<?xml version='1.0' encoding='utf-8'?> <!DOCTYPE rfc SYSTEM "rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="independent" category="info" tocDepth="4" docName="draft-rundgren-json-canonicalization-scheme-17" number="8785" ipr="trust200902" obsoletes="" updates="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <front> <title abbrev="JSON Canonicalization Scheme"> JSON Canonicalization Scheme (JCS) </title> <seriesInfo name="RFC" value="8785"/> <author fullname="Anders Rundgren" initials="A." surname="Rundgren"> <organization>Independent</organization> <address> <postal> <city>Montpellier</city> <country>France</country> </postal> <email>anders.rundgren.net@gmail.com</email> <uri>https://www.linkedin.com/in/andersrundgren/</uri> </address> </author> <author fullname="Bret Jordan" initials="B." surname="Jordan"> <organization>Broadcom</organization> <address> <postal> <street>1320 Ridder Park Drive</street> <region>CA</region> <code>95131</code> <city>San Jose</city> <country>United States of America</country> </postal> <email>bret.jordan@broadcom.com</email> </address> </author> <author fullname="Samuel Erdtman" initials="S." surname="Erdtman"> <organization>Spotify AB</organization> <address> <postal> <street>Birger Jarlsgatan 61, 4tr</street> <code>113 56</code> <city>Stockholm</city> <country>Sweden</country> </postal> <email>erdtman@spotify.com</email> </address> </author> <date year="2020" month="June" /> <area>Security</area> <workgroup/> <keyword>JSON</keyword> <keyword>ECMAScript</keyword> <keyword>Signatures</keyword> <keyword>Cryptography</keyword> <keyword>Canonicalization</keyword> <abstract> <t> Cryptographic operations like hashing and signing need the data to be expressed in an invariant format so that the operations are reliably repeatable. One way to address this is to create a canonical representation of the data. Canonicalization also permits data to be exchanged in its original form on the "wire" while cryptographic operations performed on the canonicalized counterpart of the data in the producer and consumer endpoints generate consistent results. </t> <t> This document describes the JSON Canonicalization Scheme (JCS). This specification defines how to create a canonical representation of JSON data by building on the strict serialization methods for JSON primitives defined by ECMAScript, constraining JSON data to the Internet JSON (I-JSON) subset, and by using deterministic property sorting. </t> </abstract> </front> <middle> <section anchor="Introduction" numbered="true" toc="default"> <name>Introduction</name> <t> This document describes the JSON Canonicalization Scheme (JCS). This specification defines how to create a canonical representation of JSON <xref target="RFC8259" format="default"/> data by building on the strict serialization methods for JSON primitives defined by ECMAScript <xref target="ECMA-262" format="default"/>, constraining JSON data to the I-JSON <xref target="RFC7493" format="default"/> subset, and by using deterministic property sorting. The output from JCS is a "hashable" representation of JSON data that can be used by cryptographic methods. The subsequent paragraphs outline the primary design considerations. </t> <t> Cryptographic operations like hashing and signing need the data to be expressed in an invariant format so that the operations are reliably repeatable. One way to accomplish this is to convert the data into a format that has a simple and fixed representation, like base64url <xref target="RFC4648" format="default"/>. This is how JSON Web Signature (JWS) <xref target="RFC7515" format="default"/> addressed this issue. Another solution is to create a canonical version of the data, similar to what was done for the XML signature <xref target="XMLDSIG" format="default"/> standard. </t> <t> The primary advantage with a canonicalizing scheme is that data can be kept in its original form. This is the core rationale behind JCS. Put another way, using canonicalization enables a JSON object to remain a JSON object even after being signed. This can simplify system design, documentation, and logging. </t> <t> To avoid "reinventing the wheel", JCS relies on the serialization of JSON primitives (strings, numbers, and literals), as defined by ECMAScript (aka JavaScript) <xref target="ECMA-262" format="default"/> beginning with version 6. </t> <t> Seasoned XML developers may recall difficulties getting XML signatures to validate. This was usually due to different interpretations of the quite intricate XML canonicalization rules as well as of the equally complex Web Services security standards. The reasons why JCS should not suffer from similar issues are: </t> <ul spacing="normal"> <li> JSON does not have a namespace concept and default values. </li> <li> Data is constrained to the I&nbhy;JSON <xref target="RFC7493" format="default"/> subset. This eliminates the need for specific parsers for dealing with canonicalization. </li> <li> JCS-compatible serialization of JSON primitives is currently supported by most web browsers as well as by Node.js <xref target="NODEJS" format="default"/>. </li> <li> The full JCS specification is currently supported by multiple open-source implementations (see <xref target="open.source" format="default"/>). See also <xref target="impl.guidelines" format="default"/> for implementation guidelines. </li> </ul> <t> JCS is compatible with some existing systems relying on JSON canonicalization such as JSON Web Key (JWK) Thumbprint <xref target="RFC7638" format="default"/> and Keybase <xref target="KEYBASE" format="default"/>. </t> <t> For