<?xmlversion="1.0" encoding="UTF-8"?> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <!DOCTYPE rfc SYSTEM "rfc2629.dtd">version='1.0' encoding='utf-8'?> <rfccategory='std' ipr='trust200902' docName='draft-ietf-ice-trickle-21'> <?rfc toc='yes' ?> <?rfc symrefs='yes' ?> <?rfc sortrefs='yes'?> <?rfc iprnotified='no' ?> <?rfc strict='yes' ?> <?rfc compact='yes' ?>xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="std" consensus="true" docName="draft-ietf-ice-trickle-21" indexInclude="true" ipr="trust200902" number="8838" prepTime="2021-01-17T17:24:49" scripts="Common,Latin" sortRefs="true" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en"> <link href="https://datatracker.ietf.org/doc/draft-ietf-ice-trickle-21" rel="prev"/> <link href="https://dx.doi.org/10.17487/rfc8838" rel="alternate"/> <link href="urn:issn:2070-1721" rel="alternate"/> <front> <titleabbrev='Trickle ICE'> Trickleabbrev="Trickle ICE">Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE)Protocol </title>Protocol</title> <seriesInfo name="RFC" value="8838" stream="IETF"/> <authorinitials='E.' surname='Ivov' fullname='Emil Ivov'>fullname="Emil Ivov" initials="E." surname="Ivov"> <organizationabbrev='Atlassian'>Atlassian</organization> <address> <postal> <street>303 Colorado Street, #1600</street> <city>Austin</city> <region>TX</region> <code>78701</code> <country>USA</country> </postal> <phone>+1-512-640-3000</phone> <email>eivov@atlassian.com</email> </address> </author> <author fullname="Eric Rescorla" initials="E.K." surname="Rescorla"> <organization>RTFM, Inc.</organization>abbrev="8x8 / Jitsi" showOnFrontPage="true">8x8, Inc. / Jitsi</organization> <address> <postal><street>2064 Edgewood Drive</street> <city>Palo Alto</city><street>675 Creekside Way</street> <city>Campbell</city> <region>CA</region><code>94303</code> <country>USA</country><code>95008</code> <country>United States of America</country> </postal> <phone>+1650 678 2350</phone> <email>ekr@rtfm.com</email>512 420 6968</phone> <email>emcho@jitsi.org</email> </address> </author> <author fullname="Justin Uberti" initials="J." surname="Uberti"><organization>Google</organization><organization showOnFrontPage="true">Google</organization> <address> <postal> <street>747 6thStStreet S</street> <city>Kirkland</city> <region>WA</region> <code>98033</code><country>USA</country><country>United States of America</country> </postal> <phone>+1 857 288 8888</phone> <email>justin@uberti.name</email> </address> </author> <author initials="P." surname="Saint-Andre" fullname="Peter Saint-Andre"><organization>Mozilla</organization><organization showOnFrontPage="true">Mozilla</organization> <address> <postal> <street>P.O. Box 787</street> <city>Parker</city> <region>CO</region> <code>80134</code><country>USA</country><country>United States of America</country> </postal> <phone>+1 720 256 6756</phone> <email>stpeter@mozilla.com</email> <uri>https://www.mozilla.com/</uri> </address> </author> <date/> <abstract> <t>month="01" year="2021"/> <abstract pn="section-abstract"> <t indent="0" pn="section-abstract-1"> This document describes "Trickle ICE", an extension to the Interactive Connectivity Establishment (ICE) protocol that enables ICE agents to begin connectivity checks while they are still gathering candidates, by incrementally exchanging candidates over time instead of all at once. This method can considerably accelerate the process of establishing a communication session. </t> </abstract> <boilerplate> <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1"> <name slugifiedName="name-status-of-this-memo">Status of This Memo</name> <t indent="0" pn="section-boilerplate.1-1"> This is an Internet Standards Track document. </t> <t indent="0" pn="section-boilerplate.1-2"> This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. </t> <t indent="0" pn="section-boilerplate.1-3"> Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <eref target="https://www.rfc-editor.org/info/rfc8838" brackets="none"/>. </t> </section> <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2"> <name slugifiedName="name-copyright-notice">Copyright Notice</name> <t indent="0" pn="section-boilerplate.2-1"> Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. </t> <t indent="0" pn="section-boilerplate.2-2"> This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. </t> </section> </boilerplate> <toc> <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1"> <name slugifiedName="name-table-of-contents">Table of Contents</name> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1"> <li pn="section-toc.1-1.1"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t> </li> <li pn="section-toc.1-1.2"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-terminology">Terminology</xref></t> </li> <li pn="section-toc.1-1.3"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-determining-support-for-tri">Determining Support for Trickle ICE</xref></t> </li> <li pn="section-toc.1-1.4"> <t indent="0" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-generating-the-initial-ice-">Generating the Initial ICE Description</xref></t> </li> <li pn="section-toc.1-1.5"> <t indent="0" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-handling-the-initial-ice-de">Handling the Initial ICE Description and Generating the Initial ICE Response</xref></t> </li> <li pn="section-toc.1-1.6"> <t indent="0" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-handling-the-initial-ice-re">Handling the Initial ICE Response</xref></t> </li> <li pn="section-toc.1-1.7"> <t indent="0" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-forming-checklists">Forming Checklists</xref></t> </li> <li pn="section-toc.1-1.8"> <t indent="0" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-performing-connectivity-che">Performing Connectivity Checks</xref></t> </li> <li pn="section-toc.1-1.9"> <t indent="0" pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-gathering-and-conveying-new">Gathering and Conveying Newly Gathered Local Candidates</xref></t> </li> <li pn="section-toc.1-1.10"> <t indent="0" pn="section-toc.1-1.10.1"><xref derivedContent="10" format="counter" sectionFormat="of" target="section-10"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-pairing-newly-gathered-loca">Pairing Newly Gathered Local Candidates</xref></t> </li> <li pn="section-toc.1-1.11"> <t indent="0" pn="section-toc.1-1.11.1"><xref derivedContent="11" format="counter" sectionFormat="of" target="section-11"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-receiving-trickled-candidat">Receiving Trickled Candidates</xref></t> </li> <li pn="section-toc.1-1.12"> <t indent="0" pn="section-toc.1-1.12.1"><xref derivedContent="12" format="counter" sectionFormat="of" target="section-12"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-inserting-trickled-candidat">Inserting Trickled Candidate Pairs into a Checklist</xref></t> </li> <li pn="section-toc.1-1.13"> <t indent="0" pn="section-toc.1-1.13.1"><xref derivedContent="13" format="counter" sectionFormat="of" target="section-13"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-generating-an-end-of-candid">Generating an End-of-Candidates Indication</xref></t> </li> <li pn="section-toc.1-1.14"> <t indent="0" pn="section-toc.1-1.14.1"><xref derivedContent="14" format="counter" sectionFormat="of" target="section-14"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-receiving-an-end-of-candida">Receiving an End-of-Candidates Indication</xref></t> </li> <li pn="section-toc.1-1.15"> <t indent="0" pn="section-toc.1-1.15.1"><xref derivedContent="15" format="counter" sectionFormat="of" target="section-15"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-subsequent-exchanges-and-ic">Subsequent Exchanges and ICE Restarts</xref></t> </li> <li pn="section-toc.1-1.16"> <t indent="0" pn="section-toc.1-1.16.1"><xref derivedContent="16" format="counter" sectionFormat="of" target="section-16"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-half-trickle">Half Trickle</xref></t> </li> <li pn="section-toc.1-1.17"> <t indent="0" pn="section-toc.1-1.17.1"><xref derivedContent="17" format="counter" sectionFormat="of" target="section-17"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-preserving-candidate-order-">Preserving Candidate Order While Trickling</xref></t> </li> <li pn="section-toc.1-1.18"> <t indent="0" pn="section-toc.1-1.18.1"><xref derivedContent="18" format="counter" sectionFormat="of" target="section-18"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-requirements-for-using-prot">Requirements for Using Protocols</xref></t> </li> <li pn="section-toc.1-1.19"> <t indent="0" pn="section-toc.1-1.19.1"><xref derivedContent="19" format="counter" sectionFormat="of" target="section-19"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t> </li> <li pn="section-toc.1-1.20"> <t indent="0" pn="section-toc.1-1.20.1"><xref derivedContent="20" format="counter" sectionFormat="of" target="section-20"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t> </li> <li pn="section-toc.1-1.21"> <t indent="0" pn="section-toc.1-1.21.1"><xref derivedContent="21" format="counter" sectionFormat="of" target="section-21"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.21.2"> <li pn="section-toc.1-1.21.2.1"> <t indent="0" pn="section-toc.1-1.21.2.1.1"><xref derivedContent="21.1" format="counter" sectionFormat="of" target="section-21.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t> </li> <li pn="section-toc.1-1.21.2.2"> <t indent="0" pn="section-toc.1-1.21.2.2.1"><xref derivedContent="21.2" format="counter" sectionFormat="of" target="section-21.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.22"> <t indent="0" pn="section-toc.1-1.22.1"><xref derivedContent="Appendix A" format="default" sectionFormat="of" target="section-appendix.a"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-interaction-with-regular-ic">Interaction with Regular ICE</xref></t> </li> <li pn="section-toc.1-1.23"> <t indent="0" pn="section-toc.1-1.23.1"><xref derivedContent="Appendix B" format="default" sectionFormat="of" target="section-appendix.b"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-interaction-with-ice-lite">Interaction with ICE-Lite</xref></t> </li> <li pn="section-toc.1-1.24"> <t indent="0" pn="section-toc.1-1.24.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.c"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgements">Acknowledgements</xref></t> </li> <li pn="section-toc.1-1.25"> <t indent="0" pn="section-toc.1-1.25.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.d"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t> </li> </ul> </section> </toc> </front> <middle> <sectiontitle='Introduction'> <t>numbered="true" toc="include" removeInRFC="false" pn="section-1"> <name slugifiedName="name-introduction">Introduction</name> <t indent="0" pn="section-1-1"> The Interactive Connectivity Establishment (ICE) protocol <xreftarget="rfc5245bis"/>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> describes how an ICE agent gathers candidates, exchanges candidates with a peer ICE agent, and creates candidate pairs. Once the pairs have been gathered, the ICE agent will perform connectivitychecks,checks and eventually nominate and select pairs that will be used for sending and receiving data within a communication session. </t><t><t indent="0" pn="section-1-2"> Following the procedures in <xreftarget="rfc5245bis"/>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> can lead to somewhat lengthy establishment times for communication sessions, because candidate gathering often involves queryingSTUNSession Traversal Utilities for NAT (STUN) servers <xreftarget="RFC5389"/>target="RFC5389" format="default" sectionFormat="of" derivedContent="RFC5389"/> and allocating relayed candidatesusing TURNon Traversal Using Relay NAT (TURN) servers <xreftarget="RFC5766"/>.target="RFC5766" format="default" sectionFormat="of" derivedContent="RFC5766"/>. Although many ICE procedures can be completed in parallel, the pacing requirements from <xreftarget="rfc5245bis"/>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> still need to be followed. </t><t><t indent="0" pn="section-1-3"> This document defines "Trickle ICE", a supplementary mode of ICE operation in which candidates can be exchanged incrementally as soon as they become available (and simultaneously with the gathering of other candidates). Connectivity checks can also start as soon as candidate pairs have been created. Because Trickle ICE enables candidate gathering and connectivity checks to be done in parallel, the method can considerably accelerate the process of establishing a communication session. </t><t><t indent="0" pn="section-1-4"> This document also defines how to discover support for Trickle ICE, how the procedures in <xreftarget="rfc5245bis"/>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> are modified or supplemented when using Trickle ICE, and how a Trickle ICE agent can interoperate with an ICE agent compliant to <xreftarget="rfc5245bis"/>.target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. </t><t><t indent="0" pn="section-1-5"> This document does not define any protocol-specific usage of Trickle ICE. Instead, protocol-specific details for Trickle ICE are defined in separate usage documents. Examples of such documents are <xreftarget="I-D.ietf-mmusic-trickle-ice-sip"/>target="RFC8840" format="default" sectionFormat="of" derivedContent="RFC8840"/> (which defines usage with the Session Initiation Protocol (SIP) <xreftarget='RFC3261'/>target="RFC3261" format="default" sectionFormat="of" derivedContent="RFC3261"/> and the Session Description Protocol (SDP) <xreftarget='RFC3261'/>)target="RFC4566" format="default" sectionFormat="of" derivedContent="RFC4566"/>) and <xreftarget='XEP-0176'/>target="XEP-0176" format="default" sectionFormat="of" derivedContent="XEP-0176"/> (which defines usage withXMPPthe Extensible Messaging and Presence Protocol (XMPP) <xreftarget='RFC6120'/>).target="RFC6120" format="default" sectionFormat="of" derivedContent="RFC6120"/>). However, some of the examples in the document use SDP and theoffer/answerOffer/Answer model <xreftarget='RFC3264'/>target="RFC3264" format="default" sectionFormat="of" derivedContent="RFC3264"/> to explain the underlying concepts. </t><t><t indent="0" pn="section-1-6"> The following diagram illustrates a successful Trickle ICE exchange with a using protocol that follows theoffer/answerOffer/Answer model: </t> <figuretitle="Flow" anchor="fig-flow"> <artwork> <![CDATA[anchor="fig-flow" align="left" suppress-title="false" pn="figure-1"> <name slugifiedName="name-flow">Flow</name> <artwork name="" type="" align="left" alt="" pn="section-1-7.1"> Alice Bob | Offer ||---------------------------------------------->||---------------------------------------------->| | Additional Candidates ||---------------------------------------------->||---------------------------------------------->| | Answer ||<----------------------------------------------||<----------------------------------------------| | Additional Candidates ||<----------------------------------------------||<----------------------------------------------| | Additional Candidates and Connectivity Checks ||<--------------------------------------------->| |<==========|<--------------------------------------------->| |<========== CONNECTION ESTABLISHED===========>| ]]>===========>| </artwork> </figure><t><t indent="0" pn="section-1-8"> The main body of this document is structured to describe the behavior of Trickle ICE agents in roughly the order of operations and interactions during an ICE session:<list style='numbers'> <t>Determining</t> <ol spacing="normal" type="1" indent="adaptive" start="1" pn="section-1-9"> <li pn="section-1-9.1" derivedCounter="1.">Determining support fortrickle ICE</t> <t>GeneratingTrickle ICE</li> <li pn="section-1-9.2" derivedCounter="2.">Generating the initial ICEdescription</t> <t>Handlingdescription</li> <li pn="section-1-9.3" derivedCounter="3.">Handling the initial ICE description and generating the initial ICEresponse</t> <t>Handlingresponse</li> <li pn="section-1-9.4" derivedCounter="4.">Handling the initial ICEresponse</t> <t>Forming check lists,response</li> <li pn="section-1-9.5" derivedCounter="5.">Forming checklists, pruning candidates, performing connectivity checks,etc.