<?xml version="1.0"encoding="UTF-8"?>encoding="utf-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY rfc7927 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.7927.xml'> <!ENTITY rfc7252 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.7252.xml'> <!ENTITY rfc7665 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.7665.xml'> <!ENTITY rfc6920 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.6920.xml'> <!ENTITY rfc8075 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.8075.xml'> <!ENTITY rfc7945 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.7945.xml'> <!ENTITY rfc7426 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.7426.xml'> <!ENTITY rfc8613 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.8613.xml'> <!ENTITY I-D.ietf-bier-multicast-http-response SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.ietf-bier-multicast-http-response.xml'> <!ENTITY I-D.irtf-nfvrg-gaps-network-virtualization SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-nfvrg-gaps-network-virtualization.xml'> <!ENTITY I-D.irtf-icnrg-ccnxmessages SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-ccnxmessages.xml'> <!ENTITY I-D.irtf-icnrg-icniot SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-icniot.xml'> <!ENTITY I-D.irtf-icnrg-terminology SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-terminology.xml'> <!ENTITY I-D.irtf-icnrg-icn-lte-4g SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-icn-lte-4g.xml'> <!ENTITY I-D.irtf-icnrg-ccninfo SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-ccninfo.xml'> <!ENTITY I-D.irtf-icnrg-ccnxsemantics SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-ccnxsemantics.xml'> <!ENTITY I-D.paik-icn-deployment-considerations SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.paik-icn-deployment-considerations.xml'> <!ENTITY I-D.kutscher-icnrg-netinf-proto SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.kutscher-icnrg-netinf-proto.xml'> <!ENTITY I-D.ravi-icnrg-5gc-icn SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.ravi-icnrg-5gc-icn.xml'> <!ENTITY I-D.moiseenko-icnrg-flowclass SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.moiseenko-icnrg-flowclass.xml'> <!ENTITY I-D.anilj-icnrg-icn-qos SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.anilj-icnrg-icn-qos.xml'> <!ENTITY I-D.mendes-icnrg-dabber SYSTEM 'http://xml.resource.org/public/rfc/bibxml3/reference.I-D.mendes-icnrg-dabber.xml'> ]> <!-- How to Reference in main body e.g. in <xref target="RFC8075" /> e.g. in <xref target="I-D.irtf-nfvrg-gaps-network-virtualization" /> e.g. in <xref target="I-D.mosko-icnrg-ccnxurischeme" /> e.g. in <xref target="SAIL_NetInf" /> e.g. and the 5GEx project (https://www.5gex.eu/) --> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="3"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?> <?rfc inline="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?>"rfc2629-xhtml.ent"> <rfc number="8763" consensus="true" xmlns:xi="http://www.w3.org/2001/XInclude" category="info" docName="draft-irtf-icnrg-deployment-guidelines-07"ipr="trust200902">ipr="trust200902" obsoletes="" updates="" submissionType="IRTF" xml:lang="en" tocInclude="true" tocDepth="3" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 2.39.0 --> <front> <title abbrev="Deployment Considerations for ICN"> Deployment Considerations for Information-Centric Networking (ICN) </title><!-- AUTHORS --><seriesInfo name="RFC" value="8763"/> <author fullname="Akbar Rahman" initials="A." surname="Rahman"> <organization abbrev="InterDigital Communications, LLC"> InterDigital Communications, LLC </organization> <address> <postal> <street>1000 Sherbrooke Street West, 10th floor</street> <city>Montreal</city><code> H3A<code>H3A 3G4</code> <country>Canada</country> </postal> <email>Akbar.Rahman@InterDigital.com</email> <uri>http://www.InterDigital.com/</uri> </address> </author> <author fullname="Dirk Trossen" initials="D." surname="Trossen"> <organizationabbrev="InterDigital Europe, Ltd"> InterDigital Europe, Ltd </organization>abbrev="Huawei">Huawei Technologies Duesseldorf GmbH</organization> <address> <postal><street>64 Great Eastern Street, 1st Floor</street> <city>London</city> <code>EC2A 3QR</code> <country>United Kingdom</country><street>Riesstrasse 25</street> <city>Munich</city> <code>80992</code> <country>Germany</country> </postal><email>Dirk.Trossen@InterDigital.com</email> <uri>http://www.InterDigital.com/</uri><email>dirk.trossen@huawei.com</email> <uri>http://www.huawei.com/</uri> </address> </author> <author fullname="Dirk Kutscher" initials="D." surname="Kutscher"> <organizationabbrev="University of Applied Sciences Emden/Leer">abbrev="Emden University"> University of Applied Sciences Emden/Leer </organization> <address> <postal> <street>Constantiapl. 4</street> <city>Emden</city> <code>26723</code> <country>Germany</country> </postal> <email>ietf@dkutscher.net</email> <uri>https://www.hs-emden-leer.de/en/</uri> </address> </author> <author fullname="Ravi Ravindran" initials="R." surname="Ravindran"><organization abbrev="Futurewei"> Future<organization> Sterlite Technologies </organization> <address> <postal><street>2330 Central Expressway</street><street>5201 Greatamerica Pkwy</street> <city>Santa Clara</city><code>95050</code> <country>USA</country><code>95054</code> <country>United States of America</country> </postal><email>ravi.ravindran@futurewei.com</email><email>ravi.ravindran@gmail.com</email> </address> </author> <datemonth="September" year="2019" />month="April" year="2020"/> <area>Internet Research Task Force (IRTF)</area><workgroup>ICNRG</workgroup><workgroup>Information-Centric Networking</workgroup> <abstract> <t>Information-Centric Networking (ICN) is now reaching technological maturity after many years of fundamental research and experimentation. This document provides a number of deployment considerations in the interest of helping the ICN community move forward to the next step of live deployments. First, the major deployment configurations for ICN aredescribeddescribed, including the key overlay and underlay approaches.ThenThen, proposed deployment migration paths are outlined to address major practicalissuesissues, such as network and application migration. Next, selected ICN trial experiences are summarized. Finally, protocol areas that require further standardization are identified to facilitate future interoperable ICN deployments. This document is a product of the Information-Centric Networking Research Group (ICNRG). </t> </abstract> </front> <middle> <sectionanchor="sec:introduction" title="Introduction">anchor="sec_introduction" numbered="true" toc="default"> <name>Introduction</name> <t>The ICNRG charter identifies deployment guidelines as an important topic area for the ICN community. Specifically, the charter states that defining concrete migration paths for ICN deploymentswhichthat avoid forkliftupgrades,upgrades and defining practical ICN interworking configurations with the existing Internetparadigm,paradigm are key topic areas that require further investigation <xref target="ICNRGCharter"/>.format="default"/>. Also, it is well understood that results and conclusions from anymidmid- to large-scale ICN experiments in the live Internet will also provide useful guidance for deployments. </t> <t>So far, outside of some preliminaryinvestigationsinvestigations, such as <xref target="I-D.paik-icn-deployment-considerations"/>,format="default"/>, there has not been much progress on this topic. This document attempts to fill some of these gaps by defining clear deployment configurations forICN,ICN and associated migration pathways for these configurations. Also, selected deployment trial experiences of ICN technology are summarized. Recommendations are also made for potential future IETF standardization of key protocol functionality that will facilitate interoperable ICN deployments going forward. </t> <t>The major configurations of possible ICN deployments are identified in this document as (1) Clean-slate ICN replacement of existing Internetinfrastructure;infrastructure, (2)ICN-as-an-Overlay;ICN-as-an-Overlay, (3)ICN-as-an-Underlay;ICN-as-an-Underlay, (4)ICN-as-a-Slice;ICN-as-a-Slice, and (5) Composite-ICN. Existing ICN trial systems primarily fall under the ICN-as-an-Overlay,ICN-as-an-UnderlayICN-as-an-Underlay, and Composite-ICN configurations. Each of these deployment configurations have their respective strengths and weaknesses. This document will aim to provide guidance for current and future members of the ICN community when they consider deployment of ICN technologies. </t> <t>This document represents the consensus of the Information-Centric Networking Research Group (ICNRG). It has been reviewed extensively by the Research Group (RG) members active in the specific areas of work covered by the document.</t> </section> <sectionanchor="sec:terminology" title="Terminology"> <!-- <t> The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in <xref target='RFC2119'>. </t> -->anchor="sec_terminology" numbered="true" toc="default"> <name>Terminology</name> <t> This document assumes readers are, in general, familiar with the terms and concepts that are defined in <xref target="RFC7927"/>format="default"/> and <xref target="I-D.irtf-icnrg-terminology"/>.format="default"/>. In addition, this document defines the following terminology:<list style="empty"> <t>Deployment - In the context of this document, deployment refers to the</t> <dl newline="true" spacing="normal"> <dt>Deployment:</dt> <dd>The final stage of the process of setting up an ICN network that is (1) ready for useful work (e.g., transmission ofend userend-user video and text) in a liveenvironment,environment and (2) integrated and interoperable with the Internet. We consider the Internet in its widest sense where it encompasses various access networks (e.g.,WiFi, MobileWi-Fi or mobile radio network), service edge networks (e.g., for edge computing), transport networks,CDNs,Content Distribution Networks (CDNs), core networks (e.g.,Mobilemobile core network), and back-end processing networks (e.g.,Data Centres).data centers). However, throughoutthe document we typically limitthis document, the discussion is typically limited to edge networks, corenetworksnetworks, andCDNsCDNs, forsimplicity. </t> <t>Information-Centricsimplicity.</dd> <dt>Information-Centric Networking(ICN) - A(ICN):</dt> <dd>A data-centric network architecture where accessing data by name is the essential network primitive. See <xref target="I-D.irtf-icnrg-terminology"/>format="default"/> for furtherinformation. </t> <t>Networkinformation.</dd> <dt>Network Functions Virtualization(NFV): A(NFV):</dt> <dd>A networking approach where network functions (e.g.,firewalls,firewalls or load balancers) are modularized as software logic that can run on general purposehardware, and thushardware and, thus, are specifically decoupled from the previous generation of proprietary and dedicated hardware. See <xreftarget="I-D.irtf-nfvrg-gaps-network-virtualization" />target="RFC8568" format="default"/> for furtherinformation. </t> <t>Software-Definedinformation.</dd> <dt>Software-Defined Networking(SDN) - A(SDN):</dt> <dd>A networking approach where the control and dataplaneplanes for switches are separated, allowing for realizingcapabilitiescapabilities, such as traffic isolation and programmable forwarding actions. See <xref target="RFC7426"/>format="default"/> for furtherinformation. </t> </list> </t>information.</dd> </dl> </section> <sectionanchor="sec:acronyms" title="Acronyms List"> <t> <list style="empty"> <t>API - Applicationanchor="sec_acronyms" numbered="true" toc="default"> <name>Abbreviations List</name> <dl newline="false" spacing="normal" indent="13"> <dt>API:</dt> <dd>Application ProgrammingInterface</t> <t>BIER - Bit IndexedInterface</dd> <dt>BIER:</dt> <dd>Bit Index ExplicitReplication</t> <t>BoF - BirdsReplication</dd> <dt>BoF:</dt> <dd>Birds of a Feather(session)</t> <t>CCN - Content Centric Networking</t> <t>CCNx - Content Centric Networking</t> <t>CDN - Content(session)</dd> <dt>CCNx:</dt> <dd>Content-Centric Networking</dd> <dt>CDN:</dt> <dd>Content DistributionNetwork</t> <t>CoAP - ConstrainedNetwork</dd> <dt>CoAP:</dt> <dd>Constrained ApplicationProtocol</t> <t>DASH - DynamicProtocol</dd> <dt>DASH:</dt> <dd>Dynamic Adaptive Streaming overHTTP</t> <t>DiffServ - Differentiated Services</t> <t>DoS - Denial of Service</t> <t>DTN - Delay Tolerant Networking</t> <t>ETSI - European TelecommunicationHTTP</dd> <dt>Diffserv:</dt> <dd>Differentiated Services</dd> <dt>DoS:</dt> <dd>Denial of Service</dd> <dt>DTN:</dt> <dd>Delay-Tolerant Networking</dd> <dt>ETSI:</dt> <dd>European Telecommunications StandardsInstitute</t> <t>EU - European Union</t> <t>FP7 - 7thInstitute</dd> <dt>EU:</dt> <dd>European Union</dd> <dt>FP7:</dt> <dd>7th Framework Programme for Research and TechnologicalDevelopment</t> <t>HLS - HTTPDevelopment</dd> <dt>HLS:</dt> <dd>HTTP LiveStreaming</t> <t>HTTP - Hyper TextStreaming</dd> <dt>HTTP:</dt> <dd>HyperText TransferProtocol</t> <t>HTTPS- Hyper TextProtocol</dd> <dt>HTTPS:</dt> <dd>HyperText Transfer ProtocolSecure</t> <t>H2020- HorizonSecure</dd> <dt>H2020:</dt> <dd>Horizon 2020 (researchprogram)</t> <t>ICN - Information-Centric Networking</t> <t>ICNRG- Information-Centricprogram)</dd> <dt>ICN:</dt> <dd>Information-Centric Networking</dd> <dt>ICNRG:</dt> <dd>Information-Centric Networking ResearchGroup</t> <t>IETF - InternetGroup</dd> <dt>IETF:</dt> <dd>Internet Engineering TaskForce</t> <t>IntServ - Integrated Services</t> <t>IoT - Internet of Things</t> <t>IP - Internet Protocol</t> <t>IPv4 - InternetForce</dd> <dt>IntServ:</dt> <dd>Integrated Services</dd> <dt>IoT:</dt> <dd>Internet of Things</dd> <dt>IP:</dt> <dd>Internet Protocol</dd> <dt>IPv4:</dt> <dd>Internet Protocol Version4</t> <t>IPv6 - Internet4</dd> <dt>IPv6:</dt> <dd>Internet Protocol Version6</t> <t>IPTV - Internet6</dd> <dt>IPTV:</dt> <dd>Internet ProtocolTelevision</t> <t>ISIS - IntermediateTelevision</dd> <dt>IS-IS:</dt> <dd>Intermediate System to IntermediateSystem</t> <t>ISP - InternetSystem</dd> <dt>ISP:</dt> <dd>Internet ServiceProvider</t> <t>k - kilo (1000)</t> <t>L2 - Layer 2</t> <t>LTE - LongProvider</dd> <dt>k:</dt> <dd>kilo (1000)</dd> <dt>L2:</dt> <dd>Layer 2</dd> <dt>LTE:</dt> <dd>Long Term Evolution (or 4th generation cellularsystem)</t> <t>MANO - Management and Orchestration</t> <t>MEC - Mobilesystem)</dd> <dt>MANO:</dt> <dd>Management and Orchestration</dd> <dt>MEC:</dt> <dd>Multi-access EdgeComputing</t> <t>Mbps - MegabitsComputing</dd> <dt>Mbps:</dt> <dd>Megabits persecond</t> <t>M2M - Machine-to-Machine</t> <t>NAP - Networksecond</dd> <dt>M2M:</dt> <dd>Machine-to-Machine</dd> <dt>NAP:</dt> <dd>Network AttachmentPoint</t> <t>NDN - NamedPoint</dd> <dt>NDN:</dt> <dd>Named DataNetworking</t> <t>NETCONF - NetworkNetworking</dd> <dt>NETCONF:</dt> <dd>Network ConfigurationProtocol</t> <t>NetInf - NetworkProtocol</dd> <dt>NetInf:</dt> <dd>Network of Information</t> <t>NFD - Named</dd> <dt>NFD:</dt> <dd>Named Data Networking ForwardingDaemon</t> <t>NFV - NetworkDaemon</dd> <dt>NFV:</dt> <dd>Network FunctionsVirtualization</t> <t>NICT -Virtualization</dd> <dt>NICT:</dt> <dd>Japan's National Institute of Information and CommunicationsTechnology of Japan</t> <t>NR - NewTechnology</dd> <dt>NR:</dt> <dd>New Radio (access network for5G)</t> <t>OAM - Operations and Maintenance</t> <t>ONAP - Open5G)</dd> <dt>OAM:</dt> <dd>Operations, Administration, and Maintenance</dd> <dt>ONAP:</dt> <dd>Open Network AutomationPlatform</t> <t>OSPF - OpenPlatform</dd> <dt>OSPF:</dt> <dd>Open Shortest PathFirst</t> <t>PoC - ProofFirst</dd> <dt>PoC:</dt> <dd>Proof of Concept(demo)</t> <t>POINT-(demo)</dd> <dt>POINT:</dt> <dd> IP Over ICN–- the better IP(project)</t> <t>qMp - Quick(project)</dd> <dt>qMp:</dt> <dd>Quick MeshProject</t> <t>QoS - Quality of Service</t> <t>RAM - RandomProject</dd> <dt>QoS:</dt> <dd>Quality of Service</dd> <dt>RAM:</dt> <dd>Random AccessMemory</t> <t>RAN - RadioMemory</dd> <dt>RAN:</dt> <dd>Radio AccessNetwork</t> <t>REST - RepresentationalNetwork</dd> <dt>REST:</dt> <dd>Representational State Transfer(architecture)</t> <t>RESTCONF - Representational(architecture)</dd> <dt>RESTCONF:</dt> <dd>Representational State Transfer Configuration(protocol)</t> <t>RIFE - Architecture(protocol)</dd> <dt>RIFE:</dt> <dd>Architecture for an Internet For Everybody(project)</t> <t>RIP - Routing(project)</dd> <dt>RIP:</dt> <dd>Routing Information Protocol</t> <t>ROM - Read Only Memory</t> <t>RSVP - Resource</dd> <dt>ROM:</dt> <dd>Read-Only Memory</dd> <dt>RSVP:</dt> <dd>Resource ReservationProtocol</t> <t>RTP - Real-timeProtocol</dd> <dt>RTP:</dt> <dd>Real-time TransportProtocol</t> <t>SDN - Software-Defined Networking</t> <t>SFC - ServiceProtocol</dd> <dt>SDN:</dt> <dd>Software-Defined Networking</dd> <dt>SFC:</dt> <dd>Service FunctionChaining</t> <t>SLA - ServiceChaining</dd> <dt>SLA:</dt> <dd>Service LevelAgreement</t> <t>TCL - TransportAgreement</dd> <dt>TCL:</dt> <dd>Transport ConvergenceLayer</t> <t>TCP - TransmissionLayer</dd> <dt>TCP:</dt> <dd>Transmission ControlProtocol</t> <t>UDP - UserProtocol</dd> <dt>UDP:</dt> <dd>User DatagramProtocol</t> <t>UMOBILE - UniversalProtocol</dd> <dt>UMOBILE:</dt> <dd>Universal Mobile-centric and Opportunistic CommunicationsArchitecture</t> <t>US - United States</t> <t>USA - UnitedArchitecture</dd> <dt>US:</dt> <dd>United States</dd> <dt>USA:</dt> <dd>United States ofAmerica</t> <t>VoD - Video on Demand</t> <t>VPN - VirtualAmerica</dd> <dt>VoD:</dt> <dd>Video on Demand</dd> <dt>VPN:</dt> <dd>Virtual PrivateNetwork</t> <t>WG - Working Group</t> <t>YANG - YetNetwork</dd> <dt>WG:</dt> <dd>Working Group</dd> <dt>YANG:</dt> <dd>Yet Another Next Generation (data modelinglanguage)</t> <t>5G - Fifthlanguage)</dd> <dt>5G:</dt> <dd>Fifth Generation (cellularnetwork)</t> <t>6LoWPAN - IPv6network)</dd> <dt>6LoWPAN:</dt> <dd>IPv6 over Low-Power Wireless Personal AreaNetworks</t> </list> </t>Networks</dd> </dl> </section> <sectionanchor="sec:configurations" title="Deployment Configurations">anchor="sec_configurations" numbered="true" toc="default"> <name>Deployment Configurations</name> <t>In this section, we present various deployment options for ICN. These are presented as "configurations" that allow for studying these options further. While this document will outline experiences withvariousa number of these configurations (in <xreftarget="sec:trial_experiences" />),target="sec_trial_experiences" format="default"/>), we will not provide an in-depth technical or commercial evaluation for any of them--- forthisthis, we refer to existing literature in thisspacespace, such as <xref target="Tateson"/>.format="default"/>. </t> <sectionanchor="sec:replacements" title="Clean-slate ICN">anchor="sec_replacements" numbered="true" toc="default"> <name>Clean-Slate ICN</name> <t>ICN has often been described as a "clean-slate" approach with the goal to renew or replace the complete IP infrastructure of the Internet. As such, existing routing hardwareas well asand ancillaryservicesservices, such as existing applicationswhichthat are typically tied directly to the TCP/IPprotocol stackstack, are not taken for granted. For instance, a Clean-slate ICN deployment would see existing IP routers being replaced by ICN-specific forwarding and routing elements, such as NFD <xref target="NFD"/>, CCNformat="default"/>, CCNx routers <xref target="Jacobson"/>format="default"/>, orPURSUITPublish-Subscribe Internet Technology (PURSUIT) forwarding nodes <xref target="IEEE_Communications"/>.format="default"/>. </t> <t>While such clean-slate replacement could be seen as exclusive for ICN deployments, some ICN approaches (e.g., <xref target="POINT"/>)format="default"/>) also rely on the deployment of general infrastructure upgrades, in thiscasecase, SDN switches. Different proposals have been made for various ICN approaches to enable the operation over an SDN transport <xref target="Reed"/><xrefformat="default"/> <xref target="CONET"/><xrefformat="default"/> <xref target="C_FLOW"/>.format="default"/>. </t> </section> <sectionanchor="sec:overlay" title="ICN-as-an-Overlay"> <t>Similarlyanchor="sec_overlay" numbered="true" toc="default"> <name>ICN-as-an-Overlay</name> <t>Similar to other significant changes to the Internet routing fabric, particularly the transition from IPv4 to IPv6 or the introduction of IP multicast, this deployment configuration foresees the creation of an ICN overlay. Note that this overlay approach is sometimes, informally, also referred to as a tunneling approach. The overlay approach can be implemented directlysuch as ICN-over-UDP(e.g., ICN-over-UDP), as described in <xref target="CCNx_UDP"/>.format="default"/>. Alternatively, the overlay can be accomplished via ICN-in-L2-in-IP as in <xref target="IEEE_Communications"/>format="default"/>, which describes a recursive layering process. Another approach used in the Network of Information (NetInf) is to define a convergence layer to map NetInf semantics to HTTP <xref target="I-D.kutscher-icnrg-netinf-proto"/>.format="default"/>. Finally, <xref target="Overlay_ICN"/>format="default"/> describes an incremental approach to deploying an ICN architecture particularlywell-suitedwell suited toSDN basedSDN-based networks by also segregating ICNuseruser- andcontrol planecontrol-plane traffic. </t><t>Regardless<t>However, regardless of the flavor,however,the overlay approach results in islands of ICN deployments over existing IP-based infrastructure. Furthermore, these ICN islands are typically connected to each other via ICN/IP tunnels. In certainscenariosscenarios, this requires interoperability between existing IP routing protocols (e.g., OSPF, RIP,ISIS)or IS-IS) andICN basedICN-based ones. ICN-as-an-Overlay can be deployed over the IP infrastructure in either edge or core networks. This overlay approach is thus very attractive for ICN experimentation andtestingtesting, as it allows rapid and easy deployment of ICN over existing IP networks. </t> </section> <sectionanchor="sec:underlay" title="ICN-as-an-Underlay"> <t>Proposalsanchor="sec_underlay" numbered="true" toc="default"> <name>ICN-as-an-Underlay</name> <t>Proposals, such as <xref target="POINT"/>format="default"/> and <xref target="White"/>format="default"/>, outline the deployment option of using an ICN underlay that would integrate with existing (external) IP-based networks by deployingapplication layerapplication-layer gateways at appropriate locations. The main reasons for such a configuration option is the introduction of ICN technology in given islands (e.g., inside a CDN or edge IoT network) to reap the benefits of nativeICNICN, in terms of underlying multicast delivery, mobility support, fast indirection due to location independence, in-networkcomputingcomputing, and possibly more. The underlay approach thus results in islands of native ICN deploymentswhichthat are connected to the rest of the Internet through protocol conversion gateways or proxies. Routing domains are strictly separated. Outside of the ICN island, normal IP routing protocols apply. Within the ICN island,ICN basedICN-based routing schemes apply. The gateways transfer the semantic content of the messages (i.e., IP packet payload) between the two routing domains. </t> <sectionanchor="sec:application_gateways" title="Edge Network">anchor="sec_application_gateways" numbered="true" toc="default"> <name>Edge Network</name> <t>Native ICN networks may be located at the edge of the network where the introduction of new network architectures and protocols is easier in so-called greenfield deployments. In thiscontextcontext, ICN is an attractive option forscenariosscenarios, such as IoT <xref target="I-D.irtf-icnrg-icniot"/>.format="default"/>. The integration with the current IP protocol suite takes place at an application gateway/proxy at the edge network boundary, e.g., translating incoming CoAP request/response transactions <xref target="RFC7252"/>format="default"/> into ICN message exchanges or vice versa. </t> <t>The work in <xref target="VSER"/>format="default"/> positions ICN as an edge service gateway driven by a generalizedICN basedICN-based service orchestration system with its own compute and network virtualization controllers to manage an ICN infrastructure. The platform also offers service discovery capabilities to enable user applications to discover appropriate ICN service gateways. To exemplify a scenario in a usecase scenario,case, the <xref target="VSER"/>format="default"/> platform shows the realization of a multi-party audio/video conferencing service over suchaan edge cloud deployment of ICN routers realized over commodity hardware platforms. This platform has also been extended to offer seamless mobilityand mobilityas a service that <xref target="VSER-Mob"/>format="default"/> features. </t> </section> <sectionanchor="sec:http_ip" title="Core Network">anchor="sec_http_ip" numbered="true" toc="default"> <name>Core Network</name> <t>In thissub-option,suboption, a core network would utilize edge-based protocol mapping onto the native ICN underlay. For instance, <xref target="POINT"/>format="default"/> proposes to map HTTPtransactions,transactions or some otherIP based transactionsIP-based transactions, such as CoAP, directly onto an ICN-based message exchange. This mapping is realized at the NAP,such as realizedfor example, in access points or customer premise equipment,whichwhich, inturnturn, provides a standard IP interface to existing user devices.The NAPs thusThus, the NAP provides the apparent perception of an IP-based core networktowardstoward any external peering network. </t> <t>The work in <xref target="White"/>format="default"/> proposes a similar deployment configuration. There, the goal is to use ICN for content distribution within CDN server farms. Specifically, the protocol mapping is realized at the ingress of the server farm where the HTTP-based retrieval request is served, while the response is delivered through a suitable egress node translation. </t> </section> </section> <sectionanchor="sec:icn_slice" title="ICN-as-a-Slice">anchor="sec_icn_slice" numbered="true" toc="default"> <name>ICN-as-a-Slice</name> <t> The objective ofNetworknetwork slicing <xreftarget="NGMN-5G"/>target="NGMN-5G" format="default"/> is to multiplex a general pool of compute,storagestorage, and bandwidth resources among multiple service networks with exclusive SLA requirements on transport andcompute levelcompute-level QoS and security. This is enabled through NFV and SDN technology functions thatenablesenable functional decompositionhence(hence, modularity, independent scalability ofcontrolcontrol, and/or the user-planefunctions, agilityfunctions), agility, andservice drivenservice-driven programmability. Network slicing is often associated with 5G but is clearly not limited to such systems. However, from a 5G perspective, the definition of slicing includes accessnetworknetworks enabling dynamic slicing of the spectrum resources among variousservicesservices, hence naturally extending itself to end points andalsocloud resources across multiple domains, to offer end-to-end guarantees.TheseOnce instantiated, these slicesonce instantiatedcould include a mix of connectivity serviceslike LTE-as-a-service or OTT(e.g., LTE-as-a-service), Over-the-Top (OTT) serviceslike VoD(e.g., VoD), or other IoT services through composition of a group of virtual and/or physical network functions atcontrol, userthe control-, user-, andservice plane level.service-plane levels. Such a framework can also be used to realize ICN slices with its own control and forwardingplaneplane, over which one or more end-user services can be delivered <xreftarget="NGMN-Network-Slicing"/>.</t>target="NGMN-Network-Slicing" format="default"/>.</t> <t>The 5G next generation architecture <xreftarget="fiveG-23501"/>target="fiveG-23501" format="default"/> provides the flexibility to deploy the ICN-as-a-Slice over either the edge(RAN), Mobile core network,(RAN) or mobile core network; otherwise, the ICN-as-a-Slice may be deployedend-to-end.end to end. Further discussions on extending the architecture presented in <xreftarget="fiveG-23501"/>target="fiveG-23501" format="default"/> and the corresponding procedures in <xreftarget="fiveG-23502"/>target="fiveG-23502" format="default"/> to support ICN has been provided in <xref target="I-D.ravi-icnrg-5gc-icn"/>.format="default"/>. Thedraftdocument elaborates on two possible approaches to enableICN. First,ICN: (1) as an edge service using the local data network (LDN) feature in 5G usingUPFUser Plane Function (UPF) classification functions to fast handover to the ICNforwarder; the other isforwarder and (2) as a native deployment using the non-IPPDUProtocol Data Unit (PDU) support that would allow new network layer PDU to be handed over to ICN UPFs collocated with thegNB functions,Generation NodeB (gNB) functions without invoking any IP functions. While the former deployment would still rely on3GPP based3GPP-based mobility functions, the later would allow mobility to be handled natively by ICN.HoweverHowever, both these deployment modes should benefit from other ICNfeaturesfeatures, such as in-network caching and computing. Associated with this ICNuser planuser-plane enablement,control planecontrol-plane extensions are also proposed leveraging5GC’s5th Generation Core Network (5GC)'s interface to other application functions(AF)(AFs) to allow new networkservice levelservice-level programmability. Such a generalized network slicing framework should be able to offer service slices over both IP and ICN. Coupled with the view of ICN functions as being"chained service functions""service function chaining" <xreftarget="RFC7665"/>,target="RFC7665" format="default"/>, an ICN deployment within such a slice could also be realized within the emerging control plane that is targeted for adoption in future (e.g., 5G mobile) network deployments. Finally, it should be noted that ICN is not creating the networkslice,slice but instead that the slice is created to runana 5G-ICN instance <xreftarget="Ravindran"/>.