<?xmlversion="1.0" encoding="us-ascii"?> <?xml-stylesheet type='text/xsl' href='http://xml2rfc.tools.ietf.org/authoring/rfc2629.xslt' ?>version='1.0' encoding='utf-8'?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd"> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="4"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?> <?rfc inline="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?>"rfc2629-xhtml.ent"> <rfc number="8705" xmlns:xi="http://www.w3.org/2001/XInclude" category="std" consensus="true" docName="draft-ietf-oauth-mtls-17"ipr="trust200902">ipr="trust200902" obsoletes="" updates="" submissionType="IETF" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 2.32.0 --> <front> <title abbrev="OAuth Mutual TLS">OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens</title> <seriesInfo name="RFC" value="8705" /> <author fullname="Brian Campbell" initials="B." surname="Campbell"> <organization>Ping Identity</organization><address><email>brian.d.campbell@gmail.com</email></address><address> <email>brian.d.campbell@gmail.com</email> </address> </author> <author fullname="John Bradley" initials="J." surname="Bradley"> <organization>Yubico</organization> <address> <email>ve7jtb@ve7jtb.com</email> <uri>http://www.thread-safe.com/</uri> </address> </author> <author fullname="Nat Sakimura" initials="N." surname="Sakimura"> <organization>Nomura Research Institute</organization> <address> <email>n-sakimura@nri.co.jp</email> <uri>https://nat.sakimura.org/</uri> </address> </author> <author fullname="Torsten Lodderstedt" initials="T." surname="Lodderstedt"> <organization>YES.com AG</organization> <address> <email>torsten@lodderstedt.net</email> </address> </author> <date month="February" year="2020" /> <area>Security</area> <workgroup>OAuth Working Group</workgroup> <keyword>JSON Web Token</keyword> <keyword>JWT</keyword> <keyword>MTLS</keyword> <keyword>Mutual TLS</keyword> <keyword>proof-of-possession</keyword> <keyword>proof-of-possession access token</keyword> <keyword>key confirmed access token</keyword> <keyword>certificate-bound access token</keyword> <keyword>client certificate</keyword> <keyword>X.509 Client Certificate Authentication</keyword> <keyword>key confirmation</keyword> <keyword>confirmation method</keyword> <keyword>holder-of-key</keyword> <keyword>OAuth</keyword> <abstract> <t> This document describes OAuth client authentication and certificate-bound access and refresh tokens using mutual Transport Layer Security (TLS) authentication with X.509 certificates. OAuth clients are provided a mechanism for authentication to the authorization server using mutual TLS, based on either self-signed certificates or public key infrastructure (PKI). OAuth authorization servers are provided a mechanism for binding access tokens to a client's mutual-TLS certificate, and OAuth protected resources are provided a method for ensuring that such an access token presented to it was issued to the client presenting the token. </t> </abstract> </front> <middle> <section anchor="Introduction"title="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t> The OAuth 2.0 Authorization Framework <xreftarget="RFC6749"/>target="RFC6749" format="default"/> enables third-party client applications to obtain delegated access to protected resources. In the prototypical abstract OAuth flow, illustrated in <xreftarget="protocol-flow-figure"/>,target="protocol-flow-figure" format="default"/>, the client obtains an access token from an entity known as an authorization server and then uses that token when accessing protected resources, such as HTTPS APIs. </t><t><figuretitle='Abstractanchor="protocol-flow-figure"> <name>Abstract OAuth 2.0 ProtocolFlow' anchor='protocol-flow-figure'> <artwork><![CDATA[Flow</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +--------+ +---------------+ | | | | | |<--(A)-- Get an access token --->| Authorization | | | | Server | | | | | | | +---------------+ | | ^ | | | | | | | (C) | | Client | Validate the | | access token | | | | | | | | v | | +---------------+ | | | (C) | | | | | | |<--(B)-- Use the access token -->| Protected | | | | Resource | | | | | +--------+ +---------------+ ]]></artwork> </figure></t><t> The flow illustrated in <xreftarget="protocol-flow-figure"/>target="protocol-flow-figure" format="default"/> includes the following steps:<list style='format (%C)'> <t></t> <ol spacing="normal" type="(%C)" indent="5"> <li> The client makes an HTTPS<spanx style='verb'>POST</spanx><tt>POST</tt> request to the authorization server and presents a credential representing the authorization grant. For certain types of clients (those that have been issued or otherwise established a set of client credentials) the request must be authenticated. In the response, the authorization server issues an access token to the client.</t> <t></li> <li> The client includes the access token when making a request to access a protected resource.</t> <t></li> <li> The protected resource validates the access token in order to authorize the request. In some cases, such as when the token is self-contained and cryptographically secured, the validation can be done locally by the protected resource. Other cases require that the protected resource call out to the authorization server to determine the state of the token and obtainmeta-informationmetainformation about it.</t> </list> </t></li> </ol> <t> Layering on the abstract flow above, this document standardizes enhanced security options for OAuth 2.0 utilizing client-certificate-based mutual TLS. <xreftarget="mtlsca"/>target="mtlsca" format="default"/> provides options for authenticating the request instepStep (A). Step (C) is supported with semantics to express the binding of the token to the client certificate for both local and remote processing in Sections <xreftarget="x5t"/>target="x5t" format="counter"/> and <xreftarget="introspect"/>target="introspect" format="counter"/>, respectively. This ensures that, as described in <xreftarget="CertificateBoundAccessTokens"/>,target="CertificateBoundAccessTokens" format="default"/>, protected resource access instepStep (B) is only possible by the legitimate client using a certificate-bound token and holding the private key corresponding to the certificate. </t> <t> OAuth 2.0 defines a shared-secret method of client authentication but also allows fordefinitiondefining anduse ofusing additional client authentication mechanisms when interacting directly with the authorization server. This document describes an additional mechanism of client authentication utilizing mutual-TLS certificate-basedauthentication, whichauthentication that provides better security characteristics than shared secrets. While <xreftarget="RFC6749"/>target="RFC6749" format="default"/> documents client authentication for requests to the token endpoint, extensions to OAuth 2.0 (such as Introspection <xreftarget="RFC7662">Introspection</xref>,target="RFC7662" format="default"></xref>, Revocation <xreftarget="RFC7009">Revocation</xref>,target="RFC7009" format="default"></xref>, and the Backchannel Authentication Endpoint in <xreftarget="OpenID.CIBA"/>)target="OpenID.CIBA" format="default"/>) define endpoints that also utilize clientauthenticationauthentication, and themutual TLSmutual-TLS methods defined herein are applicable to those endpoints as well. </t> <t> Mutual-TLS certificate-bound access tokens ensure that only the party in possession of the private key corresponding to the certificate can utilize the token to access the associated resources. Such a constraint is sometimes referred to as key confirmation, proof-of-possession, or holder-of-key and is unlike the case of the bearer token described in <xreftarget="RFC6750"/>,target="RFC6750" format="default"/>, where any party in possession of the access token can use it to access the associated resources. Binding an access token to the client's certificate prevents the use of stolen access tokens or replay of access tokens by unauthorized parties. </t> <t> Mutual-TLS certificate-bound access tokens and mutual-TLS client authentication are distinctmechanisms, whichmechanisms that are complementary but don't necessarily need to be deployed or used together. </t> <t> Additional client metadata parameters are introduced by this document in support of certificate-bound access tokens and mutual-TLS client authentication. The authorization server can obtain client metadata via the<xref target="RFC7591">DynamicDynamic Client RegistrationProtocol</xref>,Protocol <xref target="RFC7591" format="default"></xref>, which defines mechanisms for dynamically registering OAuth 2.0 client metadata with authorization servers. Also the metadata defined byRFC7591,<xref target="RFC7591" format="default"></xref>, and registered extensions to it, imply a general data model for clients that is useful for authorization serverimplementationsimplementations, even when the Dynamic Client Registration Protocol isn't in play. Such implementations will typically have some sort of user interface available for managing client configuration. </t> <section anchor="RNC"title="Requirementsnumbered="true" toc="default"> <name>Requirements Notation andConventions">Conventions</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> <section anchor="Terminology"title="Terminology">numbered="true" toc="default"> <name>Terminology</name> <t> Throughout this document the term "mutual TLS" refers to the process whereby, in addition to the normal TLS server authentication with a certificate, a client presents its X.509 certificate and proves possession of the corresponding private key to a server when negotiating a TLS session. In contemporary versions of TLS <xreftarget="RFC8446"/>target="RFC5246" format="default"/> <xreftarget="RFC5246"/>target="RFC8446" format="default"/>, this requires that the client send the Certificate and CertificateVerify messages during the handshake and for the server to verify the CertificateVerify and Finished messages. </t> </section> </section> <section anchor="mtlsca"title="Mutualnumbered="true" toc="default"> <name>Mutual TLS for OAuth ClientAuthentication">Authentication</name> <t> This section defines, as an extension of <xreftarget="RFC6749">OAuth 2.0, Section 2.3</xref>,target="RFC6749" sectionFormat="of" section="2.3">OAuth 2.0</xref>, two distinct methods of using mutual-TLS X.509 client certificates as client credentials. The requirement of mutual TLS for client authentication is determined by the authorizationserverserver, based on policy or configuration for the given client (regardless of whether the client was dynamically registered, statically configured, or otherwise established). </t> <t> In order to utilize TLS for OAuth client authentication, the TLS connection between the client and the authorization serverMUST<bcp14>MUST</bcp14> have been established orreestablishedre-established with mutual-TLS X.509 certificate authentication(i.e.