<?xml version="1.0"encoding="US-ASCII"?> <!-- This template is for creating an Internet Draft using xml2rfc, which is available here: http://xml.resource.org. -->encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <!-- used by XSLT processors --> <!-- For a complete list and description of processing instructions (PIs), please see http://xml.resource.org/authoring/README.html. --> <!-- Below are generally applicable Processing Instructions (PIs) that most I-Ds might want to use. (Here they are set differently than their defaults in xml2rfc v1.32) --> <?rfc strict="yes" ?> <!-- give errors regarding ID-nits and DTD validation --> <!-- control the table of contents (ToC) --> <?rfc toc="yes"?> <!-- generate a ToC --> <?rfc tocdepth="4"?> <!-- the number of levels of subsections in ToC. default: 3 --> <!-- control references --> <?rfc symrefs="yes"?> <!-- use symbolic references tags, i.e, [RFC2119] instead of [1] --> <?rfc sortrefs="yes" ?> <!-- sort the reference entries alphabetically --> <!-- control vertical white space (using these PIs as follows is recommended by the RFC Editor) --> <?rfc compact="yes" ?> <!-- do not start each main section on a new page --> <?rfc subcompact="no" ?> <!-- keep one blank line between list items --> <!-- end of list of popular I-D processing instructions -->"rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF" category="info" consensus="true" docName="draft-ietf-sfc-oam-framework-15"ipr="trust200902">number="8924" ipr="trust200902" obsoletes="" updates="" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3"> <!--category values: std, bcp, info, exp, and historic ipr values: full3667, noModification3667, noDerivatives3667 you can add the attributes updates="NNNN" and obsoletes="NNNN" they will automatically be output with "(if approved)"xml2rfc v2v3 conversion 2.46.0 --> <!-- ***** FRONT MATTER ***** --> <front> <title abbrev="SFC OAMFramework"> ServiceFramework">Service Function Chaining (SFC)Operations, Administration and Maintenance (OAM) Framework </title> <!-- add 'role="editor"' below for the editors if appropriate --> <!-- Another author who claims to be an editor -->Operations, Administration, and Maintenance (OAM) Framework</title> <seriesInfo name="RFC" value="8924"/> <author fullname="Sam K. Aldrin" initials="S." surname="Aldrin"> <organization>Google</organization> <address> <email>aldrin.ietf@gmail.com</email> </address> </author> <author role="editor" fullname="Carlos Pignataro" initials="C." surname="Pignataro"> <organization abbrev="Cisco">Cisco Systems, Inc.</organization> <address> <email>cpignata@cisco.com</email> </address> </author> <author role="editor" fullname="Nagendra Kumar" initials="N." surname="Kumar"> <organization abbrev="Cisco">Cisco Systems, Inc.</organization> <address> <email>naikumar@cisco.com</email> </address> </author> <author fullname="Ram Krishnan" initials="R." surname="Krishnan"> <organization>VMware</organization> <address> <email>ramkri123@gmail.com</email> </address> </author> <author fullname="Anoop Ghanwani" initials="A." surname="Ghanwani"> <organization>Dell</organization> <address> <email>anoop@alumni.duke.edu</email> </address> </author> <date/> <area>SFC Working Group</area> <workgroup>Internet Engineering Task Force</workgroup> <!-- WG name at the upperleft corner of the doc, IETF is fine for individual submissions. If this element is not present, the default is "Network Working Group", which is used by the RFC Editor as a nod to the history of the IETF. -->year="2020" month="October"/> <area>RTG</area> <workgroup>SFC</workgroup> <keyword>SFC</keyword> <keyword>OAM</keyword> <keyword>Framework</keyword><!-- Keywords will be incorporated into HTML output files in a meta tag but they have no effect on text or nroff output. If you submit your draft to the RFC Editor, the keywords will be used for the search engine. --><abstract> <t>This document provides a reference framework for Operations,AdministrationAdministration, and Maintenance (OAM) for Service Function Chaining (SFC).</t> </abstract> </front> <middle> <sectiontitle="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t>Service Function Chaining (SFC) enables the creation of composite services that consist of an ordered set of Service Functions(SF)(SFs) that are to be applied to any traffic selected as a result of classification <xref target="RFC7665"/>.format="default"/>. SFC is a concept that provides for more than just the application of an ordered set of SFs to selected traffic; rather, it describes a method for deploying SFs in a way that enables dynamic ordering and topological independence of those SFs as well as the exchange of metadata between participating entities. The foundations of SFC are described in the followingdocuments: <list style="symbols"> <t>SFCdocuments:</t> <ul spacing="normal"> <li>SFC Problem Statement <xref target="RFC7498"/></t> <t>SFCformat="default"/></li> <li>SFC Architecture <xref target="RFC7665"/></t> </list> Theformat="default"/></li> </ul> <t>The reader is assumed to be familiar with the material in <xref target="RFC7665"/>. </t><t> Thisformat="default"/>.</t> <t>This document provides a reference framework for Operations,AdministrationAdministration, and Maintenance(OAM,(OAM) <xref target="RFC6291"/>)format="default"/> of SFC. Specifically, this documentprovides: <list style="symbols"> <t>In <xref target="_SFC_Layer" />, anprovides:</t> <ul spacing="normal"> <li>an SFC layeringmodel;</t> <t>In <xref target="_SFC_OAM_Comp" />, aspectsmodel (<xref target="_SFC_Layer" format="default"/>),</li> <li>aspects monitored by SFCOAM;</t> <t>In <xref target="_SFC_OAM_Func" />, functionalOAM (<xref target="_SFC_OAM_Comp" format="default"/>),</li> <li>functional requirements for SFCOAM;</t> <t>In <xref target="_Gap" />, aOAM (<xref target="_SFC_OAM_Func" format="default"/>),</li> <li>a gap analysis for SFCOAM.</t> <t>In <xref target="OPS_ASPECTS" />, operationalOAM (<xref target="_Gap" format="default"/>),</li> <li>operational aspects of SFC OAM at the servicelayer.</t> <t>In <xref target="_SFC_OAM_MODEL" />, applicabilitylayer (<xref target="OPS_ASPECTS" format="default"/>),</li> <li>applicability of various OAMtools.</t> <t>In <xref target="Manageability" />, manageabilitytools (<xref target="_SFC_OAM_MODEL" format="default"/>), and</li> <li>manageability considerations for SF andSFC. </t> </list> </t>SFC (<xref target="Manageability" format="default"/>). </li> </ul> <t>SFC OAM solution documents should refer to this document to indicate the SFC OAM component and the functionality theytarget. </t>target.</t> <t>OAM controllers are SFC-aware network devices that are capable of generating OAM packets. They should be within the same administrative domain as the targetSFC enabled domain. </t>SFC-enabled domain.</t> <sectiontitle="Document Scope">numbered="true" toc="default"> <name>Document Scope</name> <t>The focus of this document is to provide an architectural framework for SFC OAM, particularly focused on the aspect of the Operations component within OAM. Actual solutions and mechanisms are outside the scope of this document.