potential uses outside of cryptography, see <xref target="I-D.rundgren-comparable-json" format="default"/>. </t> <t> The intended audiences of this document are JSON tool vendors as well as designers of JSON-based cryptographic solutions. The reader is assumed to be knowledgeable in ECMAScript, including the "JSON" object. </t> </section> <section anchor="Terminology" numbered="true" toc="default"> <name>Terminology</name> <t> Note that this document is not on the IETF standards track. However, a conformant implementation is supposed to adhere to the specified behavior for security and interoperability reasons. This text uses BCP 14 to describe that necessary behavior. </t> <t> The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> <section anchor="Operation" numbered="true" toc="default"> <name>Detailed Operation</name> <t> This section describes the details related to creating a canonical JSON representation and how they are addressed by JCS. </t> <t> <xref target="impl.guidelines" format="default"/> describes the <bcp14>RECOMMENDED</bcp14> way of adding JCS support to existing JSON tools. </t> <section anchor="json.datacreation" numbered="true" toc="default"> <name>Creation of Input Data</name> <t> Data to be canonically serialized is usually created by: </t> <ul spacing="normal"> <li> Parsing previously generated JSON data. </li> <li> Programmatically creating data. </li> </ul> <t> Irrespective of the method used, the data to be serialized <bcp14>MUST</bcp14> be adapted for I&nbhy;JSON <xref target="RFC7493" format="default"/> formatting, which implies the following: </t> <ul spacing="normal"> <li> JSON objects <bcp14>MUST NOT</bcp14> exhibit duplicate property names. </li> <li> JSON string data <bcp14>MUST</bcp14> be expressible as Unicode <xref target="UNICODE" format="default"/>. </li> <li> JSON number data <bcp14>MUST</bcp14> be expressible as IEEE 754 <xref target="IEEE754" format="default"/> double-precision values. For applications needing higher precision or longer integers than offered by IEEE 754 double precision, it is <bcp14>RECOMMENDED</bcp14> to represent such numbers as JSON strings; see <xref target="json.bignumbers" format="default"/> for details on how this can be performed in an interoperable and extensible way. </li> </ul> <t> An additional constraint is that parsed JSON string data <bcp14>MUST NOT</bcp14> be altered during subsequent serializations. For more information, see <xref target="string.subtypes" format="default"/>. </t> <t> Note: Although the Unicode standard offers the possibility of rearranging certain character sequences, referred to as "Unicode Normalization" <xref target="UCNORM" format="default"/>, JCS-compliant string processing does not take this into consideration. That is, all components involved in a scheme depending on JCS <bcp14>MUST</bcp14> preserve Unicode string data "as is". </t> </section> <section anchor="json.canonicalization" numbered="true" toc="default"> <name>Generation of Canonical JSON Data</name> <t> The following subsections describe the steps required to create a canonical JSON representation of the data elaborated on in the previous section. </t> <t> <xref target="canonicalize.js" format="default"/> shows sample code for an ECMAScript-based canonicalizer, matching the JCS specification. </t> <section anchor="json.whitespace" numbered="true" toc="default"> <name>Whitespace</name> <t> Whitespace between JSON tokens <bcp14>MUST NOT</bcp14> be emitted. </t> </section> <section anchor="json.serialization.data" numbered="true" toc="default"> <name>Serialization of Primitive Data Types</name> <t> Assume the following JSON object is parsed: </t> <sourcecode type="json"> { "numbers": [333333333.33333329, 1E30, 4.50, 2e-3, 0.000000000000000000000000001], "string": "\u20ac$\u000F\u000aA'\u0042\u0022\u005c\\\"\/", "literals": [null, true, false] } </sourcecode> <t> If the parsed data is subsequently serialized using a serializer compliant with ECMAScript's "JSON.stringify()", the result would (with a line wrap added for display purposes only) be rather divergent with respect to the original data: </t> <sourcecode type="json"> {"numbers":[333333333.3333333,1e+30,4.5,0.002,1e-27],"string": "€$\u000f\nA'B\"\\\\\"/","literals":[null,true,false]} </sourcecode> <t> The reason for the difference between the parsed data and its serialized counterpart is due to a wide tolerance on input data (as defined by JSON <xref target="RFC8259" format="default"/>), while output data (as defined by ECMAScript) has a fixed representation. As can be seen in the example, numbers are subject to rounding as well. </t> <t> The following subsections describe the serialization of primitive JSON data types according to JCS. This part is identical to that of ECMAScript. In the (unlikely) event that a future version of ECMAScript would invalidate any of the following serialization methods, it will be up to the developer community to either stick to this specification or create a new specification. </t> <section anchor="json.ser.literals" numbered="true" toc="default"> <name>Serialization of Literals</name> <t> In accordance with JSON <xref target="RFC8259" format="default"/>, the literals "null", "true", and "false" <bcp14>MUST</bcp14> be serialized as null, true, and false, respectively. </t> </section> <section anchor="json.ser.string" numbered="true" toc="default"> <name>Serialization of Strings</name> <t> For JSON string data (which includes JSON object property names as well), each Unicode code point <bcp14>MUST</bcp14> be serialized