</t> <t>Gatheringetc.</li> <li pn="section-1-9.6" derivedCounter="6.">Gathering and conveying candidates after the initial ICE description andresponse</t> <t>Handlingresponse</li> <li pn="section-1-9.7" derivedCounter="7.">Handling inbound trickledcandidates</t> <t>Generatingcandidates</li> <li pn="section-1-9.8" derivedCounter="8.">Generating and handling the end-of-candidatesindication</t> <t>Handlingindication</li> <li pn="section-1-9.9" derivedCounter="9.">Handling ICErestarts</t> </list> </t> <t>restarts</li> </ol> <t indent="0" pn="section-1-10"> There is quite a bit of operational experience with the technique behind Trickle ICE, going back as far as 2005 (when the XMPP Jingle extension defined a "dribble mode" as specified in <xreftarget='XEP-0176'/>);target="XEP-0176" format="default" sectionFormat="of" derivedContent="XEP-0176"/>); this document incorporates feedback from those who have implemented and deployed the technique over the years. </t> </section> <sectiontitle="Terminology"> <t>numbered="true" toc="include" removeInRFC="false" pn="section-2"> <name slugifiedName="name-terminology">Terminology</name> <t indent="0" pn="section-2-1"> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xreftarget="RFC2119"/>.target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xref target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t><t><t indent="0" pn="section-2-2"> This specification makes use of all terminology defined for Interactive Connectivity Establishment in <xreftarget="rfc5245bis"/>.target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. In addition, it defines the following terms: </t><t> <list style="hanging"> <t hangText="Full Trickle:"><dl newline="false" spacing="normal" indent="3" pn="section-2-3"> <dt pn="section-2-3.1">Empty Checklist:</dt> <dd pn="section-2-3.2"> A checklist that initially does not contain any candidate pairs because they will be incrementally added as they are trickled. (This scenario does not arise with a regular ICE agent, because all candidate pairs are known when the agent creates the checklist set.) </dd> <dt pn="section-2-3.3">Full Trickle:</dt> <dd pn="section-2-3.4"> The typical mode of operation for Trickle ICE agents, in which the initial ICE description can include any number of candidates (even zero candidates) and does not need to include a full generation of candidates as in half trickle.</t> <t hangText="Generation:"></dd> <dt pn="section-2-3.5">Generation:</dt> <dd pn="section-2-3.6"> All of the candidates conveyed within an ICEsession. </t> <t hangText="Half Trickle:">session (correlated with a particular Username Fragment and Password combination). </dd> <dt pn="section-2-3.7">Half Trickle:</dt> <dd pn="section-2-3.8"> A Trickle ICE mode of operation in which the initiator gathers a full generation of candidates strictly before creating and conveying the initial ICE description. Once conveyed, this candidate information can be processed by regular ICE agents, which do not require support for Trickle ICE. It also allowsTrickle ICE capableTrickle-ICE-capable responders to still gather candidates and perform connectivity checks in a non-blocking way, thus providing roughly "half" the advantages of Trickle ICE. Thehalf tricklehalf-trickle mechanism is mostly meant for use when the responder's support for Trickle ICE cannot be confirmed prior to conveying the initial ICE description.</t> <t hangText="ICE Description:"></dd> <dt pn="section-2-3.9">ICE Description:</dt> <dd pn="section-2-3.10"> Any attributes related to the ICE session(not(other than candidates) required to configure an ICE agent. These include but are not limited to theusername fragment, password,Username Fragment, the Password, and other attributes.</t> <t hangText="Trickled Candidates:"></dd> <dt pn="section-2-3.11">Trickled Candidates:</dt> <dd pn="section-2-3.12"> Candidates that a Trickle ICE agent conveys after conveyingthe initial ICE descriptionor responding to the initial ICE description, but within the same ICE session. Trickled candidates can be conveyed in parallel with candidate gathering and connectivity checks.</t> <t hangText="Trickling:"></dd> <dt pn="section-2-3.13">Trickling:</dt> <dd pn="section-2-3.14"> The act of incrementally conveying trickled candidates.</t> <t hangText="Empty Check List:"> A check list that initially does not contain any candidate pairs because they will be incrementally added as they are trickled. (This scenario does not arise with a regular ICE agent, because all candidate pairs are known when the agent creates the check list set). </t> </list> </t></dd> </dl> </section> <sectiontitle='Determininganchor="support" numbered="true" toc="include" removeInRFC="false" pn="section-3"> <name slugifiedName="name-determining-support-for-tri">Determining Support for TrickleICE' anchor="support"> <t>ICE</name> <t indent="0" pn="section-3-1"> To fully support Trickle ICE, using protocolsSHOULD<bcp14>SHOULD</bcp14> incorporate one of the following mechanisms so that implementations can determine whether Trickle ICE is supported: </t><t> <list style='numbers'> <t><ol spacing="normal" type="1" indent="adaptive" start="1" pn="section-3-2"> <li pn="section-3-2.1" derivedCounter="1."> Provide a capabilities discovery method so that agents can verify support of Trickle ICE prior to initiating a session (XMPP's <xreftarget="XEP-0030">Servicetarget="XEP-0030" format="default" sectionFormat="of" derivedContent="XEP-0030">Service Discovery</xref> is one such mechanism).</t> <t></li> <li pn="section-3-2.2" derivedCounter="2."> Make support for Trickle ICE mandatory so that user agents can assume support.</t> </list> </t> <t></li> </ol> <t indent="0" pn="section-3-3"> If a using protocol does not provide a method of determining ahead of time whether Trickle ICE is supported, agents can make use of thehalf tricklehalf-trickle procedure described in <xreftarget="half-trickle"/>.target="half-trickle" format="default" sectionFormat="of" derivedContent="Section 16"/>. </t><t><t indent="0" pn="section-3-4"> Prior to conveying the initial ICE description, agents that implement using protocols that support capabilities discovery can attempt to verify whether or not the remote party supports Trickle ICE. If an agent determines that the remote party does not support Trickle ICE, itMUST<bcp14>MUST</bcp14> fall back to using regular ICE or abandon the entire session. </t><t><t indent="0" pn="section-3-5"> Even if a using protocol does not include a capabilities discovery method, a user agent can provide an indication within the ICE description that it supports Trickle ICE by communicating an ICE option of 'trickle'. This tokenMUST<bcp14>MUST</bcp14> be provided either at the session level or, if at the data stream level, for every data stream (an agentMUST NOT<bcp14>MUST NOT</bcp14> specify Trickle ICE support for some data streams but not others). Note: The encoding of the 'trickle' ICE option, and the message(s) used to carry it to the peer, are protocol specific; for instance, the encoding forthe Session Description Protocol (SDP)SDP <xreftarget='RFC4566'/>target="RFC4566" format="default" sectionFormat="of" derivedContent="RFC4566"/> is defined in <xreftarget='I-D.ietf-mmusic-trickle-ice-sip'/>.target="RFC8840" format="default" sectionFormat="of" derivedContent="RFC8840"/>. </t><t><t indent="0" pn="section-3-6"> Dedicated discovery semantics and half trickle are needed only prior to initiation of an ICE session. After an ICE session is established and Trickle ICE support is confirmed for both parties, either agent can use full trickle for subsequent exchanges (see also <xreftarget='subsequent'/>).target="subsequent" format="default" sectionFormat="of" derivedContent="Section 15"/>). </t> </section> <sectiontitle='Generatinganchor="initial" numbered="true" toc="include" removeInRFC="false" pn="section-4"> <name slugifiedName="name-generating-the-initial-ice-">Generating the Initial ICEDescription' anchor="initial"> <t>Description</name> <t indent="0" pn="section-4-1"> An ICE agent can start gathering candidates as soon as it has an indication that communication is imminent (e.g., auser interfaceuser-interface cue or an explicit request to initiate a communication session). Unlike in regular ICE, in Trickle ICE implementations do not need to gather candidates in a blocking manner. Therefore, unless half trickle is being used, the user experience is improved if the initiating agent generates and transmits its initial ICE description as early as possible (thus enabling the remote party to start gathering and trickling candidates). </t><t><t indent="0" pn="section-4-2"> An initiatorMAY<bcp14>MAY</bcp14> include any mix of candidates when conveying the initial ICE description. This includes the possibility of conveying all the candidates the initiator plans to use (as in half trickle), conveying only apublicly-reachablepublicly reachable IP address (e.g., a candidate at a data relay that is known to not be behind a firewall), or conveying no candidates at all (in which case the initiator can obtain the responder's initial candidate listsoonersooner, and the responder can begin candidate gathering more quickly). </t><t><t indent="0" pn="section-4-3"> For candidates included in the initial ICE description, the methods for calculating priorities and foundations, determining redundancy of candidates, and the like work just as in regular ICE <xreftarget="rfc5245bis"/>.target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. </t> </section> <sectiontitle='Handlingnumbered="true" toc="include" removeInRFC="false" pn="section-5"> <name slugifiedName="name-handling-the-initial-ice-de">Handling the Initial ICE Description and Generating the Initial ICEResponse' > <t>Response</name> <t indent="0" pn="section-5-1"> When a responder receives the initial ICE description, it will first check if the ICE description or initiator indicates support for Trickle ICE as explained in <xreftarget="support"/>.target="support" format="default" sectionFormat="of" derivedContent="Section 3"/>. If not, the responderMUST<bcp14>MUST</bcp14> process the initial ICE description according to regular ICE procedures <xreftarget="rfc5245bis"/>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> (or, if no ICE support is detected at all, according to relevant processing rules for the using protocol, such asoffer/answerOffer/Answer processing rules <xreftarget="RFC3264"/>).target="RFC3264" format="default" sectionFormat="of" derivedContent="RFC3264"/>). However, if support for Trickle ICE is confirmed, a responder will automatically assume support for regular ICE as well. </t><t><t indent="0" pn="section-5-2"> If the initial ICE description indicates support for Trickle ICE, the responder will determine its role and start gathering and prioritizing candidates; while doing so, it will also respond by conveying an initial ICE response, so that both the initiator and the responder can formcheck listschecklists and begin connectivity checks. </t><t><t indent="0" pn="section-5-3"> A responder can respond to the initial ICE description at any point while gathering candidates. The initial ICE responseMAY<bcp14>MAY</bcp14> contain any set of candidates, including all candidates or no candidates. (The benefit of including no candidates is to convey the initial ICE response as quickly as possible, so that both parties can consider the ICE session to be under active negotiation as soon as possible.) </t><t><t indent="0" pn="section-5-4"> As noted in <xreftarget="support"/>,target="support" format="default" sectionFormat="of" derivedContent="Section 3"/>, in using protocols that useSDPSDP, the initial ICE response can indicate support for Trickle ICE by including a token of"trickle"'trickle' in the ice-options attribute. </t> </section> <sectiontitle="Handlingnumbered="true" toc="include" removeInRFC="false" pn="section-6"> <name slugifiedName="name-handling-the-initial-ice-re">Handling the Initial ICEResponse"> <t>Response</name> <t indent="0" pn="section-6-1"> When processing the initial ICE response, the initiator follows regular ICE procedures to determine its role, after which it formscheck listschecklists (<xreftarget="checklists"/>)target="checklists" format="default" sectionFormat="of" derivedContent="Section 7"/>) and performs connectivity checks (<xreftarget='checks'/>).target="checks" format="default" sectionFormat="of" derivedContent="Section 8"/>). </t> </section> <sectiontitle='Forming Check Lists' anchor='checklists'> <t>anchor="checklists" numbered="true" toc="include" removeInRFC="false" pn="section-7"> <name slugifiedName="name-forming-checklists">Forming Checklists</name> <t indent="0" pn="section-7-1"> According to regular ICE procedures <xreftarget="rfc5245bis"/>,target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>, in order for candidate pairing to be possible and for redundant candidates to be pruned, the candidates would need to be provided in the initial ICE description and initial ICE response. By contrast, under TrickleICE check listsICE, checklists can be empty until candidates are conveyed or received.ThereforeTherefore, a Trickle ICE agent handlescheck listchecklist formation and candidate pairing in a slightly different way than a regular ICE agent: the agent still forms thecheck lists,checklists, but it populates a givencheck listchecklist only after it actually has candidate pairs for thatcheck list.checklist. Everycheck listchecklist is initially placed in the Running state, even if thecheck listchecklist is empty (this is consistent withSection 6.1.2.1 of<xreftarget='rfc5245bis'/>).target="RFC8445" sectionFormat="of" section="6.1.2.1" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.1" derivedContent="RFC8445"/>). </t> </section> <sectiontitle='Performinganchor="checks" numbered="true" toc="include" removeInRFC="false" pn="section-8"> <name slugifiedName="name-performing-connectivity-che">Performing ConnectivityChecks' anchor='checks'> <t>Checks</name> <t indent="0" pn="section-8-1"> As specified in <xreftarget='rfc5245bis'/>,target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>, whenever timer Ta fires, onlycheck listschecklists in the Running state will be picked when scheduling connectivity checks for candidate pairs. Therefore, a Trickle ICE agentMUST<bcp14>MUST</bcp14> keep eachcheck listchecklist in the Running state as long as it expects candidate pairs to be incrementally added to thecheck list.checklist. After that, thecheck listchecklist state is set according to the procedures in <xreftarget='rfc5245bis'/>.target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. </t><t><t indent="0" pn="section-8-2"> Whenever timer Ta fires and an emptycheck listchecklist is picked, no action is performed for the list. Without waiting for timer Ta to expire again, the agent selects the nextcheck listchecklist in the Running state, in accordance withSection 6.1.4.2 of<xreftarget='rfc5245bis'/>.target="RFC8445" format="default" sectionFormat="of" section="6.1.4.2" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.4.2" derivedContent="RFC8445"/>. </t><t> Section 7.2.5.3.3 of<t indent="0" pn="section-8-3"> <xreftarget='rfc5245bis'/>target="RFC8445" format="default" sectionFormat="of" section="7.2.5.4" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-7.2.5.4" derivedContent="RFC8445"/> requires that agents updatecheck listschecklists and timer states upon completing a connectivity check transaction. During such an update, regular ICE agents would set the state of acheck listchecklist to Failed if both of the following two conditions are satisfied: </t><t> <list style="symbols"> <t><ul spacing="normal" bare="false" empty="false" indent="3" pn="section-8-4"> <li pn="section-8-4.1"> all of the pairs in thecheck listchecklist areeitherin either the Failed state or the Succeeded state; and</t> <t></li> <li pn="section-8-4.2"> there is not a pair in the valid list for each component of the data stream.