</t> </section> <sectiontitle="Acronymsnumbered="true" toc="default"> <name>Acronyms andTerminology">Terminology</name> <sectiontitle="Acronyms"> <t>SFC: Service Function Chain</t> <t>SFF: Service Function Forwarder</t> <t>SF: Service Function</t> <t>SFP:numbered="true" toc="default"> <name>Acronyms</name> <dl newline="false" spacing="normal" indent="11"> <dt>BFD</dt> <dd>Bidirectional Forwarding Detection</dd> <dt>CLI</dt> <dd>Command-Line Interface</dd> <dt>DWDM</dt> <dd>Dense Wavelength Division Multiplexing</dd> <dt>E-OAM</dt> <dd>Ethernet OAM</dd> <dt>hSFC</dt> <dd>Hierarchical Service FunctionPath</t> <t>RSP: Rendered Service Path</t> <t>NSH: Network Service Header</t> <t>VM: Virtual Machines</t> <t>OAM: Operations, Administration and Maintenance</t> <t>IPPM: IPChaining</dd> <dt>IBN</dt> <dd>Internal Boundary Node</dd> <dt>IPPM</dt> <dd>IP PerformanceMeasurement</t> <t>BFD: Bidirectional Forwarding Detection</t> <t>NVO3: NetworkMetrics</dd> <dt>MPLS</dt> <dd>Multiprotocol Label Switching</dd> <dt>MPLS_PM</dt> <dd>MPLS Performance Measurement</dd> <dt>NETCONF</dt> <dd>Network Configuration Protocol</dd> <dt>NSH</dt> <dd>Network Service Header</dd> <dt>NVO3</dt> <dd>Network Virtualization overLayer3</t> <t>SNMP: Simple Network Management Protocol</t> <t>NETCONF: Network Configuration Protocol</t> <t>E-OAM: Ethernet OAM</t> <t>MPLS_PM: MPLS Performance Measurement</t> <t>POS: PacketLayer 3</dd> <dt>OAM</dt> <dd>Operations, Administration, and Maintenance</dd> <dt>POS</dt> <dd>Packet overSONET</t> <t>DWDM: Dense Wavelength Division Multiplexing</t> <t>hSFC: HierarchicalSONET</dd> <dt>RSP</dt> <dd>Rendered Service Path</dd> <dt>SF</dt> <dd>Service Function</dd> <dt>SFC</dt> <dd>Service FunctionChaining</t> <t>IBN: Internal Boundary Node</t> <t>MPLS: Multiprotocol Label Switching</t> <t>TRILL: TransparentChain</dd> <dt>SFF</dt> <dd>Service Function Forwarder</dd> <dt>SFP</dt> <dd>Service Function Path</dd> <dt>SNMP</dt> <dd>Simple Network Management Protocol</dd> <dt>TRILL</dt> <dd>Transparent Interconnection of Lots ofLinks</t> <t>CLI: Command Line Interface</t>Links</dd> <dt>VM</dt> <dd>Virtual Machine</dd> </dl> </section> <sectiontitle="Terminology">numbered="true" toc="default"> <name>Terminology</name> <t>This document uses theterminologiesterminology defined in <xref target="RFC7665"/>,format="default"/> and <xref target="RFC8300"/>,format="default"/>, andso thereaders are expected to be familiar withthe terminologies. </t>it.</t> </section> </section> </section> <sectiontitle="SFCanchor="_SFC_Layer" numbered="true" toc="default"> <name>SFC LayeringModel" anchor="_SFC_Layer">Model</name> <t>Multiple layers come into play for implementing the SFC. These include the service layer and the underlying layers(Network Layer, Link Layer, etc.). <list style="symbols"> <t>The service(network layer,whichlink layer, etc.).</t> <ul spacing="normal"> <li>The service layer consists of SFCdata planedata-plane elements thatincludesinclude classifiers, Service Functions(SF),(SFs), Service Function Forwarders (SFF), and SFC Proxies. This layer uses the overlay network layer for ensuring connectivity between SFCdata plane elements.</t> <t>Thedata-plane elements.</li> <li>The overlay networklayer, whichlayer leverages various overlay network technologies (e.g.,VxLAN)interconnectingVirtual eXtensible Local Area Network (VXLAN)) for interconnecting SFCdata planedata-plane elements and allows establishing Service Function Paths (SFPs). This layer is mostly transparent to the SFCdata plane elementsdata-plane elements, as not all thedata planedata-plane elements process the overlayheader.</t> <t>Theheader.</li> <li>The underlay networklayer, whichlayer is dictated by the networking technology deployed within a network (e.g., IP,MPLS)</t> <t>TheMPLS).</li> <li>The linklayer, whichlayer is tightly coupled with the physical technology used. Ethernet is one such choice for this layer, but other alternativesaremay be deployed(e.g. POS,(e.g., POS and DWDM). In a virtual environment, virtualized I/Otechnologiestechnologies, such asSR-IOVSingle Root I/O Virtualization (SR-IOV) orsimilarsimilar, are also applicable for this layer. The same or distinct link layer technologies may be used in each leg shown inFigure 1.</t> </list><xref target="SFC-example"/>.</li> </ul> <t keepWithNext="true"/> <figurealign="left"><preamble></preamble><artwork align="left"><![CDATA[anchor="SFC-example"> <name>SFC Layering Example</name> <artwork align="left" name="" type="" alt=""><![CDATA[ o----------------------Service Layer----------------------o +------+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ |Classi|---|SF1|---|SF2|---|SF3|---|SF4|---|SF5|---|SF6|---|SF7| |fier | +---+ +---+ +---+ +---+ +---+ +---+ +---+ +------+ <------VM1------> <--VM2--> <--VM3--> ^-----------------^-------------------^---------------^ Overlay Network o-----------------o-------------------o---------------o Underlay Network o--------o--------o--------o----------o-------o-------o LinkFigure 1: SFC Layering Example ]]></artwork></figure> </t>]]></artwork> </figure> <t>InFigure 1,<xref target="SFC-example"/>, theservice layer elementsservice-layer elements, such as classifier andSFSF, are depicted as virtual entities that are interconnected using an overlay network. The underlay network may comprise multiple intermediate nodes not shown in the figure that provide underlay connectivity between theservice layer elements. </t>service-layer elements.</t> <t>WhileFigure 1<xref target="SFC-example"/> depicts an example where SFs are enabled as virtual entities, the SFC architecture does not make any assumptions on how theSFC data planeSFC data-plane elements are deployed. The SFC architecture is flexible and accommodates physical or virtual entity deployment. SFC OAM accounts for thisflexibilityflexibility, and accordingly it is applicable whether SFCdata planedata-plane elements are deployed directly on physical hardware, as one or moreVirtualvirtual entities, or any combinationthereof. </t>thereof.</t> </section> <sectiontitle="SFCanchor="_SFC_OAM_Comp" numbered="true" toc="default"> <name>SFC OAMComponents" anchor="_SFC_OAM_Comp">Components</name> <t>The SFC operates at the service layer. For the purpose of defining the OAM framework, the service layer is broken up into three distinctcomponents: <list style="numbers"> <t>SF component: OAMcomponents:</t> <dl newline="true" spacing="normal"> <dt>SF component:</dt> <dd>OAM functions applicable at this component include testing the SFs from any SFC-aware network device (e.g., classifiers, controllers, and other service nodes). Testing an SF may be more expansive than just checking connectivity to theSFSF, such as checking if the SF is providing its intended service. Refer toSection 3.1.1<xref target="SF-avail"/> for a more detaileddiscussion.</t> <t>SFC component: OAMdiscussion.