</t>target="Ravindran" format="default"/>.</t> <t>At the level of the specific technologies involved, such as ONAP <xreftarget="ONAP"/> thattarget="ONAP" format="default"/> (which can be used to orchestrateslices,slices), the 5G-ICN slice requirescompatibilitycompatibility, forinstanceinstance, at the level of the forwarding/data plane depending on if it is realized as an overlay or using programmable data planes. With SDN emerging for new network deployments, some ICN approaches will need to integratewith SDNas adata planedata-plane forwardingfunction,function with SDN, as briefly discussed in <xreftarget="sec:replacements" />.target="sec_replacements" format="default"/>. Furthercross domaincross-domain ICN slices can also be realized usingframeworksframeworks, such as <xreftarget="ONAP"/>. </t>target="ONAP" format="default"/>.</t> </section> <sectionanchor="sec:hybrid" title="Composite-ICN Approach">anchor="sec_hybrid" numbered="true" toc="default"> <name>Composite-ICN Approach</name> <t>Some deployments do not clearly correspond to any of the previously defined basic configurations of (1) Clean-slateICN;ICN, (2)ICN-as-an-Overlay;ICN-as-an-Overlay, (3)ICN-as-an-Underlay;ICN-as-an-Underlay, and (4) ICN-as-a-Slice. Or, a deployment may contain a composite mixture of the properties of these basic configurations. For example, the Hybrid ICN <xref target="H-ICN_1"/>format="default"/> approach carries ICN names in existing IPv6 headers and does not have distinct gateways or tunnels connecting ICNislands,islands or any other distinct feature identified in the previous basic configurations. So we categorize HybridICN,ICN and other approaches that do not clearly correspond to one of the other basicconfigurations,configurations as a Composite-ICN approach.</t> </section> </section> <sectionanchor="sec:migration" title="Deploymentanchor="sec_migration" numbered="true" toc="default"> <name>Deployment MigrationPaths">Paths</name> <t>We now focus on the various migration paths that will have importance to the various stakeholders that are usually involved in the deployment of ICN networks. We can identify these stakeholders as:<list style="symbols"> <t>Application providers</t> <t>ISPs</t> <ul spacing="normal"> <li>application providers</li> <li>ISPs and service providers, both as coreas well asand access network providers,and alsoas well as ICN networkproviders</t> <t>CDNproviders</li> <li>CDN providers (due to the strong relation of the ICN proposition to contentdelivery)</t> <t>End devicedelivery)</li> <li>end-device manufacturers andusers</t> </list>users</li> </ul> <t> Our focus is on technological aspects of such migration. Economic or regulatory aspects, such as those studied in <xref target="Tateson"/>,format="default"/>, <xref target="Techno_Economic"/>format="default"/>, and <xref target="Internet_Pricing"/>format="default"/>, are left out of our discussion. </t> <sectionanchor="sec:apps_service" title="Applicationanchor="sec_apps_service" numbered="true" toc="default"> <name>Application and ServiceMigration">Migration</name> <t>The Internet supports a multitude of applications and services using the many protocols defined over thepacket levelpacket-level IP service. HTTP provides one convergence point for these services with manyWebweb development frameworks based on the semantics provided by it. In recent years, even services such as video delivery have been migrating from the traditional RTP-over-UDP delivery to the various HTTP-level streaming solutions, such as DASH <xref target="DASH"/>format="default"/> and others. Nonetheless, many non-HTTP services exist, all of which need consideration when migrating from the IP-based Internet to an ICN-based one. </t> <t>The underlay deployment configuration option presented in <xreftarget ="sec:underlay" />target="sec_underlay" format="default"/> aims at providing some level of compatibility to the existing ecosystem through aproxy basedproxy-based message flow mapping mechanism (e.g., mapping of existing HTTP/TCP/IP message flows to HTTP/ICN message flows). A related approach of mapping TCP/IP to TCP/ICN message flows is described in <xref target="Moiseenko"/>.format="default"/>. Another approach described in <xref target="Marchal"/>format="default"/> uses HTTP/NDN gateways andfocusesfocuses, inparticularparticular, on the right strategy to map HTTP to NDN to guarantee a high level of compatibility with HTTP while enabling an efficient caching ofDatadata in the ICN island. The choice of approach is a design decision based on how to configure the protocol stack. For example, the approach described in <xref target="Moiseenko"/>format="default"/> carries the TCP layer into the ICNunderlay. Whileunderlay, while the <xref target="Marchal"/>format="default"/> approach terminates both HTTP and TCP at the edge of the ICN underlay and maps these functionalities onto existing ICN functionalities. </t> <t>Alternatively,ICN as an overlayICN-as-an-Overlay (<xreftarget="sec:overlay" />), as well astarget="sec_overlay" format="default"/>) and ICN-as-a-Slice (<xreftarget="sec:icn_slice" />),target="sec_icn_slice" format="default"/>) allow for the introduction of the full capabilities of ICN through new application/serviceinterfacesinterfaces, as well as operations in the network. With that, these approaches of deployment are likely to aim at introducing new application/services capitalizing on those ICN capabilities, such as in-network multicast and/or caching. </t> <t>Finally, <xref target="I-D.irtf-icnrg-icn-lte-4g"/>format="default"/> outlines a dual-stackend userend-user device approach that is applicable for all deployment configurations. Specifically, it introduces middleware layers (called the TCL) in the device that will dynamically adapt existing applications to either an underlying ICN protocol stack or standard IP protocol stack. This involves end devicesignallingsignaling with the network to determine which protocol stack instance and associated middleware adaptation layers to utilize for a given application transaction. </t> </section> <sectionanchor="sec:cdn_migration" title="Contentanchor="sec_cdn_migration" numbered="true" toc="default"> <name>Content Delivery NetworkMigration">Migration</name> <t>A significant number of services and applications are devoted to content delivery in some form,eithere.g., as video delivery, social media platforms, and many others. CDNs are deployed to assist these services through localizing the content requests and therefore reducing latency and possiblyincreaseincreasing utilization of availablebandwidthbandwidth, as well as reducing the load on origin servers. Similar to the previoussub-section,subsection, the underlay deployment configuration presented in <xreftarget ="sec:underlay" /> aimtarget="sec_underlay" format="default"/> aims at providing a migration path for existing CDNs. This is also highlighted in a BIERuse caseuse-case document <xref target="I-D.ietf-bier-multicast-http-response"/>,format="default"/>, specifically with potential benefits in terms of utilizing multicast in the delivery of content but also reducing load on originas well asand delegationserver.servers. We return to this benefit in the trial experiences in <xreftarget="sec:trial_experiences" />.target="sec_trial_experiences" format="default"/>. </t> </section> <sectionanchor="sec:edge_migration" title="Edgeanchor="sec_edge_migration" numbered="true" toc="default"> <name>Edge NetworkMigration">Migration</name> <t>Edge networks often see the deployment of novelnetwork levelnetwork-level technology, e.g., in the space of IoT.SuchFor many years, such IoT deployments havefor many yearsrelied, and often still do, on proprietary protocols forreasonsreasons, such as increased efficiency, lack of standardizationincentivesincentives, and others. Utilizing the underlay deployment configuration in <xreftarget="sec:application_gateways" />,target="sec_application_gateways" format="default"/>, application gateways/proxies can integrate such edge deployments into IP-based services, e.g., utilizingCoAPCoAP-based <xref target="RFC7252"/> basedformat="default"/> M2Mplatformsplatforms, such as oneM2M <xref target="oneM2M"/>format="default"/> or others. </t> <t>Another area of increased edge network innovation is that of mobile (access) networks, particularly in the context of the 5GMobilemobile networks.With the proliferation of networkNetwork softwarization (using technologies like service orchestration frameworks leveraging NFV and SDN concepts) are now common in access networks and other networksegments,segments. Therefore, the ICN-as-a-Slice deployment configuration in <xreftarget="sec:icn_slice" />target="sec_icn_slice" format="default"/> provides a suitable migration path for the integration of non-IP-based edge networks into the overall systemthroughby virtue of realizing the relevant (ICN) protocols in an access network slice. </t> <t>With the advent of SDN and NFV capabilities, so-called campus or site-specific deployments could see the introduction of ICN islands at the edge for scenarios such as gaming orAR/VR-baseddeploymentsfor,based on Augmented Reality (AR) / Virtual Reality (VR), e.g., smart cities or theme parks.</t> </section> <sectionanchor="sec:core_migration" title="Coreanchor="sec_core_migration" numbered="true" toc="default"> <name>Core NetworkMigration">Migration</name> <t>Migrating core networks of the Internet orMobilemobile networks requires not only significant infrastructure renewal but also the fulfillment of the key performance requirements, particularly in terms of throughput. For those parts of the core network that would migrate to an SDN-based opticaltransporttransport, the ICN-as-a-Slice deployment configuration in <xreftarget="sec:icn_slice" />target="sec_icn_slice" format="default"/> would allow the introduction of native ICN solutions within slices. This would allow for isolating the ICN traffic while addressing the specific ICN performancebenefits, suchbenefits (such as in-network multicast orcaching,caching) andconstraints, suchconstraints (such as the need for specific network elements within such isolatedslices.slices). For ICN solutions that natively work on top of SDN, the underlay deployment configuration in <xreftarget="sec:http_ip" />target="sec_http_ip" format="default"/> provides an additional migration path, preserving the IP-based services and applications at the edge of thenetwork,network while realizing the core network routing through an ICN solution (possibly itself realized in a slice of the SDN transport network). </t> </section> </section> <sectionanchor="sec:trial_experiences" title="Deploymentanchor="sec_trial_experiences" numbered="true" toc="default"> <name>Deployment TrialExperiences">Experiences</name> <t>In this section, we will outline trial experiences, often conducted within collaborative project efforts. Our focus here is on the realization of the various deployment configurations identified in <xreftarget="sec:configurations" />, andtarget="sec_configurations" format="default"/>; therefore, wethereforecategorize the trial experiences according to these deployment configurations. While a large body of work exists at the simulation or emulation level, we specifically exclude these studies from our analysis to retain the focus onreal lifereal-life experiences. </t> <sectionanchor="sec:overlay_deployment" title="ICN-as-an-Overlay"> <section anchor="sec:pursuit" title="FP7anchor="sec_overlay_deployment" numbered="true" toc="default"> <name>ICN-as-an-Overlay</name> <section anchor="sec_pursuit" numbered="true" toc="default"> <name>FP7 PURSUITEfforts">Efforts</name> <t>Although the FP7 PURSUIT <xref target="IEEE_Communications"/>format="default"/> efforts were generally positioned as a Clean-slate ICN replacement of IP (<xreftarget="sec:replacements" />),target="sec_replacements" format="default"/>), the project realized its experimentaltest bedtestbed as an L2 VPN-based overlay between several European,US as well asUS, and Asian sites, following the overlay deployment configuration presented in <xreftarget="sec:overlay" />.target="sec_overlay" format="default"/>. Software-based forwarders were utilized for the ICN message exchange, while native ICNapplications, e.g.,applications (e.g., for videotransmissions,transmissions) were showcased. At the height of the project efforts, about 70+ nodes were active in the (overlay) network with presentations given at severalconferencesconferences, as well as to the ICNRG. </t> </section> <sectionanchor="sec:sail" title="FP7anchor="sec_sail" numbered="true" toc="default"> <name>FP7 SAILTrial">Trial</name> <t> The Network of Information (NetInf) is the approach to ICN developed by the EU FP7SAILScalable and Adaptive Internet Solutions (SAIL) project <xref target="SAIL"/>.format="default"/>. NetInf provides both name-based forwarding with CCNx-like semantics and name resolution (for indirection andlate-binding).late binding). The NetInf architecture supports different deployment options through its convergencelayerlayer, such as using UDP, HTTP, and even DTN underlays. In its first prototypes and trials, NetInf was deployed mostly in an HTTP embedding and in a UDP overlay following the overlay deployment configuration in <xreftarget="sec:overlay" />. Referencetarget="sec_overlay" format="default"/>. <xref target="SAIL_Prototyping"/>format="default"/> describes severaltrialstrials, including a stadium environment and a multi-site testbed, leveragingNetInf’s Routing HintNetInf's routing hint approach for routing scalability <xref target="SAIL_Content_Delivery"/>.format="default"/>. </t> </section> <sectionanchor="sec:ndn" title="NDN Testbed">anchor="sec_ndn" numbered="true" toc="default"> <name>NDN Testbed</name> <t>The Named Data Networking (NDN) is one of the research projects of the National Science Foundation (NSF) of the USA as part of the Future Internet Architecture (FIA) Program. The original NDN proposal was positioned as a Clean-slate ICN replacement of IP (<xreftarget="sec:replacements" />).target="sec_replacements" format="default"/>). However, in several trials, NDN generally follows the overlay deployment configuration of <xreftarget="sec:overlay" />target="sec_overlay" format="default"/> to connect institutions over the public Internet across several continents. The use cases covered in the trials include