(i.e., theClientclient Certificate andCertificate VerifyCertificateVerify messages are sent during the TLSHandshake).handshake). </t> <t> For all requests to the authorization server utilizing mutual-TLS client authentication, the clientMUST<bcp14>MUST</bcp14> include the<spanx style='verb'>client_id</spanx> parameter,<tt>client_id</tt> parameter described in <xreftarget="RFC6749">OAuth 2.0, Section 2.2</xref>.target="RFC6749" sectionFormat="of" section="2.2">OAuth 2.0</xref>. The presence of the<spanx style='verb'>client_id</spanx><tt>client_id</tt> parameter enables the authorization server to easily identify the client independently from the content of the certificate. The authorization server can locate the client configuration using the client identifier and check the certificate presented in the TLSHandshakehandshake against the expected credentials for that client. The authorization serverMUST<bcp14>MUST</bcp14> enforce the binding between client andcertificatecertificate, as described in either Section <xreftarget="pki_method"/>target="pki_method" format="counter"/> or <xreftarget="self_signed_method"/>target="self_signed_method" format="counter"/> below. If no certificate ispresentedpresented, or that which is presented doesn't match that which is expected for the given<spanx style='verb'>client_id</spanx>,<tt>client_id</tt>, the authorization server returns a normal OAuth 2.0 error response per <xreftarget="RFC6749"> Section 5.2 of RFC6749</xref>target="RFC6749" sectionFormat="of" section="5.2"></xref> with the<spanx style='verb'>invalid_client</spanx><tt>invalid_client</tt> error code to indicate failed client authentication. </t> <section anchor="pki_method"title="PKInumbered="true" toc="default"> <name>PKI Mutual-TLSMethod">Method</name> <t> The PKI (public key infrastructure) method of mutual-TLS OAuth client authentication adheres to the way in which X.509 certificates are traditionally used for authentication. It relies on a validated certificate chain <xreftarget="RFC5280"/>target="RFC5280" format="default"/> and a single subject distinguished name (DN) or a single subject alternative name (SAN) to authenticate the client. Only one subject name value of any type is used for each client. The TLS handshake is utilized to validate the client's possession of the private key corresponding to the public key in the certificate and to validate the corresponding certificate chain. The client is successfully authenticated if the subject information in the certificate matches the single expected subject configured or registered for that particular client (note that a predictable treatment of DN values, such as the distinguishedNameMatch rule from <xreftarget="RFC4517"/>,target="RFC4517" format="default"/>, is needed in comparing the certificate's subject DN to the client's registered DN). Revocation checking is possible with the PKI method but if and how to check a certificate's revocation status is a deployment decision at the discretion of the authorization server. Clients can rotate their X.509 certificates without the need to modify the respective authentication data at the authorization server by obtaining a new certificate with the same subject from a trusted certificate authority (CA). </t> <section anchor="metadata_auth_value_pki"title="PKInumbered="true" toc="default"> <name>PKI Method MetadataValue">Value</name> <t> For the PKI method of mutual-TLS client authentication, this specification defines and registers the following authentication method metadata value into the "OAuth Token Endpoint Authentication Methods" registry <xreftarget="IANA.OAuth.Parameters"/>.target="IANA.OAuth.Parameters" format="default"/>. </t><t> <list style="hanging"> <t hangText="tls_client_auth"> <vspace/><dl newline="true" spacing="normal"> <dt>tls_client_auth</dt> <dd> Indicates that client authentication to the authorization server will occur with mutual TLS utilizing the PKI method of associating a certificate to a client.</t> </list> </t></dd> </dl> </section> <section anchor="client_metadata_pki"title="Clientnumbered="true" toc="default"> <name>Client RegistrationMetadata">Metadata</name> <t> In order to convey the expected subject of the certificate, the following metadata parameters are introduced for the<xref target="RFC7591">OAuthOAuth 2.0 Dynamic Client RegistrationProtocol</xref>Protocol <xref target="RFC7591" format="default"></xref> in support of the PKI method of mutual-TLS client authentication. A client using the<spanx style="verb">tls_client_auth</spanx><tt>tls_client_auth</tt> authentication methodMUST<bcp14>MUST</bcp14> use exactly one of the below metadata parameters to indicate the certificate subject value that the authorization server is to expect when authenticating the respective client.<list style="hanging"> <t hangText="tls_client_auth_subject_dn"><vspace/> An <xref target="RFC4514"/></t> <dl newline="true" spacing="normal"> <dt>tls_client_auth_subject_dn</dt> <dd> A string representation -- as defined in <xref target="RFC4514" format="default"/> -- of the expected subject distinguished name of thecertificate, whichcertificate that the OAuth client will use in mutual-TLS authentication.</t> <t hangText="tls_client_auth_san_dns"><vspace/></dd> <dt>tls_client_auth_san_dns</dt> <dd> A string containing the value of an expected dNSName SAN entry in thecertificate, whichcertificate that the OAuth client will use in mutual-TLS authentication.</t> <t hangText="tls_client_auth_san_uri"><vspace/></dd> <dt>tls_client_auth_san_uri</dt> <dd> A string containing the value of an expected uniformResourceIdentifier SAN entry in thecertificate, whichcertificate that the OAuth client will use in mutual-TLS authentication.</t> <t hangText="tls_client_auth_san_ip"><vspace/></dd> <dt>tls_client_auth_san_ip</dt> <dd> A string representation of an IP address in either dotted decimal notation (for IPv4) or colon-delimited hexadecimal (for IPv6, as defined in <xreftarget="RFC5952"/>)target="RFC5952" format="default"/>) that is expected to be present as an iPAddress SAN entry in thecertificate, whichcertificate that the OAuth client will use in mutual-TLS authentication. Persection 8 of<xreftarget="RFC5952"/>target="RFC5952" sectionFormat="of" section="8"/>, the IP address comparison of the value in this parameter and the SAN entry in the certificate is to be done in binary format.</t> <t hangText="tls_client_auth_san_email"><vspace/></dd> <dt>tls_client_auth_san_email</dt> <dd> A string containing the value of an expected rfc822Name SAN entry in thecertificate, whichcertificate that the OAuth client will use in mutual-TLS authentication.</t> </list> </t></dd> </dl> </section> </section> <section anchor="self_signed_method"title="Self-Signednumbered="true" toc="default"> <name>Self-Signed Certificate Mutual-TLSMethod">Method</name> <t> This method of mutual-TLS OAuth client authentication is intended to support client authentication using self-signed certificates. As a prerequisite, the client registers its X.509 certificates (using<spanx style="verb">jwks</spanx><tt>jwks</tt> defined in <xreftarget="RFC7591"/>)target="RFC7591" format="default"/>) or a reference to a trusted source for its X.509 certificates (using<spanx style="verb">jwks_uri</spanx><tt>jwks_uri</tt> from <xreftarget="RFC7591"/>)target="RFC7591" format="default"/>) with the authorization server. During authentication, TLS is utilized to validate the client's possession of the private key corresponding to the public key presented within the certificate in the respective TLS handshake. In contrast to the PKI method, the client's certificate chain is not validated by the server in this case. The client is successfully authenticated if the certificate that it presented during the handshake matches one of the certificates configured or registered for that particular client. The Self-Signed Certificate method allows the use of mutual TLS to authenticate clients without the need to maintain a PKI. When used in conjunction with a<spanx style="verb">jwks_uri</spanx><tt>jwks_uri</tt> for the client, it also allows the client to rotate its X.509 certificates without the need to change its respective authentication data directly with the authorization server. </t> <section anchor="metadata_auth_value_self_signed"title="Self-Signednumbered="true" toc="default"> <name>Self-Signed Method MetadataValue">Value</name> <t> For the Self-Signed Certificate method of mutual-TLS client authentication, this specification defines and registers the following authentication method metadata value into the "OAuth Token Endpoint Authentication Methods" registry <xreftarget="IANA.OAuth.Parameters"/>.target="IANA.OAuth.Parameters" format="default"/>. </t><t> <list style="hanging"> <t hangText="self_signed_tls_client_auth"> <vspace/><dl newline="true" spacing="normal"> <dt>self_signed_tls_client_auth</dt> <dd> Indicates that client authentication to the authorization server will occur using mutual TLS with the client utilizing a self-signed certificate.</t> </list> </t></dd> </dl> </section> <section anchor="client_metadata_self_signed"title="Clientnumbered="true" toc="default"> <name>Client RegistrationMetadata">Metadata</name> <t> For the Self-Signed Certificate method of binding a certificate with a client usingmutual TLSmutual-TLS client authentication, the existing<spanx style="verb">jwks_uri</spanx><tt>jwks_uri</tt> or<spanx style="verb">jwks</spanx><tt>jwks</tt> metadata parameters from <xreftarget="RFC7591"/>target="RFC7591" format="default"/> are used to convey the client's certificates via JSON Web Key (JWK) in a JWK Set(JWKS)<xreftarget="RFC7517"/>.target="RFC7517" format="default"/>. The<spanx style="verb">jwks</spanx><tt>jwks</tt> metadata parameter is a JWK Set containing the client's public keys as an array ofJWKsJWKs, while the<spanx style="verb">jwks_uri</spanx><tt>jwks_uri</tt> parameter is a URL that references a client's JWK Set. A certificate is represented with the<spanx style="verb">x5c</spanx><tt>x5c</tt> parameter of an individual JWK within the set. Note that the members of the JWK representing the public key(e.g.