</t> </list> </t> <t></li> </ul> <t indent="0" pn="section-8-5"> With Trickle ICE, the above situation would often occur when candidate gathering and trickling are still in progress, even though it is quite possible that future checks will succeed. For this reason, Trickle ICE agents add the following conditions to the above list: </t><t> <list style="symbols"> <t><ul spacing="normal" bare="false" empty="false" indent="3" pn="section-8-6"> <li pn="section-8-6.1"> all candidate gathering hascompletedcompleted, and the agent is not expecting to discover any new local candidates; and</t> <t></li> <li pn="section-8-6.2"> the remote agent has conveyed an end-of-candidates indication for thatcheck listchecklist as described in <xreftarget="end-of-candidates.send"/>. </t> </list> </t> </section> <section title='Gatheringtarget="end-of-candidates.send" format="default" sectionFormat="of" derivedContent="Section 13"/>. </li> </ul> </section> <section anchor="trickle-send" numbered="true" toc="include" removeInRFC="false" pn="section-9"> <name slugifiedName="name-gathering-and-conveying-new">Gathering and Conveying Newly Gathered LocalCandidates' anchor="trickle-send"> <t>Candidates</name> <t indent="0" pn="section-9-1"> After Trickle ICE agents have conveyed initial ICE descriptions and initial ICE responses, they will most likely continue gathering new local candidates as STUN, TURN, and other non-host candidate gathering mechanisms begin to yield results. Whenever an agent discovers such a newcandidatecandidate, it will compute its priority, type, foundation, and component ID according to regular ICE procedures. </t><t><t indent="0" pn="section-9-2"> The new candidate is then checked for redundancy against the existing list of local candidates. If its transport address and base match those of an existing candidate, it will be considered redundant and will be ignored. This would often happen forserver reflexiveserver-reflexive candidates that match the host addresses they were obtained from (e.g., when the latter are public IPv4 addresses). Contrary to regular ICE, Trickle ICE agents will consider the new candidate redundant regardless of its priority. </t><t> Next<t indent="0" pn="section-9-3"> Next, the agent "trickles" the newly discovered candidate(s) to the remote agent. The actual delivery of the new candidates is handled by a using protocol such as SIP or XMPP. Trickle ICE imposes no restrictions on the way this is done (e.g., some using protocols might choose not to trickle updates forserver reflexiveserver-reflexive candidates and instead rely on the discovery ofpeer reflexivepeer-reflexive ones). </t><t><t indent="0" pn="section-9-4"> When candidates are trickled, the using protocolMUST<bcp14>MUST</bcp14> deliver each candidate (and any end-of-candidates indication as described in <xreftarget='end-of-candidates.send'/>)target="end-of-candidates.send" format="default" sectionFormat="of" derivedContent="Section 13"/>) to the receiving Trickle ICE implementation exactly once and in the same order it was conveyed. If the using protocol provides any candidate retransmissions, they need to be hidden from the ICE implementation. </t><t><t indent="0" pn="section-9-5"> Also, candidate trickling needs to be correlated to a specific ICE session, so that if there is an ICE restart, any delayed updates for a previous session can be recognized as such and ignored by the receiving party. For example, using protocols that signal candidates via SDP might include a Username Fragment value in the corresponding a=candidate line, such as:<figure> <artwork> <![CDATA[</t> <sourcecode type="sdp" markers="false" pn="section-9-6"> a=candidate:1 1 UDP 2130706431 2001:db8::1 5000 typ host ufrag 8hhY]]> </artwork> </figure></sourcecode> <t indent="0" pn="section-9-7"> Or, as another example, WebRTC implementations might include a Username Fragment in the JavaScript objects that represent candidates. </t><t><t indent="0" pn="section-9-8"> Note: The using protocol needs to provide a mechanism for both parties to indicate and agree on the ICE session in force (as identified by the Username Fragment and Passwordcombination)combination), so that they have a consistent view of which candidates are to be paired. This is especially important in the case of ICE restarts (see <xreftarget='subsequent'/>).target="subsequent" format="default" sectionFormat="of" derivedContent="Section 15"/>). </t><t><t indent="0" pn="section-9-9"> Note: A using protocol might prefer not to trickleserver reflexiveserver-reflexive candidates to entities that are known to be publicly accessible and where sending a direct STUN binding request is likely to reach the destination faster than the trickle update that travels through the signaling path. </t> </section> <sectiontitle='Pairinganchor="local-pairing" numbered="true" toc="include" removeInRFC="false" pn="section-10"> <name slugifiedName="name-pairing-newly-gathered-loca">Pairing Newly Gathered LocalCandidates' anchor="local-pairing"> <t>Candidates</name> <t indent="0" pn="section-10-1"> As a Trickle ICE agent gathers local candidates, it needs to form candidate pairs; this works as described in the ICE specification <xreftarget='rfc5245bis'/>,target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>, with the following provisos:<list style='numbers'> <t></t> <ol spacing="normal" type="1" indent="adaptive" start="1" pn="section-10-2"> <li pn="section-10-2.1" derivedCounter="1."> A Trickle ICE agentMUST NOT<bcp14>MUST NOT</bcp14> pair a local candidate until it has been trickled to the remote party.</t> <t></li> <li pn="section-10-2.2" derivedCounter="2."> Once the agent has conveyed the local candidate to the remote party, the agent checks if any remote candidates are currently known for this same stream and component. If not, the agent merely adds the new candidate to the list of local candidates (without pairing it).</t> <t></li> <li pn="section-10-2.3" derivedCounter="3."> Otherwise, if the agent has already learned of one or more remote candidates for this stream and component, it attempts to pair the new local candidate as described in the ICE specification <xreftarget='rfc5245bis'/>. </t> <t>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. </li> <li pn="section-10-2.4" derivedCounter="4."> If a newly formed pair has a local candidate whose type isserver reflexive,server-reflexive, the agentMUST<bcp14>MUST</bcp14> replace the local candidate with its base before completing the relevant redundancy tests.</t> <t></li> <li pn="section-10-2.5" derivedCounter="5."> The agent prunes redundant pairs by following the rules inSection 6.1.2.4 of<xreftarget='rfc5245bis'/>,target="RFC8445" format="default" sectionFormat="of" section="6.1.2.4" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.4" derivedContent="RFC8445"/> but checks existing pairs only if they have a state of Waiting or Frozen; this avoids removal of pairs for which connectivity checks are in flight (a state ofIn-Progress)In‑Progress) or for which connectivity checks have already yielded a definitive result (a state of Succeeded or Failed).</t> <t> If</li> <li pn="section-10-2.6" derivedCounter="6."> If, after completing the relevant redundancyteststests, thecheck listchecklist where the pair is to be added already contains the maximum number of candidate pairs (100 by default as per <xreftarget="rfc5245bis"/>),target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>), the agentSHOULD<bcp14>SHOULD</bcp14> discard any pairs in the Failed state to make room for the new pair. If there are no such pairs, the agentSHOULD<bcp14>SHOULD</bcp14> discard a pair with a lower priority than the new pair in order to make room for the new pair, until the number of pairs is equal to the maximum number of pairs. This processing is consistent withSection 6.1.2.5 of<xreftarget='rfc5245bis'/>. </t> </list> </t> </section> <section title='Receivingtarget="RFC8445" format="default" sectionFormat="of" section="6.1.2.5" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.5" derivedContent="RFC8445"/>. </li> </ol> </section> <section anchor="trickle-recv" numbered="true" toc="include" removeInRFC="false" pn="section-11"> <name slugifiedName="name-receiving-trickled-candidat">Receiving TrickledCandidates' anchor="trickle-recv"> <t>Candidates</name> <t indent="0" pn="section-11-1"> At any time during an ICE session, a Trickle ICE agent might receive new candidates from the remote agent, from which it will attempt to form a candidate pair; this works as described in the ICE specification <xreftarget='rfc5245bis'/>,target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>, with the following provisos:<list style='numbers'> <t></t> <ol spacing="normal" type="1" indent="adaptive" start="1" pn="section-11-2"> <li pn="section-11-2.1" derivedCounter="1."> The agent checks if any local candidates are currently known for this same stream and component. If not, the agent merely adds the new candidate to the list of remote candidates (without pairing it).</t> <t></li> <li pn="section-11-2.2" derivedCounter="2."> Otherwise, if the agent has already gathered one or more local candidates for this stream and component, it attempts to pair the new remote candidate as described in the ICE specification <xreftarget='rfc5245bis'/>. </t> <t>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. </li> <li pn="section-11-2.3" derivedCounter="3."> If a newly formed pair has a local candidate whose type isserver reflexive,server-reflexive, the agentMUST<bcp14>MUST</bcp14> replace the local candidate with its base before completing the redundancy check in the next step.</t> <t></li> <li pn="section-11-2.4" derivedCounter="4."> <t indent="0" pn="section-11-2.4.1"> The agent prunes redundant pairs as describedbelow,below but checks existing pairs only if they have a state of Waiting or Frozen; this avoids removal of pairs for which connectivity checks are in flight (a state of In-Progress) or for which connectivity checks have already yielded a definitive result (a state of Succeeded or Failed).<list style='letters'> <t></t> <ol spacing="normal" type="A" indent="adaptive" start="1" pn="section-11-2.4.2"> <li pn="section-11-2.4.2.1" derivedCounter="A."> If the agent finds a redundancy between two pairs and one of those pairs contains a newly received remote candidate whose type ispeer reflexive,peer-reflexive, the agentSHOULD<bcp14>SHOULD</bcp14> discard the pair containing that candidate, set the priority of the existing pair to the priority of the discarded pair, and re-sort thecheck list.checklist. (This policy helps to eliminate problems with remotepeer reflexivepeer-reflexive candidates for which a STUNbindingBinding request is received before signaling of the candidate is trickled to the receiving agent, such as a different view of pair priorities between the local agent and the remote agent,sincebecause the same candidate could be perceived aspeer reflexivepeer-reflexive by one agent and asserver reflexiveserver-reflexive by the other agent.)</t> <t></li> <li pn="section-11-2.4.2.2" derivedCounter="B."> The agent then applies the rules defined inSection 6.1.2.4 of<xreftarget='rfc5245bis'/>. </t> </list> </t> <t> Iftarget="RFC8445" format="default" sectionFormat="of" section="6.1.2.4" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.4" derivedContent="RFC8445"/>. </li> </ol> </li> <li pn="section-11-2.5" derivedCounter="5."