</dd> <dt>SFC component:</dt> <dd>OAM functions applicable at this component include (but are not limited to) testing theservice function chainsSFCs and the SFPs, validation of the correlation between an SFC and the actual forwarding path followed by a packet matching that SFC,i.e.i.e., the Rendered Service Path (RSP). Some of the hops of an SFC may not be visible when Hierarchical Service Function Chaining (hSFC) <xref target="RFC8459"/>format="default"/> is in use. In such schemes, it is the responsibility of the Internal Boundary Node (IBN) to glue the connectivity between different levels for end-to-end OAMfunctionality.</t> <t>Classifier component: OAMfunctionality.</dd> <dt>Classifier component:</dt> <dd>OAM functions applicable at this component include testing the validity of the classification rules and detecting any incoherence among the rules installed when more than one classifier isusedused, as explained inSection 2.2 of<xref target="RFC7665"/> .</t> </list> Figure 2sectionFormat="of" section="2.2"/>.</dd> </dl> <t><xref target="SFC-OAM"/> illustrates an example where OAM for the three defined components are used within the SFCenvironment.environment.</t> <t keepWithNext="true"/> <figurealign="left"><preamble></preamble><artwork align="left"><![CDATA[anchor="SFC-OAM"> <name>SFC OAM Components</name> <artwork align="left" name="" type="" alt=""><![CDATA[ +-Classifier +-Service Function Chain OAM | OAM | | | ___________________________________________ | \ /\ Service Function Chain \ | \ / \ +---+ +---+ +-----+ +---+ \ | \ / \ |SF1| |SF2| |Proxy|--|SF3| \ | +------+ \/ \ +---+ +---+ +-----+ +---+ \ +----> ||....(+->|...(+-> ) | | | ) |Classi| \ / +-----+ +-----+ +-----+ / |fier | \ / | SFF1|----| SFF2|----| SFF3| / | | \ / +--^--+ +-----+ +-----+ / +----|-+ \/_________|________________________________/ | | +-------SF_OAM-------+ +---+ +---+ +SF_OAM>|SF3| |SF5| | +-^-+ +-^-+ +------|---+ | | |Controller| +-SF_OAM+ +----------+ Service Function OAM (SF_OAM)Figure 2: SFC OAM Components ]]></artwork></figure> It]]></artwork> </figure> <t>It is expected that multiple SFC OAM solutions will be defined, each targeting one specific component of the service layer. However, it is critical that SFC OAM solutions together provide the coverage of all three SFC OAM components: the SF component, the SFC component, and the classifier component.</t> <sectiontitle="Thenumbered="true" toc="default"> <name>The SFComponent">Component</name> <sectiontitle="SF Availability">anchor="SF-avail" numbered="true" toc="default"> <name>SF Availability</name> <t>One SFC OAM requirement for the SF component is to allow an SFC-aware network device to check the availability of a specific SF (instance), located on the same or different network device(s). For cases where multiple instances of an SF are used to realize a given SF for the purpose of load sharing, SF availability can be performed by checking the availability of any one of those instances, or the availability check may be targeted at a specific instance. SF availability is an aspect that raises an interesting question: How does one determine thata service functionan SF is available?OnAt one end of the spectrum, one might argue that an SF is sufficiently available if the service node (physical or virtual) hosting the SF is available and is functional.OnAt the other end of the spectrum, one might argue that the SF's availability can only beconcludeddeduced if the packet, after passing through the SF, was examined and it was verified that the packet did indeed get the expected service.</t> <t>The former approach will likely not provide sufficient confidencetoabout the actual SF availability,i.e.i.e., a service node and an SF are two different entities. The latter approach is capable of providing an extensiveverification,verification but comes at a cost. Some SFs make direct modifications to packets, while others do not. Additionally, the purpose of some SFs may beto, conditionally,to drop certain packets intentionally. In such cases, it is normal behavior that certain packets will not be egressing out from theservice function.SF. The OAM mechanism needs to take into account such SF specifics when assessing SF availability. Note that there are many flavors of SFsavailable,available and many more that are likely be introduced in the future. Even a given SF may introduce a new functionality (e.g., a new signature in a firewall). The cost of this approach is that the OAM mechanism for some SF will need to be continuously modified in order to"keep up""keep up" with new functionality beingintroduced: lack of extensibility.</t>introduced.</t> <t>The SF availability check can be performed using a generalizedapproach (i.e.,approach, i.e., at an adequate granularity to provide a basic SFservice).service. The task of evaluating the true availability ofa Service Functionan SF is a complex activity, currently having no simple, unified solution. There is currently no standard means of doing so. Any such mechanism would be far from a typical OAM function, so it is not explored as part of the analysis in Sections4<xref target="_SFC_OAM_Func" format="counter"/> and5.</t><xref target="_Gap" format="counter"/>.</t> </section> <sectiontitle="SFnumbered="true" toc="default"> <name>SF PerformanceMeasurement">Measurement</name> <t>The second SFC OAM requirement for the SF component is to allow an SFC-aware network device to check the performancemetricsmetrics, such as loss and delay induced by a specific SF for processing legitimate traffic.The performancePerformance measurement can beapassivemeasurementby using live traffic, an active measurement by using synthetic probepacketspackets, orcan bea hybrid method thatuseuses a combination of active and passive measurement. More details about this OAM function is explained inSection 4.4. </t><xref target="Perform_Funct"/>.</t> <t>On the one hand, the performance of any specific SF can be quantified by measuring the loss and delay metrics of the traffic from the SFF to the respective SF, while on the other hand, the performance can be measured by leveraging the loss and delay metrics from the respective SFs. The latter requires SF involvement to perform themeasurementmeasurement, while the former does not. For cases where multiple instances of an SF are used to realize a given SF for the purpose of load sharing, SF performance can be quantified by measuring the metrics for any one instance of SF or by measuring the metrics for a specificinstance. </t>instance.</t> <t>The metrics measured to quantify the performance of the SF component are not just limited to loss and delay. Othermetricsmetrics, such asthroughputthroughput, also exist and the choice of metrics for performance measurement is outside the scope of thisdocument. </t>document.</t> </section> </section> <sectiontitle="Thenumbered="true" toc="default"> <name>The SFCComponent">Component</name> <sectiontitle="SFC Availability">numbered="true" toc="default"> <name>SFC Availability</name> <t>An SFC could comprise varyingSFsSFs, and so the OAM layer is required to perform validation and verification of SFs within an SFP, in addition to connectivity verification and fault isolation.