(e.g., "n" and "e" for RSA, "x" and "y" forEC)Elliptic Curve (EC)) are required parameters per <xreftarget="RFC7518"/>target="RFC7518" format="default"/> so will be present even though they are not utilized in this context. Also note thatthat Section 4.7 of<xreftarget="RFC7517"/>target="RFC7517" sectionFormat="of" section="4.7"/> requires that the key in the first certificate of the<spanx style="verb">x5c</spanx><tt>x5c</tt> parameter match the public key represented by those other members of the JWK. </t> </section> </section> </section> <section anchor="CertificateBoundAccessTokens"title="Mutual-TLSnumbered="true" toc="default"> <name>Mutual-TLS Client Certificate-Bound AccessTokens">Tokens</name> <t> When mutual TLS is used by the client on the connection to the token endpoint, the authorization server is able to bind the issued access token to the client certificate. Such a binding is accomplished by associating the certificate with the token in a way that can be accessed by the protected resource, such as embedding the certificate hash in the issued access token directly, using the syntax described in <xreftarget="x5t"/>,target="x5t" format="default"/>, or through token introspection as described in <xreftarget="introspect"/>.target="introspect" format="default"/>. Binding the access token to the client certificate in that fashion has the benefit of decoupling that binding from the client's authentication with the authorization server, which enables mutual TLS during protected resource access to serve purely as a proof-of-possession mechanism. Other methods of associating a certificate with an access token are possible, per agreement by the authorization server and the protected resource, but are beyond the scope of this specification. </t> <t> In order for a resource server to use certificate-bound access tokens, it must have advance knowledge that mutual TLS is to be used for some or all resource accesses. In particular, the access token itself cannot be used as input to the decision of whether or not to request mutualTLS, since fromTLS because (from the TLSperspective those areperspective) it is "Application Data", only exchanged after the TLS handshake has been completed, and the initial CertificateRequest occurs during the handshake, before the Application Data is available. Although subsequent opportunities for a TLS client to present a certificate may be available, e.g., via TLS 1.2 renegotiation <xreftarget="RFC5246"/>target="RFC5246" format="default"/> or TLS 1.3 post-handshake authentication <xreftarget="RFC8446"/>,target="RFC8446" format="default"/>, this document makes no provision for their usage. It is expected to be common that a mutual-TLS-using resource server will require mutual TLS for all resources hostedthereupon,thereupon or will serve mutual-TLS-protected and regular resources on separatehostname+porthostname and port combinations, though other workflows are possible. How resource server policy is synchronized with theASauthorization server (AS) is out of scope for this document. </t> <t> Within the scope ofana mutual-TLS-protected resource-access flow, the client makes protected resourcerequestsrequests, as described in <xreftarget="RFC6750"/>,target="RFC6750" format="default"/>, however, those requestsMUST<bcp14>MUST</bcp14> be made over a mutually authenticated TLS connection using the same certificate that was used for mutual TLS at the token endpoint. </t> <t> The protected resourceMUST<bcp14>MUST</bcp14> obtain, from its TLS implementation layer, the client certificate used for mutual TLS andMUST<bcp14>MUST</bcp14> verify that the certificate matches the certificate associated with the access token. If they do not match, the resource access attemptMUST<bcp14>MUST</bcp14> be rejected with anerrorerror, per <xreftarget="RFC6750"/>target="RFC6750" format="default"/>, using an HTTP 401 status code and the<spanx style="verb">invalid_token</spanx><tt>invalid_token</tt> error code. </t> <t> Metadata to convey server and client capabilities for mutual-TLS client certificate-bound access tokens is defined in Sections <xreftarget="server_metadata_at"/>target="server_metadata_at" format="counter"/> and <xreftarget="client_metadata_at"/>target="client_metadata_at" format="counter"/>, respectively. </t> <section anchor="x5t"title="JWTnumbered="true" toc="default"> <name>JWT Certificate Thumbprint ConfirmationMethod">Method</name> <t> When access tokens are represented as JSON Web Tokens(JWT)<xref target="RFC7519"/>,(JWT) <xref target="RFC7519" format="default"/>, the certificate hash informationSHOULD<bcp14>SHOULD</bcp14> be represented using the<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> confirmation method member defined herein. </t> <t> To represent the hash of a certificate in a JWT, this specification defines the new<xref target="RFC7800">JWTJWT ConfirmationMethod</xref>Method <xref target="RFC7800" format="default"></xref> member<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> for the X.509 Certificate SHA-256 Thumbprint. The value of the<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> member is a base64url-encoded <xreftarget="RFC4648"/>target="RFC4648" format="default"/> SHA-256 <xreftarget="SHS"/>target="SHS" format="default"/> hash(a.k.a.(a.k.a., thumbprint,fingerprintfingerprint, or digest) of the DER encoding <xreftarget="X690"/>target="X690" format="default"/> of the X.509 certificate <xreftarget="RFC5280"/>.target="RFC5280" format="default"/>. The base64url-encoded valueMUST<bcp14>MUST</bcp14> omit all trailing pad '=' characters andMUST NOT<bcp14>MUST NOT</bcp14> include any line breaks, whitespace, or other additional characters. </t> <t> The following is an example of a JWT payload containing an<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> certificate thumbprint confirmation method. The new JWT content introduced by this specification is the<spanx style="verb">cnf</spanx><tt>cnf</tt> confirmation method claim at the bottom of the example that has the<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> confirmation method member containing the value that is the hash of the client certificate to which the access token is bound. </t> <figureanchor="eg_x5ts256jwt" title="Exampleanchor="eg_x5ts256jwt"> <name>Example JWT Claims Set with an X.509 Certificate Thumbprint ConfirmationMethod"> <artwork><![CDATA[Method</name> <sourcecode type="json"><![CDATA[ { "iss": "https://server.example.com", "sub": "ty.webb@example.com", "exp": 1493726400, "nbf": 1493722800, "cnf":{ "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2" }}]]> </artwork>} ]]></sourcecode> </figure> </section> <section anchor="introspect"title="Confirmationnumbered="true" toc="default"> <name>Confirmation Method for TokenIntrospection">Introspection</name> <t><xref target="RFC7662">OAuthOAuth 2.0 TokenIntrospection</xref>Introspection <xref target="RFC7662" format="default"></xref> defines a method for a protected resource to query an authorization server about the active state of an access token as well as to determinemeta-informationmetainformation about the token. </t> <t> For a mutual-TLS client certificate-bound access token, the hash of the certificate to which the token is bound is conveyed to the protected resource asmeta-informationmetainformation in a token introspection response. The hash is conveyed using the same<spanx style="verb">cnf</spanx><tt>cnf</tt> with<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> member structure as the certificate SHA-256 thumbprint confirmation method, described in <xreftarget="x5t"/>,target="x5t" format="default"/>, as a top-level member of the introspection response JSON. The protected resource compares that certificate hash to a hash of the client certificate used for mutual-TLS authentication and rejects therequest,request if they do not match. </t> <t> The following is an example of an introspection response for an active token with an<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> certificate thumbprint confirmation method. The new introspection response content introduced by this specification is the<spanx style="verb">cnf</spanx><tt>cnf</tt> confirmation method at the bottom of the example that has the<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> confirmation method member containing the value that is the hash of the client certificate to which the access token is bound. </t> <figureanchor="eg_x5ts256intro" title="Exampleanchor="eg_x5ts256intro"> <name>Example Introspection Response for a Certificate-Bound AccessToken"> <artwork><![CDATA[Token</name> <artwork name="" type="" align="left" alt=""><![CDATA[ HTTP/1.1 200 OK Content-Type: application/json { "active": true, "iss": "https://server.example.com", "sub": "ty.webb@example.com", "exp": 1493726400, "nbf": 1493722800, "cnf":{ "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2" }}]]> </artwork>} ]]></artwork> </figure> </section> <section anchor="server_metadata_at"title="Authorizationnumbered="true" toc="default"> <name>Authorization ServerMetadata">Metadata</name> <t>This document introduces the following new authorization server metadata <xreftarget="RFC8414"/>target="RFC8414" format="default"/> parameter to signal the server's capability to issuecertificate boundcertificate-bound access tokens:<list style="hanging"> <t hangText="tls_client_certificate_bound_access_tokens"><vspace/> OPTIONAL.</t> <dl newline="true" spacing="normal"> <dt>tls_client_certificate_bound_access_tokens</dt> <dd> <bcp14>OPTIONAL</bcp14>. Boolean value indicating server support for mutual-TLS client certificate-bound access tokens. If omitted, the default value is<spanx style="verb">false</spanx>. </t> </list> </t><tt>false</tt>. </dd> </dl> </section> <section anchor="client_metadata_at"title="Clientnumbered="true" toc="default"> <name>Client RegistrationMetadata">Metadata</name> <t>The following new client metadata parameter is introduced to convey the client's intention to usecertificate boundcertificate-bound access tokens:<list style="hanging"> <t hangText="tls_client_certificate_bound_access_tokens"><vspace/> OPTIONAL.</t> <dl newline="true" spacing="normal"> <dt>tls_client_certificate_bound_access_tokens</dt> <dd> <bcp14>OPTIONAL</bcp14>. Boolean value used to indicate the client's intention to use mutual-TLS client certificate-bound access tokens. If omitted, the default value is<spanx style="verb">false</spanx>. </t> </list><tt>false</tt>. </dd> </dl> <t> Notethat,that if a client that has indicated the intention to use mutual-TLS client certificate-bound tokens makes a request to the token endpoint over a non-mutual-TLS connection, it is at the authorization server's discretion as to whether to return an error or issue an unbound token. </t> </section> </section> <section anchor="PubClient"title="Publicnumbered="true" toc="default"> <name>Public Clients and Certificate-BoundTokens">Tokens</name> <t> Mutual-TLS OAuth client authentication and certificate-bound access tokens can be used independently of each other. Use of certificate-bound access tokens without mutual-TLS OAuth client authentication, for example, is possible in support of binding access tokens to a TLS client certificate for public clients (those without authentication credentials associated with the<spanx style="verb">client_id</spanx>).