real-timevideo-conferencing, geo-locating,videoconferencing, geolocating, and interfacing to consumer applications. Typical trials involve up to 100NDN enabledNDN-enabled nodes <xref target="NDN-testbed"/>format="default"/> <xref target="Jangam"/>.format="default"/>. </t> </section> <sectionanchor="sec:ccn" title="ICN2020 Efforts">anchor="sec_ccn" numbered="true" toc="default"> <name>ICN2020 Efforts</name> <t>ICN2020 is anICN relatedICN-related project of the EU H2020 research program and NICT <xref target="ICN2020-overview"/>.format="default"/>. ICN2020 has a specific focus to advance ICN towards real-world deployments throughapplicationsapplications, such as video delivery, interactivevideosvideos, and social networks. The federated testbed spans the USA,EuropeEurope, and Japan. Both NDN andCCNCCNx approaches are within the scope of the project. </t> <t>ICN2020 has released a set of interim public technicalreports <xref target="ICN2020" />.reports. The report <xref target="ICN2020-Experiments"/>format="default"/> contains a detailed description of the progress made in both local testbedsas well asand federated testbeds. The plan for the federated testbed includes integrating the NDN testbed, the CUTEi testbed <xref target="RFC7945"/>format="default"/> <xref target="CUTEi"/>format="default"/>, and the GEANT testbed <xref target="GEANT"/>format="default"/> to create an overlay deployment configuration of <xreftarget="sec:overlay" />target="sec_overlay" format="default"/> over the public Internet. The total network contains 37 nodes. Since video was an importantapplicationapplication, typical throughput was measured in certain scenarios and found to be in the order of 70 Mbps per node. </t> </section> <sectionanchor="sec:umobile" title="UMOBILE Efforts">anchor="sec_umobile" numbered="true" toc="default"> <name>UMOBILE Efforts</name> <t>UMOBILE is another of the ICN research projects under the H2020 research program <xref target="UMOBILE-overview"/>.format="default"/>. The UMOBILE architecture integrates the principles of DTN and ICN in a common framework to support edge computing and mobile opportunistic wireless environments (e.g., post-disaster scenarios and remote areas). The UMOBILE architecture <xref target="UMOBILE-2"/>format="default"/> was developed on top of the NDN framework by following the overlay deployment configuration of <xreftarget="sec:overlay" />.target="sec_overlay" format="default"/>. UMOBILE aims to extend Internet functionally by combining ICN and DTN technologies. </t> <t>One of the key aspects of UMOBILE was the extension of the NDN framework to locate network services (e.g., mobilitymanagement,management and intermittent connectivity support) and user services (e.g., pervasive content management) as close as possible to theend-usersend users to optimize bandwidth utilization and resource management. Another aspect was the evolution of the NDN framework to operate in challenging wireless networks, namely in emergency scenarios <xref target="UMOBILE-3"/>format="default"/> and environments with intermittent connectivity. To achieve this, the NDN framework was leveraged with a new messaging application called Oi! <xref target="UMOBILE-4"/>format="default"/> <xref target="UMOBILE-5"/> thatformat="default"/>, which supports intermittent wireless networking. UMOBILE also implements a new data-centric wireless routing protocol, DABBER <xref target="UMOBILE-6"/>format="default"/> <xref target="I-D.mendes-icnrg-dabber"/>,format="default"/>, which was designed based on data reachability metrics that takeinto considerationavailability of adjacent wireless nodes and different datasources.sources into consideration. Thecontextual-awarenesscontextual awareness of the wireless network operation is obtained via amachine learningmachine-learning agent running within the wireless nodes <xref target="UMOBILE-7"/>.format="default"/>. </t> <t>The consortium has completed several ICN deploymenttrails.trials. In apost disasterpost-disaster scenario trial <xref target="UMOBILE-8"/>,format="default"/>, a special DTN face was created to provide reachability to remote areas where there is no typical Internet connection. Anothertrailtrial was the ICN deployment over the "Guifi.net" community network in the Barcelona region. This trial focused on the evaluation of an ICN edge computing platform, called PiCasso <xref target="UMOBILE-9"/>.format="default"/>. In this trial, ten (10)raspberryRaspberry Pis were deployed across Barcelona to create an ICN overlay network on top of the existing IP routing protocol (e.g., qMp routing). This trial showed that ICN can play a key role in improving data delivery QoSas well asand reducing the traffic in intermittent connectivity environments (e.g., wireless community network). A third trial in Italy was focused on displaying the capability of the UMOBILE architecture to reach disconnected areas and assist responsible authorities in emergencies, corresponding to an infrastructure scenario. The demonstration encompassed seven (7) end-user devices, one (1)access-point,access point, and one (1) gateway. </t> </section> </section> <sectionanchor="sec:underlay_deployment" title="ICN-as-an-Underlay"> <section anchor="sec:point_rife" title="H2020anchor="sec_underlay_deployment" numbered="true" toc="default"> <name>ICN-as-an-Underlay</name> <section anchor="sec_point_rife" numbered="true" toc="default"> <name>H2020 POINT and RIFEEfforts">Efforts</name> <t>POINT and RIFE are two moreICN relatedICN-related research projects of the H2020 research program. The efforts in the H2020POINT+RIFEPOINT and RIFE projects follow the underlay deployment configuration in <xreftarget="sec:http_ip" />,target="sec_http_ip" format="default"/>; edge-based NAPs provide the IP/HTTP-level protocol mapping onto ICN protocol exchanges, while the SDN underlay (or the VPN-based L2 underlay) is used as a transport network. </t> <t>The multicastas well asand service endpoint surrogatebenefitsbenefit in HTTP-based scenarios, such as for HTTP-level streaming video delivery, and have been demonstrated in the deployed POINTtest bedtestbed with 80+ nodes being utilized. Demonstrations of this capability have been given to the ICNRG, and public demonstrations were also provided at events <xref target="MWC_Demo"/>.format="default"/>. The trial has also been accepted by the ETSI MEC group as a public proof-of-concept demonstration. </t> <t>While theafore-mentionedaforementioned demonstrations all use the overlay deployment, H2020 also has performed ICN underlay trials. One such trial involved commercial end users located in thePrimetelPrimeTel network in Cyprus with the use case centered on IPTV and HLS video dissemination. Another trial was performed over the "Guifi.net" community network in the Barcelona region, where the solution was deployed in 40 households, providing general Internet connectivity to the residents. Standard IPTVSTBsSet-Top Boxes(STBs), as well as HLS videoplayersplayers, were utilized in accordance with the aim of this deployment configuration, namely to provide application and service migration. </t> </section> <sectionanchor="sec:flame" title="H2020anchor="sec_flame" numbered="true" toc="default"> <name>H2020 FLAMEEfforts">Efforts</name> <t>The H2020FLAMEFacility for Large-Scale Adaptive Media Experimentation (FLAME) efforts concentrate on providing an experimental ground for the aforementioned POINT/RIFE solution in initially two city-scale locations, namely in Bristol and Barcelona. This trial followed the underlay deployment configuration in <xreftarget="sec:http_ip" />target="sec_http_ip" format="default"/>, as per the POINT/RIFE approach. Experiments were conducted with the city/university joint venture Bristol-is-Open(BIO),(BIO) to ensure the readiness of the city-scale SDN transport network for such experiments. Another trial was for the ETSI MEC PoC. This trial showcased operational benefits provided by the ICN underlay for the scenario of a location-based game. These benefits aim at reduced network utilization through improved video delivery performance (multicast of all captured videos to the service surrogates deployed in the city at sixlocations)locations), as well as reduced latency through theplayoutplay out of the video originating from the local NAP, collocated with theWiFi APWi-Fi Access Point (AP) instead of a remote server, i.e., the playout latency was bounded by the maximumsingle hopsingle-hop latency. </t> <t> Twenty three (23) large-scale media service experiments are planned as part of the H2020 FLAME efforts in the area of Future Media Internet (FMI). The platform, which includes the ICNcapabilitiescapabilities, integrated with NFV and SDN capabilities of the infrastructure. The ultimate goal of these platform efforts is the full integration of ICN into the overall media function platform for the provisioning of advanced (media-centric) Internet services. </t> </section> <sectionanchor="sec:cablelabs" title="CableLabsanchor="sec_cablelabs" numbered="true" toc="default"> <name>CableLabs Content DeliverySystem">System</name> <t>TheCablelabsCableLabs ICN work reported in <xref target="White"/>format="default"/> proposes an underlay deployment configuration based on <xreftarget="sec:http_ip" />.target="sec_http_ip" format="default"/>. The use case is ICN for content distribution within complex CDN server farms to leverage ICN's superior in-network caching properties. This CDN based on "island of ICN"based CDNis then used to service standard HTTP/IP-based content retrievalrequestrequests coming from the general Internet. This approach acknowledges that whole scale replacement (see <xreftarget="sec:replacements" />)target="sec_replacements" format="default"/>) of existing HTTP/IPend userend-user applications and relatedWebweb infrastructure is a difficult proposition. <xref target="White"/>format="default"/> is clear that the architecture proposedhadhas not yet been tested experimentally but that implementationswereare in process and expected in the 3-5 year time frame. </t> </section> <sectionanchor="sec:NDN_IoT" title="NDNanchor="sec_NDN_IoT" numbered="true" toc="default"> <name>NDN IoTTrials">Trials</name> <t><xref target="Baccelli"/>format="default"/> summarizes the trial of an NDN system adapted specifically for a wireless IoT scenario. The trial was run with 60 nodes distributed over severalmulti-storymultistory buildings in a university campus environment. The NDN protocols were optimized to run directly over 6LoWPAN wireless link layers. The performance of theNDN basedNDN-based IoT system was then compared to an equivalent system running standardIP basedIP-based IoT protocols. It was found that theNDN basedNDN-based IoT system was superior in severalrespectsrespects, including in terms of energyconsumption,consumption and for RAM and ROM footprints <xref target="Baccelli"/>format="default"/> <xref target="Anastasiades"/>.format="default"/>. For example, the binary file size reductions for NDN protocol stack versus standardIP basedIP-based IoT protocol stack on given devices were up to 60% less for ROM size and up to 80% less for RAM size. </t> </section> <sectionanchor="sec:NREN" title="NRENanchor="sec_NREN" numbered="true" toc="default"> <name>NREN ICNTestbed">Testbed</name> <t>The National Research and Education Network (NREN) ICN Testbed is a project sponsored by Cisco, Internet2, and the US Research and Education community. Participants include universities and US federal government entities that connect via anation-widenationwide VPN-based L2 underlay. The testbed uses theCCNCCNx approach and is based on the <xref target="CICN"/> open sourceformat="default"/> open-source software. There are approximately 15 nodes spread across the USAwhichthat connect to the testbed. The project's current focus is to advance data-intensive science and network research by improving data movement, searchability, and accessibility. </t> </section> <sectionanchor="sec:Doctor" title="Doctor Testbed">anchor="sec_Doctor" numbered="true" toc="default"> <name>DOCTOR Testbed</name> <t>TheDoctorDOCTOR project is a French research project meaning "Deployment and Securisation of new Functionalities in Virtualized Networking Environments". The project aims to run NDN over virtualized NFV infrastructure <xref target="Doctor"/>format="default"/> (based on Docker technology) and focuses on the NFV MANO aspects to build an operational NDN network focusing on important performancecriteriacriteria, such as security,performanceperformance, and interoperability. </t> <t>Thedata-planedata plane relies onaan HTTP/NDN gateway <xref target="Marchal"/>format="default"/> that processes HTTP traffic and transports it in an optimized way over NDN to benefit from the properties of theNDN-islandNDN island (i.e., by mapping HTTP semantics to NDN semantics within theNDN-island).NDN island). The testbed carries real Web traffic ofusers,users and has been currently evaluated with thetop-1000top 1000 most popularWeb sites.websites. The users only need to set the gateway as theWebweb proxy. Thecontrol-planecontrol plane relies on a central managerwhichthat usesmachine learning basedmachine-learning-based detection methods <xref target="Mai-1"/>format="default"/> from the date gathered by distributed probes and applies orchestratedcounter-measurescountermeasures against NDN attacks <xref target="Nguyen-1"/>format="default"/> <xref target="Nguyen-2"/>format="default"/> <xref target="Mai-2"/>format="default"/> or performance issues. A remediation can be, for example, thescale-upscale up of a bottleneckcomponent,component or the deployment of a securityfunctionfunction, like a firewall or a signature verification module. Test results thus far have indicated that key attacks can be detected accurately. For example, contentpoisioningpoisoning attacks can be detected at up to over 95% accuracy (with less than 0.01% false positives) <xref target="Nguyen-3"/>.format="default"/>. </t> </section> </section> <sectionanchor="sec:Other_configs" title="Composite-ICN Approach">anchor="sec_Other_configs" numbered="true" toc="default"> <name>Composite-ICN Approach</name> <t>Hybrid ICN <xref target="H-ICN_1"/>format="default"/> <xref target="H-ICN_2"/>format="default"/> is an approach where the ICN names are mapped to IPv6addresses,addresses and other ICN information is carried as payload inside the IP packet. This allows standard (ICN-unaware) IP routers to forward packets based on IPv6info,info but enables ICN-aware routers to apply ICN semantics. The intent is to enable rapid hybrid deployments and seamless interconnection of IP and Hybrid ICN domains. Hybrid ICN uses <xref target="CICN"/> open sourceformat="default"/> open-source software. Initial tests have been done with 150 clients consuming DASHvideosvideos, which showed good scalability properties at theServer Sideserver side using the Hybrid ICN transport <xref target="H-ICN_3"/>format="default"/> <xref target="H-ICN_2"/>.