> If, after completing the relevant redundancyteststests, thecheck listchecklist where the pair is to be added already contains the maximum number of candidate pairs (100 by default as per <xreftarget="rfc5245bis"/>),target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>), the agentSHOULD<bcp14>SHOULD</bcp14> discard any pairs in the Failed state to make room for the new pair. If there are no such pairs, the agentSHOULD<bcp14>SHOULD</bcp14> discard a pair with a lower priority than the new pair in order to make room for the new pair, until the number of pairs is equal to the maximum number of pairs. This processing is consistent withSection 6.1.2.5 of<xreftarget='rfc5245bis'/>. </t> </list> </t> </section> <section title='Insertingtarget="RFC8445" format="default" sectionFormat="of" section="6.1.2.5" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.5" derivedContent="RFC8445"/>. </li> </ol> </section> <section anchor="trickle-insert" numbered="true" toc="include" removeInRFC="false" pn="section-12"> <name slugifiedName="name-inserting-trickled-candidat">Inserting Trickled Candidate Pairs into aCheck List' anchor="trickle-insert"> <t>Checklist</name> <t indent="0" pn="section-12-1"> After a local agent has trickled a candidate and formed a candidate pair from that local candidate (<xreftarget='trickle-send'/>),target="trickle-send" format="default" sectionFormat="of" derivedContent="Section 9"/>), or after a remote agent has received a trickled candidate and formed a candidate pair from that remote candidate (<xreftarget='trickle-recv'/>),target="trickle-recv" format="default" sectionFormat="of" derivedContent="Section 11"/>), a Trickle ICE agent adds the new candidate pair to acheck listchecklist as defined in this section. </t><t><t indent="0" pn="section-12-2"> As an aid to understanding the procedures defined in this section, consider the following tabular representation of allcheck listschecklists in an agent (note that initially for one of the foundations, i.e., f5, there are no candidate pairs): </t><t> <figure title="Example of Check List State" anchor="fig-checklist-0"> <artwork> <![CDATA[ +-----------------+------+------+------+------+------+ | | f1 | f2 | f3 | f4 | f5 | +-----------------+------+------+------+------+------+ | s1 (Audio.RTP) | F | F | F | | | +-----------------+------+------+------+------+------+ | s2 (Audio.RTCP) | F | F | F | F | | +-----------------+------+------+------+------+------+ | s3 (Video.RTP) | F | | | | | +-----------------+------+------+------+------+------+ | s4 (Video.RTCP) | F | | | | | +-----------------+------+------+------+------+------+ ]]> </artwork> </figure> </t> <t><table anchor="checklist_table" align="center" pn="table-1"> <name slugifiedName="name-example-of-checklist-state">Example of Checklist State</name> <thead> <tr> <th align="left" colspan="1" rowspan="1"/> <th align="left" colspan="1" rowspan="1">f1</th> <th align="left" colspan="1" rowspan="1">f2</th> <th align="left" colspan="1" rowspan="1">f3</th> <th align="left" colspan="1" rowspan="1">f4</th> <th align="left" colspan="1" rowspan="1">f5</th> </tr> </thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">s1 (Audio.RTP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s2 (Audio.RTCP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s3 (Video.RTP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s4 (Video.RTCP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> </tr> </tbody> </table> <t indent="0" pn="section-12-4"> Each row in the table represents a component for a given data stream (e.g., s1 and s2 might be the RTP andRTCPRTP Control Protocol (RTCP) components for audio) and thus a singlecheck listchecklist in thecheck listchecklist set. Each column represents one foundation. Each cell represents one candidate pair. In the tables shown in this section, "F" stands for "frozen", "W" stands for "waiting", and "S" stands for "succeeded"; in addition, "^^" is used to notatenewly-addednewly added candidate pairs. </t><t><t indent="0" pn="section-12-5"> When an agent commences ICE processing, in accordance withSection 6.1.2.6 of<xreftarget="rfc5245bis"/>,target="RFC8445" format="default" sectionFormat="of" section="6.1.2.6" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.6" derivedContent="RFC8445"/>, for each foundation it will unfreeze the pair with the lowest component ID and, if the component IDs are equal, with the highest priority (this is the topmost candidate pair in every column). This initial state is shown in the following table. </t><t> <figure title="Initial Check List State" anchor="fig-checklist-initial"> <artwork> <![CDATA[ +-----------------+------+------+------+------+------+ | | f1 | f2 | f3 | f4 | f5 | +-----------------+------+------+------+------+------+ | s1 (Audio.RTP) | W | W | W | | | +-----------------+------+------+------+------+------+ | s2 (Audio.RTCP) | F | F | F | W | | +-----------------+------+------+------+------+------+ | s3 (Video.RTP) | F | | | | | +-----------------+------+------+------+------+------+ | s4 (Video.RTCP) | F | | | | | +-----------------+------+------+------+------+------+ ]]> </artwork> </figure> </t> <t><table anchor="fig-checklist-initial" align="center" pn="table-2"> <name slugifiedName="name-initial-checklist-state">Initial Checklist State</name> <thead> <tr> <th align="left" colspan="1" rowspan="1"/> <th align="left" colspan="1" rowspan="1">f1</th> <th align="left" colspan="1" rowspan="1">f2</th> <th align="left" colspan="1" rowspan="1">f3</th> <th align="left" colspan="1" rowspan="1">f4</th> <th align="left" colspan="1" rowspan="1">f5</th> </tr> </thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">s1 (Audio.RTP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s2 (Audio.RTCP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s3 (Video.RTP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s4 (Video.RTCP)</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> </tr> </tbody> </table> <t indent="0" pn="section-12-7"> Then, as the checks proceed (seeSection 7.2.5.4 of<xreftarget="rfc5245bis"/>),target="RFC8445" format="default" sectionFormat="of" section="7.2.5.4" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-7.2.5.4" derivedContent="RFC8445"/>), for each pair that enters the Succeeded state (denoted here by "S"), the agent will unfreeze all pairs for all data streams with the same foundation (e.g., if the pair in column 1, row 1 succeeds then the agent will unfreeze thepairpairs in column 1, rows 2, 3, and 4). </t><t> <figure title="Check List<table anchor="fig-checklist-succeeded" align="center" pn="table-3"> <name slugifiedName="name-checklist-state-with-succee">Checklist State with Succeeded CandidatePair" anchor="fig-checklist-succeeded"> <artwork> <![CDATA[ +-----------------+------+------+------+------+------+ | | f1 | f2 | f3 | f4 | f5 | +-----------------+------+------+------+------+------+ | s1 (Audio.RTP) | S | W | W | | | +-----------------+------+------+------+------+------+ | s2 (Audio.RTCP) | W | F | F | W | | +-----------------+------+------+------+------+------+ | s3 (Video.RTP) | W | | | | | +-----------------+------+------+------+------+------+ | s4 (Video.RTCP) | W | | | | | +-----------------+------+------+------+------+------+ ]]> </artwork> </figure> </t> <t>Pair</name> <thead> <tr> <th align="left" colspan="1" rowspan="1"/> <th align="left" colspan="1" rowspan="1">f1</th> <th align="left" colspan="1" rowspan="1">f2</th> <th align="left" colspan="1" rowspan="1">f3</th> <th align="left" colspan="1" rowspan="1">f4</th> <th align="left" colspan="1" rowspan="1">f5</th> </tr> </thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">s1 (Audio.RTP)</td> <td align="left" colspan="1" rowspan="1">S</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s2 (Audio.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s3 (Video.RTP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s4 (Video.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> </tr> </tbody> </table> <t indent="0" pn="section-12-9"> Trickle ICE preserves all of these rules as they apply to "static"check listchecklist sets. This implies that if a Trickle ICE agent were to begin connectivity checks with all of its pairs already present, the way that pair states change is indistinguishable from that of a regular ICE agent. </t><t><t indent="0" pn="section-12-10"> Of course, the major difference with Trickle ICE is thatcheck listchecklist sets can be dynamically updated because candidates can arrive after connectivity checks have started. When this happens, an agent sets the state of the newly formed pair as described below. </t><t><t indent="0" pn="section-12-11"> Rule 1: If the newly formed pair has the lowest component ID and, if the component IDs are equal, the highest priority of any candidate pair for this foundation (i.e., if it is the topmost pair in the column), set the state to Waiting. For example, this would be the case if the newly formed pair were placed in column 5, row 1. This rule is consistent withSection 6.1.2.6 of<xreftarget="rfc5245bis"/>. </t> <t> <figure title="Check Listtarget="RFC8445" format="default" sectionFormat="of" section="6.1.2.6" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-6.1.2.6" derivedContent="RFC8445"/>. </t> <table anchor="fig-checklist-rule1" align="center" pn="table-4"> <name slugifiedName="name-checklist-state-with-newly-">Checklist State with Newly Formed Pair, Rule1" anchor="fig-checklist-rule1"> <artwork> <![CDATA[ +-----------------+------+------+------+------+------+ | | f1 | f2 | f3 | f4 | f5 | +-----------------+------+------+------+------+------+ | s1 (Audio.RTP) | S | W | W | | ^W^ | +-----------------+------+------+------+------+------+ | s2 (Audio.RTCP) | W | F | F | W | | +-----------------+------+------+------+------+------+ | s3 (Video.RTP) | W | | | | | +-----------------+------+------+------+------+------+ | s4 (Video.RTCP) | W | | | | | +-----------------+------+------+------+------+------+ ]]> </artwork> </figure> </t> <t>1</name> <thead> <tr> <th align="left" colspan="1" rowspan="1"/> <th align="left" colspan="1" rowspan="1">f1</th> <th align="left" colspan="1" rowspan="1">f2</th> <th align="left" colspan="1" rowspan="1">f3</th> <th align="left" colspan="1" rowspan="1">f4</th> <th align="left" colspan="1" rowspan="1">f5</th> </tr> </thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">s1 (Audio.RTP)</td> <td align="left" colspan="1" rowspan="1">S</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1">^W^</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">s2 (Audio.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s3 (Video.RTP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s4 (Video.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> </tr> </tbody> </table> <t indent="0" pn="section-12-13"> Rule 2: If there is at least one pair in the Succeeded state for this foundation, set the state to Waiting. For example, this would be the case if the pair in column 5, row 1 succeeded and the newly formed pair were placed in column 5, row 2. This rule is consistent withSection 7.2.5.3.3 of<xreftarget="rfc5245bis"/>. </t> <t> <figure title="Check Listtarget="RFC8445" format="default" sectionFormat="of" section="7.2.5.3.3" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-7.2.5.3.3" derivedContent="RFC8445"/>. </t> <table anchor="fig-checklist-rule2" align="center" pn="table-5"> <name slugifiedName="name-checklist-state-with-newly-f">Checklist State with Newly Formed Pair, Rule2" anchor="fig-checklist-rule2"> <artwork> <![CDATA[ +-----------------+------+------+------+------+------+ | | f1 | f2 | f3 | f4 | f5 | +-----------------+------+------+------+------+------+ | s1 (Audio.RTP) | S | W | W | | S | +-----------------+------+------+------+------+------+ | s2 (Audio.RTCP) | W | F | F | W | ^W^ | +-----------------+------+------+------+------+------+ | s3 (Video.RTP) | W | | | | | +-----------------+------+------+------+------+------+ | s4 (Video.RTCP) | W | | | | | +-----------------+------+------+------+------+------+ ]]> </artwork> </figure> </t> <t>2</name> <thead> <tr> <th align="left" colspan="1" rowspan="1"/> <th align="left" colspan="1" rowspan="1">f1</th> <th align="left" colspan="1" rowspan="1">f2</th> <th align="left" colspan="1" rowspan="1">f3</th> <th align="left" colspan="1" rowspan="1">f4</th> <th align="left" colspan="1" rowspan="1">f5</th> </tr> </thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">s1 (Audio.RTP)</td> <td align="left" colspan="1" rowspan="1">S</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1">S</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">s2 (Audio.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">^W^</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">s3 (Video.RTP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s4 (Video.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> </tr> </tbody> </table> <t indent="0" pn="section-12-15"> Rule 3: In all other cases, set the state to Frozen. For example, this would be the case if the newly formed pair were placed in column 3, row 3. </t><t> <figure title="Check List<table anchor="fig-checklist-rule3" align="center" pn="table-6"> <name slugifiedName="name-checklist-state-with-newly-fo">Checklist State with Newly Formed Pair, Rule3" anchor="fig-checklist-rule3"> <artwork> <![CDATA[ +-----------------+------+------+------+------+------+ | | f1 | f2 | f3 | f4 | f5 | +-----------------+------+------+------+------+------+ | s1 (Audio.RTP) | S | W | W | | S | +-----------------+------+------+------+------+------+ | s2 (Audio.RTCP) | W | F | F | W | W | +-----------------+------+------+------+------+------+ | s3 (Video.RTP) | W | | ^F^ | | | +-----------------+------+------+------+------+------+ | s4 (Video.RTCP) | W | | | | | +-----------------+------+------+------+------+------+ ]]> </artwork> </figure> </t> </section> <section title='Generating3</name> <thead> <tr> <th align="left" colspan="1" rowspan="1"/> <th align="left" colspan="1" rowspan="1">f1</th> <th align="left" colspan="1" rowspan="1">f2</th> <th align="left" colspan="1" rowspan="1">f3</th> <th align="left" colspan="1" rowspan="1">f4</th> <th align="left" colspan="1" rowspan="1">f5</th> </tr> </thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">s1 (Audio.RTP)</td> <td align="left" colspan="1" rowspan="1">S</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1">S</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">s2 (Audio.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">F</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1">W</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">s3 (Video.RTP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1">^F^</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"/> </tr> <tr> <td align="left" colspan="1" rowspan="1">s4 (Video.RTCP)</td> <td align="left" colspan="1" rowspan="1">W</td> <td align="left" colspan="1" rowspan="1"/> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"> </td> <td align="left" colspan="1" rowspan="1"/> </tr> </tbody> </table> </section> <section anchor="end-of-candidates.send" numbered="true" toc="include" removeInRFC="false" pn="section-13"> <name slugifiedName="name-generating-an-end-of-candid">Generating an End-of-CandidatesIndication' anchor="end-of-candidates.send"> <t>Indication</name> <t indent="0" pn="section-13-1"> Once all candidate gathering is completed or expires for an ICE session associated with a specific data stream, the agent will generate an "end-of-candidates" indication for that session and convey it to the remote agent via the signaling channel. Although the exact form of the indication depends on the using protocol, the indicationMUST<bcp14>MUST</bcp14> specify the generation (Username Fragment and Passwordcombination)combination), so that an agent can correlate the end-of-candidates indication with a particular ICE session. The indication can be conveyed in the following ways:<list style='symbols'> <t>As</t> <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-13-2"> <li pn="section-13-2.1">As part of an initiation request (which would typically be the case with the initial ICE description for halftrickle)</t> <t>Alongtrickle)</li> <li pn="section-13-2.2">Along with the last candidate an agent can send for astream</t> <t>Asstream</li> <li pn="section-13-2.3">As a standalone notification (e.g., after STUN Binding requests or TURN Allocate requests to a server time out and the agent is no longer actively gatheringcandidates)</t> </list> </t> <t>candidates)</li> </ul> <t indent="0" pn="section-13-3"> Conveying an end-of-candidates indication in a timely manner is important in order to avoid ambiguities and speed up the conclusion of ICE processing. In particular:<list style='symbols'> <t></t> <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-13-4"> <li pn="section-13-4.1"> A controlled Trickle ICE agentSHOULD<bcp14>SHOULD</bcp14> convey an end-of-candidates indication after it has completed gathering for a data stream, unless ICE processing terminates before the agent has had a chance to complete gathering.