<tt>client_id</tt>). The authorization server would configure the TLS stack in the same manner as for the Self-Signed Certificate method such that it does not verify that the certificate presented by the client during the handshake is signed by a trusted CA. Individual instances of a client would create a self-signed certificate for mutual TLS with both the authorization server and resource server. The authorization server would not use the mutual-TLS certificate to authenticate the client at the OAuth layer but would bind the issued access token tothat certificate,the certificate for which the client has proven possession of the corresponding private key. The access token is then bound to the certificate and can only be used by the client possessing the certificate and corresponding private key and utilizing them to negotiate mutual TLS on connections to the resource server. When the authorization server issues a refresh token to such a client, itSHOULD<bcp14>SHOULD</bcp14> also bind the refresh token to the respectivecertificate. Andcertificate and check the binding when the refresh token is presented to get new access tokens. The implementation details of the binding of the refresh token are at the discretion of the authorization server. </t> </section> <section anchor="endpointAliases"title="Metadatanumbered="true" toc="default"> <name>Metadata for Mutual-TLS EndpointAliases">Aliases</name> <t> The process of negotiating client certificate-based mutual TLS involves a TLS server requesting a certificate from the TLS client (the client does not provide one unsolicited). Although a server can be configured such that client certificates are optional, meaning that the connection is allowed to continue when the client does not provide a certificate, the act of a server requesting a certificate can result in undesirable behavior from some clients. This is particularly true of web browsers as TLS clients, which will typically present theend-userend user with an intrusive certificate selection interface when the server requests a certificate. </t> <t> Authorization servers supporting both clients using mutual TLS and conventional clientsMAY<bcp14>MAY</bcp14> chose to isolate the server side mutual-TLS behavior to only clients intending to do mutual TLS, thus avoiding any undesirable effects it might have on conventional clients. The following authorization server metadata parameter is introduced to facilitate such separation: </t><t> <list style="hanging"> <t hangText="mtls_endpoint_aliases"> <vspace/>OPTIONAL.<dl newline="true" spacing="normal"> <dt>mtls_endpoint_aliases</dt> <dd><bcp14>OPTIONAL</bcp14>. A JSON object containing alternative authorization server endpoints that, when present, an OAuth client intending to do mutual TLS uses in preference to the conventional endpoints. The parameter value itself consists of one or more endpoint parameters, such as<spanx style="verb">token_endpoint</spanx>, <spanx style="verb">revocation_endpoint</spanx>, <spanx style="verb">introspection_endpoint</spanx>,<tt>token_endpoint</tt>, <tt>revocation_endpoint</tt>, <tt>introspection_endpoint</tt>, etc., conventionally defined for thetop-leveltop level of authorization server metadata. An OAuth client intending to do mutual TLS (for OAuth client authentication and/or to acquire or use certificate-bound tokens) when making a request directly to the authorization serverMUST<bcp14>MUST</bcp14> use the alias URL of the endpoint within the<spanx style="verb">mtls_endpoint_aliases</spanx>,<tt>mtls_endpoint_aliases</tt>, when present, in preference to the endpoint URL of the same name attop-levelthe top level of metadata. When an endpoint is not present in<spanx style="verb">mtls_endpoint_aliases</spanx>,<tt>mtls_endpoint_aliases</tt>, then the client uses the conventional endpoint URL defined at thetop-leveltop level of the authorization server metadata. Metadata parameters within<spanx style="verb">mtls_endpoint_aliases</spanx><tt>mtls_endpoint_aliases</tt> that do not define endpoints to which an OAuth client makes a direct request have no meaning andSHOULD<bcp14>SHOULD</bcp14> be ignored.</t> </list> </t></dd> </dl> <t> Below is an example of an authorization server metadata document with the<spanx style="verb">mtls_endpoint_aliases</spanx><tt>mtls_endpoint_aliases</tt> parameter, which indicates aliases for the token, revocation, and introspection endpoints that an OAuth client intending to do mutual TLS would use in preference to the conventional token, revocation, and introspection endpoints. Note that the endpoints in<spanx style="verb">mtls_endpoint_aliases</spanx><tt>mtls_endpoint_aliases</tt> use a different host than their conventional counterparts, which allows the authorization server (via TLS<spanx style="verb">server_name</spanx><tt>server_name</tt> extension <xreftarget="RFC6066"/>target="RFC6066" format="default"/> or actual distinct hosts) to differentiate its TLS behavior as appropriate. </t> <figuretitle='Exampleanchor="as-meta"> <name>Example Authorization Server Metadata with Mutual-TLS EndpointAliases' anchor='as-meta'> <artwork><![CDATA[Aliases</name> <sourcecode type="json"><![CDATA[ { "issuer": "https://server.example.com", "authorization_endpoint": "https://server.example.com/authz", "token_endpoint": "https://server.example.com/token", "introspection_endpoint": "https://server.example.com/introspect", "revocation_endpoint": "https://server.example.com/revo", "jwks_uri": "https://server.example.com/jwks", "response_types_supported": ["code"], "response_modes_supported": ["fragment","query","form_post"], "grant_types_supported": ["authorization_code", "refresh_token"], "token_endpoint_auth_methods_supported": ["tls_client_auth","client_secret_basic","none"], "tls_client_certificate_bound_access_tokens":truetrue, "mtls_endpoint_aliases": { "token_endpoint": "https://mtls.example.com/token", "revocation_endpoint": "https://mtls.example.com/revo", "introspection_endpoint": "https://mtls.example.com/introspect" } }]]></artwork>]]></sourcecode> </figure></t></section> <section anchor="Impl"title="Implementation Considerations">numbered="true" toc="default"> <name>Implementation Considerations</name> <section anchor="ImplAS"title="Authorization Server">numbered="true" toc="default"> <name>Authorization Server</name> <t>The authorization server needs to set up its TLS configuration appropriately for the OAuth client authentication methods it supports.</t> <t>An authorization server that supports mutual-TLS client authentication and other client authentication methods or public clients in parallel would make mutual TLS optional(i.e.(i.e., allowing a handshake to continue after the server requests a client certificate but the client does not send one).</t> <t>In order to support the Self-Signed Certificate method alone, the authorization server would configure the TLS stack in such a way that it does not verify whether the certificate presented by the client during the handshake is signed by a trusted CA certificate.</t> <t>As described in <xreftarget="CertificateBoundAccessTokens"/>,target="CertificateBoundAccessTokens" format="default"/>, the authorization server binds the issued access token to the TLS client certificate, which means that it will only issue certificate-bound tokens for a certificatewhichthat the client has proven possession of the corresponding private key.</t> <t>The authorization server may also consider hosting the tokenendpoint,endpoint and other endpoints requiring clientauthentication,authentication on a separate host name or port in order to prevent unintended impact on the TLS behavior of its other endpoints,e.g.e.g., the authorization endpoint. As described in <xreftarget="endpointAliases"/>,target="endpointAliases" format="default"/>, it may further isolate any potential impact of the server requesting client certificates by offering a distinct set of endpoints on a separate host or port, which are aliases for the originals that a client intending to do mutual TLS will use in preference to the conventional endpoints.</t> </section> <section anchor="ImplRS"title="Resource Server">numbered="true" toc="default"> <name>Resource Server</name> <t> OAuth divides the roles and responsibilities such that the resource server relies on the authorization server to perform client authentication and obtainresource ownerresource-owner (end-user) authorization. The resource server makes authorization decisions based on the access token presented by the client but does not directly authenticate the client per se. The manner in which an access token is bound to the client certificate and how a protected resource verifies the proof-of-possession decouples that from the specific method that the client used to authenticate with the authorization server. Mutual TLS during protected resource accesscan thereforecan, therefore, serve purely as a proof-of-possession mechanism. As such, it is not necessary for the resource server to validate the trust chain of the client's certificate in any of the methods defined in this document. The resource serverwould thereforewould, therefore, configure the TLS stack in a way that it does not verify whether the certificate presented by the client during the handshake is signed by a trusted CA certificate. </t> </section> <section anchor="ImplExp"title="Certificatenumbered="true" toc="default"> <name>Certificate Expiration and Bound AccessTokens">Tokens</name> <t> As described in <xreftarget="CertificateBoundAccessTokens"/>,target="CertificateBoundAccessTokens" format="default"/>, an access token is bound to a specific client certificate, which means that the same certificate must be used for mutual TLS on protected resource access. It also implies that access tokens are invalidated when a client updates the certificate, which can be handledsimilarsimilarly to expired access tokens where the client requests a new access token (typically with a refresh token) and retries the protected resource request. </t> </section> <section anchor="ImplImplicit"title="Implicitnumbered="true" toc="default"> <name>Implicit GrantUnsupported">Unsupported</name> <t> This document describes binding an access token to the client certificate presented on the TLS connection from the client to the authorization server's token endpoint, however, such binding of access tokens issued directly from the authorization endpoint via the implicit grant flow is explicitly out of scope. End users interact directly with the authorization endpoint using a webbrowserbrowser, and the use of client certificates in user's browsers bring operational and usabilityissues, whichissues that make it undesirable to support certificate-bound access tokens issued in the implicit grant flow. Implementations wanting to employ certificate-bound access tokens should utilize grant types that involve the client making an access token request directly to the token endpoint(e.g.