</t>format="default"/>.</t> </section> <sectionanchor="sec:trial_summary" title="Summaryanchor="sec_trial_summary" numbered="true" toc="default"> <name>Summary of DeploymentTrials">Trials</name> <t>In summary, there have been significant trials over the years with all the major ICN protocol flavors (e.g.,CCN,CCNx, NDN, and POINT) using both the ICN-as-an-Overlay and ICN-as-an-Underlay deployment configurations. The major limitations of the trials include the fact that only a limited number of applications have been tested. However, the tested applications include both native ICN and existingIP basedIP-based applications (e.g.,video-conferencingvideoconferencing and IPTV). Another limitation of the trials is that all of them involve less than 1k users.</t><t> The ICN-as-a-Slice configuration has just started being trialled by Huawei<t>Huawei and China Unicom have just started trials of the ICN-as-a-Slice configuration to demonstrate ICN features of security,mobilitymobility, and bandwidth efficiency over a wired infrastructure usingvideo conferencingvideoconferencing as the application scenario <xref target="Chakraborti"/>, alsoformat="default"/>; also, this prototype has been extended to demonstrate this over a 5G-NR access.</t> <t>The Clean-slate ICN approach has obviously never beentrialledin trials, as complete replacement of Internet infrastructure (e.g., existing applications, TCP/IP protocol stack, IP routers, etc.) is no longer considered a viable alternative.</t> <t>Finally, Hybrid ICN is a Composite-ICN approach that offers an interestingalternativealternative, as it allows ICN semantics to be embedded in standard IPv6 packets so the packets can be routed through either IP routers or Hybrid ICN routers. Note that some othertrialstrials, such as theDoctorDOCTOR testbed (<xreftarget="sec:Doctor" />)target="sec_Doctor" format="default"/>), could also be characterized as a Composite-ICNapproachapproach, because it contains both ICN gateways (as in ICN-as-an-Underlay) and virtualized infrastructure (as in ICN-as-a-Slice). However, for theDoctor testbedDOCTOR testbed, we have chosen to characterize it as an ICN-as-an-Underlay configuration because that is a dominant characteristic. </t> </section> </section> <sectionanchor="sec:standards" title="Deploymentanchor="sec_standards" numbered="true" toc="default"> <name>Deployment Issues Requiring FurtherStandardization"> <t>The ICN Research Challenges <xrefStandardization</name> <t><xref target="RFC7927"/>format="default">"Information-Centric Networking (ICN) Research Challenges"</xref> describes key ICN principles and technical research topics. As the title suggests, <xref target="RFC7927"/>format="default"/> is research oriented without a specific focus on deployment or standardization issues. This section addresses this open area by identifying key protocol functionality thatthatmay be relevant for further standardization effort in the IETF. The focus is specifically on identifying protocols that will facilitate future interoperable ICN deployments correlating to the scenarios identified in the deployment migration paths in <xreftarget="sec:migration" />.target="sec_migration" format="default"/>. The identified list of potential protocol functionality is not exhaustive. </t> <sectionanchor="sec:standards_apps" title="Protocolsanchor="sec_standards_apps" numbered="true" toc="default"> <name>Protocols for Application and ServiceMigration"> <t>End userMigration</name> <t>End-user applications and services need a standardized approach to trigger ICN transactions. For example, in Internet andWebweb applications today, there are established socket APIs, communication paradigmssuch(such asREST,REST), common libraries, and best practices. We see a need to study application requirements in an ICN environment further and, at the same time, develop new APIs and best practices that can take advantage of ICN communication characteristics. </t> </section> <sectionanchor="sec:standards_cdn" title="Protocolsanchor="sec_standards_cdn" numbered="true" toc="default"> <name>Protocols for Content Delivery NetworkMigration">Migration</name> <t>A key issue in CDNs is to quickly find a location of a copy of the object requested by an end user. In ICN, a Named Data Object (NDO) is typically defined by its name. <xref target="RFC6920"/>format="default"/> defines a mechanism that is suitable for static naming of ICN data objects. Other ways of encoding and representing ICN names have been described in <xreftarget="I-D.irtf-icnrg-ccnxmessages" />target="RFC8609" format="default"/> and <xreftarget="I-D.irtf-icnrg-ccnxsemantics" />.target="RFC8569" format="default"/>. Naming dynamically generated data requires differentapproaches (e.g., hash digest basedapproaches(e.g., hash-digest-based names would normally not work), and there is a lack of established conventions and standards. </t> <t>Another CDN issue for ICN is related to multicast distribution of content. Existing CDNs have started using multicast mechanisms for certaincasescases, such as forbroadcastbroadcasting streaming TV. However, as discussed in <xreftarget="sec:point_rife" />,target="sec_point_rife" format="default"/>, certain ICN approaches provide substantial improvements over IP multicast, such as the implicit support for multicast retrieval of content in all ICNflavours.flavors. </t> <t>Caching is an implicit feature in many ICN architectures that can improve performance and availability in several scenarios. The ICN in-network caching can augment managed CDN and improve its performance. The details of the interplay between ICN caching and managed CDN need further consideration. </t> </section> <sectionanchor="sec:standards_edge_core" title="Protocolsanchor="sec_standards_edge_core" numbered="true" toc="default"> <name>Protocols for Edge and Core NetworkMigration">Migration</name> <t>ICN provides the potential to redesign current edge and core network computing approaches. LeveragingICN’sICN's inherent security and its ability to make name data and dynamic computation results available independent oflocation,location can enable alight-weightlightweight insertion of traffic into the network without relying on redirection of DNS requests. For this, proxies that translate from commonly used protocols in the general Internet to ICN message exchanges in the ICN domain could be used for the migration of application and services within deployments at the network edge but also in core networks. This is similar to existing approaches for IoT scenarios where a proxy translates CoAP request/responses to other message formats. For example, <xref target="RFC8075"/>format="default"/> specifies proxy mapping between CoAP and HTTP protocols. Also, <xref target="RFC8613"/>format="default"/> is an example of how to pass end-to-end encrypted content between HTTP andCOAPCoAP by anapplication layerapplication-layer security mechanism. Further work is required to identify if an approach like <xref target="RFC8613"/>-like approach,format="default"/>, or some other approach, is suitable to preserve ICN message security through future protocol translation functions of gateways/proxies. </t> <t>Interaction and interoperability between existing IP routing protocols (e.g., OSPF, RIP,ISIS)or IS-IS) and ICN routingapproaches(e.g., NFD, CCNapproaches (e.g., NFD and CCNx routers) areexpectedexpected, especially in the overlay approach. Another important topic is the integration of ICN into networks that support virtualized infrastructure in the form of NFV/SDN and most likelyutilizingutilize SFC as a key protocol. Further work is required to validate this idea and document best practices. </t> <t>There are several existing approaches to supporting QoS in IPnetworksnetworks, includingDiffServ, IntServDiffserv, IntServ, and RSVP. Some initial ideas for QoS support in ICN networks are outlined in <xref target="I-D.moiseenko-icnrg-flowclass"/>format="default"/>, which proposesaan approach based on flow classificationbased approachto enablefunctionsfunctions, such ICN rate control and cache control.AlsoAlso, <xref target="I-D.anilj-icnrg-icn-qos"/>format="default"/> proposes how to useDiffServ DSCPDiffserv Differentiated Services Code Point (DSCP) codes to support QoS forICN basedICN-based data path delivery. Further work is required to identify the best approaches for support of QoS in ICN networks. </t> <t>OAM is a crucial area that has not yet been fully addressed by the ICN researchcommunity,community but which is obviously critical for future deployments of ICN. Potential areas that need investigation include whether the YANG datamodellingmodeling approach and associated NETCONF/RESTCONF protocols need any specific updates for ICN support. Another open area is how to measure and benchmark performance of ICN networks comparable to the sophisticated techniques that exist for standard IP networks, virtualizednetworksnetworks, and data centers. It should be noted that some initial progress has been made in the area of ICN network path traceroute facility withapproachesapproaches, such asCCNinfoCCNxinfo <xref target="I-D.irtf-icnrg-ccninfo"/>format="default"/> <xref target="Contrace"/>.format="default"/>. </t> </section> <sectionanchor="sec:ICN_Challenges_Summary_Gaps" title="Summaryanchor="sec_ICN_Challenges_Summary_Gaps" numbered="true" toc="default"> <name>Summary of ICN Protocol Gaps and Potential ProtocolEfforts">Efforts</name> <t>Without claiming completeness, <xreftarget="tab:mapping_protocol_effort"/>target="tab_mapping_protocol_effort" format="default"/> maps the open ICN issues identified in this document to potential protocol efforts that could address some aspects of the gap. </t><texttable anchor="tab:mapping_protocol_effort" title="Mapping<table anchor="tab_mapping_protocol_effort" align="center"> <name>Mapping of ICN Gaps to Potential ProtocolEfforts"> <ttcolEfforts</name> <thead> <tr> <th align="left">ICNGap</ttcol> <ttcolGap</th> <th align="left">Potential ProtocolEffort</ttcol> <c>1-Support of</c> <c>HTTP/CoAPEffort</th> </tr> </thead> <tbody> <tr> <td align="left">1-Support of REST APIs</td> <td align="left">HTTP/CoAP support of ICNsemantics</c> <c>REST APIs</c> <c> </c> <c> </c> <c> </c> <c>2-Naming</c> <c>Dynamicsemantics</td> </tr> <tr> <td align="left">2-Naming</td> <td align="left">Dynamic naming of ICN dataobjects</c> <c> </c> <c> </c> <c>3-Routing</c> <c>Interactionsobjects</td> </tr> <tr> <td align="left">3-Routing</td> <td align="left">Interactions between IP and ICN routingprotocols</c> <c> </c> <c> </c> <c>4-Multicast</c> <c>Multicastprotocols</td> </tr> <tr> <td align="left">4-Multicast distribution</td> <td align="left">Multicast enhancements forICN</c> <c>distribution</c> <c> </c> <c> </c> <c> </c> <c>5-In-network</c> <c>ICN CacheICN</td> </tr> <tr> <td align="left">5-In-network caching</td> <td align="left">ICN cache placement andsharing</c> <c>caching</c> <c> </c> <c> </c> <c> </c> <c>6-NFV/SDN</c> <c>Integrationsharing</td> </tr> <tr> <td align="left">6-NFV/SDN support</td> <td align="left">Integration of ICN with NFV/SDN andincluding</c> <c>support</c> <c>possibleincluding possible impacts toSFC</c> <c> </c> <c> </c> <c>7-ICN</c> <c>MappingSFC</td> </tr> <tr> <td align="left">7-ICN mapping</td> <td align="left">Mapping of HTTP and other protocols ontoICN</c> <c>mapping</c> <c>messageICN message exchanges (andvice-versa)vice versa) while preserving ICN messagesecurity</c> <c> </c> <c> </c> <c>8-QoS</c> <c>Supportsecurity</td> </tr> <tr> <td align="left">8-QoS support</td> <td align="left">Support of ICN QoS viamechanismsmechanisms, such asDiffServ</c> <c>support</c> <c>Diffserv and flowclassification </c> <c> </c> <c> </c> <c>9-OAM</c> <c>YANGclassification</td> </tr> <tr> <td align="left">9-OAM support</td> <td align="left">YANG data models, NETCONF/RESTCONFprotocols,</c> <c>support</c> <c>protocols, andnetwork performance measurements </c> <c> </c> <c> </c> </texttable>network-performance measurements</td> </tr> </tbody> </table> </section> </section> <sectionanchor="sec:conclusion" title="Conclusion">anchor="sec_conclusion" numbered="true" toc="default"> <name>Conclusion</name> <t>This document provideshigh levelhigh-level deployment considerations for current and future members of the ICN community. Specifically, the major configurations of possible ICN deployments are identified as (1) Clean-slate ICN replacement of existing Internetinfrastructure;infrastructure, (2)ICN-as-an-Overlay;ICN-as-an-Overlay, (3)ICN-as-an-Underlay;ICN-as-an-Underlay, (4)ICN-as-a-Slice;ICN-as-a-Slice, and (5) Composite-ICN. Existing ICN trial systems primarily fall under the ICN-as-an-Overlay,ICN-as-an-UnderlayICN-as-an-Underlay, and Composite-ICN configurations. </t> <t>In terms of deployment migration paths, ICN-as-an-Underlay offers a clear migration path for CDN,edgeedge, or core networks to go to an ICN paradigm (e.g., for an IoT deployment) while leaving the critical mass of existingend userend-user applications untouched. ICN-as-an-Overlay is the easiest configuration to deployrapidlyrapidly, as it leaves the underlying IP infrastructure essentially untouched. However, its applicability for general deployment must be considered on acase by case basis (e.g.,case-by-case basis. (That is, can it support all required userapplications).applications?). ICN-as-a-Slice is an attractive deployment option forup comingupcoming 5G systems (i.e., for 5G radio and core networks)whichthat will naturally support network slicing, but this still has to be validated through more trial experiences. Composite-ICN, by its nature, can combine some of the best characteristics of the other configurations, but its applicability for general deployment must again be considered on acase by casecase-by-case basis(e.g.,(i.e., can enough IP routers be upgraded to support Composite-ICN functionality to provide sufficient performancebenefits).benefits?). </t> <t>There has been significant trial experience with all the major ICN protocol flavors (e.g.,CCN,CCNx, NDN, and POINT). However, only a limited number of applications have been tested so far, and the maximum number of users in any given trial has been less than 1k users. It is recommended that future ICN deployments scale their users gradually and closely monitor network performance as they go above 1k users. A logical approach would be to increase the number of users in a slowly increasing linear manner and monitor network performance andstabilitystability, especially at every multiple of 1k users. </t> <t>Finally, this document describes a set of technical features in ICN that warrant potential future IETF specification work. This will aid initial and incremental deployments to proceed in an