as described below (see Section 24.3.2.2 of <xref target="ECMA-262" format="default"/>): </t> <ul spacing="normal"> <li> If the Unicode value falls within the traditional ASCII control character range (U+0000 through U+001F), it <bcp14>MUST</bcp14> be serialized using lowercase hexadecimal Unicode notation (\uhhhh) unless it is in the set of predefined JSON control characters U+0008, U+0009, U+000A, U+000C, or U+000D, which <bcp14>MUST</bcp14> be serialized as \b, \t, \n, \f, and \r, respectively. </li> <li> If the Unicode value is outside of the ASCII control character range, it <bcp14>MUST</bcp14> be serialized "as is" unless it is equivalent to U+005C (\) or U+0022 ("), which <bcp14>MUST</bcp14> be serialized as \\ and \", respectively. </li> </ul> <t> Finally, the resulting sequence of Unicode code points <bcp14>MUST</bcp14> be enclosed in double quotes ("). </t> <t> Note: Since invalid Unicode data like "lone surrogates" (e.g., U+DEAD) may lead to interoperability issues including broken signatures, occurrences of such data <bcp14>MUST</bcp14> cause a compliant JCS implementation to terminate with an appropriate error. </t> </section> <section anchor="json.ser.number" numbered="true" toc="default"> <name>Serialization of Numbers</name> <t> ECMAScript builds on the IEEE 754 <xref target="IEEE754" format="default"/> double-precision standard for representing JSON number data. Such data <bcp14>MUST</bcp14> be serialized according to Section 7.1.12.1 of <xref target="ECMA-262" format="default"/>, including the "Note 2" enhancement. </t> <t> Due to the relative complexity of this part, the algorithm itself is not included in this document. For implementers of JCS-compliant number serialization, Google's implementation in V8 <xref target="V8" format="default"/> may serve as a reference. Another compatible number serialization reference implementation is Ryu <xref target="RYU" format="default"/>, which is used by the JCS open-source Java implementation mentioned in <xref target="open.source" format="default"/>. <xref target="json.ieee754.test" format="default"/> holds a set of IEEE 754 sample values and their corresponding JSON serialization. </t> <t> Note: Since Not a Number (NaN) and Infinity are not permitted in JSON, occurrences of NaN or Infinity <bcp14>MUST</bcp14> cause a compliant JCS implementation to terminate with an appropriate error. </t> </section> </section> <section anchor="json.sorting.properties" numbered="true" toc="default"> <name>Sorting of Object Properties</name> <t> Although the previous step normalized the representation of primitive JSON data types, the result would not yet qualify as "canonical" since JSON object properties are not in lexicographic (alphabetical) order. </t> <t> Applied to the sample in <xref target="json.serialization.data" format="default"/>, a properly canonicalized version should (with a line wrap added for display purposes only) read as: </t> <sourcecode type="json"> {"literals":[null,true,false],"numbers":[333333333.3333333, 1e+30,4.5,0.002,1e-27],"string":"€$\u000f\nA'B\"\\\\\"/"} </sourcecode> <t> The rules for lexicographic sorting of JSON object properties according to JCS are as follows: </t> <ul spacing="normal"> <li> JSON object properties <bcp14>MUST</bcp14> be sorted recursively, which means that JSON child Objects <bcp14>MUST</bcp14> have their properties sorted as well. </li> <li> JSON array data <bcp14>MUST</bcp14> also be scanned for the presence of JSON objects (if an object is found, then its properties <bcp14>MUST</bcp14> be sorted), but array element order <bcp14>MUST NOT</bcp14> be changed. </li> </ul> <t> When a JSON object is about to have its properties sorted, the following measures <bcp14>MUST</bcp14> be adhered to: </t> <ul spacing="normal"> <li> The sorting process is applied to property name strings in their "raw" (unescaped) form. That is, a newline character is treated as U+000A. </li> <li> Property name strings to be sorted are formatted as arrays of UTF-16 <xref target="UNICODE" format="default"/> code units. The sorting is based on pure value comparisons, where code units are treated as unsigned integers, independent of locale settings. </li> <li> <t> Property name strings either have different values at some index that is a valid index for both strings, or their lengths are different, or both. If they have different values at one or more index positions, let k be the smallest such index; then, the string whose value at position k has the smaller value, as determined by using the "<" operator, lexicographically precedes the other string. If there is no index position at which they differ, then the shorter string lexicographically precedes the longer string. </t> <t> In plain English, this means that property names are sorted in ascending order like the following: </t> <artwork type="ascii-art" align="left" alt=""><![CDATA[ "" "a" "aa" "ab" ]]></artwork> </li> </ul> <t> The rationale for basing the sorting algorithm on UTF-16 code units is that it maps directly to the string type in ECMAScript (featured in web browsers and Node.js), Java, and .NET. In addition, JSON only supports escape sequences expressed as UTF-16 code units, making knowledge and handling of such data a necessity anyway. Systems using another internal representation of string data will need to convert JSON property name strings into arrays of UTF-16 code units before sorting. The conversion from UTF-8 or UTF-32 to UTF-16 is defined by the Unicode <xref target="UNICODE" format="default"/> standard. </t> <t> The following JSON test data can