</t> <t>In order to perform service connectivity verification of an SFC/SFP, the OAM functions could be initiated from any SFC-aware network device of an SFC-enabled domain for end-to-end paths, or partial paths terminating on a specific SF, within the SFC/SFP. The goal of this OAM function is to ensure the SFs chained together haveconnectivityconnectivity, as was intended at the time when the SFC was established. The necessary return codes should be defined for sending back in the response to the OAM packet, in order to complete the verification.</t> <t>When ECMP is in use at the service layer for any given SFC, there must be the ability to discover and traverse all available paths.</t> <t>A detailed explanation of the mechanism is outside the scope of this document and is expected to be included in the actual solution document.</t> </section> <sectiontitle="SFCnumbered="true" toc="default"> <name>SFC PerformanceMeasurement">Measurement</name> <t>Any SFC-aware network device should have the ability to make performance measurements over the entire SFC (i.e., end-to-end) ortoon a specific segment of SFs within the SFC.</t> </section> </section> <sectiontitle="Classifier Component">numbered="true" toc="default"> <name>Classifier Component</name> <t>A classifier maintains the classification rules that map a flow to a specific SFC. It is vital that the classifier is correctly configured with updated classification rules and is functioning as expected. The SFC OAM must be able to validate the classification rules by assessing whether a flow is appropriately mapped to the relevant SFC and detect any misclassification. Sample OAM packets can be presented to the classifiers to assess the behavior with regard to a given classification entry.</t> <t>The classifier availability check may be performed to check the availability of the classifier to apply the rules and classify the traffic flows. Any SFC-aware network device should have the ability to perform availability checking of the classifier component for each SFC. </t> <t>Any SFC-aware network device should have the ability to perform performance measurement of the classifier component for each SFC. The performance can be quantified by measuring the performance metrics of the traffic from the classifier for eachSFC/SFP. </t>SFC/SFP.</t> </section> <sectiontitle="Underlay Network">numbered="true" toc="default"> <name>Underlay Network</name> <t>The underlay network provides connectivity between the SFCcomponentscomponents, so the availability or the performance of the underlay network directly impacts the SFCOAM. </t>OAM.</t> <t>Any SFC-aware network device may have the ability to perform an availability check or performance measurement of the underlay network using any existing OAM functions listed in Section5.1. </t>5.1.</t> </section> <sectiontitle="Overlay Network">numbered="true" toc="default"> <name>Overlay Network</name> <t>The overlay network provides connectivity for the service plane between the SFC components and is mostly transparent to the SFCdata plane elements. </t>data-plane elements.</t> <t>Any SFC-aware network device may have the ability to perform an availability check or performance measurement of the overlay network using any existing OAM functions listed inSection 5.1. </t><xref target="_Exist_FUNC"/>.</t> </section> </section> <sectiontitle="SFCanchor="_SFC_OAM_Func" numbered="true" toc="default"> <name>SFC OAMFunctions" anchor="_SFC_OAM_Func">Functions</name> <t><xref target="_SFC_OAM_Comp"/>format="default"/> described SFC OAM components and the associated OAM operations on each of them. This section explores SFC OAM functions that are applicable for more than one SFC component.</t> <t>The various SFC OAM requirements listed in <xref target="_SFC_OAM_Comp"/> highlightedformat="default"/> highlight the need for various OAM functions at the service layer. As listed inSection 5.1,<xref target="_Exist_FUNC"/>, various OAM functions are in existence that are defined to perform OAM functionality at different layers. In order to apply such OAM functions at the service layer, they need to be enhanced to operate on a single SF/SFFtoor multiple SFs/SFFs spanning across one or more SFCs.</t> <sectiontitle="Connectivity Functions">anchor="Connect_Func" numbered="true" toc="default"> <name>Connectivity Functions</name> <t>Connectivity is mainly an on-demand function to verify thattheconnectivity exists between certain network elements and that the SFs are available. For example,LSPLabel Switched Path (LSP) Ping <xref target="RFC8029"/>format="default"/> is a common tool used to perform this function for an MPLS network. Some of the OAM functions performed by connectivity functions are asfollows: <list style="symbols"> <t>Verifyfollows:</t> <ul spacing="normal"> <li>Verify the Path MTU from a source to the destination SF or through the SFC. This requires the ability for the OAM packet to be of variablelength.</t> <t>Detectlength.</li> <li>Detect any packetre-orderingreordering andcorruption.</t> <t>Verifycorruption.</li> <li>Verify that an SFC or SF is applying the expectedpolicy.</t> <t>Verificationpolicy.</li> <li>Verify andvalidation ofvalidate forwardingpaths.</t> <t>Proactivelypaths.</li> <li>Proactively test alternate or protected paths to ensure reliability of networkconfigurations.</t> </list> </t>configurations.</li> </ul> </section> <sectiontitle="Continuity Functions">numbered="true" toc="default"> <name>Continuity Functions</name> <t>Continuity is a model where OAM messages are sent periodically to validate or verify the reachability of a given SF within an SFC or for the entire SFC. This allows a monitoring network device (such as the classifier or controller) to quickly detectfailuresfailures, such as link failures, network element failures, SF outages, or SFC outages. BFD <xref target="RFC5880"/>format="default"/> is one suchfunction whichprotocol that helps in detecting failures quickly. OAM functions supported by continuity functions are asfollows: <list style="symbols"> <t>Ability to provisionfollows:</t> <ul spacing="normal"> <li>Provision a continuity check to a given SF within an SFC or for the entireSFC.</t> <t>ProactivelySFC.</li> <li>Proactively test alternate or protected paths to ensure reliability of networkconfigurations.</t> <t>Notifyingconfigurations.</li> <li>Notifying other OAM functions or applications of the detected failures so they can take appropriateaction.</t> </list> </t>action.</li> </ul> </section> <sectiontitle="Trace Functions">numbered="true" toc="default"> <name>Trace Functions</name> <t>Tracing is an OAM function that allows the operation to trigger an action(e.g.(e.g., response generation) from every transit device(e.g.(e.g., SFF, SF, and SFC Proxy) on the tested layer. This function is typically useful for gathering information from every transit device or for isolating the failure point to a specific SF within an SFC or for an entire SFC. Some of the OAM functions supported by trace functionsare: <list style="symbols"> <t>Abilityare:</t> <ul spacing="normal"> <li>the ability to trigger an action from every transit device at the SFC layer, using TTL or othermeans.