</t> <t></li> <li pn="section-13-4.2"> A controlling agentMAY<bcp14>MAY</bcp14> conclude ICE processing prior to conveying end-of-candidates indications for all streams. However, it isRECOMMENDED<bcp14>RECOMMENDED</bcp14> for a controlling agent to convey end-of-candidates indications whenever possible for the sake of consistency and to keep middleboxes and controlled agents up-to-date on the state of ICE processing.</t> </list> </t> <t></li> </ul> <t indent="0" pn="section-13-5"> When conveying an end-of-candidates indication during trickling (rather than as a part of the initial ICE description or a response thereto), it is the responsibility of the using protocol to define methods for associating the indication with one or more specific data streams. </t><t><t indent="0" pn="section-13-6"> An agentMAY<bcp14>MAY</bcp14> also choose to generate an end-of-candidates indication before candidate gathering has actually completed, if the agent determines that gathering has continued for more than an acceptable period of time. However, an agentMUST NOT<bcp14>MUST NOT</bcp14> convey any more candidates after it has conveyed an end-of-candidates indication. </t><t><t indent="0" pn="section-13-7"> When performing half trickle, an agentSHOULD<bcp14>SHOULD</bcp14> convey an end-of-candidates indication together with its initial ICE description unless it is planning to potentially trickle additional candidates (e.g., in case the remote party turns out to support Trickle ICE). </t><t><t indent="0" pn="section-13-8"> After an agent conveys the end-of-candidates indication, it will update the state of the correspondingcheck listchecklist as explained in <xreftarget="checks"/>.target="checks" format="default" sectionFormat="of" derivedContent="Section 8"/>. Past that point, an agentMUST NOT<bcp14>MUST NOT</bcp14> trickle any new candidates within this ICE session. Therefore, adding new candidates to the negotiation is possible only through an ICE restart (see <xreftarget='subsequent'/>).target="subsequent" format="default" sectionFormat="of" derivedContent="Section 15"/>). </t><t><t indent="0" pn="section-13-9"> This specification does not override regular ICE semantics for concluding ICE processing. Therefore, even if end-of-candidates indications are conveyed, an agent will still need to go through pair nomination. Also, if pairs have been nominated for components and data streams, ICE processingMAY<bcp14>MAY</bcp14> still conclude even if end-of-candidates indications have not been received for all streams. In all cases, an agentMUST NOT<bcp14>MUST NOT</bcp14> trickle any new candidates within an ICE session after nomination of a candidate pair as described inSection 8.1.1 of<xreftarget='rfc5245bis'/>.target="RFC8445" format="default" sectionFormat="of" section="8.1.1" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-8.1.1" derivedContent="RFC8445"/>. </t> </section> <sectiontitle='Receivinganchor="end-of-candidates.recv" numbered="true" toc="include" removeInRFC="false" pn="section-14"> <name slugifiedName="name-receiving-an-end-of-candida">Receiving an End-of-CandidatesIndication' anchor="end-of-candidates.recv"> <t>Indication</name> <t indent="0" pn="section-14-1"> Receiving an end-of-candidates indication enables an agent to updatecheck listchecklist states and, in case valid pairs do not exist for every component in every data stream, determine that ICE processing has failed. It also enables an agent to speed up the conclusion of ICE processing when a candidate pair has been validated butit involves the use ofuses a lower-preferencetransportstransport such as TURN. In such situations, an implementationMAY<bcp14>MAY</bcp14> choose to wait and see if higher-priority candidates are received; in thiscasecase, the end-of-candidates indication provides a notification that such candidates are not forthcoming. </t><t><t indent="0" pn="section-14-2"> When an agent receives an end-of-candidates indication for a specific data stream, it will update the state of the relevantcheck listchecklist as per <xreftarget="checks"/>target="checks" format="default" sectionFormat="of" derivedContent="Section 8"/> (which might lead to somecheck listschecklists being marked as Failed). If thecheck listchecklist is still in the Running state after the update, the agent willpersist the factnote that an end-of-candidates indication has been received and take it into account in future updates to thecheck list.checklist. </t><t><t indent="0" pn="section-14-3"> After an agent has received an end-of-candidates indication, itMUST<bcp14>MUST</bcp14> ignore any newly received candidates for that data stream or data session. </t> </section> <sectiontitle='Subsequentanchor="subsequent" numbered="true" toc="include" removeInRFC="false" pn="section-15"> <name slugifiedName="name-subsequent-exchanges-and-ic">Subsequent Exchanges and ICERestarts' anchor="subsequent"> <t>Restarts</name> <t indent="0" pn="section-15-1"> Before conveying an end-of-candidates indication, either agentMAY<bcp14>MAY</bcp14> convey subsequent candidate information at any time allowed by the using protocol. When this happens, agents will use<xref target="rfc5245bis"/>semantics from <xref target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> (e.g., checking of the Username Fragment and Password combination) to determine whether or not the new candidate information requires an ICE restart. </t><t><t indent="0" pn="section-15-2"> If an ICE restart occurs, the agents can assume that Trickle ICE is still supported if support was determinedpreviously, and thuspreviously; thus, they can engage in Trickle ICE behavior as they would in an initial exchange of ICE descriptions where support was determined through a capabilities discovery method. </t> </section> <sectiontitle='Half Trickle' anchor="half-trickle"> <t>anchor="half-trickle" numbered="true" toc="include" removeInRFC="false" pn="section-16"> <name slugifiedName="name-half-trickle">Half Trickle</name> <t indent="0" pn="section-16-1"> In half trickle, the initiator conveys the initial ICE description with a usable but not necessarily full generation of candidates. This ensures that the ICE description can be processed by a regular ICE responder and is mostly meant for use in cases where support for Trickle ICE cannot be confirmed prior to conveying the initial ICE description. The initial ICE description indicates support for Trickle ICE, so that the responder can respond with something less than a full generation of candidates and then trickle the rest. The initial ICE description for half trickle can contain an end-of-candidates indication, although this is not mandatory because if trickle support isconfirmedconfirmed, then the initiator can choose to trickle additional candidates before it conveys an end-of-candidates indication. </t><t><t indent="0" pn="section-16-2"> Thehalf tricklehalf-trickle mechanism can be used in cases where there is no way for an agent to verify in advance whether a remote party supports Trickle ICE. Because the initial ICE descriptioncontaincontains a full generation of candidates, it can thus be handled by a regular ICE agent, while still allowing a Trickle ICE agent to use the optimization defined in this specification. This prevents negotiation from failing in the former case while still giving roughly half the Trickle ICE benefits in the latter. </t><t><t indent="0" pn="section-16-3"> Use of half trickle is only necessary during an initial exchange of ICE descriptions. After both parties have received an ICE description from their peer, they can each reliably determine Trickle ICE support and use it for all subsequent exchanges (see <xreftarget='subsequent'/>).target="subsequent" format="default" sectionFormat="of" derivedContent="Section 15"/>). </t><t><t indent="0" pn="section-16-4"> In some instances, using half trickle might bring more than just half the improvement in terms of user experience. This can happen when an agent starts gathering candidates uponuser interfaceuser-interface cues that the user will soon be initiating an interaction, such as activity on a keypad or the phone going off hook. This would mean that some or all of the candidate gathering could be completed before the agent actually needs to convey the candidate information. Because the responder will be able to trickle candidates, both agents will be able to start connectivity checks and complete ICE processing earlier than with regular ICE and potentially even as early as with full trickle. </t><t><t indent="0" pn="section-16-5"> However, such anticipation is not always possible. For example, a multipurpose user agent or a WebRTC web page where communication is a non-central feature (e.g., calling a support line in case of a problem with the main features) would not necessarily have a way of distinguishing between call intentions and other user activity. In such cases, using full trickle is most likely to result in an ideal user experience. Even so, using half trickle would be an improvement over regular ICE because it would result in a better experience for responders. </t> </section> <sectiontitle='Preservingnumbered="true" toc="include" removeInRFC="false" pn="section-17"> <name slugifiedName="name-preserving-candidate-order-">Preserving Candidate Orderwhile Trickling'> <t>While Trickling</name> <t indent="0" pn="section-17-1"> One important aspect of regular ICE is that connectivity checks for a specific foundation and component are attempted simultaneously by both agents, so that any firewalls or NATs fronting the agents would whitelist both endpoints and allow all except for the first ("suicide") packets to go through. This is also important to unfreezing candidates at the right time. While not crucial, preserving this behavior in Trickle ICE is likely to improve ICE performance. </t><t><t indent="0" pn="section-17-2"> To achieve this, when trickling candidates, agentsSHOULD<bcp14>SHOULD</bcp14> respect the order of components as reflected by their component IDs; that is, candidates for a given componentSHOULD NOT<bcp14>SHOULD NOT</bcp14> be conveyed prior to candidates for a component with a lower ID number within the same foundation. In addition, candidatesSHOULD<bcp14>SHOULD</bcp14> be paired, following the procedures in <xreftarget='trickle-insert'/>,target="trickle-insert" format="default" sectionFormat="of" derivedContent="Section 12"/>, in the same order they are conveyed. </t><t><t indent="0" pn="section-17-3"> For example, the following SDP description contains two components (RTP and RTCP) and two foundations (host andserver reflexive): <figure> <artwork> <![CDATA[server-reflexive): </t> <sourcecode type="sdp" markers="false" pn="section-17-4"> v=0 o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1 s= c=IN IP4 10.0.1.1 t=0 0 a=ice-pwd:asd88fgpdd777uzjYhagZg a=ice-ufrag:8hhY m=audio 5000 RTP/AVP 0 a=rtpmap:0 PCMU/8000 a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx raddr 10.0.1.1 rport 8998 a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx raddr 10.0.1.1 rport 8998]]> </artwork> </figure></sourcecode> <t indent="0" pn="section-17-5"> For this candidateinformationinformation, the RTCP host candidate would not be conveyed prior to the RTP host candidate.SimilarlySimilarly, the RTPserver reflexiveserver-reflexive candidate would be conveyed together with or prior to the RTCPserver reflexiveserver-reflexive candidate. </t> </section> <sectiontitle='Requirementsanchor="reqs" numbered="true" toc="include" removeInRFC="false" pn="section-18"> <name slugifiedName="name-requirements-for-using-prot">Requirements for UsingProtocols' anchor="reqs"> <t>Protocols</name> <t indent="0" pn="section-18-1"> In order to fully enable the use of Trickle ICE, this specification defines the following requirements for using protocols.<list style='symbols'> <t></t> <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-18-2"> <li pn="section-18-2.1"> A using protocolSHOULD<bcp14>SHOULD</bcp14> provide a way for parties to advertise and discover support for Trickle ICE before an ICE session begins (see <xreftarget='support'/>). </t> <t>target="support" format="default" sectionFormat="of" derivedContent="Section 3"/>). </li> <li pn="section-18-2.2"> A using protocolMUST<bcp14>MUST</bcp14> provide methods for incrementally conveying (i.e., "trickling") additional candidates after conveying the initial ICE description (see <xreftarget='trickle-send'/>). </t> <t>target="trickle-send" format="default" sectionFormat="of" derivedContent="Section 9"/>). </li> <li pn="section-18-2.3"> A using protocolMUST<bcp14>MUST</bcp14> deliver each trickled candidate or end-of-candidates indication exactly once and in the same order it was conveyed (see <xreftarget='trickle-send'/>). </t> <t>target="trickle-send" format="default" sectionFormat="of" derivedContent="Section 9"/>). </li> <li pn="section-18-2.4"> A using protocolMUST<bcp14>MUST</bcp14> provide a mechanism for both parties to indicate and agree on the ICE session in force (see <xreftarget='trickle-send'/>). </t> <t>target="trickle-send" format="default" sectionFormat="of" derivedContent="Section 9"/>). </li> <li pn="section-18-2.5"> A using protocolMUST<bcp14>MUST</bcp14> provide a way for parties to communicate the end-of-candidates indication, whichMUST<bcp14>MUST</bcp14> specify the particular ICE session to which the indication applies (see <xreftarget='end-of-candidates.send'/>). </t> </list> </t> </section> <section title='IANA Considerations'> <t>target="end-of-candidates.send" format="default" sectionFormat="of" derivedContent="Section 13"/>). </li> </ul> </section> <section numbered="true" toc="include" removeInRFC="false" pn="section-19"> <name slugifiedName="name-iana-considerations">IANA Considerations</name> <t indent="0" pn="section-19-1"> IANAis requested to registerhas registered the following ICE option in the "ICE Options"sub-registrysubregistry of the "Interactive Connectivity Establishment (ICE) registry", following the procedures defined in <xreftarget='RFC6336'/>. </t> <t> <list style='hanging'> <t hangText="ICE Option:">trickle</t> <t hangText="Contact:">IESG, iesg@ietf.org</t> <t hangText="Change control:">IESG</t> <t hangText="Description:">target="RFC6336" format="default" sectionFormat="of" derivedContent="RFC6336"/>. </t> <dl newline="false" spacing="normal" indent="3" pn="section-19-2"> <dt pn="section-19-2.1">ICE Option:</dt> <dd pn="section-19-2.2">trickle</dd> <dt pn="section-19-2.3">Contact:</dt> <dd pn="section-19-2.4">IESG <iesg@ietf.org></dd> <dt pn="section-19-2.5">Change controller:</dt> <dd pn="section-19-2.6">IESG</dd> <dt pn="section-19-2.7">Description:</dt> <dd pn="section-19-2.8"> An ICE option of"trickle"'trickle' indicates support for incremental communication of ICE candidates.