(e.g., the authorization code and refresh token grant types). </t> </section> <section anchor="TTRP"title="TLS Termination">numbered="true" toc="default"> <name>TLS Termination</name> <t> An authorization server or resource serverMAY<bcp14>MAY</bcp14> choose to terminate TLS connections at a load balancer, reverse proxy, or other network intermediary. How the client certificate metadata is securely communicated between the intermediary and the applicationserverserver, in thiscasecase, is out of scope of this specification. </t> </section> </section> <section anchor="Security"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <sectiontitle="Certificate-Boundnumbered="true" toc="default"> <name>Certificate-Bound RefreshTokens">Tokens</name> <t>The OAuth 2.0 Authorization Framework <xreftarget="RFC6749"/>target="RFC6749" format="default"/> requires that an authorization server (AS) bind refresh tokens to the client to which they were issued and that confidential clients (those having established authentication credentials with theauthorization server)AS) authenticate to the AS when presenting a refresh token. As a result, refresh tokens are indirectly certificate-bound by way of the client ID and the associated requirement for (certificate-based) authentication to theauthorization serverAS when issued to clients utilizing the<spanx style="verb">tls_client_auth</spanx><tt>tls_client_auth</tt> or<spanx style="verb">self_signed_tls_client_auth</spanx><tt>self_signed_tls_client_auth</tt> methods of client authentication. <xreftarget="PubClient"/>target="PubClient" format="default"/> describes certificate-bound refresh tokens issued to public clients (those without authentication credentials associated with the<spanx style="verb">client_id</spanx>).<tt>client_id</tt>). </t> </section> <sectiontitle="Certificatenumbered="true" toc="default"> <name>Certificate ThumbprintBinding">Binding</name> <t> The binding between the certificate and access token specified in <xreftarget="x5t"/>target="x5t" format="default"/> uses a cryptographic hash of the certificate. It relies on the hash function having sufficient second-preimage resistance so as to make it computationally infeasible to find or create another certificate that produces to the same hash output value. The SHA-256 hash function was used because it meets the aforementioned requirement while being widely available. If, in the future, certificate thumbprints need to be computed using hash function(s) other than SHA-256, it is suggestedthatthat, for additional related JWT confirmationmethodsmethods, members be defined for that purpose and registered in the IANA "JWT Confirmation Methods" registry <xreftarget="IANA.JWT.Claims"/>target="IANA.JWT.Claims" format="default"/> for JWT<spanx style="verb">cnf</spanx><tt>cnf</tt> member values. </t> <t> Community knowledge about the strength of various algorithms and feasible attacks can change suddenly, and experience shows that a document about security is a point-in-time statement. Readers are advised to seek out any errata or updates that apply to this document. </t> </section> <section anchor="TLSV"title="TLSnumbered="true" toc="default"> <name>TLS Versions and BestPractices">Practices</name> <t>In the abstract thisThis document is applicable with any TLS version supporting certificate-based client authentication. Both <xreftarget="RFC8446">TLStarget="RFC8446" format="default">TLS 1.3</xref> and <xreftarget="RFC5246">TLStarget="RFC5246" format="default">TLS 1.2</xref> are citedhereinherein, because, at the time of writing, 1.3 is the newestversionversion, while 1.2 is the most widely deployed. General implementation and security considerations for TLS, including version recommendations, can be found in <xreftarget="BCP195"/>.target="BCP195" format="default"/>. </t> <t> TLS certificate validation (for both client and server certificates) requires a local database of trusted certificate authorities (CAs). Decisions about what CAs to trust and how to make such a determination of trust are out of scope for this document. </t> </section> <section anchor="certspoofing"title="X.509numbered="true" toc="default"> <name>X.509 CertificateSpoofing">Spoofing</name> <t> If the PKI method of client authentication is used, an attacker could try to impersonate a client using a certificate with the same subject (DN or SAN) but issued by a differentCA, whichCA that the authorization server trusts. To cope with that threat, the authorization serverSHOULD<bcp14>SHOULD</bcp14> onlyacceptaccept, as trustanchorsanchors, a limited number of CAs whose certificate issuance policy meets its security requirements. There is an assumption then that the client and server agree out of band on the set of trust anchors that the server uses to create and validate the certificate chain. Without this assumption the use of a subject to identify the client certificate would open the server up to certificate spoofing attacks. </t> </section> <sectiontitle="X.509numbered="true" toc="default"> <name>X.509 Certificate Parsing and ValidationComplexity">Complexity</name> <t> Parsing and validation of X.509 certificates and certificate chains iscomplexcomplex, and implementation mistakes have previously exposed security vulnerabilities. Complexities of validation include (but are not limited to) <xreftarget="CX5P"/>target="CX5P" format="default"/> <xreftarget="DCW"/>target="DCW" format="default"/> <xreftarget="RFC5280"/>:target="RFC5280" format="default"/>: </t><t> <list style="symbols"> <t>checking<ul spacing="normal"> <li>checking ofBasic Constraints,basic constraints, basic and extendedKey Usagekey usage constraints, validity periods, and criticalextensions;</t> <t>handlingextensions;</li> <li>handling of embedded NUL bytes in ASN.1 counted-lengthstrings,strings and non-canonical or non-normalized string representations in subjectnames;</t> <t>handlingnames;</li> <li>handling of wildcard patterns in subjectnames;</t> <t>recursivenames;</li> <li>recursive verification of certificate chains and checking certificaterevocation.</t> </list> </t><t>revocation.</li> </ul> <t> For these reasons, implementorsSHOULD<bcp14>SHOULD</bcp14> use an established and well-tested X.509 library (such as one used by an established TLS library) for validation of X.509 certificate chains andSHOULD NOT<bcp14>SHOULD NOT</bcp14> attempt to write their own X.509 certificate validation procedures. </t> </section> </section> <section anchor="Privacy"title="Privacy Considerations">numbered="true" toc="default"> <name>Privacy Considerations</name> <t> In TLS versions prior to 1.3, the client's certificate is sent unencrypted in the initial handshake and can potentially be used by third parties to monitor, track, and correlate client activity. This is likely of little concern for clients that act on behalf of a significant number ofend-usersend users because individual user activity will not be discernible amidst the client activity as a whole. However, clients that act on behalf of a singleend-user,end user, such as a native application on a mobile device, should use TLS version 1.3 whenever possible or consider the potential privacy implications of using mutual TLS on earlier versions. </t> </section> <section anchor="IANA"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <sectiontitle="JWTnumbered="true" toc="default"> <name>JWT Confirmation MethodsRegistration">Registration</name> <t>This specification requests registration ofPer this specification, the following value has been registered in the IANA "JWT Confirmation Methods" registry <xreftarget="IANA.JWT.Claims"/>target="IANA.JWT.Claims" format="default"/> for JWT<spanx style="verb">cnf</spanx><tt>cnf</tt> member values established by <xreftarget="RFC7800"/>.target="RFC7800" format="default"/>. </t><t> <?rfc subcompact="yes"?> <list style='symbols'> <t>Confirmation<dl spacing="compact"> <dt>Confirmation MethodValue: <spanx style="verb">x5t#S256</spanx></t> <t>ConfirmationValue:</dt><dd><tt>x5t#S256</tt></dd> <dt>Confirmation MethodDescription: X.509Description:</dt><dd>X.509 Certificate SHA-256Thumbprint</t> <t>Change Controller: IESG</t> <t>Specification Document(s): <xref target="x5t"/>Thumbprint</dd> <dt>Change Controller:</dt><dd>IESG</dd> <dt>Specification Document(s):</dt><dd><xref target="x5t" format="default"/> of[[ this specification ]]</t> </list> <?rfc subcompact="no"?> </t>RFC 8705</dd> </dl> </section> <sectiontitle="Authorizationnumbered="true" toc="default"> <name>Authorization Server MetadataRegistration">Registration</name> <t>This specification requests registration ofPer this specification, the following values have been registered in the IANA "OAuth Authorization Server Metadata" registry <xreftarget="IANA.OAuth.Parameters"/>target="IANA.OAuth.Parameters" format="default"/> established by <xreftarget="RFC8414"/>.target="RFC8414" format="default"/>. </t><t> <?rfc subcompact="yes"?> <list style='symbols'> <t>Metadata Name: <spanx style="verb">tls_client_certificate_bound_access_tokens</spanx></t> <t>Metadata Description: Indicates<dl spacing="compact"> <dt>Metadata Name:</dt><dd><tt>tls_client_certificate_bound_access_tokens</tt></dd> <dt>Metadata Description:</dt><dd>Indicates authorization server support for mutual-TLS client certificate-bound accesstokens.</t> <t>Change Controller: IESG</t> <t>Specification Document(s): <xref target="server_metadata_at"/>tokens.</dd> <dt>Change Controller:</dt><dd>IESG</dd> <dt>Specification Document(s):</dt><dd><xref target="server_metadata_at" format="default"/> of[[ this specification ]]</t> </list> <?rfc subcompact="no"?> </t> <t> <?rfc subcompact="yes"?> <list style='symbols'> <t>Metadata Name: <spanx style="verb">mtls_endpoint_aliases</spanx></t> <t>Metadata Description: JSONRFC 8705</dd> </dl> <dl spacing="compact"> <dt>Metadata Name:</dt><dd><tt>mtls_endpoint_aliases</tt></dd> <dt>Metadata Description:</dt><dd>JSON object containing alternative authorization server endpoints, which a client intending to do mutual TLS will use in preference to the conventionalendpoints.</t> <t>Change Controller: IESG</t> <t>Specification Document(s): <xref target="endpointAliases"/>endpoints.</dd> <dt>Change Controller:</dt><dd>IESG</dd> <dt>Specification Document(s):</dt><dd><xref target="endpointAliases" format="default"/> of[[ this specification ]]</t> </list> <?rfc subcompact="no"?> </t>RFC 8705</dd> </dl> </section> <sectiontitle="Tokennumbered="true" toc="default"> <name>Token Endpoint Authentication MethodRegistration">Registration</name> <t>This specification requests registration ofPer this specification, the following values have been registered in the IANA "OAuth Token Endpoint Authentication Methods" registry <xreftarget="IANA.OAuth.Parameters"/>target="IANA.OAuth.Parameters" format="default"/> established by <xreftarget="RFC7591"/>.target="RFC7591" format="default"/>. </t><t> <?rfc subcompact="yes"?> <list style='symbols'> <t>Token<dl spacing="compact"> <dt>Token Endpoint Authentication MethodName: <spanx style="verb">tls_client_auth</spanx></t> <t>Change Controller: IESG</t> <t>Specification Document(s): <xref target="metadata_auth_value_pki"/>Name:</dt><dd><tt>tls_client_auth</tt></dd> <dt>Change Controller:</dt><dd>IESG</dd> <dt>Specification Document(s):</dt><dd><xref target="metadata_auth_value_pki" format="default"/> of[[ this specification ]]</t> </list> <?rfc subcompact="no"?> </t> <t> <?rfc subcompact="yes"?