interoperable manner. The fundamental details of the potential protocol specification effort, however, are best left for future study by the appropriate IETF WGs and/or BoFs. The ICNRG can aid this process in the near and mid-term by continuing to examine key system issues like QoS mechanisms, flexible namingschemesschemes, and OAM support for ICN. </t> </section> <section anchor="IANA"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <t>This documentrequestshas no IANA actions. </t> </section> <section anchor="Security"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>ICN was purposefully designed from the start to have certain intrinsic security properties. The most well known of which are authentication of delivered content and (optional) encryption of the content. <xref target="RFC7945"/>format="default"/> has an extensive discussion of various aspects of ICNsecuritysecurity, including manywhichthat are relevant to deployments. Specifically, <xref target="RFC7945"/>format="default"/> points out that ICN access control, privacy, security of in-network caches, and protection against various network attacks (e.g., DoS) have not yet been fully developed due to the lack of a sufficient mass of deployments. <xref target="RFC7945"/>format="default"/> also points out relevant advances occurring in the ICN research community that hold promise to address each of the identified security gaps. Lastly, <xref target="RFC7945"/>format="default"/> points out that as secure communications in the existing Internet (e.g., HTTPS)becomesbecome the norm,thatmajor gaps in ICN security will inevitably slow down the adoption of ICN. </t> <t>In addition to the security findings of <xref target="RFC7945"/>,format="default"/>, this document has highlighted that all anticipated ICN deployment configurations will involveco-existencecoexistence with existing Internet infrastructure and applications.ThusThus, even the basic authentication and encryption properties of ICN content will need to account for interworking with non-ICN content to preserve end-to-end security. For example, in the edge network underlay deployment configuration described in <xreftarget="sec:application_gateways" />,target="sec_application_gateways" format="default"/>, the gateway/proxy that translates HTTP or CoAP request/responses into ICN message exchanges will need to support a security model to preserve end-to-end security. One alternative would be to consider an approachsimiliarsimilar to <xref target="RFC8613"/>format="default"/>, which is used to pass end-to-end encrypted content between HTTP andCOAPCoAP by anapplication layerapplication-layer security mechanism. Further investigation is required to see if this approach is suitable to preserve ICN message security through future protocol translation functions (e.g., ICN toHTTP,HTTP orCOAPCoAP to ICN) of gateways/proxies. </t> <t>Finally, theDoctorDOCTOR project discussed in <xreftarget="sec:Doctor" />target="sec_Doctor" format="default"/> is an example of an early deployment that is looking at specific attacks against ICNinfrastructure. Ininfrastructure, in this case, looking at Interest Flooding Attacks <xref target="Nguyen-2"/>format="default"/> and Content Poisoning Attacks <xref target="Nguyen-1"/>format="default"/> <xref target="Mai-2"/>format="default"/> <xref target="Nguyen-3"/>format="default"/> andevaluation ofevaluating potentialcounter-measurescountermeasures based onMANO orchestratedMANO-orchestrated actions on the virtualized infrastructure <xref target="Mai-1"/> . </t> </section> <section anchor="Acknowledgments" title="Acknowledgments"> <t>The authors want to thank Alex Afanasyev, Hitoshi Asaeda, Giovanna Carofiglio, Xavier de Foy, Guillaume Doyen, Hannu Flinck, Anil Jangam, Michael Kowal, Adisorn Lertsinsrubtavee, Paulo Mendes, Luca Muscariello, Thomas Schmidt, Jan Seedorf, Eve Schooler, Samar Shailendra, Milan Stolic, Prakash Suthar, Atsushi Mayutan, and Lixia Zhang for their very useful reviews and comments to the document.format="default"/>. </t><t>Special thanks to Dave Oran (ICNRG co-chair) and Marie-Jose Montpetit for their extensive and thoughtful reviews of the document. Their reviews helped to immeasurably improve the document quality.</t></section> </middle> <back> <displayreference target="I-D.ietf-bier-multicast-http-response" to="BIER"/> <displayreference target="I-D.irtf-icnrg-icniot" to="ICN-IoT"/> <displayreference target="I-D.irtf-icnrg-terminology" to="ICN-TERM"/> <displayreference target="I-D.irtf-icnrg-icn-lte-4g" to="ICN-LTE-4G"/> <displayreference target="I-D.irtf-icnrg-ccninfo" to="CNNinfo"/> <displayreference target="I-D.paik-icn-deployment-considerations" to="ICN-DEP-CON"/> <displayreference target="I-D.kutscher-icnrg-netinf-proto" to="NetInf"/> <displayreference target="I-D.ravi-icnrg-5gc-icn" to="ICN-5GC"/> <displayreference target="I-D.moiseenko-icnrg-flowclass" to="FLOW-CLASS"/> <displayreference target="I-D.anilj-icnrg-icn-qos" to="ICN-QoS"/> <displayreference target="I-D.mendes-icnrg-dabber" to="DABBER"/> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7927.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7252.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7665.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6920.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8075.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7945.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7426.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8613.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8609.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8569.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8568.xml"/> <!--Example <references title="Normative References"> &I-D.ietf-core-http-mapping; </references>draft-ietf-bier-multicast-http-response-03: I-D Exists --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-bier-multicast-http-response.xml"/> <!-- draft-irtf-icnrg-icniot-03: Expired --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-icniot.xml"/> <!-- draft-irtf-icnrg-terminology-08: I-D Exists --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-terminology.xml"/> <!-- draft-irtf-icnrg-icn-lte-4g-05: I-D Exits --><references title="Informative References"> <!----> &rfc7927; &rfc7252; &rfc7665; &rfc6920; &rfc8075; &rfc7945; &rfc7426; &rfc8613; &I-D.ietf-bier-multicast-http-response; &I-D.irtf-nfvrg-gaps-network-virtualization; &I-D.irtf-icnrg-icniot; &I-D.irtf-icnrg-ccnxmessages; &I-D.irtf-icnrg-terminology; &I-D.irtf-icnrg-icn-lte-4g; &I-D.irtf-icnrg-ccninfo; &I-D.irtf-icnrg-ccnxsemantics; &I-D.paik-icn-deployment-considerations; &I-D.kutscher-icnrg-netinf-proto; &I-D.ravi-icnrg-5gc-icn; &I-D.moiseenko-icnrg-flowclass; &I-D.anilj-icnrg-icn-qos; &I-D.mendes-icnrg-dabber;<referenceanchor="Tateson" target="http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-D4.6_FinalReportOnDeplIncBusinessModels.pdf">anchor='I-D.irtf-icnrg-icn-lte-4g'> <front><title>Final Evaluation Report on<title>Native DeploymentIncentives and Business Models</title>of ICN in LTE, 4G Mobile Networks</title> <authorinitials="J." surname="Tateson"initials='P' surname='Suthar' fullname='Prakash Suthar'> <organization /> </author> <authorinitials="" surname="et al."initials='M' surname='Stolic' fullname='Milan Stolic'> <organization /><date year="2010"/> </front> </reference> <reference anchor="Jacobson"> <front> <title>Networking Named Content</title></author> <authorinitials="V." surname="Jacobson"initials='A' surname='Jangam' fullname='Anil Jangam' role="editor"> <organization /> </author> <authorinitials="" surname="et al."initials='D' surname='Trossen' fullname='Dirk Trossen'> <organization /><date year="2009"/> </front></author> <author initials='R' surname='Ravindran' fullname='Ravi Ravindran'> <organization /> </author> <date month='November' day='4' year='2019' /> </front> <seriesInfo name='Internet-Draft' value='draft-irtf-icnrg-icn-lte-4g-05' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-irtf-icnrg-icn-lte-4g-05.txt' /> </reference> <!-- draft-irtf-icnrg-ccninfo-02: Expired --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.irtf-icnrg-ccninfo.xml"/> <!-- draft-paik-icn-deployment-considerations-00: Expired --> <reference anchor='I-D.paik-icn-deployment-considerations'> <front> <title>Deployment Considerations for Information-Centric Networking</title> <author initials='E' surname='Paik' fullname='EunKyoung Paik'> <organization /> </author> <author initials='W' surname='Yun' fullname='Won-Dong Yun'> <organization /> </author> <author initials='T' surname='Kwon' fullname='Taekyoung Kwon'> <organization /> </author> <author initials='H' surname='Choi' fullname='Hoon-gyu Choi'> <organization /> </author> <date month='July' day='15' year='2013' /> </front> <seriesInfo name='Internet-Draft' value='draft-paik-icn-deployment-considerations-00' /> </reference> <!-- draft-kutscher-icnrg-netinf-proto-01: Expired --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.kutscher-icnrg-netinf-proto.xml"/> <!-- draft-ravi-icnrg-5gc-icn-04: Expired --> <reference anchor='I-D.ravi-icnrg-5gc-icn'> <front> <title>Enabling ICN in 3GPP's 5G NextGen Core Architecture</title> <author initials='R' surname='Ravindran' fullname='Ravi Ravindran'> <organization /> </author> <author initials='P' surname='Suthar' fullname='Prakash Suthar'> <organization /> </author> <author initials='D' surname='Trossen' fullname='Dirk Trossen'> <organization /> </author> <author initials='C' surname='Wang' fullname='Chonggang Wang'> <organization /> </author> <author initials='G' surname='White' fullname='Greg White'> <organization /> </author> <date month='May' day='31' year='2019' /> </front> <seriesInfo name='Internet-Draft' value='draft-ravi-icnrg-5gc-icn-04' /> </reference> <!-- draft-moiseenko-icnrg-flowclass-05: I-D Exists --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.moiseenko-icnrg-flowclass.xml"/> <!-- draft-anilj-icnrg-icn-qos-00: Expired --> <reference anchor='I-D.anilj-icnrg-icn-qos'> <front> <title>Supporting QoS aware Data Delivery in Information Centric Networks</title> <author initials='A' surname='Jangam' fullname='Anil Jangam'> <organization /> </author> <author initials='P' surname='Suthar' fullname='Prakash Suthar'> <organization /> </author> <author initials='M' surname='Stolic' fullname='Milan Stolic'> <organization /> </author> <date month='July' day='14' year='2018' /> </front> <seriesInfo name='Internet-Draft' value='draft-anilj-icnrg-icn-qos-00' /> </reference> <!-- draft-mendes-icnrg-dabber-03: I-D Exists --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.mendes-icnrg-dabber.xml"/> <reference anchor="Tateson" target="http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-D4.6_FinalReportOnDeplIncBusinessModels.pdf"> <front> <title>Final Evaluation Report on Deployment Incentives and Business Models</title> <author> <organization>Tateson, J., et al.</organization> </author> <date month="May" year="2010"/> </front> <seriesInfo name="Version" value="1.0"/> <refcontent>PSIRP</refcontent> </reference> <reference anchor="Jacobson"> <front> <title>Networking Named Content</title> <author> <organization>Jacobson, V., et al.</organization> </author> <date month="December" year="2009"/> </front> <seriesInfoname="Proceedingsname="DOI" value="10.1145/1658939.1658941"/> <refcontent>CoNEXT '09: Proceedings ofACM Context," value=""/>the 5th international conference on Emerging networking experiments and technologies</refcontent> </reference> <reference anchor="fiveG-23501"> <front><title>Technical Specification Group Services and System Aspects; System<title>System Architecture for the 5GSystem (Rel.15)</title> <author initials="" surname="3gpp-23.501" />System</title> <author> <organization>3GPP</organization> </author> <date month="December" year="2017"/> </front> <seriesInfo name="3GPP"value=""/>value="TS 23.501"/> <refcontent>Release 15</refcontent> </reference> <reference anchor="IEEE_Communications"> <front> <title>Designing andRealizingrealizing anInformation-Centric Internet</title>information-centric internet</title> <author initials="D." surname="Trossen"/>fullname="Dirk Trossen"> <organization/> </author> <author initials="G." surname="Parisis"/> <date year="2012"/>fullname="George Parisis"> <organization/> </author> <date/> </front> <seriesInfoname="Information-Centric Networking," value="IEEEname="DOI" value="10.1109/MCOM.2012.6231280"/> <refcontent>IEEE CommunicationsMagazine Special Issue"/>Magazine, Volume 50, Issue 7</refcontent> </reference> <reference anchor="VSER"> <front> <title>Towards software defined ICN based edge-cloud services</title><author initials="R." surname="Ravindran" /> <author initials="" surname="et al." /> <date year="IEEE Internation Conference on CloudNetworking(CloudNet), 2013"/><author> <organization>Ravindran, R., et al.</organization> </author> <date/> </front> <seriesInfoname="CloudNetworking(CloudNet)," value="IEEE Internationname="DOI" value="10.1109/CloudNet.2013.6710583"/> <refcontent>2013 IEEE 2nd International Conferenceon"/>on Cloud Networking (CloudNet)</refcontent> </reference> <reference anchor="VSER-Mob"> <front> <title>Seamless Producer Mobility as a Service in Information-centric Networks</title><author initials="A." surname="Azgin" /> <author initials="" surname="et al." /><author> <organization>Azgin, A., et al.</organization> </author> <dateyear="ACM ICN Sigcomm, IC5G Workshop, 2016"/>month="September" year="2016"/> </front> <seriesInfo name="DOI" value="10.1145/2984356.2988521"/> <refcontent>ACM-ICN '16: Proceedings of the 3rd ACM Conference on Information-Centric Networking</refcontent> </reference> <reference anchor="POINT"> <front><title>POINT: IP Over<title>IP over ICN - TheBetterbetter IP?</title><author initials="D." surname="Trossen" /> <author initials="" surname="et al." /><author> <organization>Trossen, D., et al.</organization> </author> <date month="June" year="2015"/> </front> <seriesInfoname="Europeanname="DOI" value="10.1109/EuCNC.2015.7194109"/> <refcontent>2015 European Conference on Networks and Communications(EuCNC)," value=""/>(EuCNC)</refcontent> </reference> <reference anchor="MWC_Demo" target="http://www.interdigital.com/download/56d5c71bd616f892ba001861"> <front> <title>InterDigital Demo at Mobile World Congress (MWC)</title><author initials="" surname="InterDigital" /><author><organization>InterDigital</organization> </author> <date year="2016"/> </front> </reference> <reference anchor="Reed"> <front> <title>StatelessMulticast Switchingmulticast switching inSoftware Defined Networks</title> <author initials="M.J." surname="Reed" /> <author initials="" surname="et al." />software defined networks</title> <author> <organization>Reed, M., et al.