</t></dd> <dt pn="section-19-2.9">Reference:</dt> <dd pn="section-19-2.10">RFC 8838</dd> </dl> </section> <section numbered="true" toc="include" removeInRFC="false" pn="section-20"> <name slugifiedName="name-security-considerations">Security Considerations</name> <thangText="Reference:">RFC XXXX</t> </list> </t> </section> <section title='Security Considerations'> <t>indent="0" pn="section-20-1"> This specification inherits most of its semantics from <xreftarget="rfc5245bis"/>target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>, and as aresultresult, all security considerations described there apply to Trickle ICE. </t><t><t indent="0" pn="section-20-2"> If the privacy implications of revealing host addresses on an endpoint device are a concern(see(see, forexampleexample, the discussion in <xreftarget='I-D.ietf-rtcweb-ip-handling'/>target="RFC8828" format="default" sectionFormat="of" derivedContent="RFC8828"/> and inSection 19 of<xreftarget="rfc5245bis"/>),target="RFC8445" section="19" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8445#section-19" derivedContent="RFC8445"/>), agents can generate ICE descriptions that contain no candidates and then only trickle candidates that do not reveal host addresses (e.g., relayed candidates). </t> </section><section title='Acknowledgements'> <t> The authors would like to thank Bernard Aboba, Flemming Andreasen, Rajmohan Banavi, Taylor Brandstetter, Philipp Hancke, Christer Holmberg, Ari Keranen, Paul Kyzivat, Jonathan Lennox, Enrico Marocco, Pal Martinsen, Nils Ohlmeier, Thomas Stach, Peter Thatcher, Martin Thomson, Brandon Williams, and Dale Worley for their reviews and suggestions on improving this document. Sarah Banks, Roni Even, and David Mandelberg completed opsdir, genart, and security reviews, respectively. Thanks also to Ari Keranen and Peter Thatcher in their role as chairs, and Ben Campbell in his role as responsible Area Director. </t> </section></middle> <back> <referencestitle='Normative References'> <?rfc include="reference.RFC.2119"?>pn="section-21"> <name slugifiedName="name-references">References</name> <references pn="section-21.1"> <name slugifiedName="name-normative-references">Normative References</name> <referenceanchor='rfc5245bis'>anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119"> <front><title>Interactive Connectivity Establishment (ICE): A Protocol<title>Key words forNetwork Address Translator (NAT) Traversal</title> <author initials='A' surname='Keranen' fullname='Ari Keranen'> <organization /> </author> <author initials='C' surname='Holmberg' fullname='Christer Holmberg'> <organization /> </author>use in RFCs to Indicate Requirement Levels</title> <authorinitials='J' surname='Rosenberg' fullname='Jonathan Rosenberg'>initials="S." surname="Bradner" fullname="S. Bradner"> <organization/>showOnFrontPage="true"/> </author> <datemonth='March' day='8' year='2018' /> <abstract><t>Thisyear="1997" month="March"/> <abstract> <t indent="0">In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This documentdescribes a protocoldefines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author initials="B." surname="Leiba" fullname="B. Leiba"> <organization showOnFrontPage="true"/> </author> <date year="2017" month="May"/> <abstract> <t indent="0">RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RFC8445" target="https://www.rfc-editor.org/info/rfc8445" quoteTitle="true" derivedAnchor="RFC8445"> <front> <title>Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal</title> <author initials="A." surname="Keranen" fullname="A. Keranen"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Holmberg" fullname="C. Holmberg"> <organization showOnFrontPage="true"/> </author> <author initials="J." surname="Rosenberg" fullname="J. Rosenberg"> <organization showOnFrontPage="true"/> </author> <date year="2018" month="July"/> <abstract> <t indent="0">This document describes a protocol for Network Address Translator (NAT) traversal for UDP-basedmultimedia.communication. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT(TURN). This(TURN).</t> <t indent="0">This document obsoletes RFC5245.</t></abstract>5245.</t> </abstract> </front> <seriesInfoname='Internet-Draft' value='draft-ietf-ice-rfc5245bis-20' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-ietf-ice-rfc5245bis-20.txt' />name="RFC" value="8445"/> <seriesInfo name="DOI" value="10.17487/RFC8445"/> </reference> </references> <referencestitle='Informative References'> <?rfc include="reference.RFC.1918"?> <?rfc include="reference.RFC.3261"?> <?rfc include="reference.RFC.3264"?> <?rfc include="reference.RFC.4566"?> <?rfc include="reference.RFC.4787"?> <?rfc include="reference.RFC.5389"?> <?rfc include="reference.RFC.5766"?> <?rfc include="reference.RFC.6120"?> <?rfc include="reference.RFC.6336"?>pn="section-21.2"> <name slugifiedName="name-informative-references">Informative References</name> <referenceanchor='I-D.ietf-mmusic-trickle-ice-sip'>anchor="RFC1918" target="https://www.rfc-editor.org/info/rfc1918" quoteTitle="true" derivedAnchor="RFC1918"> <front><title>A Session Initiation Protocol (SIP) usage<title>Address Allocation forTrickle ICE</title>Private Internets</title> <authorinitials='E' surname='Ivov' fullname='Emil Ivov'>initials="Y." surname="Rekhter" fullname="Y. Rekhter"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='T' surname='Stach' fullname='Thomas Stach'>initials="B." surname="Moskowitz" fullname="B. Moskowitz"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='E' surname='Marocco' fullname='Enrico Marocco'>initials="D." surname="Karrenberg" fullname="D. Karrenberg"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='C' surname='Holmberg' fullname='Christer Holmberg'>initials="G. J." surname="de Groot" fullname="G. J. de Groot"> <organization/>showOnFrontPage="true"/> </author> <author initials="E." surname="Lear" fullname="E. Lear"> <organization showOnFrontPage="true"/> </author> <datemonth='February' day='24' year='2018' /> <abstract><t>The Interactive Connectivity Establishment (ICE) protocolyear="1996" month="February"/> <abstract> <t indent="0">This document describesa Network Address Translator (NAT) traversal mechanismaddress allocation forUDP-based multimedia sessions established with the Offer/Answer model. The ICE extensionprivate internets. This document specifies an Internet Best Current Practices forIncremental Provisioning of Candidates (Trickle ICE) defines a mechanism that allows ICE agents to shorten session establishment delays by makingthecandidate gatheringInternet Community, andconnectivity checking phases of ICE non-blockingrequests discussion andby executing them in parallel. This document defines usage semanticssuggestions forTrickle ICE with the Session Initiation Protocol (SIP).</t></abstract>improvements.</t> </abstract> </front> <seriesInfoname='Internet-Draft' value='draft-ietf-mmusic-trickle-ice-sip-14' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-ietf-mmusic-trickle-ice-sip-14.txt' />name="BCP" value="5"/> <seriesInfo name="RFC" value="1918"/> <seriesInfo name="DOI" value="10.17487/RFC1918"/> </reference> <referenceanchor='I-D.ietf-rtcweb-ip-handling'>anchor="RFC3261" target="https://www.rfc-editor.org/info/rfc3261" quoteTitle="true" derivedAnchor="RFC3261"> <front><title>WebRTC IP Address Handling Requirements</title><title>SIP: Session Initiation Protocol</title> <authorinitials='J' surname='Uberti' fullname='Justin Uberti'>initials="J." surname="Rosenberg" fullname="J. Rosenberg"> <organization/>showOnFrontPage="true"/> </author> <authorinitials='G' surname='Shieh' fullname='Guo-wei Shieh'>initials="H." surname="Schulzrinne" fullname="H. Schulzrinne"> <organization/>showOnFrontPage="true"/> </author><date month='March' day='1' year='2018' /> <abstract><t>This document provides information and requirements for how IP addresses should be handled by WebRTC implementations.</t></abstract> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-rtcweb-ip-handling-06' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-ip-handling-06.txt' /> </reference> <reference anchor="XEP-0176"> <front> <title>XEP-0176: Jingle ICE-UDP Transport Method</title><authorinitials='J.' surname='Beda' fullname='Joe Beda'>initials="G." surname="Camarillo" fullname="G. Camarillo"> <organizationabbrev='Google'>Google</organization>showOnFrontPage="true"/> </author> <authorinitials='S.' surname='Ludwig' fullname='Scott Ludwig'>initials="A." surname="Johnston" fullname="A. Johnston"> <organizationabbrev='Google'>Google</organization>showOnFrontPage="true"/> </author> <authorinitials='P.' surname='Saint-Andre' fullname='Peter Saint-Andre'>initials="J." surname="Peterson" fullname="J. Peterson"> <organization showOnFrontPage="true"/> </author> <authorinitials='J.' surname='Hildebrand' fullname='Joe Hildebrand'>initials="R." surname="Sparks" fullname="R. Sparks"> <organizationabbrev='Cisco'>Cisco</organization>showOnFrontPage="true"/> </author> <authorinitials='S.' surname='Egan' fullname='Sean Egan'>initials="M." surname="Handley" fullname="M. Handley"> <organizationabbrev='Google'>Google </organization>showOnFrontPage="true"/> </author> <authorinitials='R.' surname='McQueen' fullname='Robert McQueen'>initials="E." surname="Schooler" fullname="E. Schooler"> <organizationabbrev='Collabora'>Collabora</organization>showOnFrontPage="true"/> </author> <datemonth="June" year="2009" />year="2002" month="June"/> <abstract> <t indent="0">This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfoname="XEP" value="XEP-0176" />name="RFC" value="3261"/> <seriesInfo name="DOI" value="10.17487/RFC3261"/> </reference> <referenceanchor="XEP-0030">anchor="RFC3264" target="https://www.rfc-editor.org/info/rfc3264" quoteTitle="true" derivedAnchor="RFC3264"> <front><title>XEP-0030: Service Discovery</title><title>An Offer/Answer Model with Session Description Protocol (SDP)</title> <authorinitials='J.' surname='Hildebrand' fullname='Joe Hildebrand'>initials="J." surname="Rosenberg" fullname="J. Rosenberg"> <organizationabbrev='Cisco'>Cisco</organization>showOnFrontPage="true"/> </author> <authorinitials='P.' surname='Millard' fullname='Peter Millard'> </author> <author initials='R.' surname='Eatmon' fullname='Ryan Eatmon'> </author> <author initials='P.' surname='Saint-Andre' fullname='Peter Saint-Andre'>initials="H." surname="Schulzrinne" fullname="H. Schulzrinne"> <organization showOnFrontPage="true"/> </author> <datemonth="June" year="2008" /> </front> <seriesInfo name="XEP" value="XEP-0030" /> </reference> </references> <section title='Interaction with Regular ICE' anchor='interaction'> <t> The ICE protocol was designed to be flexible enough to work in and adapt to as many network environments as possible. Despite that flexibility, ICE as specified in <xref target="rfc5245bis"/> does notyear="2002" month="June"/> <abstract> <t indent="0">This document defines a mechanism byitself support trickle ICE. This section describes how tricklingwhich two entities can make use ofcandidates interacts with ICE. </t> <t> <xref target="rfc5245bis"/> describestheconditions requiredSession Description Protocol (SDP) toupdate check lists and timer states while an ICE agent is inarrive at a common view of a multimedia session between them. In theRunning state. These conditions are verified upon transaction completion andmodel, one participant offers the other a description ofthem stipulates that: </t> <t> <list style='empty'> <t> If therethe desired session from their perspective, and the other participant answers with the desired session from their perspective. This offer/answer model isnot a pairmost useful inthe valid listunicast sessions where information from both participants is needed foreach componentthe complete view of thedata stream,session. The offer/answer model is used by protocols like thestate ofSession Initiation Protocol (SIP). [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="3264"/> <seriesInfo name="DOI" value="10.17487/RFC3264"/> </reference> <reference anchor="RFC4566" target="https://www.rfc-editor.org/info/rfc4566" quoteTitle="true" derivedAnchor="RFC4566"> <front> <title>SDP: Session Description Protocol</title> <author initials="M." surname="Handley" fullname="M. Handley"> <organization showOnFrontPage="true"/> </author> <author initials="V." surname="Jacobson" fullname="V. Jacobson"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Perkins" fullname="C. Perkins"> <organization showOnFrontPage="true"/> </author> <date year="2006" month="July"/> <abstract> <t indent="0">This memo defines thecheck listSession Description Protocol (SDP). SDP isset to Failed. </t> </list> </t> <t> This could be a problem and cause ICE processing to fail prematurely in a number of scenarios. Considerintended for describing multimedia sessions for thefollowing case: </t> <t> <list style='numbers'> <t> Alicepurposes of session announcement, session invitation, andBob are both located in different networks with Networkother forms of multimedia session initiation. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4566"/> <seriesInfo name="DOI" value="10.17487/RFC4566"/> </reference> <reference anchor="RFC4787" target="https://www.rfc-editor.org/info/rfc4787" quoteTitle="true" derivedAnchor="RFC4787"> <front> <title>Network Address Translation(NAT). Alice and Bob themselves have(NAT) Behavioral Requirements for Unicast UDP</title> <author initials="F." surname="Audet" fullname="F. Audet" role="editor"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Jennings" fullname="C. Jennings"> <organization showOnFrontPage="true"/> </author> <date year="2007" month="January"/> <abstract> <t indent="0">This document defines basic terminology for describing differentaddress but both networks use the same private internet block (e.g., the "20-bit block" 172.16/12 specified in <xref target="RFC1918"/>). </t> <t> Alice conveys to Bob the candidate 172.16.0.1 whichtypes of Network Address Translation (NAT) behavior when handling Unicast UDP and alsohappens to correspond to an existing host on Bob's network. </t> <t> Bob createsdefines acheck list consisting solelyset of172.16.0.1 and starts checks. </t> <t> These checks reach the host at 172.16.0.1 in Bob's network, which responds with an ICMP "port unreachable" error; per <xref target="rfc5245bis"/> Bob marks the transactionrequirements that would allow many applications, such asFailed. </t> </list> Atmultimedia communications or online gaming, to work consistently. Developing NATs that meet thispoint the check list only contains Failed candidates andset of requirements will greatly increase thevalid list is empty.likelihood that these applications will function properly. Thiscausesdocument specifies an Internet Best Current Practices for thedata streamInternet Community, andpotentially all ICE processing to fail, even though if Trickle ICE agents could subsequently convey candidatesrequests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="127"/> <seriesInfo name="RFC" value="4787"/> <seriesInfo name="DOI" value="10.17487/RFC4787"/> </reference> <reference anchor="RFC5389" target="https://www.rfc-editor.org/info/rfc5389" quoteTitle="true" derivedAnchor="RFC5389"> <front> <title>Session Traversal Utilities for NAT (STUN)</title> <author initials="J." surname="Rosenberg" fullname="J. Rosenberg"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Mahy" fullname="R. Mahy"> <organization showOnFrontPage="true"/> </author> <author initials="P." surname="Matthews" fullname="P. Matthews"> <organization showOnFrontPage="true"/> </author> <author initials="D." surname="Wing" fullname="D. Wing"> <organization showOnFrontPage="true"/> </author> <date year="2008" month="October"/> <abstract> <t indent="0">Session Traversal Utilities for NAT (STUN) is a protocol thatwould cause previously empty check listsserves as a tool for other protocols in dealing with Network Address Translator (NAT) traversal. It can be used by an endpoint tobecome non-empty. </t> <t> A similar race condition would occur ifdetermine theinitial ICE description from Alice contain only candidates thatIP address and port allocated to it by a NAT. It can also bedetermined as unreachable from any of the candidates that Bob has gathered (e.g., this would be the case if Bob's candidates only contain IPv4 addressesused to check connectivity between two endpoints, andthe first candidate that he receives from Alice is an IPv6 one). </t> <t> Another potential problem could arise whenas anon-trickle ICE implementation initiates an interactionkeep-alive protocol to maintain NAT bindings. STUN works witha Trickle ICE implementation. Consider the following case: <list style='numbers'> <t> Alice's client has a non-Trickle ICE implementation. </t> <t> Bob's client has support for Trickle ICE. </t> <t> Alicemany existing NATs, andBob are behind NATs with address-dependent filtering <xref target="RFC4787"/>. </t> <t> Bob has two STUN servers but one of themdoes not require any special behavior from them.</t> <t indent="0">STUN iscurrently unreachable. </t> </list> </t> <t> After Bob's agent receives Alice's initial ICE description it would immediately start connectivity checks. It would also start gathering candidates, which would takenot along time because of the unreachable STUN server. By the time Bob's answerNAT traversal solution by itself. Rather, it isready and conveyeda tool toAlice, Bob's connectivity checks might have failed: until Alice gets Bob's answer, she won'tbeable to start connectivity checks and punch holesused inher NAT. Thethe context of a NATwould hence be filtering Bob's checks as originating fromtraversal solution. This is anunknown endpoint. </t> </section> <section title='Interaction with ICE Lite'> <t> The behavior of ICE lite agents that are capableimportant change from the previous version ofTrickle ICE does not require any particular rules other than those already defined inthis specificationand <xref target="rfc5245bis"/>. This section is hence provided only for informational purposes. </t> <t> An ICE lite agent would generate candidate information(RFC 3489), which presented STUN asper <xref target="rfc5245bis"/> and would indicate supporta complete solution.</t> <t indent="0">This document obsoletes RFC 3489. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5389"/> <seriesInfo name="DOI" value="10.17487/RFC5389"/> </reference> <reference anchor="RFC5766" target="https://www.rfc-editor.org/info/rfc5766" quoteTitle="true" derivedAnchor="RFC5766"> <front> <title>Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities forTrickle ICE. Given that the candidate information will containNAT (STUN)</title> <author initials="R." surname="Mahy" fullname="R. Mahy"> <organization showOnFrontPage="true"/> </author> <author initials="P." surname="Matthews" fullname="P. Matthews"> <organization showOnFrontPage="true"/> </author> <author initials="J." surname="Rosenberg" fullname="J. Rosenberg"> <organization showOnFrontPage="true"/> </author> <date year="2010" month="April"/> <abstract> <t indent="0">If afull generation of candidates,host is located behind a NAT, then in certain situations itwould alsocan beaccompanied byimpossible for that host to communicate directly with other hosts (peers). In these situations, it is necessary for the host to use the services of anend-of-candidates indication. </t> <t> When performing full trickle,intermediate node that acts as afull ICE implementation could convey the initial ICE description or response thereto with no candidates. After receivingcommunication relay. This specification defines aresponseprotocol, called TURN (Traversal Using Relays around NAT), thatidentifies the remote agent as an ICE lite implementation,allows theinitiator can choosehost tonot trickle any additional candidates. The same is also true incontrol thecase when the ICE lite agent initiatesoperation of theinteractionrelay andthe full ICE agent is the responder. In these cases the connectivity checks would be enough for the ICE lite implementationtodiscover all potentially useful candidates as peer reflexive. The following example illustrates one such ICE sessionexchange packets with its peers usingSDP syntax: </t> <figure title="Example " anchor="fig-ice-lite"> <artwork> <![CDATA[ ICE Lite Bob Agent | Offer (a=ice-lite a=ice-options:trickle) | |---------------------------------------------->| | |no cand | Answer (a=ice-options:trickle) |trickling |<----------------------------------------------| | Connectivity Checks | |<--------------------------------------------->| peer rflx| | cand disco| | |<========== CONNECTION ESTABLISHED ===========>| ]]> </artwork> </figure> <t> In addition to reducing signaling traffic this approach also removestheneed to discover STUN bindings or makerelay. TURNallocations, which can considerably lighten ICE processing. </t> </section> <section title='Changesdiffers fromEarlier Versions'> <t> Note to the RFC Editor: please remove this section prior to publication as an RFC. </t> <section title='Changes from draft-ietf-ice-trickle-20'> <t> <list style='symbols'> <t> Slight corrections to hanlding of peer reflexive candidates. </t> <t> Wordsmithingsome other relay control protocols in that it allows afew sections. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-19'> <t> <list style='symbols'> <t> Further clarified handling of remote peer reflexive candidates. </t> <t> To improve readibility, renamedclient to communicate with multiple peers using a single relay address. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5766"/> <seriesInfo name="DOI" value="10.17487/RFC5766"/> </reference> <reference anchor="RFC6120" target="https://www.rfc-editor.org/info/rfc6120" quoteTitle="true" derivedAnchor="RFC6120"> <front> <title>Extensible Messaging andrestructured some sectionsPresence Protocol (XMPP): Core</title> <author initials="P." surname="Saint-Andre" fullname="P. Saint-Andre"> <organization showOnFrontPage="true"/> </author> <date year="2011" month="March"/> <abstract> <t indent="0">The Extensible Messaging andsubsections,Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities. This document defines XMPP's core protocol methods: setup andmodified some wording. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-18'> <t> <list style='symbols'> <t> Cleaned up pairingteardown of XML streams, channel encryption, authentication, error handling, andredundancy checking rulescommunication primitives fornewly discovered candidates per IESG feedbackmessaging, network availability ("presence"), andWG discussion. </t> <t> Improved wording in half trickle section. </t> <t> Changed "not more than once" to "exactly once". </t> <t> Changed NAT examples back to IPv4. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-17'> <t> <list style='symbols'> <t> Simplified the rulesrequest-response interactions. This document obsoletes RFC 3920. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="6120"/> <seriesInfo name="DOI" value="10.17487/RFC6120"/> </reference> <reference anchor="RFC6336" target="https://www.rfc-editor.org/info/rfc6336" quoteTitle="true" derivedAnchor="RFC6336"> <front> <title>IANA Registry forinserting a new pair in a check list. </t> <t> Clarified it is not allowed to nominate a candidate pair after a pairInteractive Connectivity Establishment (ICE) Options</title> <author initials="M." surname="Westerlund" fullname="M. Westerlund"> <organization showOnFrontPage="true"/> </author> <author initials="C." surname="Perkins" fullname="C. Perkins"> <organization showOnFrontPage="true"/> </author> <date year="2011" month="July"/> <abstract> <t indent="0">It hasalreadybeennominated (a.k.a. renomination or continuous nomination). </t> <t> Removed some text that referenced older versions of rfc5245bis. </t> <t> Removed some textidentified thatduplicated concepts and procedures specified in rfc5245bis. </t> <t> Removed the ill-defined concept of stream order. </t> <t> Shortened the introduction. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-16'> <t> <list style='symbols'> <t> Made "ufrag" terminology consistent with 5245bis. </t> <t> Applied in-order delivery rule to end-of-candidates indication. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-15'> <t> <list style='symbols'> <t> Adjustments to address AD review feedback. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-14'> <t> <list style='symbols'> <t> Minor modifications to track changes to ICE core. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-13'> <t> <list style='symbols'> <t> Removed independent monitoring of check list "states" of frozen or active, since this"Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols" (RFC 5245) ishandled by placing a check list in the Running state defined in ICE core. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-12'> <t> <list style='symbols'> <t> Specified that the end-of-candidates indication must include the generation (ufrag/pwd) to enable association withmissing aparticularregistry for ICEsession. </t> <t> Further editorial fixes to address WGLC feedback. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-11'> <t> <list style='symbols'> <t> Editorialoptions. This document defines this missing IANA registry andterminological fixes to address WGLC feedback. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-10'> <t> <list style='symbols'> <t> Minor editorial fixes. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-09'> <t> <list style='symbols'> <t> Removed immediate unfreeze upon Fail. </t> <t> Specified MUST NOT regarding ice-options. </t> <t> Changed terminology regarding initial ICE parameters to avoid implementer confusion. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-08'> <t> <list style='symbols'> <t> Reinstated text about in-order processing of messages as a requirementupdates RFC 5245. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="6336"/> <seriesInfo name="DOI" value="10.17487/RFC6336"/> </reference> <reference anchor="RFC8828" target="https://www.rfc-editor.org/info/rfc8828" quoteTitle="true" derivedAnchor="RFC8828"> <front> <title>WebRTC IP Address Handling Requirements</title> <author initials="J" surname="Uberti" fullname="Justin Uberti"> <organization showOnFrontPage="true"/> </author> <author initials="G" surname="Shieh" fullname="Guo-wei Shieh"> <organization showOnFrontPage="true"/> </author> <date month="January" year="2021"/> </front> <seriesInfo name="RFC" value="8828"/> <seriesInfo name="DOI" value="10.17487/RFC8828"/> </reference> <reference anchor="RFC8840" target="https://www.rfc-editor.org/info/rfc8840" quoteTitle="true" derivedAnchor="RFC8840"> <front> <title>A Session Initiation Protocol (SIP) Usage forsignaling protocols. </t> <t> Added IANA registration templateIncremental Provisioning of Candidates forICE option. </t> <t> Corrected Case 3 rule in Section 8.1.1 to ensure consistencythe Interactive Connectivity Establishment (Trickle ICE)</title> <author initials="E" surname="Ivov" fullname="Emil Ivov"> <organization showOnFrontPage="true"/> </author> <author initials="T" surname="Stach" fullname="Thomas Stach"> <organization showOnFrontPage="true"/> </author> <author initials="E" surname="Marocco" fullname="Enrico Marocco"> <organization showOnFrontPage="true"/> </author> <author initials="C" surname="Holmberg" fullname="Christer Holmberg"> <organization showOnFrontPage="true"/> </author> <date month="January" year="2021"/> </front> <seriesInfo name="RFC" value="8840"/> <seriesInfo name="DOI" value="10.17487/RFC8840"/> </reference> <reference anchor="XEP-0030" quoteTitle="true" derivedAnchor="XEP-0030"> <front> <title>XEP-0030: Service Discovery</title> <seriesInfo name="XMPP Standards Foundation," value="XEP-0030"/> <author initials="J." surname="Hildebrand" fullname="Joe Hildebrand"> <organization abbrev="Cisco" showOnFrontPage="true">Cisco</organization> </author> <author initials="P." surname="Millard" fullname="Peter Millard"> </author> <author initials="R." surname="Eatmon" fullname="Ryan Eatmon"> </author> <author initials="P." surname="Saint-Andre" fullname="Peter Saint-Andre"> </author> <date month="June" year="2008"/> </front> </reference> <reference anchor="XEP-0176" quoteTitle="true" derivedAnchor="XEP-0176"> <front> <title>XEP-0176: Jingle ICE-UDP Transport Method</title> <seriesInfo name="XMPP Standards Foundation," value="XEP-0176"/> <author initials="J." surname="Beda" fullname="Joe Beda"> <organization abbrev="Google" showOnFrontPage="true">Google</organization> </author> <author initials="S." surname="Ludwig" fullname="Scott Ludwig"> <organization abbrev="Google" showOnFrontPage="true">Google</organization> </author> <author initials="P." surname="Saint-Andre" fullname="Peter Saint-Andre"> </author> <author initials="J." surname="Hildebrand" fullname="Joe Hildebrand"> <organization abbrev="Cisco" showOnFrontPage="true">Cisco</organization> </author> <author initials="S." surname="Egan" fullname="Sean Egan"> <organization abbrev="Google" showOnFrontPage="true">Google</organization> </author> <author initials="R." surname="McQueen" fullname="Robert McQueen"> <organization abbrev="Collabora" showOnFrontPage="true">Collabora</organization> </author> <date month="June" year="2009"/> </front> </reference> </references> </references> <section anchor="interaction" numbered="true" toc="include" removeInRFC="false" pn="section-appendix.a"> <name slugifiedName="name-interaction-with-regular-ic">Interaction withregularRegular ICE</name> <t indent="0" pn="section-appendix.a-1"> The ICErules. </t> <t> Added tabular representations to Section 8.1.1 in orderprotocol was designed toillustrate the new pair rules. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-07'> <t> <list style='symbols'> <t> Changed "ICE description"be flexible enough to"candidate information" for consistency with 5245bis. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-06'> <t> <list style='symbols'> <t> Addressed editorial feedback from chairs' review. </t> <t> Clarified terminology regarding generations. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-05'> <t> <list style='symbols'> <t> Rewrote the text on inserting a new pair into a check list. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-04'> <t> <list style='symbols'> <t> Removed dependency on SDPwork in andoffer/answer model. </t> <t> Removed mentions of aggressive nomination, since it is deprecatedadapt to as many network environments as possible. Despite that flexibility, ICE as specified in5245bis. </t> <t> Added<xref target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> does not by itself support Trickle ICE. This sectionon requirements for signaling protocols. </t> <t> Clarified terminology. </t> <t> Addressed various WG feedback. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-03'> <t> <list style='symbols'> <t> Provided more detailed description of unfreezing behavior, specificallydescribes howto replace pre-existing peer-reflexivetrickling of candidates interacts withhigher-priority ones received via trickling. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-02'> <t> <list style='symbols'> <t> Adjusted unfreezing behavior when there are disparate foundations. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-01'> <t> <list style='symbols'> <t> Changed examples to use IPv6. </t> </list> </t> </section> <section title='Changes from draft-ietf-ice-trickle-00'> <t> <list style='symbols'> <t> Removed dependency on SDP (which is to be provided in a separate specification).ICE. </t><t> Clarified text about<t indent="0" pn="section-appendix.a-2"> <xref target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> describes thefact that a check list can be empty if no candidates have been sent or received yet. </t> <t> Clarified wording about check list states so as notconditions required todefine new states for "Active"update checklists and"Frozen" because thosetimer states while an ICE agent is in the Running state. These conditions are verified upon transaction completion, and one of them stipulates that: </t> <blockquote pn="section-appendix.a-3"> <t indent="0" pn="section-appendix.a-3.1"> if there is notdefined for check lists (only for candidate pairs)a valid pair inICE core. </t> <t> Removed open issuesthe valid listbecause it was outfor each component of the data stream associated with the checklist, the state ofdate.the checklist is set to Failed. </t><t> Completed</blockquote> <t indent="0" pn="section-appendix.a-4"> This could be athorough copy edit. </t> </list> </t> </section> <section title='Changes from draft-mmusic-trickle-ice-02'> <t> <list style='symbols'> <t> Addressed feedback from Rajmohan Banavi and Brandon Williams. </t> <t> Clarified text about determining supportproblem andabout howcause ICE processing toproceed if it can be determined thatfail prematurely in a number of scenarios. Consider theanswering agent does not support Trickle ICE.following case: </t><t> Clarified text about check list<ol spacing="normal" type="1" indent="adaptive" start="1" pn="section-appendix.a-5"> <li pn="section-appendix.a-5.1" derivedCounter="1."> Alice andtimer updates. </t> <t> Clarified when it is appropriate toBob are both located in different networks with Network Address Translation (NAT). Alice and Bob themselves have different addresses, but both networks usehalf trickle or to send no candidatesthe same private internet block (e.g., the "20-bit block" 172.16/12 specified inan offer or answer. </t> <t> Updated<xref target="RFC1918" format="default" sectionFormat="of" derivedContent="RFC1918"/>). </li> <li pn="section-appendix.a-5.2" derivedCounter="2."> Alice conveys to Bob thelist of open issues. </t> </list> </t> </section> <section title='Changescandidate 172.16.0.1, which also happens to correspond to an existing host on Bob's network. </li> <li pn="section-appendix.a-5.3" derivedCounter="3."> Bob creates a candidate pair fromdraft-ivov-01his host candidate anddraft-mmusic-00'> <t> <list style='symbols'> <t> Added172.16.0.1, puts this one pair into arequirement to trickle candidates by order of components to avoid deadlocks inchecklist, and starts checks. </li> <li pn="section-appendix.a-5.4" derivedCounter="4."> These checks reach theunfreezing algorithm. </t> <t> Addedhost at 172.16.0.1 in Bob's network, which responds with aninformative note on peer-reflexive candidates explaining that nothing changes for them semantically but they do becomeICMP "port unreachable" error; per <xref target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>, Bob marks the transaction as Failed. </li> </ol> <t indent="0" pn="section-appendix.a-6"> At this point, the checklist only contains amore likely occurrence forFailed pair, and the valid list is empty. This causes the data stream and potentially all ICE processing to fail, even though TrickleICE.ICE agents can subsequently convey candidates that could succeed. </t><t> Limit<t indent="0" pn="section-appendix.a-7"> A similar race condition would occur if thenumberinitial ICE description from Alice contains only candidates that can be determined as unreachable from any ofpairs to 100 to comply with 5245. </t> <t> Added clarifications onthenon-importance of how newly discoveredcandidatesare trickled/sent tothat Bob has gathered (e.g., this would be theremote party orcase ifthis is done at all. </t> <t> Added transport expectations for trickledBob's candidatesas per Dale Worley's recommendation. </t> </list> </t> </section> <section title='Changes from draft-ivov-00'> <t> <list style='symbols'> <t> Specifiedonly contain IPv4 addresses and the first candidate thatend-of-candidates is a media level attribute which can of course appear as session level, whichhe receives from Alice isequivalent to having it appear in all m-lines. Also made end-of-candidates optional for cases such as aggressive nomination for controlled agents. </t> <t> Addedanexample for ICE lite and Trickle ICE to illustrate how,IPv6 one). </t> <t indent="0" pn="section-appendix.a-8"> Another potential problem could arise whentalking to ana non-Trickle ICElite agent doesn't need to send or even discover any candidates. </t> <t> Addedimplementation initiates anexample for ICE lite andinteraction with a Trickle ICEto illustrate how, when talking to an ICE lite agent doesn't need to send or even discover any candidates.implementation. Consider the following case: </t><t> Added wording that explicitly states<ol spacing="normal" type="1" indent="adaptive" start="1" pn="section-appendix.a-9"> <li pn="section-appendix.a-9.1" derivedCounter="1."> Alice's client has a non-Trickle ICElite agents have to be prepared to receive no candidates over signalingimplementation. </li> <li pn="section-appendix.a-9.2" derivedCounter="2."> Bob's client has support for Trickle ICE. </li> <li pn="section-appendix.a-9.3" derivedCounter="3."> Alice andthat they should not freak out if this happens. (Closed the corresponding open issue). </t> <t>Bob are behind NATs with address-dependent filtering <xref target="RFC4787" format="default" sectionFormat="of" derivedContent="RFC4787"/>. </li> <li pn="section-appendix.a-9.4" derivedCounter="4."> Bob has two STUN servers, but one of them is currently unreachable. </li> </ol> <t indent="0" pn="section-appendix.a-10"> After Bob's agent receives Alice's initial ICE description, it would immediately start connectivity checks. It would also start gathering candidates, which would take a long time because of the unreachable STUN server. By the time Bob's answer isnow mandatory to use MID when trickling candidatesready andusing m-line indexes is no longer allowed. </t> <t> Replaced use of 0.0.0.0conveyed to Alice, Bob's connectivity checks might have failed: until Alice gets Bob's answer, she won't be able toIP6 ::start connectivity checks and punch holes inorder to avoid potential issues with RFC2543 SDP libraries that interpret 0.0.0.0her NAT. The NAT would hence be filtering Bob's checks asan on-hold operation. Also changed the port number hereoriginating from1 to 9 since it already has a more appropriate meaning. (Port change suggested by Jonathan Lennox). </t> <t> Closed the Open Issue about use about what to do with cands received after end-of-cands. Solution: ignore, doanICE restart if you want to add something. </t> <t> Added more terminology, including trickling, trickled candidates, half trickle, full trickle, </t> <t> Added a reference to the SIP usage for Trickle ICE as requested at the Boston interim. </t> </list>unknown endpoint. </t> </section> <sectiontitle='Changes from draft-rescorla-01'> <t> <list style='symbols'> <t> Brought back explicit usenumbered="true" toc="include" removeInRFC="false" pn="section-appendix.b"> <name slugifiedName="name-interaction-with-ice-lite">Interaction with ICE-Lite</name> <t indent="0" pn="section-appendix.b-1"> The behavior ofOffer/Answer. ThereICE-lite agents that areno more attempts to try to do this in an O/A independent way. Also removed the usecapable of Trickle ICEDescriptions. </t> <t> Added SDP specification for trickled candidates, the trickle option and 0.0.0.0 addressesdoes not require any particular rules other than those already defined inm-lines,this specification andend-of-candidates.<xref target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/>. This section is hence provided only for informational purposes. </t><t> Support<t indent="0" pn="section-appendix.b-2"> An ICE-lite agent would generate candidate information as per <xref target="RFC8445" format="default" sectionFormat="of" derivedContent="RFC8445"/> andDiscovery. Changedwould indicate support for Trickle ICE. Given thatsection to be less abstract. As discussed in IETF85,thedraft now says implementations and usages need to either determine support in advance and directly use trickle, or do half trickle. Removed suggestion about usecandidate information will contain a full generation ofdiscovery in SIP or about letting implementing protocols do what they want.candidates, it would also be accompanied by an end-of-candidates indication. </t><t> Defined Half Trickle. Added<t indent="0" pn="section-appendix.b-3"> When performing full trickle, asection that says how it works. Mentionedfull ICE implementation could convey the initial ICE description or response thereto with no candidates. After receiving a response thatit only needsidentifies the remote agent as an ICE-lite implementation, the initiator can choose tohappennot trickle any additional candidates. The same is also true in thefirst o/a (not necessary in updates),case when the ICE-lite agent initiates the interaction andadded Jonathan's comment about how it could, in somethe full ICE agent is the responder. In these cases,offer more than halftheimprovement if you can pre-gather part orconnectivity checks would be enough for the ICE-lite implementation to discover allof yourpotentially useful candidatesbefore the user actually presses the call button. </t> <t> Added a short section about subsequent offer/answer exchanges. </t> <t> Added a short section about interactions withas peer-reflexive. The following example illustrates one such ICELite implementations.session using SDP syntax: </t><t> Added two new entries<figure anchor="fig-ice-lite" align="left" suppress-title="false" pn="figure-2"> <name slugifiedName="name-example">Example</name> <artwork name="" type="" align="left" alt="" pn="section-appendix.b-4.1"> ICE-Lite Bob Agent | Offer (a=ice-lite a=ice-options:trickle) | |---------------------------------------------->| | |no cand | Answer (a=ice-options:trickle) |trickling |<----------------------------------------------| | Connectivity Checks | |<--------------------------------------------->| peer rflx| | cand disco| | |<========== CONNECTION ESTABLISHED ===========>| </artwork> </figure> <t indent="0" pn="section-appendix.b-5"> In addition to reducing signaling traffic, this approach also removes theopen issues section. </t> </list>need to discover STUN Bindings or make TURN allocations, which can considerably lighten ICE processing. </t> </section> <sectiontitle='Changes from draft-rescorla-00'> <t> <list style='symbols'> <t> Relaxed requirements about verifying support following a discussion on MMUSIC. </t> <t> Introduced ICE descriptions in ordernumbered="false" toc="include" removeInRFC="false" pn="section-appendix.c"> <name slugifiedName="name-acknowledgements">Acknowledgements</name> <t indent="0" pn="section-appendix.c-1"> The authors would like toremove ambiguous use of 3264 languagethank <contact fullname="Bernard Aboba"/>, <contact fullname="Flemming Andreasen"/>, <contact fullname="Rajmohan Banavi"/>, <contact fullname="Taylor Brandstetter"/>, <contact fullname="Philipp Hancke"/>, <contact fullname="Christer Holmberg"/>, <contact fullname="Ari Keränen"/>, <contact fullname="Paul Kyzivat"/>, <contact fullname="Jonathan Lennox"/>, <contact fullname="Enrico Marocco"/>, <contact fullname="Pal Martinsen"/>, <contact fullname="Nils Ohlmeier"/>, <contact fullname="Thomas Stach"/>, <contact fullname="Peter Thatcher"/>, <contact fullname="Martin Thomson"/>, <contact fullname="Brandon Williams"/>, and <contact fullname="Dale Worley"/> for their reviews and suggestions on improving this document. <contact fullname="Sarah Banks"/>, <contact fullname="Roni Even"/>, and <contact fullname="David Mandelberg"/> completed OPSDIR, GenART, andinappropriate referencessecurity reviews, respectively. Thanks also tooffers<contact fullname="Ari Keränen"/> andanswers. </t> <t> Removed inappropriate assumption of adoption by RTCWEB pointed out by Martin Thomson. </t> </list><contact fullname="Peter Thatcher"/> in their role as chairs and <contact fullname="Ben Campbell"/> in his role as responsible Area Director. </t> </section> <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.d"> <name slugifiedName="name-authors-addresses">Authors' Addresses</name> <author fullname="Emil Ivov" initials="E." surname="Ivov"> <organization abbrev="8x8 / Jitsi" showOnFrontPage="true">8x8, Inc. / Jitsi</organization> <address> <postal> <street>675 Creekside Way</street> <city>Campbell</city> <region>CA</region> <code>95008</code> <country>United States of America</country> </postal> <phone>+1 512 420 6968</phone> <email>emcho@jitsi.org</email> </address> </author> <author fullname="Justin Uberti" initials="J." surname="Uberti"> <organization showOnFrontPage="true">Google</organization> <address> <postal> <street>747 6th Street S</street> <city>Kirkland</city> <region>WA</region> <code>98033</code> <country>United States of America</country> </postal> <phone>+1 857 288 8888</phone> <email>justin@uberti.name</email> </address> </author> <author initials="P." surname="Saint-Andre" fullname="Peter Saint-Andre"> <organization showOnFrontPage="true">Mozilla</organization> <address> <postal> <street>P.O. Box 787</street> <city>Parker</city> <region>CO</region> <code>80134</code> <country>United States of America</country> </postal> <phone>+1 720 256 6756</phone> <email>stpeter@mozilla.com</email> <uri>https://www.mozilla.com/</uri> </address> </author> </section> </back> </rfc>