> <list style='symbols'> <t>TokenRFC 8705</dd> </dl> <dl spacing="compact"> <dt>Token Endpoint Authentication MethodName: <spanx style="verb">self_signed_tls_client_auth</spanx></t> <t>Change Controller: IESG</t> <t>Specification Document(s): <xref target="metadata_auth_value_self_signed"/>Name:</dt><dd><tt>self_signed_tls_client_&zwsp;auth</tt></dd> <dt>Change Controller:</dt><dd>IESG</dd> <dt>Specification Document(s):</dt><dd><xref target="metadata_auth_value_self_signed" format="default"/> of[[ this specification ]]</t> </list> <?rfc subcompact="no"?> </t>RFC 8705</dd> </dl> </section> <sectiontitle="Tokennumbered="true" toc="default"> <name>Token Introspection ResponseRegistration">Registration</name> <t><xref target="RFC7800">Proof-of-Possession"Proof-of-Possession Key Semantics for JSON WebTokens</xref>Tokens (JWTs)" <xref target="RFC7800" format="default"></xref> defined the<spanx style="verb">cnf</spanx><tt>cnf</tt> (confirmation)claim, whichclaim that enables confirmation key information to be carried in a JWT. However, the same proof-of-possession semantics are also useful for introspected access tokens whereby the protected resource obtains the confirmation key data asmeta-informationmetainformation of a token introspection response and uses that information in verifying proof-of-possession.ThereforeTherefore, this specification defines and registers proof-of-possession semantics for<xref target="RFC7662">OAuthOAuth 2.0 TokenIntrospection</xref>Introspection <xref target="RFC7662" format="default"></xref> using the<spanx style="verb">cnf</spanx><tt>cnf</tt> structure. When included as a top-level member of an OAuth token introspection response,<spanx style="verb">cnf</spanx><tt>cnf</tt> has the same semantics and format as the claim of the same name defined in <xreftarget="RFC7800"/>.target="RFC7800" format="default"/>. While this specification only explicitly uses the<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> confirmation method member (see <xreftarget="introspect"/>),target="introspect" format="default"/>), it needs to define and register thehigher level <spanx style="verb">cnf</spanx>higher-level <tt>cnf</tt> structure as an introspection response member in order to define and use the more specific certificate thumbprint confirmation method. </t> <t> As such,this specification requests registration ofthe followingvaluevalues have been registered in the IANA "OAuth Token Introspection Response" registry <xreftarget="IANA.OAuth.Parameters"/>target="IANA.OAuth.Parameters" format="default"/> established by <xreftarget="RFC7662"/>.target="RFC7662" format="default"/>. </t><t> <?rfc subcompact="yes"?> <list style='symbols'> <t>Claim Name: <spanx style="verb">cnf</spanx></t> <t>Claim Description: Confirmation</t> <t>Change Controller: IESG</t> <t>Specification Document(s): <xref target="RFC7800"/><dl spacing="compact"> <dt>Claim Name:</dt><dd><tt>cnf</tt></dd> <dt>Claim Description:</dt><dd>Confirmation</dd> <dt>Change Controller:</dt><dd>IESG</dd> <dt>Specification Document(s):</dt><dd><xref target="RFC7800" format="default"/> and[[ this specification ]]</t> </list> <?rfc subcompact="no"?> </t>RFC 8705</dd> </dl> </section> <sectiontitle="Dynamicnumbered="true" toc="default"> <name>Dynamic Client Registration MetadataRegistration">Registration</name> <t>This specification requests registration ofPer this specification, the following client metadata definitions have been registered in the IANA "OAuth Dynamic Client Registration Metadata" registry <xreftarget="IANA.OAuth.Parameters"/>target="IANA.OAuth.Parameters" format="default"/> established by <xreftarget="RFC7591"/>:target="RFC7591" format="default"/>: </t><t> <?rfc subcompact="yes"?> <list style="symbols"> <t><dl spacing="compact"> <dt> Client MetadataName: <spanx style="verb">tls_client_certificate_bound_access_tokens</spanx> </t> <t>Name:</dt><dd><tt>tls_client_certificate_bound_access_tokens</tt> </dd> <dt> Client MetadataDescription: IndicatesDescription:</dt><dd>Indicates the client's intention to use mutual-TLS client certificate-bound access tokens.</t> <t></dd> <dt> ChangeController: IESG </t> <t>Controller:</dt><dd>IESG </dd> <dt> SpecificationDocument(s): <xref target="client_metadata_at"/>Document(s):</dt><dd><xref target="client_metadata_at" format="default"/> of[[ this specification ]] </t> </list> </t> <t> <list style="symbols"> <t>RFC 8705 </dd> </dl> <dl spacing="compact"> <dt> Client MetadataName: <spanx style="verb">tls_client_auth_subject_dn</spanx> </t> <t>Name:</dt><dd><tt>tls_client_auth_subject_dn</tt> </dd> <dt> Client MetadataDescription: StringDescription:</dt><dd>String value specifying the expected subject DN of the client certificate.</t> <t></dd> <dt> ChangeController: IESG </t> <t>Controller:</dt><dd>IESG </dd> <dt> SpecificationDocument(s): <xref target="client_metadata_pki"/>Document(s):</dt><dd><xref target="client_metadata_pki" format="default"/> of[[ this specification ]] </t> </list> </t> <t> <list style="symbols"> <t>RFC 8705 </dd> </dl> <dl spacing="compact"> <dt> Client MetadataName: <spanx style="verb">tls_client_auth_san_dns</spanx> </t> <t>Name:</dt><dd><tt>tls_client_auth_san_dns</tt> </dd> <dt> Client MetadataDescription: StringDescription:</dt><dd>String value specifying the expected dNSName SAN entry in the client certificate.</t> <t></dd> <dt> ChangeController: IESG </t> <t>Controller:</dt><dd>IESG </dd> <dt> SpecificationDocument(s): <xref target="client_metadata_pki"/>Document(s):</dt><dd><xref target="client_metadata_pki" format="default"/> of[[ this specification ]] </t> </list> </t> <t> <list style="symbols"> <t>RFC 8705 </dd> </dl> <dl spacing="compact"> <dt> Client MetadataName: <spanx style="verb">tls_client_auth_san_uri</spanx> </t> <t>Name:</dt><dd><tt>tls_client_auth_san_uri</tt> </dd> <dt> Client MetadataDescription: StringDescription:</dt><dd>String value specifying the expected uniformResourceIdentifier SAN entry in the client certificate.</t> <t></dd> <dt> ChangeController: IESG </t> <t>Controller:</dt><dd>IESG </dd> <dt> SpecificationDocument(s): <xref target="client_metadata_pki"/>Document(s):</dt><dd><xref target="client_metadata_pki" format="default"/> of[[ this specification ]] </t> </list> </t> <t> <list style="symbols"> <t>RFC 8705 </dd> </dl> <dl spacing="compact"> <dt> Client MetadataName: <spanx style="verb">tls_client_auth_san_ip</spanx> </t> <t>Name:</dt><dd><tt>tls_client_auth_san_ip</tt> </dd> <dt> Client MetadataDescription: StringDescription:</dt><dd>String value specifying the expected iPAddress SAN entry in the client certificate.</t> <t></dd> <dt> ChangeController: IESG </t> <t>Controller:</dt><dd>IESG </dd> <dt> SpecificationDocument(s): <xref target="client_metadata_pki"/>Document(s):</dt><dd><xref target="client_metadata_pki" format="default"/> of[[ this specification ]] </t> </list> </t> <t> <list style="symbols"> <t>RFC 8705 </dd> </dl> <dl spacing="compact"> <dt> Client MetadataName: <spanx style="verb">tls_client_auth_san_email</spanx> </t> <t>Name:</dt><dd><tt>tls_client_auth_san_email</tt> </dd> <dt> Client MetadataDescription: StringDescription:</dt><dd>String value specifying the expected rfc822Name SAN entry in the client certificate.</t> <t></dd> <dt> ChangeController: IESG </t> <t>Controller:</dt><dd>IESG </dd> <dt> SpecificationDocument(s): <xref target="client_metadata_pki"/>Document(s):</dt><dd><xref target="client_metadata_pki" format="default"/> of[[ this specification ]] </t> </list> <?rfc subcompact="no"?> </t>RFC 8705 </dd> </dl> </section> </section> </middle> <back><references title="Normative References"> <?rfc include='reference.RFC.2119'?> <?rfc include='reference.RFC.4514'?><displayreference target="I-D.ietf-oauth-token-binding" to="TOKEN"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4514.xml"/> <!-- LDAP: String Representation of Distinguished Names --><?rfc include='reference.RFC.4648'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4648.xml"/> <!-- base64 --><?rfc include='reference.RFC.5246'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5246.xml"/> <!-- TLS 1.2 --><?rfc include='reference.RFC.5280'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5280.xml"/> <!-- X.509 Public Key Infrastructure Certificate ... --><?rfc include='reference.RFC.6749'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6749.xml"/> <!-- OAuth 2.0 Authorization Framework --><?rfc include='reference.RFC.6750'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6750.xml"/> <!-- OAuth 2.0 Authorization Framework: Bearer Token Usage --><?rfc include='reference.RFC.7517'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7517.xml"/> <!-- JWK --><?rfc include='reference.RFC.7519'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7519.xml"/> <!-- JWT --><?rfc include='reference.RFC.7591'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7591.xml"/> <!-- Dynamic Client Registration --><?rfc include='reference.RFC.7662'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7662.xml"/> <!-- introspection --><?rfc include='reference.RFC.7800'?> <?rfc include='reference.RFC.8174'?> <?rfc include='reference.RFC.8414'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7800.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8414.xml"/> <!-- OAuth AS metadata --><?rfc include='reference.RFC.8446'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/> <!-- TLS 1.3 --> <referenceanchor="BCP195" target="http://www.rfc-editor.org/info/bcp195">anchor='BCP195' target='https://www.rfc-editor.org/info/bcp195'> <front> <title>Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)</title> <authorinitials="Y." surname="Sheffer" fullname="Y. Sheffer"> <organization/> </author>initials='Y.' surname='Sheffer' fullname='Y. Sheffer'><organization /></author> <authorinitials="R." surname="Holz" fullname="R. Holz"> <organization/> </author>initials='R.' surname='Holz' fullname='R. Holz'><organization /></author> <authorinitials="P." surname="Saint-Andre" fullname="P. Saint-Andre"> <organization/> </author>initials='P.' surname='Saint-Andre' fullname='P. Saint-Andre'><organization /></author> <dateyear="2015" month="May"/> <abstract> <t>Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases. </t> </abstract>year='2015' month='May' /> </front> <seriesInfoname="BCP" value="195"/> <seriesInfo name="RFC" value="7525"/>name='BCP' value='195'/> <seriesInfoname="DOI" value="10.17487/RFC7525"/>name='RFC' value='7525'/> </reference> <reference anchor="SHS"target="http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf">target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf"> <front> <title>Secure Hash Standard (SHS)</title> <author> <organization>National Institute of Standards andTechnology</organization>Technology (NIST)</organization> </author> <datemonth="March" year="2012" />month="August" year="2015"/> </front> <seriesInfo name="FIPS" value="PUB180-4" /> <format target="http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf" type="PDF"180-4"/> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.180-4" /> </reference> <reference anchor="X690"> <front> <title> Information Technology - ASN.1 encoding rules: Specification ofbasic encodingBasic Encoding Rules (BER), Canonicalencoding rulesEncoding Rules (CER) and Distinguishedencoding rulesEncoding Rules (DER) </title> <seriesInfo name="ITU-T" value="Recommendation X.690"/> <author><organization> International Telephone and Telegraph Consultative Committee </organization><organization>ITU-T</organization> </author> <datemonth="July"month="August" year="2015"/> </front><seriesInfo name="CCITT" value="Recommendation X.690"/></reference> </references><references title="Informative References"><references> <name>Informative References</name> <reference anchor="IANA.OAuth.Parameters"target="http://www.iana.org/assignments/oauth-parameters">target="https://www.iana.org/assignments/oauth-parameters"> <front> <title>OAuth Parameters</title> <author> <organization>IANA</organization> </author><date/></front> </reference> <reference anchor="IANA.JWT.Claims"target="http://www.iana.org/assignments/jwt">target="https://www.iana.org/assignments/jwt"> <front> <title>JSON Web Token Claims</title> <author> <organization>IANA</organization> </author><date/></front> </reference><?rfc include='reference.RFC.4517'?