</t> <t>Abilitymeans,</li> <li>the ability to trigger every transit device at the SFC layer to generate a response with OAMcode(s),code(s) using TTL or othermeans.</t> <t>Abilitymeans,</li> <li>the ability to discover and traverse ECMP paths within anSFC.</t> <t>AbilitySFC, and</li> <li>the ability to skip SFs that do not support OAM while tracing SFs in anSFC.</t> </list> </t>SFC.</li> </ul> </section> <sectiontitle="Performanceanchor="Perform_Funct" numbered="true" toc="default"> <name>Performance MeasurementFunctions">Functions</name> <t>Performance measurement functions involve measuring of packet loss, delay, delay variance, etc. These performance metrics may be measuredpro-activelyproactively oron-demand.</t>on demand.</t> <t>SFC OAM should provide the ability to measure packet loss for an SFC. On-demand measurement can be used to estimate packet loss using statistical methods. To ensure accurate estimations, one needs to ensure that OAM packets are treated the same and also share the same fate as regular data traffic.</t> <t>Delay within an SFC could be measured based on the time it takes for a packet to traverse the SFC from the ingress SFC node to the egress SFF. Measurementprotocolsprotocols, such asOne-waythe One-Way Active Measurement Protocol (OWAMP) <xref target="RFC4656"/>format="default"/> andTwo-waythe Two-Way Active Measurement Protocol (TWAMP) <xref target="RFC5357"/>format="default"/>, can be used to measurethedelay characteristics. As SFCs are unidirectional in nature, measurement of one-way delay <xref target="RFC7679"/>format="default"/> is important. In order to measure one-way delay, time synchronization must be supported by means such as NTP, GPS, Precision Time Protocol (PTP), etc.</t> <t>One-way delay variation <xref target="RFC3393"/>format="default"/> could also be calculated by sending OAM packets and measuring the jitter for traffic passing through an SFC.</t> <t>Some of the OAM functions supported by the performance measurement functionsare: <list style="symbols"> <t>Abilityare:</t> <ul spacing="normal"> <li>the ability to measure the packet processing delay induced by a single SF or the one-way delay to traverse an SFP bound to a givenSFC.</t> <t>AbilitySFC, and</li> <li>the ability to measure the packet loss <xref target="RFC7680"/>format="default"/> within an SF or an SFP bound to a givenSFC.</t> </list> </t>SFC.</li> </ul> </section> </section> <sectiontitle="Gap Analysis" anchor="_Gap">anchor="_Gap" numbered="true" toc="default"> <name>Gap Analysis</name> <t>This section identifies various OAM functions available at different layers introduced inSection 2.<xref target="_SFC_Layer"/>. It also identifies various gaps that exist within the current toolset for performing OAM functions required for SFC.</t> <sectiontitle="Existinganchor="_Exist_FUNC" numbered="true" toc="default"> <name>Existing OAMFunctions" anchor="_Exist_FUNC">Functions</name> <t>There are various OAMtool setstoolsets available to perform OAM functions within various layers. These OAM functions may be used to validate some of the underlay and overlay networks. Tools like ping and trace are in existence to perform connectivitycheckchecks andtracing oftrace intermediate hops in a network. These tools support different networktypestypes, like IP, MPLS, TRILL, etc. Ethernet OAM (E-OAM) <xreftarget="Y.1731"/>target="Y.1731" format="default"/> <xreftarget="EFM"/>target="EFM" format="default"/> and Connectivity Fault Management (CFM) <xreftarget="DOT1Q"/>target="DOT1Q" format="default"/> offer OAMmechanismsmechanisms, such asan Etherneta continuity check for Ethernet links. There is an effort around NVO3 OAM to provide connectivity and continuity checks for networks that use NVO3. BFD is used for the detection ofdata planedata-plane forwarding failures. The IPPM framework <xref target="RFC2330"/>format="default"/> offers tools such as OWAMP <xref target="RFC4656"/>format="default"/> and TWAMP <xref target="RFC5357"/>format="default"/> (collectively referred to as IPPM in this section) to measure various performance metrics. MPLS Packet Loss Measurement (LM) and Packet Delay Measurement (DM) (collectively referred to as MPLS_PM in this section) <xref target="RFC6374"/> offersformat="default"/> offer the ability to measure performance metrics in MPLSnetwork.networks. There is also an effort to extend thetool settoolset to provide connectivity and continuity checks within overlay networks. BFD is another toolwhichthat helps in detecting data forwarding failures.Table 3<xref target="OAM-Analysis"/> below is notexhaustive. <figure align="left"><preamble></preamble><artwork align="left"><![CDATA[ Table 3: OAMexhaustive.</t> <t keepWithNext="true"/> <table anchor="OAM-Analysis" align="center"> <name>OAM ToolGAP Analysis +----------------+--------------+-------------+--------+------------+ | Layer | Connectivity | Continuity | Trace | Performance| +----------------+--------------+-------------+--------+------------+ | Underlay N/w | Ping |E-OAM, BFD | Trace | IPPM, | | | | | | MPLS_PM | +----------------+--------------+-------------+--------+------------+ | Overlay N/w | Ping | BFD, | | | | | |Gap Analysis</name> <thead> <tr> <th>Layer</th> <th>Connectivity</th> <th>Continuity</th> <th>Trace</th> <th>Performance</th> </tr> </thead> <tbody> <tr> <td>Underlay network</td> <td>Ping</td> <td>E-OAM, BFD</td> <td>Trace</td> <td>IPPM, MPLS_PM</td> </tr> <tr> <td>Overlay network</td> <td>Ping</td> <td>BFD, NVO3OAM | Trace | IPPM | +----------------+--------------+-------------+--------+------------+ | Classifier | Ping | BFD | Trace | None | +----------------+--------------+-------------+--------+------------+ | SF | None | None | None | None | +----------------+--------------+-------------+--------+------------+ | SFC | None | None | None | None | +----------------+--------------+-------------+--------+------------+ ]]></artwork></figure> </t>OAM</td> <td>Trace</td> <td>IPPM</td> </tr> <tr> <td>Classifier</td> <td>Ping</td> <td>BFD</td> <td>Trace</td> <td>None</td> </tr> <tr> <td>SF</td> <td>None</td> <td>None</td> <td>None</td> <td>None</td> </tr> <tr> <td>SFC</td> <td>None</td> <td>None</td> <td>None</td> <td>None</td> </tr> </tbody> </table> </section> <sectiontitle="Missingnumbered="true" toc="default"> <name>Missing OAMFunctions">Functions</name> <t>As shown inTable 3,<xref target="OAM-Analysis"/>, there are no standards-based tools available at the time of this writing that can be used natively(i.e.(i.e., without enhancement) for the verification of SFs and SFCs.</t> </section> <sectiontitle="Requirednumbered="true" toc="default"> <name>Required OAMFunctions">Functions</name> <t>Primary OAM functions exist for underlying layers. Tools like ping, trace, BFD, etc. exist in order to perform these OAM functions.