be used for verifying the correctness of the sorting scheme in a JCS implementation: </t> <sourcecode type="json"> { "\u20ac": "Euro Sign", "\r": "Carriage Return", "\ufb33": "Hebrew Letter Dalet With Dagesh", "1": "One", "\ud83d\ude00": "Emoji: Grinning Face", "\u0080": "Control", "\u00f6": "Latin Small Letter O With Diaeresis" } </sourcecode> <t> Expected argument order after sorting property strings: </t> <artwork type="ascii-art" align="left" alt=""><![CDATA[ "Carriage Return" "One" "Control" "Latin Small Letter O With Diaeresis" "Euro Sign" "Emoji: Grinning Face" "Hebrew Letter Dalet With Dagesh"]]></artwork> <t> Note: For the purpose of obtaining a deterministic property order, sorting of data encoded in UTF-8 or UTF-32 would also work, but the outcome for JSON data like above would differ and thus be incompatible with this specification. However, in practice, property names are rarely defined outside of 7-bit ASCII, making it possible to sort string data in UTF-8 or UTF-32 format without conversion to UTF-16 and still be compatible with JCS. Whether or not this is a viable option depends on the environment JCS is used in. </t> </section> <section anchor="json.utf8" numbered="true" toc="default"> <name>UTF-8 Generation</name> <t> Finally, in order to create a platform-independent representation, the result of the preceding step <bcp14>MUST</bcp14> be encoded in UTF-8. </t> <t> Applied to the sample in <xref target="json.sorting.properties" format="default"/>, this should yield the following bytes, here shown in hexadecimal notation: </t> <artwork type="ascii-art" align="left" alt=""><![CDATA[ 7b 22 6c 69 74 65 72 61 6c 73 22 3a 5b 6e 75 6c 6c 2c 74 72 75 65 2c 66 61 6c 73 65 5d 2c 22 6e 75 6d 62 65 72 73 22 3a 5b 33 33 33 33 33 33 33 33 33 2e 33 33 33 33 33 33 33 2c 31 65 2b 33 30 2c 34 2e 35 2c 30 2e 30 30 32 2c 31 65 2d 32 37 5d 2c 22 73 74 72 69 6e 67 22 3a 22 e2 82 ac 24 5c 75 30 30 30 66 5c 6e 41 27 42 5c 22 5c 5c 5c 5c 5c 22 2f 22 7d]]></artwork> <t> This data is intended to be usable as input to cryptographic methods. </t> </section> </section> </section> <section anchor="IANA" numbered="true" toc="default"> <name>IANA Considerations</name> <t> This document has no IANA actions. </t> </section> <section anchor="Security" numbered="true" toc="default"> <name>Security Considerations</name> <t> It is crucial to perform sanity checks on input data to avoid overflowing buffers and similar things that could affect the integrity of the system. </t> <t> When JCS is applied to signature schemes like the one described in <xref target="impl.guidelines" format="default"/>, applications <bcp14>MUST</bcp14> perform the following operations before acting upon received data: </t> <ol spacing="normal" type="1"> <li> Parse the JSON data and verify that it adheres to I-JSON. </li> <li> Verify the data for correctness according to the conventions defined by the ecosystem where it is to be used. This also includes locating the property holding the signature data. </li> <li> Verify the signature. </li> </ol> <t> If any of these steps fail, the operation in progress <bcp14>MUST</bcp14> be aborted. </t> </section> </middle> <back> <displayreference target="I-D.rundgren-comparable-json" to="JSONCOMP"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8259.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7493.xml"/> <reference anchor="ECMA-262" target="https://www.ecma-international.org/ecma-262/10.0/index.html"> <front> <title>ECMAScript 2019 Language Specification</title> <author> <organization>ECMA International</organization> </author> <date year="2019" month="June"/> </front> <refcontent>Standard ECMA-262 10th Edition</refcontent> </reference> <reference anchor="IEEE754" target="https://ieeexplore.ieee.org/document/8766229"> <front> <title>IEEE Standard for Floating-Point Arithmetic</title> <seriesInfo name="DOI" value="10.1109/IEEESTD.2019.8766229"/> <author> <organization>IEEE</organization> </author> </front> <refcontent>IEEE 754-2019</refcontent> </reference> <reference anchor="UNICODE" target="https://www.unicode.org/versions/latest/"> <front> <title>The Unicode Standard</title> <author> <organization>The Unicode Consortium</organization> </author> </front> </reference> <reference anchor="UCNORM" target="https://www.unicode.org/reports/tr15/"> <front> <title>Unicode Normalization Forms</title> <author> <organization>The Unicode Consortium</organization> </author> </front> </reference> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7638.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4648.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7515.xml"/> <xi:include href="https://www.rfc-editor.org/refs/bibxml3/reference.I-D.rundgren-comparable-json.xml"/> <reference anchor="V8" target="https://v8.dev/"> <front> <title>What is V8?