> <?rfc include='reference.RFC.5952'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4517.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5952.xml"/> <!-- IPv6 text rep --><?rfc include='reference.RFC.6066'?> <?rfc include='reference.RFC.7009'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6066.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7009.xml"/> <!-- revocation --><?rfc include='reference.RFC.7518'?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7518.xml"/> <!-- JWA --><?rfc include='http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.draft-ietf-oauth-token-binding-06.xml'?><!-- ietf-oauth-token-binding Expired --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-oauth-token-binding.xml"/> <reference anchor="CX5P" target="https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls"> <front> <title>Common x509 certificate validation/creation pitfalls</title> <author fullname="David Wong" initials="D."surname="Wong"><organization/></author>surname="Wong"> <organization/> </author> <date month="September" year="2016"/> </front> </reference> <reference anchor="DCW" target="http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf"> <front> <title>The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software</title> <author fullname="Martin Georgiev" initials="M."surname="Georgiev"><organization/></author>surname="Georgiev"> <organization/> </author> <author fullname="Subodh Iyengar" initials="S."surname="Iyengar"><organization/></author>surname="Iyengar"> <organization/> </author> <author fullname="Suman Jana" initials="S."surname="Jana"><organization/></author>surname="Jana"> <organization/> </author> <author fullname="Rishita Anubhai" initials="R."surname="Anubhai"><organization/></author>surname="Anubhai"> <organization/> </author> <author fullname="Dan Boneh" initials="D."surname="Boneh"><organization/></author>surname="Boneh"> <organization/> </author> <author fullname="Vitaly Shmatikov" initials="V."surname="Shmatikov"><organization/></author> <date/>surname="Shmatikov"> <organization/> </author> <date month="October" year="2012"/> </front> <seriesInfo name="DOI" value="10.1145/2382196.2382204"/> </reference> <reference anchor="OpenID.CIBA" target="https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html"> <front> <title abbrev="CIBA">OpenID Connect Client Initiated Backchannel Authentication Flow - Core 1.0</title> <author fullname="Gonzalo Fernandez Rodriguez" initials="G." surname="Fernandez"> <organization abbrev="Telefonica">Telefonica I+D</organization> <address> <email>gonzalo.fernandezrodriguez@telefonica.com</email> </address> </author> <author fullname="Florian Walter" initials="F." surname="Walter"> <organization abbrev="">Deutsche Telekom AG</organization> <address> <email>F.Walter@telekom.de</email> </address> </author> <author fullname="Axel Nennker" initials="A." surname="Nennker"> <organization abbrev="">Deutsche Telekom AG</organization> <address> <email>axel.nennker@telekom.de</email> </address> </author> <author fullname="Dave Tonge" initials="D." surname="Tonge"> <organization abbrev="Moneyhub">Moneyhub</organization> <address> <email>dave.tonge@moneyhub.com</email> </address> </author> <author fullname="Brian Campbell" initials="B." surname="Campbell"> <organization abbrev="Ping Identity">Ping Identity</organization> <address> <email>bcampbell@pingidentity.com</email> </address> </author> <date day="16" month="January" year="2019"/> </front> </reference> </references> </references> <sectiontitle='Exampleanchor="example" numbered="true" toc="default"> <name>Example "cnf" Claim,CertificateCertificate, andJWK' anchor="example">JWK</name> <t> For reference, an<spanx style="verb">x5t#S256</spanx><tt>x5t#S256</tt> value and the X.509Certificatecertificate from which it was calculated are provided in the following examples, Figures <xreftarget="cnf"/>target="cnf" format="counter"/> and <xreftarget="pem"/>target="pem" format="counter"/>, respectively. A JWK representation of the certificate's public key along with the<spanx style="verb">x5c</spanx><tt>x5c</tt> member is also provided in <xreftarget="jwk"/>.target="jwk" format="default"/>. </t> <figuretitle="x5t#S256 Confirmation Claim"anchor="cnf"><artwork><![CDATA["cnf":{"x5t#S256":"A4DtL2JmUMhAsvJj5tKyn64SqzmuXbMrJa0n761y5v0"} ]]></artwork><name>x5t#S256 Confirmation Claim</name> <sourcecode type="json"><![CDATA[ "cnf":{"x5t#S256":"A4DtL2JmUMhAsvJj5tKyn64SqzmuXbMrJa0n761y5v0"} ]]></sourcecode> </figure> <figuretitle="PEManchor="pem"> <name>PEM Encoded Self-SignedCertificate" anchor="pem"> <artwork><![CDATA[-----BEGINCertificate</name> <artwork name="" type="" align="left" alt=""><![CDATA[ -----BEGIN CERTIFICATE----- MIIBBjCBrAIBAjAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDDARtdGxzMB4XDTE4MTAx ODEyMzcwOVoXDTIyMDUwMjEyMzcwOVowDzENMAsGA1UEAwwEbXRsczBZMBMGByqG SM49AgEGCCqGSM49AwEHA0IABNcnyxwqV6hY8QnhxxzFQ03C7HKW9OylMbnQZjjJ /Au08/coZwxS7LfA4vOLS9WuneIXhbGGWvsDSb0tH6IxLm8wCgYIKoZIzj0EAwID SQAwRgIhAP0RC1E+vwJD/D1AGHGzuri+hlV/PpQEKTWUVeORWz83AiEA5x2eXZOV bUlJSGQgjwD5vaUaKlLR50Q2DmFfQj1L+SY= -----END CERTIFICATE-----]]></artwork> </figure> <figuretitle="JSON Web Key"anchor="jwk"><artwork><![CDATA[<name>JSON Web Key</name> <sourcecode type="json"><![CDATA[ { "kty":"EC", "x":"1yfLHCpXqFjxCeHHHMVDTcLscpb07KUxudBmOMn8C7Q", "y":"8_coZwxS7LfA4vOLS9WuneIXhbGGWvsDSb0tH6IxLm8", "crv":"P-256", "x5c":[ "MIIBBjCBrAIBAjAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDDARtdGxzMB4XDTE4MTA xODEyMzcwOVoXDTIyMDUwMjEyMzcwOVowDzENMAsGA1UEAwwEbXRsczBZMBMGBy qGSM49AgEGCCqGSM49AwEHA0IABNcnyxwqV6hY8QnhxxzFQ03C7HKW9OylMbnQZ jjJ/Au08/coZwxS7LfA4vOLS9WuneIXhbGGWvsDSb0tH6IxLm8wCgYIKoZIzj0E AwIDSQAwRgIhAP0RC1E+vwJD/D1AGHGzuri+hlV/PpQEKTWUVeORWz83AiEA5x2 eXZOVbUlJSGQgjwD5vaUaKlLR50Q2DmFfQj1L+SY=" ]}]]></artwork>}]]></sourcecode> </figure></t></section> <section anchor="relation"title="Relationshipnumbered="true" toc="default"> <name>Relationship to TokenBinding">Binding</name> <t><xref target="I-D.ietf-oauth-token-binding">OAuthOAuth 2.0 TokenBinding</xref>Binding <xref target="I-D.ietf-oauth-token-binding" format="default"></xref> enables the application of Token Binding to the various artifacts and tokens employed throughout OAuth. That includes binding of an access token to a Token Binding key, which bears some similarities in motivation and design to the mutual-TLS client certificate-bound access tokens defined in this document. Both documents define what is often called a proof-of-possession security mechanism for access tokens, whereby a client must demonstrate possession of cryptographic keying material when accessing a protected resource. The details differ somewhat between the two documents but both have the authorization server bind the access token that it issues to an asymmetric key pair held by the client. The client then proves possession of the private key from that pair with respect to the TLS connection over which the protected resource is accessed. </t> <t> Token Binding uses bare keys that are generated on the client, which avoids many of the difficulties of creating, distributing, and managing certificates used in this specification. However, at the time of writing, Token Binding is fairlynewnew, and there is relatively little support for it in available application development platforms and tooling. Until better support for the underlying core Token Binding specifications exists, practical implementations of OAuth 2.0 Token Binding are infeasible. Mutual TLS, on the other hand, has been around for some time and enjoys widespread support in web servers and development platforms. As a consequence, OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens can be built and deployed now using existing platforms and tools. In the future, the two specifications are likely to be deployed in parallel for solving similar problems in different environments. Authorization servers may even support both specifications simultaneously using different proof-of-possession mechanisms for tokens issued to different clients. </t> </section> <section anchor="Acknowledgements"title="Acknowledgements">numbered="false" toc="default"> <name>Acknowledgements</name> <t> Scott "not Tomlinson" Tomilson andMatt Peterson<contact fullname="Matt Peterson"/> were involved in design and development work on a mutual-TLS OAuth client authenticationimplementation, whichimplementation that predates this document. Experience and learning from that work informed some of the content of this document. </t> <t> This specification was developed within the OAuth Working Group under the chairmanship ofHannes Tschofenig and Rifaat Shekh-Yusef with Eric Rescorla, Benjamin Kaduk, and Roman Danyliw<contact fullname="Hannes Tschofenig"/> and <contact fullname="Rifaat Shekh-Yusef"/> with <contact fullname="Eric Rescorla"/>, <contact fullname="Benjamin Kaduk"/>, and <contact fullname="Roman Danyliw"/> serving as Security Area Directors. Additionally, the following individuals contributed ideas, feedback, and wording that helped shape this specification:Vittorio Bertocci, Sergey Beryozkin, Ralph Bragg, Sophie Bremer, Roman Danyliw, Vladimir Dzhuvinov, Samuel Erdtman, Evan Gilman, Leif Johansson, Michael Jones, Phil Hunt, Benjamin Kaduk, Takahiko Kawasaki, Sean Leonard, Kepeng Li, Neil Madden, James Manger, Jim Manico, Nov Matake, Sascha Preibisch, Eric Rescorla, Justin Richer, Vincent Roca, Filip Skokan, Dave Tonge, and Hannes Tschofenig. </t> </section> <section anchor="History" title="Document(s) History"> <?rfc subcompact="yes"?