</t> <t>As depicted inTable 3,<xref target="OAM-Analysis"/>, toolsets and solutions are required to perform the OAM functions at the servicelayer. </t>layer.</t> </section> </section> <sectiontitle="Operationalanchor="OPS_ASPECTS" numbered="true" toc="default"> <name>Operational Aspects of SFC OAM at the ServiceLayer" anchor="OPS_ASPECTS">Layer</name> <t>This section describes the operational aspects of SFC OAM at the service layer to perform the SFC OAM function defined in <xref target="_SFC_OAM_Func"/>format="default"/> and analyzes the applicability of various existing OAM toolsets in the servicelayer. </t>layer.</t> <sectiontitle="SFCnumbered="true" toc="default"> <name>SFC OAM PacketMarker">Marker</name> <t>SFC OAM messages should be encapsulated with the necessary SFC header and with OAM markings when testing the SFC component. SFC OAM messages may be encapsulated with the necessary SFC header and with OAM markings when testing the SFcomponent. </t>component.</t> <t>The SFC OAM function described in <xref target="_SFC_OAM_Func"/>format="default"/> performed at the service layer or overlay network layer must mark the packet as an OAM packet so that relevant nodes can differentiateanOAMpacketpackets from data packets. The base header defined inSection 2.2 of<xref target="RFC8300"/>sectionFormat="of" section="2.2"/> assigns a bit to indicate OAM packets. When NSH encapsulation is used at the service layer, the O bit must be set to differentiate the OAM packet. Any other overlay encapsulations used at the service layer must have a way to mark the packet as an OAMpacket. </t>packet.</t> </section> <sectiontitle="OAMnumbered="true" toc="default"> <name>OAM Packet Processing and ForwardingSemantic">Semantic</name> <t>Upon receiving an OAM packet, an SFC-awareSFsSF may choose to discard the packet if it does not support OAM functionality or if the local policy preventsthemit from processing the OAM packet. When an SF supports OAM functionality, it is desirable to process the packet and provide an appropriate response to allow end-to-end verification. To limit performance impact due to OAM, SFC-aware SFs shouldrate limitrate-limit the number of OAM packets processed. </t> <t>An SFF may choosenotto not forward the OAM packet to an SF if the SF does not support OAM or if the policy does not allowto forwardthe forwarding of OAM packets toanthat SF. The SFF may choose to skip the SF, modify theheaderpacket's header, and forward the packet to the next SFC node in the chain. It should be noted that skipping an SF might have implications on some OAM functions(e.g.(e.g., the delay measurement may not be accurate). The method by which an SFF detects if the connected SF supports or is allowed to process OAM packets is outside the scope of this document. It could be a configuration parameter instructed by thecontrollercontroller, or it can be done by dynamic negotiation between the SF andSFF. </t>SFF.</t> <t>If the SFF receiving the OAM packet bound to a given SFC is the last SFF in the chain, it must send a relevant response to the initiator of the OAM packet. Depending on the type of OAM solution andtool settoolset used, the response could be a simple response (such as ICMP reply) or could include additional data from the received OAM packet (like statistical data consolidated along the path). The details are expected to be covered in the solutiondocuments. </t>documents.</t> <t>Any SFC-aware node that initiates an OAM packet must set the OAM marker in the overlayencapsulation. </t>encapsulation.</t> </section> <sectiontitle="OAMnumbered="true" toc="default"> <name>OAM FunctionTypes">Types</name> <t>As described in <xref target="_SFC_OAM_Func"/>,format="default"/>, there are different OAM functions that may require different OAM solutions. While the presence of the OAM marker in the overlay header (e.g., O bit in the NSH header) indicates it as an OAM packet, it is not sufficient to indicate what OAM function the packet is intended for. The Next Protocol field in the NSH header may be used to indicate what OAM function is intended or what toolset is used. Any other overlay encapsulations used at the service layer must have a similar way to indicate the intended OAMfunction. </t>function.</t> </section> </section> <sectiontitle="Candidateanchor="_SFC_OAM_MODEL" numbered="true" toc="default"> <name>Candidate SFC OAMTools" anchor="_SFC_OAM_MODEL">Tools</name> <t>As described in <xref target="_Exist_FUNC"/>,format="default"/>, there are differenttool setstoolsets available to perform OAM functions at different layers. This section describe the applicability of some of the available toolsets in the servicelayer. </t>layer.</t> <sectiontitle="ICMP">numbered="true" toc="default"> <name>ICMP</name> <t><xref target="RFC0792"/>format="default"/> and <xref target="RFC4443"/>format="default"/> describe the use of ICMP in IPv4 and IPv6 networks respectively. It explains how ICMP messages can be used to test the network reachability between different end points and perform basic networkdiagnostics. </t>diagnostics.</t> <t>ICMP could be leveraged for connectivity functions (defined inSection 4.1)<xref target="Connect_Func"/>) to verify the availability of an SF or SFC. TheInitiatorinitiator can generate an ICMP echo request message and control theservice layerservice-layer encapsulation header to get the response from the relevant node. For example, a classifier initiating OAM can generate an ICMP echo request message,canset the TTL field in the NSH header <xref target="RFC8300"/>format="default"/> to 63 to get the response from the last SFF, and thereby test the SFC availability. Alternatively, the initiator can set the TTL to some other value to get the response from a specificSFsSF and thereby partially test SFCavailabilityavailability, or the initiator could send OAM packets with sequentially incrementing TTL in the NSH to trace theSFP. </t>SFP.</t> <t>It could be observed that ICMPat its current stageas currently defined may not be able to perform all required SFC OAM functions, but as explained above, it can be used for some of the connectivityfunctions. </t>functions.</t> </section> <sectiontitle="BFD/Seamless-BFD">numbered="true" toc="default"> <name>BFD / Seamless BFD</name> <t><xref target="RFC5880"/>format="default"/> defines the Bidirectional Forwarding Detection (BFD) mechanism for failure detection. <xref target="RFC5881"/>format="default"/> and <xref target="RFC5884"/>format="default"/> define the applicability of BFD in IPv4,IPv6IPv6, and MPLS networks. <xref target="RFC7880"/>format="default"/> defines Seamless BFD (S-BFD), a simplified mechanism of using BFD. <xref target="RFC7881"/>format="default"/> explains its applicability in IPv4,IPv6IPv6, and MPLSnetwork. </t>networks.