</title> <author> <organization>Google LLC</organization> </author> </front> </reference> <reference anchor="RYU" target="https://github.com/ulfjack/ryu"> <front> <title>Ryu floating point number serializing algorithm</title> <author></author> <date month="May" year="2020"/> </front> <refcontent>commit 27d3c55</refcontent> </reference> <reference anchor="NODEJS" target="https://nodejs.org"> <front> <title>Node.js</title> <author> <organization>OpenJS Foundation </organization> </author> </front> </reference> <reference anchor="KEYBASE" target="https://keybase.io/docs/api/1.0/canonical_packings"> <front> <title>Canonical Packings for JSON and Msgpack</title> <author> <organization>Keybase </organization> </author> </front> </reference> <reference anchor="OPENAPI" target="https://www.openapis.org/"> <front> <title>The OpenAPI Specification: a broadly adopted industry standard for describing modern APIs</title> <author> <organization>OpenAPI Initiative </organization> </author> </front> </reference> <reference anchor="XMLDSIG" target="https://www.w3.org/TR/xmldsig-core1/"> <front> <title>XML Signature Syntax and Processing Version 1.1</title> <author> <organization>W3C</organization> </author> <date month="April" year="2013"/> </front> <refcontent>W3C Recommendation</refcontent> </reference> </references> </references> <section anchor="canonicalize.js" numbered="true" toc="default"> <name>ECMAScript Sample Canonicalizer</name> <t> Below is an example of a JCS canonicalizer for usage with ECMAScript-based systems: </t> <sourcecode type="javascript"> //////////////////////////////////////////////////////////// // Since the primary purpose of this code is highlighting // // the core of the JCS algorithm, error handling and // // UTF-8 generation were not implemented. // //////////////////////////////////////////////////////////// var canonicalize = function(object) { var buffer = ''; serialize(object); return buffer; function serialize(object) { if (object === null || typeof object !== 'object' || object.toJSON != null) { ///////////////////////////////////////////////// // Primitive type or toJSON, use "JSON" // ///////////////////////////////////////////////// buffer += JSON.stringify(object); } else if (Array.isArray(object)) { ///////////////////////////////////////////////// // Array - Maintain element order // ///////////////////////////////////////////////// buffer += '['; let next = false; object.forEach((element) => { if (next) { buffer += ','; } next = true; ///////////////////////////////////////// // Array element - Recursive expansion // ///////////////////////////////////////// serialize(element); }); buffer += ']'; } else { ///////////////////////////////////////////////// // Object - Sort properties before serializing // ///////////////////////////////////////////////// buffer += '{'; let next = false; Object.keys(object).sort().forEach((property) => { if (next) { buffer += ','; } next = true; ///////////////////////////////////////////// // Property names are strings, use "JSON" // ///////////////////////////////////////////// buffer += JSON.stringify(property); buffer += ':'; ////////////////////////////////////////// // Property value - Recursive expansion // ////////////////////////////////////////// serialize(object[property]); }); buffer += '}'; } } }; </sourcecode> </section> <section anchor="json.ieee754.test" numbered="true" toc="default"> <name>Number Serialization Samples</name> <t> The following table holds a set of ECMAScript-compatible number serialization samples, including some edge cases. The column "IEEE 754" refers to the internal ECMAScript representation of the "Number" data type, which is based on the IEEE 754 <xref target="IEEE754" format="default"/> standard using 64-bit (double-precision) values, here expressed in hexadecimal. </t> <table anchor="ECMAScript-TABLE"> <name>ECMAScript-Compatible JSON Number Serialization Samples</name> <thead> <tr> <th align="center">IEEE 754</th> <th align="center">JSON Representation</th> <th align="center">Comment</th> </tr> </thead> <tbody> <tr> <td><!--remove for TXT/PDF--><tt>0000000000000000</tt><!--remove for TXT/PDF--></td> <td><!--remove for TXT/PDF--><tt>0<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Zero<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>8000000000000000<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>0<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Minus zero<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>0000000000000001<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>5e-324<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Min pos number<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>8000000000000001<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>-5e-324<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Min neg number<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>7fefffffffffffff<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>1.7976931348623157e+308<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Max pos number<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>ffefffffffffffff<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>-1.7976931348623157e+308<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Max neg number<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>4340000000000000<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>9007199254740992<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Max pos int    (1)<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>c340000000000000<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>-9007199254740992<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Max neg int    (1)<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>4430000000000000<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>295147905179352830000<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>~2**68         (2)<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>7fffffffffffffff<!--remove for TXT/PDF--></tt></td> <td></td> <td><!--remove for TXT/PDF--><tt>NaN            (3)<!--remov\ e for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>7ff0000000000000<!--remove for TXT/PDF--></tt></td> <td></td> <td><!--remove for TXT/PDF--><tt>Infinity       (3)<!