> <t> [[ to be removed by the RFC Editor before publication as an RFC ]] </t> <t> draft-ietf-oauth-mtls-17 <list style='symbols'> <t>Updates from IESG ballot position comments.</t> </list> </t> <t> draft-ietf-oauth-mtls-16 <list style='symbols'> <t>Editorial updates from last call review.</t> </list> </t> <t> draft-ietf-oauth-mtls-15 <list style='symbols'> <t>Editorial updates from second AD review.</t> </list> </t> <t> draft-ietf-oauth-mtls-14 <list style='symbols'> <t>Editorial clarifications around there being only a single subject registered/configured per client for the tls_client_auth method.</t> <t>Add a brief explanation about how, with tls_client_auth and self_signed_tls_client_auth, refresh tokens are certificate-bound indirectly via the client authentication.</t> <t>Add mention of refresh tokens in the abstract.</t> </list> </t> <t> draft-ietf-oauth-mtls-13 <list style='symbols'> <t>Add an abstract protocol flow and diagram to serve as an overview of OAuth in general and baseline to describe the various ways in which the mechanisms defined herein are intended to be used.</t> <t>A little bit less of that German influence.</t> <t>Rework the TLS references a bit and, in the Terminology section, clean up the description of what messages are sent and verified in the handshake to do 'mutual TLS'.</t> <t>Move the explanation about "cnf" introspection registration into the IANA Considerations.</t> <t>Add CIBA as an informational reference and additional example of an OAuth extension that defines an endpoint that utilizes client authentication.</t> <t>Shorten a few of the section titles.</t> <t>Add new client metadata values to allow for the use of a SAN in the PKI MTLS client authentication method.</t> <t>Add privacy considerations attempting to discuss the implications of the client cert being sent in the clear in TLS 1.2.</t> <t>Changed the 'Certificate Bound Access Tokens Without Client Authentication' section to 'Public Clients and Certificate-Bound Tokens' and moved it up to be a top level section while adding discussion of binding refresh tokens for public clients.</t> <t>Reword/restructure the main PKI method section somewhat to (hopefully) improve readability.</t> <t>Reword/restructure the Self-Signed method section a bit to (hopefully) make it more comprehensible.</t> <t>Reword the AS<contact fullname="Vittorio Bertocci"/>, <contact fullname="Sergey Beryozkin"/>, <contact fullname="Ralph Bragg"/>, <contact fullname="Sophie Bremer"/>, <contact fullname="Roman Danyliw"/>, <contact fullname="Vladimir Dzhuvinov"/>, <contact fullname="Samuel Erdtman"/>, <contact fullname="Evan Gilman"/>, <contact fullname="Leif Johansson"/>, <contact fullname="Michael Jones"/>, <contact fullname="Phil Hunt"/>, <contact fullname="Benjamin Kaduk"/>, <contact fullname="Takahiko Kawasaki"/>, <contact fullname="Sean Leonard"/>, <contact fullname="Kepeng Li"/>, <contact fullname="Neil Madden"/>, <contact fullname="James Manger"/>, <contact fullname="Jim Manico"/>, <contact fullname="Nov Matake"/>, <contact fullname="Sascha Preibisch"/>, <contact fullname="Eric Rescorla"/>, <contact fullname="Justin Richer"/>, <contact fullname="Vincent Roca"/>, <contact fullname="Filip Skokan"/>, <contact fullname="Dave Tonge"/>, andRS Implementation Considerations somewhat to (hopefully) improve readability.</t> <t>Clarify that the protected resource obtains the client certificate used for mutual TLS from its TLS implementation layer.</t> <t>Add Security Considerations section about the certificate thumbprint binding that includes the hash algorithm agility recommendation.</t> <t>Add an "mtls_endpoint_aliases" AS metadata parameter that is a JSON object containing alternative authorization server endpoints, which a client intending to do mutual TLS will use in preference to the conventional endpoints.</t> <t>Minor editorial updates.</t> </list> </t> <t> draft-ietf-oauth-mtls-12 <list style='symbols'> <t>Add an example certificate, JWK, and confirmation method claim.</t> <t>Minor editorial updates based on implementer feedback.</t> <t>Additional Acknowledgements.</t> </list> </t> <t> draft-ietf-oauth-mtls-11 <list style='symbols'> <t>Editorial updates.</t> <t>Mention/reference TLS 1.3 RFC8446 in the TLS Versions and Best Practices section.</t> </list> </t> <t> draft-ietf-oauth-mtls-10 <list style='symbols'> <t>Update draft-ietf-oauth-discovery reference to RFC8414</t> </list> </t> <t> draft-ietf-oauth-mtls-09 <list style='symbols'> <t>Change "single certificates" to "self-signed certificates" in the Abstract</t> </list> </t> <t> draft-ietf-oauth-mtls-08 <list style='symbols'> <t>Incorporate clarifications and editorial improvements from Justin Richer's WGLC review</t> <t>Drop the use of the "sender constrained" terminology per WGLC feedback from Neil Madden (including changing the metadata parameters from mutual_tls_sender_constrained_access_tokens to tls_client_certificate_bound_access_tokens)</t> <t>Add a new security considerations section on X.509 parsing and validation per WGLC feedback from Neil Madden and Benjamin Kaduk</t> <t>Note that a server can terminate TLS at a load balancer, reverse proxy, etc. but how the client certificate metadata is securely communicated to the backend is out of scope per WGLC feedback</t> <t>Note that revocation checking is at the discretion of the AS per WGLC feedback</t> <t>Editorial updates and clarifications</t> <t>Update draft-ietf-oauth-discovery reference to -10 and draft-ietf-oauth-token-binding to -06</t> <t>Add folks involved in WGLC feedback to the acknowledgements list</t> </list> </t> <t> draft-ietf-oauth-mtls-07 <list style='symbols'> <t>Update to use the boilerplate from RFC 8174</t> </list> </t> <t> draft-ietf-oauth-mtls-06 <list style='symbols'> <t>Add an appendix section describing the relationship of this document to OAuth Token Binding as requested during the Singapore meeting https://datatracker.ietf.org/doc/minutes-100-oauth/</t> <t>Add an explicit note that the implicit flow is not supported for obtaining certificate bound access tokens as discussed at the Singapore meeting https://datatracker.ietf.org/doc/minutes-100-oauth/</t> <t>Add/incorporate text to the Security Considerations on Certificate Spoofing as suggested https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo</t> <t>Changed the title to be more descriptive</t> <t>Move the Security Considerations section to before the IANA Considerations</t> <t>Elaborated on certificate-bound access tokens a bit more in the Abstract</t> <t>Update draft-ietf-oauth-discovery reference to -08</t> </list> </t> <t> draft-ietf-oauth-mtls-05 <list style='symbols'> <t>Editorial fixes</t> </list> </t> <t> draft-ietf-oauth-mtls-04 <list style='symbols'> <t>Change the name of the 'Public Key method' to the more accurate 'Self-Signed Certificate method' and also change the associated authentication method metadata value to "self_signed_tls_client_auth".</t> <t>Removed the "tls_client_auth_root_dn" client metadata field as discussed in https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc</t> <t>Update draft-ietf-oauth-discovery reference to -07</t> <t>Clarify that MTLS client authentication isn't exclusive to the token endpoint and can be used with other endpoints, e.g. RFC 7009 revocation and 7662 introspection, that utilize client authentication as discussed in https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI</t> <t>Reorganize the document somewhat in an attempt to more clearly make a distinction between mTLS client authentication and certificate-bound access tokens as well as a more clear delineation between the two (PKI/Public key) methods for client authentication</t> <t>Editorial fixes and clarifications</t> </list> </t> <t> draft-ietf-oauth-mtls-03 <list style='symbols'> <t>Introduced metadata and client registration parameter to publish and request support for mutual TLS sender constrained access tokens</t> <t>Added description of two methods of binding the cert and client, PKI and Public Key.</t> <t>Indicated that the "tls_client_auth" authentication method is for the PKI method and introduced "pub_key_tls_client_auth" for the Public Key method</t> <t>Added implementation considerations, mainly regarding TLS stack configuration and trust chain validation, as well as how to to do binding of access tokens to a TLS client certificate for public clients, and considerations around certificate-bound access tokens</t> <t>Added new section to security considerations on cert spoofing</t> <t>Add text suggesting that a new cnf member be defined in the future, if hash function(s) other than SHA-256 need to be used for certificate thumbprints</t> </list> </t> <t> draft-ietf-oauth-mtls-02 <list style='symbols'> <t>Fixed editorial issue https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns</t> <t>Changed the title (hopefully "Mutual TLS Profile for OAuth 2.0" is better than "Mutual TLS Profiles for OAuth Clients").</t> </list> </t> <t> draft-ietf-oauth-mtls-01 <list style='symbols'> <t>Added more explicit details of using RFC 7662 token introspection with mutual TLS sender constrained access tokens.</t> <t>Added an IANA OAuth Token Introspection Response Registration request for "cnf".</t> <t>Specify that tls_client_auth_subject_dn and tls_client_auth_root_dn are RFC 4514 String Representation of Distinguished Names.</t> <t>Changed tls_client_auth_issuer_dn to tls_client_auth_root_dn.</t> <t>Changed the text in the <xref target="CertificateBoundAccessTokens"/> to not be specific about using a hash of the cert.</t> <t>Changed the abbreviated title to 'OAuth Mutual TLS' (previously was the acronym MTLSPOC).</t> </list> </t> <t> draft-ietf-oauth-mtls-00 <list style='symbols'> <t>Created the initial working group version from draft-campbell-oauth-mtls</t> </list> </t> <t> draft-campbell-oauth-mtls-01 <list style='symbols'> <t>Fix some typos.</t> <t>Add to the acknowledgements list.</t> </list> </t> <t> draft-campbell-oauth-mtls-00 <list style='symbols'> <t> Add a Mutual TLS sender constrained protected resource access method and a x5t#S256 cnf method for JWT access tokens (concepts taken in part from draft-sakimura-oauth-jpop-04). </t> <t> Fixed "token_endpoint_auth_methods_supported" to "token_endpoint_auth_method" for client metadata. </t> <t> Add "tls_client_auth_subject_dn" and "tls_client_auth_issuer_dn" client metadata parameters and mention using "jwks_uri" or "jwks". </t> <t> Say that the authentication method is determined by client policy regardless of whether the client was dynamically registered or statically configured. </t> <t>Expand acknowledgements to those that participated in discussions around draft-campbell-oauth-tls-client-auth-00</t> <t> Add Nat Sakimura and Torsten Lodderstedt to the author list. </t> </list> </t> <t> draft-campbell-oauth-tls-client-auth-00 <list style='symbols'> <t> Initial draft. </t> </list><contact fullname="Hannes Tschofenig"/>. </t><?rfc subcompact="no"?></section> </back> </rfc>