</organization> </author> <date month="May" year="2016"/> </front> <seriesInfoname="ICC 2016," value="Kuala Lumpur, Malaysia"/>name="DOI" value="10.1109/ICC.2016.7511036"/> <refcontent>2016 IEEE International Conference on Communications (ICC)</refcontent> </reference> <reference anchor="White" target="http://www.cablelabs.com/wp-content/uploads/2016/02/Content-Delivery-with-Content-Centric-Networking-Feb-2016.pdf"> <front> <title>Content Delivery withContent Centric Networking, CableLabs White Paper</title>Content-Centric Networking</title> <author initials="G." surname="White"/>fullname="Greg White"> <organization/> </author> <author initials="G." surname="Rutz"/>fullname="Greg Rutz"> <organization/> </author> <date month="February" year="2016"/> </front> </reference> <reference anchor="Techno_Economic"> <front> <title>Techno-Economics Aspects of Information-Centric Networking</title> <author initials="D." surname="Trossen"/>fullname="Dirk Trossen"> <organization/> </author> <author initials="A."surname="Kostopolous" />surname="Kostopoulos" fullname="Alexandros Kostopoulos"> <organization/> </author> <date month="June" year="2012"/> </front> <seriesInfo name="Journal for InformationPolicy," value="Volume 2"/>Policy" value=""/> <refcontent>Volume 2</refcontent> <seriesInfo name="DOI" value="10.5325/jinfopoli.2.2012.0026"/> </reference> <reference anchor="Internet_Pricing"> <front> <title>NotPayingpaying theTruck Driver: Differentiated Pricingtruck driver: differentiated pricing for theFuture Internet</title>future internet</title> <author initials="D." surname="Trossen"/> <authorfullname="Dirk Trossen"> <organization/> </author> <author initials="G." surname="Biczok"/>fullname="Gergely Biczok"> <organization/> </author> <date month="November" year="2010"/> </front> <seriesInfo name="ReArchWorkshop in conjunction with ACM Context," value="December"/>'10:" value="Proceedings of the Re-Architecting the Internet Workshop"/> <seriesInfo name="DOI" value="10.1145/1921233.1921235"/> <refcontent>ReARCH '10: Proceedings of the Re-Architecting the Internet Workshop</refcontent> </reference> <reference anchor="oneM2M" target="http://www.onem2m.org/"> <front> <title>oneM2M Service Layer Standards for M2M and IoT</title><author initials="" surname="OneM2M" /><author><organization>OneM2M</organization> </author> <date year="2017"/> </front> </reference> <reference anchor="ONAP" target="https://www.onap.org/"> <front> <title>Open Network Automation Platform</title><author initials="" surname="ONAP" /> <date year="2017"/><author><organization>ONAP</organization> </author> </front> </reference> <reference anchor="CONET" target="http://netgroup.uniroma2.it/Stefano_Salsano/papers/salsano-icc12-wshop-sdn.pdf"> <front><title>CONET Project: Supporting<title>Supporting Information-Centric Functionality in Software Defined Networks</title><author initials="L." surname="Veltri" /> <author initials="" surname="et al." /><author> <organization>Veltri, L., et al.</organization> </author> <date month="November" year="2012"/> </front> <seriesInfoname="Workshopname="DOI" value="10.1109/ICC.2012.6364916"/> <refcontent>2012 IEEE International Conference onSoftware Defined Networks," value=""/>Communications (ICC)</refcontent> </reference> <reference anchor="C_FLOW"target="http://opennetsummit.org/archives/apr12/site/pdf/snu.pdf">target="https://ieeexplore.ieee.org/document/6799480"> <front><title>C_FLOW: Content-Oriented Networking over<title>C_flow: An efficient content delivery framework with OpenFlow</title><author initials="J." surname="Suh" /> <author initials="" surname="et al." /><author> <organization>D. Chang, et al.</organization> </author> <dateyear="2012"/>month="February" year="2014"/> </front><seriesInfo name="Open<refcontent>The International Conference on Information NetworkingSummit," value="April"/>2014 (ICOIN2014)</refcontent> <refcontent>pp. 270-275</refcontent> <seriesInfo name="DOI" value="10.1109/ICOIN.2014.6799480" /> </reference> <reference anchor="H-ICN_1" target="http://blogs.cisco.com/sp/cisco-announces-important-steps-toward-adoption-of-information-centric-networking"> <front><title>Hybrid ICN: Cisco<title>Cisco Announces Important Steps toward Adoption of Information-Centric Networking</title><author initials="" surname="Cisco" /><author> <organization>Cisco</organization> </author> <date month="February" year="2017"/> </front> </reference> <reference anchor="H-ICN_2" target="https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/ultra-services-platform/mwc17-hicn-video-wp.pdf"> <front> <title>Mobile Video Delivery with Hybrid ICN:IP-IntegratedIP-integrated ICN Solution for 5G</title><author initials="" surname="Cisco" /> <date year="2017"/><author> <organization>Cisco</organization> </author> </front> </reference> <reference anchor="CCNx_UDP" target="https://www.ietf.org/proceedings/interim-2015-icnrg-04/slides/slides-interim-2015-icnrg-4-5.pdf"> <front> <title>CCNx Over UDP</title><author initials="" surname="PARC" /> <date year="2015"/><author> <organization>PARC</organization> </author> </front> </reference> <reference anchor="SAIL_Prototyping" target="http://www.sail-project.eu/wp-content/uploads/2013/05/SAIL_DB4_v1.1_Final_Public.pdf"> <front><title>SAIL Prototyping<title>Prototyping and Evaluation</title><author initials="" surname="FP7" /><author> <organization>FP7</organization> </author> <date month="March" year="2013"/> </front> <seriesInfo name="Objective" value="FP7-ICT-2009-5-257448/D.B.4"/> </reference> <reference anchor="DASH" target="http://dashif.org/"> <front> <title>DASH Industry Forum</title><author initials="" surname="DASH" /> <date year="2017"/><author> <organization>DASH</organization> </author> </front> </reference> <reference anchor="NGMN-5G"target="https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf">target="https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf"> <front><title>NGMN 5G<title>5G White Paper</title><author initials="" surname="NGMN" /><author> <organization>NGMN Alliance</organization> </author> <date month="February" year="2015"/> </front> </reference> <reference anchor="Ravindran" target="https://arxiv.org/abs/1610.01182"> <front> <title>5G-ICN : Delivering ICN Services over 5G using Network Slicing</title><author initials="R." surname="Ravindran" /> <author initials="" surname="et al." /><author> <organization>Ravindran, R., et al.</organization> </author> <dateyear="IEEE Communication Magazine, May, 2016"/>month="October" year="2016"/> </front> <seriesInfo name="DOI" value="10.1109/MCOM.2017.1600938"/> <refcontent>IEEE Communications Magazine, Volume 55, Issue 5</refcontent> </reference> <reference anchor="Moiseenko" target="http://conferences2.sigcomm.org/acm-icn/2016/proceedings/p112-moiseenko.pdf"> <front><title>TCP/ICN :<title>TCP/ICN: Carrying TCP over Content Centric and Named Data Networks</title> <author initials="I." surname="Moiseenko"/>fullname="Ilya Moiseenko"> <organization/> </author> <author initials="D." surname="Oran"/>fullname="Dave Oran"> <organization/> </author> <date month="September" year="2016"/> </front> <seriesInfo name="DOI" value="10.1145/2984356.2984357"/> <refcontent>ACM-ICN '16: Proceedings of the 3rd ACM Conference on Information-Centric Networking</refcontent> </reference> <reference anchor="NFD" target="https://named-data.net/doc/NFD/current/"> <front> <title>NFD - Named Data Networking Forwarding Daemon</title><author initials="" surname="NDN" /> <date year="2017"/><author> <organization>NDN</organization> </author> </front> </reference> <reference anchor="ICNRGCharter" target="https://datatracker.ietf.org/doc/charter-irtf-icnrg/"> <front> <title>Information-Centric Networking Research Group Charter</title><author initials="" surname="NDN" /> <date year="2013"/><author> <organization>IRTF</organization> </author> </front> </reference> <reference anchor="Baccelli" target="http://conferences2.sigcomm.org/acm-icn/2014/papers/p77.pdf"> <front> <title>Information Centric Networking in the IoT: Experiments with NDN in the Wild</title><author initials="E." surname="Baccelli" /> <author initials="" surname="et al." /><author> <organization>Baccelli, E., et al.</organization> </author> <date month="September" year="2014"/> </front> <seriesInfoname="ACM 20164," value="Paris, France"/>name="DOI" value="10.1145/2660129.2660144"/> <refcontent>ACM-ICN '14: Proceedings of the 1st ACM Conference on Information-Centric Networking</refcontent> </reference> <reference anchor="Anastasiades" target="http://boris.unibe.ch/83683/1/16anastasiades_c.pdf"> <front> <title>Information-centric communication in mobile and wireless networks</title> <author initials="C" surname="Anastasiades"/>fullname="Carlos Anastasiades"> <organization/> </author> <dateyear="PhD Dissertation, 2016"/>month="June" year="2016"/> </front> <seriesInfo name="DOI" value=" 10.7892/boris.83683"/> <refcontent>PhD Dissertation</refcontent> </reference> <reference anchor="Jangam" target="https://dl.acm.org/citation.cfm?id=3132351"> <front><title>Porting<title>nlsrSIM: Porting and Simulation of Named-data Link State Routing Protocol into ndnSIM</title><author initials="A." surname="Jangam" /> <author initials="" surname="et al." /><author> <organization>Jangam, A., et al.</organization> </author> <date month="November" year="2017"/> </front> <seriesInfoname="ACM DIVANet'17," value="Miami Beach, USA"/> </reference> <reference anchor="ICN2020" target="http://www.icn2020.org/dissemination/deliverables-public/"> <front> <title>ICN2020 Deliverables</title> <author initials="" surname="ICN2020" /> <date year="2017"/> </front>name="DOI" value="10.1145/3132340.3132351"/> <refcontent>DIVANet '17: Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications</refcontent> </reference> <reference anchor="CUTEi"> <front> <title>Container-Based Unified Testbed for Information Centric Networking</title> <author initials="H." surname="Asaeda"/>fullname="Hitoshi Asaeda"> <organization/> </author> <author initials="R." surname="Li" fullname="Ruidong Li"> <organization/> </author> <author initials="N." surname="Choi"/>fullname="Nakjung Choi"> <organization/> </author> <date month="November" year="2014"/> </front> <seriesInfoname="IEEE Network, Vol.28, No.6" value=""/>name="DOI" value="10.1109/MNET.2014.6963806"/> <refcontent>IEEE Network Volume 28, Issue:6</refcontent> </reference> <reference anchor="Overlay_ICN" target="https://www.researchgate.net/publication/282779666_A_novel_overlay_architecture_for_Information_Centric_Networking"> <front> <title>ANovel Overlay Architecturenovel overlay architecture forFInformation Centric Networking</title><author initials="S." surname="Shailendra" /> <author initials="" surname="et al." /><author> <organization>Shailendra, S.,et al.</organization> </author> <date month="April" year="2016"/> </front> <seriesInfo name="DOI" value="10.1109/NCC.2015.7084921"/> <refcontent>2015 21st National Conference on Communications, NCC 2015</refcontent> </reference> <reference anchor="Contrace"> <front> <title>Contrace:A Toola tool forMeasuringmeasuring andTracing Content-Centric Networks</title> <author initials="H." surname="Asaeda" /> <author initials="" surname="et al." />tracing content-centric networks</title> <author> <organization>Asaeda, H., et al.</organization> </author> <date month="March" year="2015"/> </front> <seriesInfoname="IEEEname="DOI" value="10.1109/MCOM.2015.7060502"/> <refcontent> IEEE Communications Magazine,Vol.53, No.3" value=""/>Volume 53, Issue 3</refcontent> </reference> <reference anchor="fiveG-23502"> <front><title>Technical Specification Group Services and System Aspects; Procedures<title>Procedures for the 5G System(Rel.15)</title> <author initials="" surname="3gpp-23.502" /> <date year="2017"/>(5GS)</title> <author> <organization>3GPP</organization> </author> </front> <seriesInfo name="3GPP"value=""/>value="TS 23.502"/> <refcontent>Release 15</refcontent> </reference> <reference anchor="CICN" target="https://wiki.fd.io/view/Cicn"> <front><title>Community Information-Centric Networking (CICN)</title> <author initials="" surname="CICN" /> <date year="2017"/><title>Cicn</title> <author> <organization>fd.io</organization> </author> </front> </reference> <reference anchor="Mai-1"target="http://www.mallouli.com/recherche/publications/noms2018-1.pdf">target="https://ieeexplore.ieee.org/document/8401591"> <front> <title>Implementation ofContent Poisoning Attack Detectioncontent poisoning attack detection andReactionreaction inVirtualizedvirtualized NDNNetworks</title> <author initials="H.L." surname="Mai" /> <author initials="" surname="et al." />networks</title> <author> <organization>Mai, H., et al.</organization> </author> <dateyear="21stmonth="July" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/ICIN.2018.8401591"/> <refcontent>2018 21st Conference on Innovation in Clouds, Internet andNetworks, ICIN 2018 (demo paper) IEEE, 2018"/> </front>Networks and Workshops (ICIN)</refcontent> </reference> <reference anchor="Mai-2"> <front> <title>Towards a Security Monitoring Plane for Named Data Networking: Application to Content Poisoning Attack</title><author initials="H.L." surname="Mai" /> <author initials="" surname="et al." /><author> <organization>Mai, H., et al.</organization> </author> <dateyear="Proceedings of themonth="July" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/NOMS.2018.8406246"/> <refcontent>NOMS 2018 - 2018 IEEE/IFIPSymposium onNetwork OperationsandManagement(NOMS) IEEE, 2018"/> </front>Symposium</refcontent> </reference> <reference anchor="Marchal" target="http://www.mallouli.com/recherche/publications/noms2018-1.pdf"> <front> <title>Leveraging NFV for the Deployment of NDN: Application to HTTP Traffic Transport</title><author initials="X." surname="Marchal" /> <author initials="" surname="et al." /><author> <organization>Marchal, X., et al.</organization> </author> <dateyear="Proceedings of themonth="July" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/NOMS.2018.8406206"/> <refcontent>NOMS 2018 - 2018 IEEE/IFIPSymposium onNetwork Operations and Management(NOMS), 2018"/> </front>Symposium</refcontent> </reference> <reference anchor="Nguyen-1"> <front> <title>Content Poisoning in Named Data Networking: ComprehensiveCharacterizationcharacterization of realDeployment</title> <author initials="T.N." surname="Nguyen" /> <author initials="" surname="et al." />deployment</title> <author> <organization>Nguyen, T., et al.