--remove for TXT/PDF--></tt></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>44b52d02c7e14af5<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>9.999999999999997e+22<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>44b52d02c7e14af6<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>1e+23<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>44b52d02c7e14af7<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>1.0000000000000001e+23<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>444b1ae4d6e2ef4e<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>999999999999999700000<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>444b1ae4d6e2ef4f<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>999999999999999900000<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>444b1ae4d6e2ef50<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>1e+21 <!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>3eb0c6f7a0b5ed8c<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>9.999999999999997e-7<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>3eb0c6f7a0b5ed8d<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>0.000001<!--remove for TXT/PDF--></tt></td> <td> </td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>41b3de4355555553<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>333333333.3333332<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>41b3de4355555554<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>333333333.33333325<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>41b3de4355555555<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>333333333.3333333<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>41b3de4355555556<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>333333333.3333334<!--remove for TXT/PDF--></tt></td><td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>41b3de4355555557<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>333333333.33333343<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>becbf647612f3696<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>-0.0000033333333333333333<!--remove for TXT/PDF--></tt></td> <td></td> </tr> <tr> <td><!--remove for TXT/PDF--><tt>43143ff3c1cb0959<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>1424953923781206.2<!--remove for TXT/PDF--></tt></td> <td><!--remove for TXT/PDF--><tt>Round to even  (4)<!--remove for TXT/PDF--></tt></td> </tr> </tbody> </table> <t> Notes: </t> <ol spacing="normal" type="(%d)"> <li> For maximum compliance with the ECMAScript "JSON" object, values that are to be interpreted as true integers <bcp14>SHOULD</bcp14> be in the range -9007199254740991 to 9007199254740991. However, how numbers are used in applications does not affect the JCS algorithm. </li> <li> Although a set of specific integers like 2**68 could be regarded as having extended precision, the JCS/ECMAScript number serialization algorithm does not take this into consideration. </li> <li> Values out of range are not permitted in JSON. See <xref target="json.ser.number" format="default"/>. </li> <li> This number is exactly 1424953923781206.25 but will, after the "Note 2" rule mentioned in <xref target="json.ser.number" format="default"/>, be truncated and rounded to the closest even value. </li> </ol> <t> For a more exhaustive validation of a JCS number serializer, you may test against a file (currently) available in the development portal (see <xref target="json.development" format="default"/>) containing a large set of sample values. Another option is running V8 <xref target="V8" format="default"/> as a live reference together with a program generating a substantial amount of random IEEE 754 values. </t> </section> <section anchor="json.wireformat" numbered="true" toc="default"> <name>Canonicalized JSON as "Wire Format"</name> <t> Since the result from the canonicalization process (see <xref target="json.utf8" format="default"/>) is fully valid JSON, it can also be used as "Wire Format". However, this is just an option since cryptographic schemes based on JCS, in most cases, would not depend on that externally supplied JSON data already being canonicalized. </t> <t> In fact, the ECMAScript standard way of serializing objects using "JSON.stringify()" produces a more "logical" format, where properties are kept in the order they were created or received. The example below shows an address record that could benefit from ECMAScript standard serialization: </t> <sourcecode type="json"> { "name": "John Doe", "address": "2000 Sunset Boulevard", "city": "Los Angeles", "zip": "90001", "state": "CA" } </sourcecode> <t> Using canonicalization, the properties above would be output in the order "address", "city", "name", "state", and "zip", which adds fuzziness to the data from a human (developer or technical support) perspective. Canonicalization also converts JSON data into a single line of text, which may be less than ideal for debugging and logging. </t> </section> <section anchor="json.bignumbers" numbered="true" toc="default"> <name>Dealing with Big Numbers</name> <t> There are several issues associated with the JSON number type, here illustrated by the following sample object: </t> <sourcecode type="json"> { "giantNumber": 1.4e+9999, "payMeThis": 26000.33, "int64Max": 9223372036854775807 } </sourcecode> <t> Although the sample above conforms to JSON <xref target="RFC8259" format="default"/>, applications would normally use different native data types for storing "giantNumber" and "int64Max". In addition, monetary data like "payMeThis" would presumably not rely on floating-point data types due to rounding issues with respect