</t> <t>BFD or S-BFD could be leveraged to perform the continuity function for SF or SFC. An initiator could generate a BFD control packet and set the "Your Discriminator" value in the control packet to identify the lastSFF in the control packet.SFF. Upon receiving the control packet, the last SFF in the SFC will reply back with the relevant DIAG code. The TTL field in the NSH header could be used to perform a partial SFC availability check. For example, the initiator can set the "Your Discriminator" value to identify the SF that is intended to be tested and set the TTL field in the NSH header in a way that it expires at the relevant SF. How the initiator gets the Discriminator value to identify the SF is outside the scope of thisdocument. </t>document.</t> </section> <sectiontitle="In-Situ OAM">numbered="true" toc="default"> <name>In Situ OAM</name> <t><xref target="I-D.ietf-sfc-ioam-nsh"/>format="default"/> defines howIn-SituIn situ OAM data fields <xref target="I-D.ietf-ippm-ioam-data"/>format="default"/> are transported using the NSH header. <xref target="I-D.ietf-sfc-proof-of-transit"/>format="default"/> defines a mechanism to perform proof of transit to securely verify if a packet traversed the relevant SFP or SFC. While the mechanism is defined inband (i.e., it will be included in data packets),IOA Option-TypesIOAM Option-Types, such as IOAM TraceOption-TypesOption-Types, can also be used to perform other SFC OAMfunctionfunctions, such as SFCtracing. </t> <t>In-Situtracing.</t> <t>In situ OAM could be leveraged to perform SF availability and SFC availability or performance measurement. For example, if SFC is realized using NSH, theO-bitO bit in the NSH header could be set to indicate the OAMtraffictraffic, as defined inSection 4.2<xref target="I-D.ietf-sfc-ioam-nsh"/>. </t>sectionFormat="of" section="4.2"/>.</t> </section> <sectiontitle="SFC Traceroute">numbered="true" toc="default"> <name>SFC Traceroute</name> <t><xref target="I-D.penno-sfc-trace"/>format="default"/> defines a protocol that checks for path liveliness and traces the service hops in any SFP.Section 3 of<xref target="I-D.penno-sfc-trace"/>sectionFormat="of" section="3"/> defines the SFC trace packetformatformat, while Sections4<xref target="I-D.penno-sfc-trace" section="4" sectionFormat="bare"/> and5 of<xref target="I-D.penno-sfc-trace"/> definessection="5" sectionFormat="bare"/> of <xref target="I-D.penno-sfc-trace"/> define the behavior of SF and SFF respectively. While <xref target="I-D.penno-sfc-trace"/>format="default"/> has expired, the proposal is implemented in Open Daylight and isavailable. </t>available.</t> <t>An initiator can control the Service Index Limit (SIL) in an SFC trace packet to perform SF and SFC availabilitytest. </t>tests.</t> </section> </section> <section anchor="Manageability"title="Manageability Considerations">numbered="true" toc="default"> <name>Manageability Considerations</name> <t>This document does not define any new manageability tools but consolidates the manageability tool gap analysis for SF and SFC.Table 4<xref target="OAM-Analysis-2"/> below is notexhaustive. </t> <t> <figure align="left"><preamble></preamble><artwork align="left"><![CDATA[ Table 4: OAMexhaustive.</t> <t keepWithNext="true"/> <table anchor="OAM-Analysis-2" align="center"> <name>OAM ToolGAP Analysis +----------------+--------------+-------------+--------+-------------+ | Layer |Configuration |Orchestration|Topology|Notification | +----------------+--------------+-------------+--------+-------------+ | Underlay N/w |CLI, NETCONF | CLI, NETCONF| SNMP |SNMP, Syslog,| | | | | |NETCONF | +----------------+--------------+-------------+--------+-------------+ | Overlay N/w |CLI, NETCONF | CLI, NETCONF| SNMP |SNMP, Syslog | | | | | |NETCONF | +----------------+--------------+-------------+--------+-------------+ | Classifier |CLI, NETCONF | CLI, NETCONF| None | None | +----------------+--------------+-------------+--------+-------------+ | SF |CLI, NETCONF | CLI, NETCONF| None | None | +----------------+--------------+-------------+--------+-------------+ | SFC |CLI, NETCONF | CLI, NETCONF| None | None | +----------------+--------------+-------------+--------+-------------+ ]]></artwork></figure> </t>Gap Analysis</name> <thead> <tr> <th>Layer</th> <th>Configuration</th> <th>Orchestration</th> <th>Topology</th> <th>Notification</th> </tr> </thead> <tbody> <tr> <td>Underlay network</td> <td>CLI, NETCONF</td> <td>CLI, NETCONF</td> <td>SNMP</td> <td>SNMP, Syslog, NETCONF</td> </tr> <tr> <td>Overlay network</td> <td>CLI, NETCONF</td> <td>CLI, NETCONF</td> <td>SNMP</td> <td>SNMP, Syslog, NETCONF</td> </tr> <tr> <td>Classifier</td> <td>CLI, NETCONF</td> <td>CLI, NETCONF</td> <td>None</td> <td>None</td> </tr> <tr> <td>SF</td> <td>CLI, NETCONF</td> <td>CLI, NETCONF</td> <td>None</td> <td>None</td> </tr> <tr> <td>SFC</td> <td>CLI, NETCONF</td> <td>CLI, NETCONF</td> <td>None</td> <td>None</td> </tr> </tbody> </table> <t>Configuration,orchestrationorchestration, and other manageability tasks of SF and SFC could be performed using CLI, NETCONF <xref target="RFC6241"/> , etc. </t>format="default"/>, etc.</t> <t>While the NETCONF capabilities are readilyavailableavailable, as depicted inTable 4,<xref target="OAM-Analysis-2"/>, the information and data models are needed for configuration,manageabilitymanageability, and orchestration for SFC. With virtualized SF and SFC, manageability needs to be done programmatically.</t> </section> <section anchor="Security"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>Any security considerations defined in <xref target="RFC7665"/>format="default"/> and <xref target="RFC8300"/> isformat="default"/> are applicable for thisdocument. </t>document.</t> <t>The OAM information from the service layer at different components may collectively or independently reveal sensitive information. The information may reveal the type of service functions hosted in the network, the classification rules and the associated service chains, specific service function paths, etc. The sensitivity of the information from the SFC layer raises a need for careful securityconsiderations. </t>considerations.</t> <t>The mapping and the rules information at the classifier component may reveal the traffic rules and the traffic mapped to the SFC. The SFC information collected at an SFC component may reveal the SFs associated within eachchainchain, and this information together with classifier rules may be used to manipulate the header of synthetic attack packets that may be used to bypass the SFC and trigger any internalattacks. </t>attacks.</t> <t>The SF information at the SF component may be used by a malicious user to trigger a Denial of Service (DoS) attack by overloading any specific SF using rogue OAMtraffic. </t>traffic.</t> <t>To address the above concerns, SFC and SF OAM should provide mechanisms formitigating: <list style="symbols"> <t>Misusemitigating:</t> <ul spacing="normal"> <li>misuse of the OAM channel fordenial-of-services,</t> <t>Leakagedenial of services,</li> <li>leakage of OAM packets across SFC instances,and</t> <t>Leakageand</li> <li>leakage of SFC information beyond the SFCdomain.</t> </list> </t>domain.