</organization> </author> <dateyear="Proceedings of the 15th IEEE/IFIP Internationalmonth="July" year="2017"/> </front> <seriesInfo name="DOI" value="10.23919/INM.2017.7987266"/> <refcontent>2017 IFIP/IEEE Symposium on Integrated NetworkManagement, 2017"/> </front>and Service Management (IM)</refcontent> </reference> <reference anchor="Nguyen-2"> <front> <title>AnOptimal Statistical Testoptimal statistical test forRobust Detectionrobust detection againstInterest Flooding Attacksinterest flooding attacks in CCN</title> <authorinitials="T.N."initials="T." surname="Nguyen"/>fullname="Tan Nguyen"> <organization/> </author> <author initials="R." surname="Cogranne"/>fullname="Remi Cogranne"> <organization/> </author> <author initials="G." surname="Doyen"/>fullname="Guillaume Doyen"> <organization/> </author> <dateyear="Proceedings of the 14th IEEE/IFIPmonth="July" year="2015"/> </front> <seriesInfo name="DOI" value="10.1109/INM.2015.7140299"/> <refcontent>2015 IFIP/IEEE International Symposium on Integrated NetworkManagement, 2015"/> </front>Management (IM)</refcontent> </reference> <reference anchor="Nguyen-3"> <front> <title>A Security Monitoring Plane for Named Data Networking Deployment</title><author initials="T.N." surname="Nguyen" /> <author initials="" surname="et al." /><author> <organization>Nguyen, T., et al.</organization> </author> <dateyear="IEEEmonth="November" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/MCOM.2018.1701135"/> <refcontent>IEEE Communications Magazine,Nov 2018"/> </front>Volume: 56, Issue 11</refcontent> </reference> <reference anchor="Doctor" target="http://www.doctor-project.org/index.htm"> <front> <title>Deployment andSecurisationsecurisation of newFunctionalitiesfunctionalities inVirtualized Networking Environments (Doctor)</title> <author initials="" surname="Doctor" /> <date year="2017"/>virtualized networking environments</title> <author> <organization>DOCTOR</organization> </author> </front> </reference> <reference anchor="H-ICN_3" target="https://datatracker.ietf.org/meeting/interim-2018-icnrg-01/materials/slides-interim-2018-icnrg-01-sessa-hybrid-icn-hicn-luca-muscariello"> <front> <title>Hybrid Information-Centric Networking: ICN inside the Internet Protocol</title><author initials="L." surname="Muscariello" /> <author initials="" surname="et al." /> <date year="2018"/> </front> </reference> <reference anchor="H-ICN_4" target="https://datatracker.ietf.org/meeting/interim-2018-icnrg-01/materials/slides-interim-2018-icnrg-01-sessa-hicn-socket-library-for-http-luca-muscariello"> <front> <title>(h)ICN Socket Library for HTTP: Leveraging (h)ICN socket library for carrying HTTP messages</title> <author initials="M." surname="Sardara" /> <author initials="" surname="et al." /><author> <organization>Muscariello, L., et al</organization> </author> <date month="March" year="2018"/> </front> <refcontent>ICNRG Interim Meeting</refcontent> </reference> <reference anchor="UMOBILE-2"> <front> <title>Connecting the Edges: A Universal, Mobile-Centric, and Opportunistic Communications Architecture</title><author initials="C." surname="Sarros" /> <author initials="" surname="et al." /><author> <organization>Sarros, C., et al.</organization> </author> <dateyear="IEEEmonth="February" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/MCOM.2018.1700325"/> <refcontent>IEEE Communications Magazine,vol.Volume 56,February 2018"/> </front>Issue 2</refcontent> </reference> <reference anchor="UMOBILE-3"> <front> <title>Named-data Emergency Network Services</title> <author initials="M." surname="Tavares"/>fullname="Miguel Tavares"> <organization/> </author> <author initials="O." surname="Aponte"/>fullname="Omar Aponte"> <organization/> </author> <author initials="P." surname="Mendes"/>fullname="Paulo Mendes"> <organization/> </author> <dateyear="Proc. of ACM MOBISYS, Munich, Germany, June 2018"/>month="June" year="2018"/> </front> <seriesInfo name="DOI" value="10.1145/3210240.3210809"/> <refcontent>MobiSys '18: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services</refcontent> </reference> <reference anchor="UMOBILE-4"> <front> <title>Oi! - Opportunistic Data Transmission Based on Wi-Fi Direct</title><author initials="L." surname="Lopes" /> <author initials="" surname="et al." /><author> <organization>Amaral, L., et al.</organization> </author> <dateyear="Proc. of IEEE INFOCOM, San Francisco, USA, April 2016"/>month="April" year="2016"/> </front> <seriesInfo name="DOI" value="10.1109/INFCOMW.2016.7562142"/> <refcontent>2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)</refcontent> </reference> <reference anchor="UMOBILE-5"> <front><title>Named-Data Networking<title>Demo: named-data networking inOpportunistic Networks</title>opportunistic network</title> <author initials="S." surname="Dynerowicz"/>fullname="Seweryn Dynerowicz"> <organization/> </author> <author initials="P." surname="Mendes"/>fullname="Paulo Mendes"> <organization/> </author> <dateyear="Proc.month="September" year="2017"/> </front> <seriesInfo name="DOI" value="10.1145/3125719.3132107"/> <refcontent>ICN '17: Proceedings of the 4th ACMICN, Berlin, Germany, September 2017"/> </front>Conference on Information-Centric Networking</refcontent> </reference> <reference anchor="UMOBILE-6"> <front> <title>Information-centricRoutingrouting forOpportunistic Wireless Networks</title> <author initials="P." surname="Mendes" /> <author initials="" surname="et al." />opportunistic wireless networks</title> <author><organization>Mendes, P.,et al.</organization> </author> <dateyear="Proc.month="September" year="2018"/> </front> <seriesInfo name="DOI" value="10.1145/3267955.3269011"/> <refcontent>ICN '18: Proceedings of the 5th ACMICN, Boston, USA, September 2018"/> </front>Conference on Information-Centric Networking</refcontent> </reference> <reference anchor="UMOBILE-7"> <front><title>The UMOBILE Contextual Manager Service. Technical Report. Technical Report Senception 001, 2018 (base for UMOBILE deliverable D4.5 -<title>D4.5 Report on Data Collection and Inference Models</title> <authorinitials="R"initials="R." surname="Sofia"/>fullname="Rute C. Sofia"/> <dateyear="2018"/>month="September" year="2017"/> </front> <refcontent>Deliverable</refcontent> </reference> <reference anchor="UMOBILE-8"> <front> <title>ICN-based edge service deployment in challenged networks</title><author initials="C." surname="Sarros" /> <author initials="" surname="et al." /><author> <organization>Sarros, C., et al.</organization> </author> <dateyear="Proceedingsmonth="September" year="2017"/> </front> <seriesInfo name="DOI" value="10.1145/3125719.3132096"/> <refcontent>ICN '17: Proceedings of the 4th ACM Conference on Information-CentricNetworking (ICN '17). ACM, New York, NY, USA, 2017 "/> </front>Networking</refcontent> </reference> <reference anchor="UMOBILE-9"> <front> <title>Information-Centric Multi-Access Edge Computing Platform for Community Mesh Networks</title><author initials="A." surname="Lertsinsrubtavee" /> <author initials="" surname="et al." /><author><organization>Lertsinsrubtavee, A., et al.</organization> </author> <dateyear="Proceedingsmonth="June" year="2018"/> </front> <seriesInfo name="DOI" value="10.1145/3209811.3209867"/> <refcontent>COMPASS '18: Proceedings of the 1st ACM SIGCAS Conference on Computing and SustainableSocieties (COMPASS '18). ACM, New York, NY, USA, 2018 "/> </front>Societies</refcontent> </reference> <reference anchor="SAIL" target="http://www.sail-project.eu/"> <front> <title>Scalable and Adaptive Internet Solutions (SAIL)</title><author initials="" surname="SAIL" /> <date year="2013"/><author> <organization>SAIL</organization> </author> </front> </reference> <reference anchor="NDN-testbed" target="https://named-data.net/ndn-testbed/"> <front><title>Named Data Networking (NDN)<title>NDN Testbed</title><author initials="" surname="NDN Testbed" /> <date year="2010"/><author> <organization>NDN</organization> </author> </front> </reference> <reference anchor="ICN2020-overview" target="http://www.icn2020.org/"> <front> <title>ICN2020 Project Overview</title><author initials="" surname="ICN2020" /> <date year="2016"/><author> <organization>ICN2020</organization> </author> </front> </reference> <reference anchor="GEANT" target="https://www.geant.org/"> <front><title>GEANT Overview</title> <author initials="" surname="GEANT" /> <date year="2016"/><title>GEANT</title> <author> <organization>GEANT</organization> </author> </front> </reference> <reference anchor="UMOBILE-overview" target="http://www.umobile-project.eu/"> <front><title>Universal Mobile-centric<title>Universal, mobile-centric andOpportunistic Communications Architecture (UMOBILE)</title> <author initials="" surname="UMOBILE" /> <date year="2018"/>opportunistic communications architecture</title> <author> <organization>UMOBILE</organization> </author> </front> </reference> <reference anchor="NGMN-Network-Slicing"target="https://www.ngmn.org/fileadmin/user_upload/160113_Network_Slicing_v1_0.pdf">target="https://www.ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf"> <front><title>NGMN Description<title>Description of Network Slicing Concept</title><author initials="" surname="NGMN" /><author> <organization>NGMN Alliance</organization> </author> <date month="January" year="2016"/> </front> <refcontent>NGMN 5G P1</refcontent> <refcontent>Requirements & Architecture</refcontent> <refcontent>Work Stream End-to-End Architecture</refcontent> <refcontent>Version 1.0</refcontent> </reference> <reference anchor="Chakraborti"> <front> <title>Design and Evaluation of a Multi-source Multi-destination Real-time Application on Content Centric Network</title><author initials="A." surname="Chakraborti" /> <author initials="" surname="et al." /><author> <organization>Chakraborti, A., et al.</organization> </author> <date month="August" year="2018"/> </front> <seriesInfoname="IEEE, HoT ICN, 2018" value=""/>name="DOI" value="10.1109/HOTICN.2018.8605980"/> <refcontent>2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN)</refcontent> </reference> <reference anchor="SAIL_Content_Delivery" target="https://sail-project.eu/wp-content/uploads/2012/06/SAIL_DB2_v1_0_final-Public.pdf"> <front><title>SAIL<title>NetInf Content Delivery and Operations</title><author initials="" surname="FP7" /><author> <organization>FP7</organization> </author> <date month="January" year="2013"/> </front> <seriesInfo name="Objective" value="FP7-ICT-2009-5-257448/D-3.2"/> </reference> <reference anchor="ICN2020-Experiments"target="http://www.icn2020.org/dissemination/deliverables-public/">target="https://projects.gwdg.de/attachments/6840/D4.1-PU.pdf"> <front><title>Deliverable D4.1:<title>D4.1: 1styearly report on Testbed and Experiments (WP4)</title> <author initials="" surname="ICN2020" />Yearly WP4 Report & Demonstration</title> <author> <organization>ICN2020</organization> </author> <date month="August" year="2017"/> </front> </reference> </references><!-- section anchor="Appendix A" title="Change Log" --><sectiontitle="Change Log"> <t>[Note to RFC Editor: Please remove this section before publication.]</t> <t>Changes from draft-irtf-rev-06 to draft-irtf-rev-07: <list style="symbols"> <t>Added reference to OSCORE (RFC 8613) which is a way of passing end-to-end encrypted content between HTTP and COAP without invalidating encryption. Thus it can be a potential model for HTTP to ICN, or COAP to ICN,anchor="Acknowledgments" numbered="false" toc="default"> <name>Acknowledgments</name> <t>The authors want toconsider in the future.</t> <t>Updated affiliation informationthank <contact fullname="Alex Afanasyev"/>, <contact fullname="Hitoshi Asaeda"/>, <contact fullname="Giovanna Carofiglio"/>, <contact fullname="Xavier de Foy"/>, <contact fullname="Guillaume Doyen"/>, <contact fullname="Hannu Flinck"/>, <contact fullname="Anil Jangam"/>, <contact fullname="Michael Kowal"/>, <contact fullname="Adisorn Lertsinsrubtavee"/>, <contact fullname="Paulo Mendes"/>, <contact fullname="Luca Muscariello"/>, <contact fullname="Thomas Schmidt"/>, <contact fullname="Jan Seedorf"/>, <contact fullname="Eve Schooler"/>, <contact fullname="Samar Shailendra"/>, <contact fullname="Milan Stolic"/>, <contact fullname="Prakash Suthar"/>, <contact fullname="Atsushi Mayutan"/>, and <contact fullname="Lixia Zhang"/> forauthor Ravi Ravindran.</t> </list> </t> <t>Changes from draft-irtf-rev-05 to draft-irtf-rev-06: <list style="symbols"> <t>Various updates to ensure that draft complies with RFC 5743 (Definition of an Internet Research Task Force (IRTF) Document Stream) section 2.1.</t> </list> </t> <t>Changes from draft-irtf-rev-04 to draft-irtf-rev-05: <list style="symbols"> <t>Addressed detailed review comments from Marie-Jose Montpetit.</t> </list> </t> <t>Changes from draft-irtf-rev-03 to draft-irtf-rev-04: <list style="symbols"> <t>Added text from Paulo Mendes and Adisorn Lertsinsrubtavee on UMOBILE Trial Experiences.</t> <t>Incorporated off-line editorial comments from Hitoshi Asaeda and Anil Jangam.</t> </list> </t> <t>Changes from draft-irtf-rev-02 to draft-irtf-rev-03: <list style="symbols"> <t>Editorial update of descriptiontheir very useful reviews andreferences of Doctor testbed as percommentsfrom Guillaume Doyen.</t> <t>Ran IETF spell checker tool and corrected various spelling errors.</t> </list> </t> <t>Changes from draft-irtf-rev-01todraft-irtf-rev-02: <list style="symbols"> <t>Updated description of Doctor testbed as per comments from Guillaume Doyen. Also referenced Doctor testbed fromtheSecurity Considerations section.</t> <t>Added "Composite-ICN" configurationdocument. </t> <t>Special thanks tocover the Hybrid ICN<contact fullname="Dave Oran"/> (ICNRG Co-chair) andsimilar configurations which do not clearly fit in one of the other basic configurations.</t> <t>Updated description<contact fullname="Marie-Jose Montpetit"/> for their extensive and thoughtful reviews of theICN-as-a-Slice configuration to clarify that it may also apply to non-5G systems.</t> </list> </t> <t>Changes from draft-irtf-rev-00 to draft-irtf-rev-01: <list style="symbols"> <t>Added text from Michael Kowal describing NREN ICN Testbed.</t> <t>Added text from Guillaume Doyen describing Doctor Project.</t> <t>Updated text on Hybrid ICN based on input from Luca Muscariello.</t> </list> </t> <t>Changes from draft-rahman-rev-05 to draft-irtf-rev-00: <list style="symbols"> <t>Changed draft status from individual draft-rahman-icnrg-deployment-guidelines-05 to RG adopted draft-irtf-icnrg-deployment-guidelines-00.</t> </list> </t> <t>Changes from rev-04 to rev-05: <list style="symbols"> <t>Added this Change Log in Appendix A.</t> <t>Removed referencesdocument. Their reviews helped toHybrid ICN from section 3.2 (ICN-as-an-Overlay definition). Instead, consolidated all Hybrid ICN info in the Deployment Trial Experiences under a new subsection 5.3 (Other Configurations).</t> <t>Updated ICN2020 description in Section 5.1.4 with text received from Mayutan Arumaithurai and Hitoshi Asaeda.</t> <t>Clarified in ICN-as-a-Slice description (section 3.4) that it may be deployed on either the Edge (RAN) or Core Network, or the ICN-as-a-Slice may be deployed end-to-end throughimmeasurably improve theentire Mobile network.</t> <t>Added several new references in various sections.</t> <t>Various minor editorial updates.</t> </list> </t>document quality.</t> </section> </back> </rfc>