to decimal arithmetic. </t> <t> The established way of handling this kind of "overloading" of the JSON number type (at least in an extensible manner) is through mapping mechanisms, instructing parsers what to do with different properties based on their name. However, this greatly limits the value of using the JSON number type outside of its original, somewhat constrained JavaScript context. The ECMAScript "JSON" object does not support mappings to the JSON number type either. </t> <t> Due to the above, numbers that do not have a natural place in the current JSON ecosystem <bcp14>MUST</bcp14> be wrapped using the JSON string type. This is close to a de facto standard for open systems. This is also applicable for other data types that do not have direct support in JSON, like "DateTime" objects as described in <xref target="string.subtypes" format="default"/>. </t> <t> Aided by a system using the JSON string type, be it programmatic like </t> <sourcecode type=""> var obj = JSON.parse('{"giantNumber": "1.4e+9999"}'); var biggie = new BigNumber(obj.giantNumber); </sourcecode> <t> or declarative schemes like OpenAPI <xref target="OPENAPI" format="default"/>, JCS imposes no limits on applications, including when using ECMAScript. </t> </section> <section anchor="string.subtypes" numbered="true" toc="default"> <name>String Subtype Handling</name> <t> Due to the limited set of data types featured in JSON, the JSON string type is commonly used for holding subtypes. This can, depending on JSON parsing method, lead to interoperability problems, which <bcp14>MUST</bcp14> be dealt with by JCS-compliant applications targeting a wider audience. </t> <t> Assume you want to parse a JSON object where the schema designer assigned the property "big" for holding a "BigInt" subtype and "time" for holding a "DateTime" subtype, while "val" is supposed to be a JSON number compliant with JCS. The following example shows such an object: </t> <sourcecode type="json"> { "time": "2019-01-28T07:45:10Z", "big": "055", "val": 3.5 } </sourcecode> <t>Parsing of this object can be accomplished by the following ECMAScript statement:</t> <sourcecode type=""> var object = JSON.parse(JSON_object_featured_as_a_string); </sourcecode> <t>After parsing, the actual data can be extracted, which for subtypes, also involves a conversion step using the result of the parsing process (an ECMAScript object) as input:</t> <sourcecode type=""> ... = new Date(object.time); // Date object ... = BigInt(object.big); // Big integer ... = object.val; // JSON/JS number </sourcecode> <t> Note that the "BigInt" data type is currently only natively supported by V8 <xref target="V8" format="default"/>. </t> <t> Canonicalization of "object" using the sample code in <xref target="canonicalize.js" format="default"/> would return the following string: </t> <sourcecode type="json"> {"big":"055","time":"2019-01-28T07:45:10Z","val":3.5} </sourcecode> <t> Although this is (with respect to JCS) technically correct, there is another way of parsing JSON data, which also can be used with ECMAScript as shown below: </t> <sourcecode type=""> // "BigInt" requires the following code to become JSON serializable BigInt.prototype.toJSON = function() { return this.toString(); }; // JSON parsing using a "stream"-based method var object = JSON.parse(JSON_object_featured_as_a_string, (k,v) => k == 'time' ? new Date(v) : k == 'big' ? BigInt(v) : v ); </sourcecode> <t> If you now apply the canonicalizer in <xref target="canonicalize.js" format="default"/> to "object", the following string would be generated: </t> <sourcecode type="json"> {"big":"55","time":"2019-01-28T07:45:10.000Z","val":3.5} </sourcecode> <t> In this case, the string arguments for "big" and "time" have changed with respect to the original, presumably making an application depending on JCS fail. </t> <t> The reason for the deviation is that in stream- and schema-based JSON parsers, the original string argument is typically replaced on the fly by the native subtype that, when serialized, may exhibit a different and platform-dependent pattern. </t> <t> That is, stream- and schema-based parsing <bcp14>MUST</bcp14> treat subtypes as "pure" (immutable) JSON string types and perform the actual conversion to the designated native type in a subsequent step. In modern programming platforms like Go, Java, and C#, this can be achieved with moderate efforts by combining annotations, getters, and setters. Below is an example in C#/Json.NET showing a part of a class that is serializable as a JSON object: </t> <sourcecode type=""> // The "pure" string solution uses a local // string variable for JSON serialization while // exposing another type to the application [JsonProperty("amount")] private string _amount; [JsonIgnore] public decimal Amount { get { return decimal.Parse(_amount); } set { _amount = value.ToString(); } } </sourcecode> <t> In an application, "Amount" can be accessed as any other property while it is actually represented by a quoted string in JSON contexts. </t> <t> Note: The example above also addresses the constraints on numeric data implied by I-JSON (the C# "decimal" data type has quite different characteristics compared to IEEE 754 double precision). </t> <section anchor="string.subtypes.arrays" numbered="true" toc="default"> <name>Subtypes in Arrays</name> <t> Since the JSON array construct permits mixing arbitrary JSON data types, custom parsing and serialization code may be required to cope with subtypes anyway. </t> </section> </section> <section anchor="impl.guidelines" numbered="true" toc="default"> <name>Implementation