40003e7d8244ec1b7e7ffb2c8dca16c36f5737222553a71263a92b
 de08866a602d63f4

 dbaddecaf888cafebabeface

 48656c6c6f2c20776f726c6421

 fc6d6f823e3ed2d209d0c6ffcf

 550260c42e5b29719426c1ff

B.2. ContentInfo and AuthEnvelopedData
Alice encodes the AuthEnvelopedData and the ContentInfo and sends the result to Bob. The
resulting structure is:

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 27

 0 327: SEQUENCE {
 4 11: OBJECT IDENTIFIER
 : authEnvelopedData (1 2 840 113549 1 9 16 1 23)
 17 310: [0] {
 21 306: SEQUENCE {
 25 1: INTEGER 0
 28 229: SET {
 31 226: [4] {
 34 11: OBJECT IDENTIFIER
 : keyAgreePSK (1 2 840 113549 1 9 16 13 2)
 47 210: SEQUENCE {
 50 1: INTEGER 0
 53 20: OCTET STRING 'ptf-kmc:216840110121'
 75 85: [0] {
 77 83: [1] {
 79 19: SEQUENCE {
 81 6: OBJECT IDENTIFIER
 : ecdhX963KDF-SHA256 (1 3 132 1 11 1)
 89 9: OBJECT IDENTIFIER
 : aes256-wrap (2 16 840 1 101 3 4 1 45)
 : }
 100 60: BIT STRING, encapsulates {
 103 57: OCTET STRING
 : 1B 41 26 26 4F F6 92 CF 2C 5D 8D 64 CD BB 86 DD
 : 4B B7 B6 D5 B0 41 15 C0 2C 50 C9 20 28 EF 61 FA
 : FE C9 3A 4E 41 59 1C 86 6F 3C 14 08 7D 30 49 30
 : E0 D2 9C B6 89 0A 36 0A 6C
 : }
 : }
 : }
 162 13: SEQUENCE {
 164 11: OBJECT IDENTIFIER
 : hkdf-with-sha384 (1 2 840 113549 1 9 16 3 29)
 : }
 177 11: SEQUENCE {
 179 9: OBJECT IDENTIFIER
 : aes256-wrap (2 16 840 1 101 3 4 1 45)
 : }
 190 68: SEQUENCE {
 192 66: SEQUENCE {
 194 22: [0] {
 196 20: OCTET STRING
 : E8 21 8B 98 B8 B7 D8 6B 5E 9E BD C8 AE B8 C4 EC
 : DC 05 C5 29
 : }
 218 40: OCTET STRING
 : 22 9F E0 B4 5E 40 00 3E 7D 82 44 EC 1B 7E 7F FB
 : 2C 8D CA 16 C3 6F 57 37 22 25 53 A7 12 63 A9 2B
 : DE 08 86 6A 60 2D 63 F4
 : }
 : }
 : }
 : }
 : }
 260 55: SEQUENCE {
 262 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
 273 27: SEQUENCE {

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 28

 275 9: OBJECT IDENTIFIER
 : aes256-GCM (2 16 840 1 101 3 4 1 46)
 286 14: SEQUENCE {
 288 12: OCTET STRING
 : DB AD DE CA F8 88 CA FE BA BE FA CE
 : }
 : }
 302 13: [0]
 : FC 6D 6F 82 3E 3E D2 D2 09 D0 C6 FF CF
 : }
 317 12: OCTET STRING 55 02 60 C4 2E 5B 29 71 94 26 C1 FF
 : }
 : }
 : }

B.3. Recipient Processing Example
Bob obtains Alice's ephemeral ECDH public key from the message:

Bob's static ECDH private key is:

Bob computes a shared secret called "Z" using Alice's ephemeral ECDH public key and his static
ECDH private key; Z is:

Bob computes the pairwise key-encryption key, KEK1, from Z using the X9.63 KDF with the ECC-
CMS-SharedInfo structure with the values shown in Appendix B.1. The X9.63 KDF output is the
256-bit KEK1:

 -----BEGIN PUBLIC KEY-----
 MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEORtBJiZP9pLPLF2NZM27ht1Lt7bVsEEV
 wCxQySAo72H6/sk6TkFZHIZvPBQIfTBJMODSnLaJCjYKbKl8q09w7ToO+qCGBDaT
 2xhOZSXYz8fbAbGUHQAcJbFNGW+z/+4v
 -----END PUBLIC KEY-----

 -----BEGIN EC PRIVATE KEY-----
 MIGkAgEBBDAnJ4hB+tTUN9X03/W0RsrYy+qcptlRSYkhaDIsQYPXfTU0ugjJEmRk
 NTPj4y1IRjegBwYFK4EEACKhZANiAARJwY8E72eZTAauBsYSgVj0dH9sKjRbJ5j9
 149BWvBmbA3bIwmY7Z3WRYK8tPPxTtq2KfHIhF70JXnjJq7UpZT/BuSE8OfO5Ixi
 RynEwajfbPcl60SWhbloU6NrXe+/9bk=
 -----END EC PRIVATE KEY-----

 3f015ed0ff4b99523a95157bbe77e9cc0ee52fcffeb7e41eac79d1c11b6cc556
 19cf8807e6d800c2de40240fe0e26adc

 27dc25ddb0b425f7a968ceada80a8f73c6ccaab115baafcce4a22a45d6b8f3da

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 29

Bob produces the 256-bit KEK2 with HKDF using SHA-384; the secret value is KEK1; and the 'info'
is the DER-encoded CMSORIforPSKOtherInfo structure with the values shown in Appendix B.1.
The HKDF output is the 256-bit KEK2:

Bob uses AES-KEY-WRAP to decrypt the content-encryption key with the KEK2; the content-
encryption key is:

Bob decrypts the content using AES-256-GCM with the content-encryption key and checks the
received authentication tag. The 12-octet nonce used is:

The 12-octet authentication tag is:

The received ciphertext content is:

The resulting plaintext content is:

 7de693ee30ae22b5f8f6cd026c2164103f4e1430f1ab135dc1fb98954f9830bb

 937b1219a64d57ad81c05cc86075e86017848c824d4e85800c731c5b7b091033

 dbaddecaf888cafebabeface

 550260c42e5b29719426c1ff

 fc6d6f823e3ed2d209d0c6ffcf

 48656c6c6f2c20776f726c6421

Acknowledgements
Many thanks to Roman Danyliw, Ben Kaduk, Burt Kaliski, Panos Kampanakis, Jim Schaad, Robert
Sparks, Sean Turner, and Daniel Van Geest for their review and insightful comments. They have
greatly improved the design, clarity, and implementation guidance.

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 30

Author's Address
Russ Housley
Vigil Security, LLC
516 Dranesville Road

, Herndon VA 20170
United States of America

 housley@vigilsec.com Email:

RFC 8696 Using PSK in the CMS December 2019

Housley Standards Track Page 31

mailto:housley@vigilsec.com

	RFC 8696
	Using Pre-Shared Key (PSK) in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. ASN.1
	1.3. Version Numbers

	2. Overview
	3. keyTransPSK
	4. keyAgreePSK
	5. Key Derivation
	6. ASN.1 Module
	7. Security Considerations
	8. Privacy Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Key Transport with PSK Example
	A.1. Originator Processing Example
	A.2. ContentInfo and AuthEnvelopedData
	A.3. Recipient Processing Example
	Appendix B. Key Agreement with PSK Example
	B.1. Originator Processing Example
	B.2. ContentInfo and AuthEnvelopedData
	B.3. Recipient Processing Example
	Acknowledgements
	Author's Address