</li> </ul> <t>The documents proposing the OAM solution for SF components should provide rate-limiting the OAM probes at a frequency guided by the implementation choice. Rate-limiting may be applied at theClassifier, SFFclassifier, SFF, or theSF .SF. The OAM initiator may not receive a response for the probes that are rate-limited resulting in falsenegativesnegatives, and the implementation should be aware of this. To mitigate any attacks that leverage OAM packets, future documents proposing OAM solutions should describe the use of any technique to detect and mitigate anomalies and various securityattacks. </t>attacks.</t> <t>The documents proposing the OAM solution for anyservice layerservice-layer components should consider some form of message filtering to control the OAM packets entering the administrative domain or prevent leaking any internalservice layerservice-layer information outside the administrativedomain. </t>domain.</t> </section> <section anchor="IANA"title="IANA Considerations"> <t>No action is required bynumbered="true" toc="default"> <name>IANA Considerations</name> <t>This document has no IANAfor this document.</t> </section> <section title="Acknowledgements"> <t>We would like to thank Mohamed Boucadair, Adrian Farrel, Greg Mirsky, Tal Mizrahi, Martin Vigoureux, Tirumaleswar Reddy, Carlos Bernados, Martin Duke, Barry Leiba, Eric Vyncke, Roman Danyliw, Erik Kline, Benjamin Kaduk, Robert Wilton, Frank Brockner, Alvaro Retana, Murray Kucherawy, and Alissa Cooper for their review and comments.</t> </section> <section title="Contributing Authors"> <t>Nobo Akiya <vspace blankLines="0" /> Ericsson <vspace blankLines="0" /> Email: nobo.akiya.dev@gmail.com</t>actions.</t> </section> </middle> <!-- *****BACK MATTER ***** --> <back> <displayreference target="I-D.ietf-sfc-proof-of-transit" to="PROOF-OF-TRANSIT"/> <displayreference target="I-D.ietf-sfc-ioam-nsh" to="IOAM-NSH"/> <displayreference target="I-D.ietf-ippm-ioam-data" to="IPPM-IOAM-DATA"/> <displayreference target="I-D.penno-sfc-trace" to="SFC-TRACE"/> <!-- References split into informative and normative --><references title="Informative References"> <?rfc include="reference.RFC.2330"?> <?rfc include="reference.RFC.0792"?> <?rfc include="reference.RFC.3393"?> <?rfc include="reference.RFC.7665"?> <?rfc include="reference.RFC.8300"?> <?rfc include="reference.RFC.4443"?> <?rfc include="reference.RFC.4656"?> <?rfc include="reference.RFC.5357"?> <?rfc include="reference.RFC.6374"?> <?rfc include="reference.RFC.6241"?> <?rfc include="reference.RFC.7498"?> <?rfc include="reference.RFC.7680"?> <?rfc include="reference.RFC.7679"?> <?rfc include="reference.RFC.8459"?> <?rfc include="reference.RFC.6291"?> <?rfc include="reference.RFC.5880"?> <?rfc include="reference.RFC.5881"?> <?rfc include="reference.RFC.5884"?> <?rfc include="reference.RFC.7880"?> <?rfc include="reference.RFC.7881"?> <?rfc include="reference.RFC.8029"?> <?rfc include="reference.I-D.ietf-sfc-proof-of-transit"?> <?rfc include="reference.I-D.ietf-sfc-ioam-nsh"?> <?rfc include="reference.I-D.ietf-ippm-ioam-data"?> <?rfc include="reference.I-D.penno-sfc-trace"?><references> <name>Informative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2330.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0792.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3393.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7665.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8300.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4443.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4656.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5357.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6374.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6241.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7498.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7680.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7679.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8459.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6291.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5880.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5881.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5884.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7880.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7881.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8029.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-sfc-proof-of-transit.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-sfc-ioam-nsh.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-ippm-ioam-data.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.penno-sfc-trace.xml"/> <reference anchor="Y.1731" target="https://www.itu.int/rec/T-REC-G.8013-201508-I/en"> <front><title>OAM Functions<title>G.8013: Operations, administration and maintenance (OAM) functions and mechanisms forEthernet basedEthernet-based networks</title><author><organization>ITU-T</organization></author> <date/><author> <organization>ITU-T</organization> </author> <date month="August" year="2015"/> </front> </reference> <reference anchor="EFM"> <front> <title>IEEE Standard forEthernet (Clause 57 for Operations, Administration, and Maintenance), IEEE Std 802.3-2018, June 2018</title> <author><organization>IEEE</organization></author> <date/>Ethernet</title> <author> <organization>IEEE</organization> </author> <date month="June" year="2018"/> </front> <seriesInfo name="IEEE" value="802.3-2018"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8457469"/> </reference> <reference anchor="DOT1Q"> <front><title>Standard<title>IEEE Standard for Local andMetropolitan Area Networks--Bridgesmetropolitan area networks--Bridges and BridgedNetworks, IEEE Std 802.1Q-2014, November 2014</title> <author><organization>IEEE</organization></author> <date/>Networks</title> <author> <organization>IEEE</organization> </author> <date month="November" year="2014"/> </front> <seriesInfo name="IEEE" value="802.1Q-2014"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2014.6991462"/> </reference> </references><!-- Change Log v00-a 2014-06-28a Nobo: Initial version --><section numbered="false" toc="default"> <name>Acknowledgements</name> <t>We would like to thank <contact fullname="Mohamed Boucadair"/>, <contact fullname="Adrian Farrel"/>, <contact fullname="Greg Mirsky"/>, <contact fullname="Tal Mizrahi"/>, <contact fullname="Martin Vigoureux"/>, <contact fullname="Tirumaleswar Reddy"/>, <contact fullname="Carlos Bernados"/>, <contact fullname="Martin Duke"/>, <contact fullname="Barry Leiba"/>, <contact fullname="Éric Vyncke"/>, <contact fullname="Roman Danyliw"/>, <contact fullname="Erik Kline"/>, <contact fullname="Benjamin Kaduk"/>, <contact fullname="Robert Wilton"/>, <contact fullname="Frank Brockner"/>, <contact fullname="Alvaro Retana"/>, <contact fullname="Murray Kucherawy"/>, and <contact fullname="Alissa Cooper"/> for their review and comments.</t> </section> <section numbered="false" toc="default"> <name>Contributors</name> <contact fullname="Nobo Akiya"> <organization>Ericsson</organization> <address> <email>nobo.akiya.dev@gmail.com</email> </address> </contact> </section> </back> </rfc>