Guidelines</name> <t> The optimal solution is integrating support for JCS directly in JSON serializers (parsers need no changes). That is, canonicalization would just be an additional "mode" for a JSON serializer. However, this is currently not the case. Fortunately, JCS support can be introduced through externally supplied canonicalizer software acting as a post processor to existing JSON serializers. This arrangement also relieves the JCS implementer from having to deal with how underlying data is to be represented in JSON. </t> <t> The post processor concept enables signature creation schemes like the following: </t> <ol spacing="normal" type="1"> <li> Create the data to be signed. </li> <li> Serialize the data using existing JSON tools. </li> <li> Let the external canonicalizer process the serialized data and return canonicalized result data. </li> <li> Sign the canonicalized data. </li> <li> Add the resulting signature value to the original JSON data through a designated signature property. </li> <li> Serialize the completed (now signed) JSON object using existing JSON tools. </li> </ol> <t> A compatible signature verification scheme would then be as follows: </t> <ol spacing="normal" type="1"> <li> Parse the signed JSON data using existing JSON tools. </li> <li> Read and save the signature value from the designated signature property. </li> <li> Remove the signature property from the parsed JSON object. </li> <li> Serialize the remaining JSON data using existing JSON tools. </li> <li> Let the external canonicalizer process the serialized data and return canonicalized result data. </li> <li> Verify that the canonicalized data matches the saved signature value using the algorithm and key used for creating the signature. </li> </ol> <t> A canonicalizer like above is effectively only a "filter", potentially usable with a multitude of quite different cryptographic schemes. </t> <t> Using a JSON serializer with integrated JCS support, the serialization performed before the canonicalization step could be eliminated for both processes. </t> </section> <section anchor="open.source" numbered="true" toc="default"> <name>Open-Source Implementations</name> <t> The following open-source implementations have been verified to be compatible with JCS: </t> <ul spacing="normal"> <li> JavaScript: <eref target="https://www.npmjs.com/package/canonicalize" brackets="angle"/> </li> <li> Java: <eref target="https://github.com/erdtman/java-json-canonicalization" brackets="angle"/> </li> <li> Go: <eref target="https://github.com/cyberphone/json-canonicalization/tree/master/go" brackets="angle"/> </li> <li> .NET/C#: <eref target="https://github.com/cyberphone/json-canonicalization/tree/master/dotnet" brackets="angle"/> </li> <li> Python: <eref target="https://github.com/cyberphone/json-canonicalization/tree/master/python3" brackets="angle"/> </li> </ul> </section> <section anchor="json.otherefforts" numbered="true" toc="default"> <name>Other JSON Canonicalization Efforts</name> <t> There are (and have been) other efforts creating "Canonical JSON". Below is a list of URLs to some of them: </t> <ul spacing="normal"> <li> <eref target="https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00" brackets="angle"/> </li> <li> <eref target="https://gibson042.github.io/canonicaljson-spec/" brackets="angle"/> </li> <li> <eref target="http://wiki.laptop.org/go/Canonical_JSON" brackets="angle"/> </li> </ul> <t> The listed efforts all build on text-level JSON-to-JSON transformations. The primary feature of text-level canonicalization is that it can be made neutral to the flavor of JSON used. However, such schemes also imply major changes to the JSON parsing process, which is a likely hurdle for adoption. Albeit at the expense of certain JSON and application constraints, JCS was designed to be compatible with existing JSON tools. </t> </section> <section anchor="json.development" numbered="true" toc="default"> <name>Development Portal</name> <t> The JCS specification is currently developed at: <eref target="https://github.com/cyberphone/ietf-json-canon" brackets="angle"/>. </t> <t> JCS source code and extensive test data is available at: <eref target="https://github.com/cyberphone/json-canonicalization" brackets="angle"/>. </t> </section> <section anchor="Acknowledgements" numbered="false" toc="default"> <name>Acknowledgements</name> <t> Building on ECMAScript number serialization was originally proposed by <contact fullname="James Manger"/>. This ultimately led to the adoption of the entire ECMAScript serialization scheme for JSON primitives. </t> <t> Other people who have contributed with valuable input to this specification include <contact fullname="Scott Ananian"/>, <contact fullname="Tim Bray"/>, <contact fullname="Ben Campbell"/>, <contact fullname="Adrian Farell"/>, <contact fullname="Richard Gibson"/>, <contact fullname="Bron Gondwana"/>, <contact fullname="John-Mark Gurney"/>, <contact fullname="Mike Jones,"/> <contact fullname="John Levine"/>, <contact fullname="Mark Miller"/>, <contact fullname="Matthew Miller"/>, <contact fullname="Mark Nottingham"/>, <contact fullname="Mike Samuel"/>, <contact fullname="Jim Schaad"/>, <contact fullname="Robert Tupelo-Schneck"/>, and <contact fullname="Michal Wadas"/>. </t> <t> For carrying out real-world concept verification, the software and support for number serialization provided by <contact fullname="Ulf Adams"/>, <contact fullname="Tanner Gooding"/>, and <contact fullname="Remy Oudompheng"/> was very helpful. </t> </section> </back> </rfc>