<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM'rfc2629.dtd' []>"rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-ietf-dprive-bcp-op-14" number="8932" obsoletes="" updates="" submissionType="IETF" category="bcp"docName="draft-ietf-dprive-bcp-op-14"> <?rfc toc="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?> <?rfc private=""?> <?rfc topblock="yes"?> <?rfc comments="no"?>consensus="true" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 2.46.0 --> <front> <title abbrev="DNS Privacy Service Recommendations">Recommendations for DNS Privacy Service Operators</title> <seriesInfo name="RFC" value="8932"/> <seriesInfo name="BCP" value="232"/> <author initials="S." surname="Dickinson" fullname="Sara Dickinson"> <organization>Sinodun IT</organization> <address> <postal><street></street> <street>Magdalen Centre</street><extaddr>Magdalen Centre</extaddr> <street>Oxford Science Park</street> <city>Oxford</city> <code>OX4 4GA</code> <country>United Kingdom</country><region></region><region/> </postal><phone></phone><email>sara@sinodun.com</email><uri></uri></address> </author> <author initials="B." surname="Overeinder" fullname="Benno J. Overeinder"> <organization>NLnet Labs</organization> <address> <postal><street></street><street>Science Park 400</street> <city>Amsterdam</city> <code>1098 XH</code><country>The Netherlands</country> <region></region><country>Netherlands</country> <region/> </postal><phone></phone><email>benno@nlnetLabs.nl</email><uri></uri></address> </author> <author initials="R." surname="van Rijswijk-Deij" fullname="Roland M. van Rijswijk-Deij"> <organization>NLnet Labs</organization> <address> <postal><street></street><street>Science Park 400</street> <city>Amsterdam</city> <code>1098 XH</code><country>The Netherlands</country> <region></region><country>Netherlands</country> <region/> </postal><phone></phone><email>roland@nlnetLabs.nl</email><uri></uri></address> </author> <author initials="A." surname="Mankin" fullname="Allison Mankin"><organization>Salesforce</organization><organization abbrev="Salesforce">Salesforce.com, Inc.</organization> <address> <postal><street></street> <city></city> <code></code> <country></country> <region></region><street>Salesforce Tower</street> <street>415 Mission Street, 3rd Floor</street> <city>San Francisco</city> <region>CA</region> <code>94105</code> <country>United States of America</country> </postal><phone></phone><email>allison.mankin@gmail.com</email><uri></uri></address> </author> <date year="2020"month="July" day="13"/>month="October"/> <area>Internet</area> <workgroup>dprive</workgroup> <keyword>DNS</keyword> <abstract> <t>This document presents operational, policy, and security considerations for DNS recursive resolver operators who choose to offer DNSPrivacyprivacy services. With these recommendations, the operator can make deliberate decisions regarding which services to provide,andas well as understanding howthethose decisions and the alternatives impact the privacy of users. </t> <t>This document also presents a non-normative framework to assist writers of a Recursive operator PrivacyStatement (analogousStatement, analogous to DNS Security Extensions (DNSSEC) Policies and DNSSEC Practice Statements described inRFC6841).RFC 6841. </t> </abstract> </front> <middle> <section anchor="introduction"title="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t>The Domain Name System (DNS) is at the core of the Internet; almost every activity on the Internet starts with a DNS query (and often several).HoweverHowever, the DNS was not originally designed with strong security or privacy mechanisms. A number of developments have taken place in recent yearswhichthat aim to increase the privacy of theDNS systemDNS, and these are now seeing some deployment. This latest evolution of the DNS presents new challenges tooperatorsoperators, and this document attempts to provide an overview of considerations forprivacy focusedprivacy-focused DNS services. </t> <t>In recentyearsyears, there has also been an increase in the availability of"public resolvers""public resolvers" <xreftarget="RFC8499"/>target="RFC8499" format="default"/>, which users may prefer to use instead of the default networkresolverresolver, either because they offer a specific feature (e.g., good reachability or encrypted transport) or because the network resolver lacks a specific feature (e.g., strong privacy policy or unfiltered responses). These public resolvers have tended to be at the forefront of adoption of privacy-relatedenhancementsenhancements, but it is anticipated that operators of other resolver services will follow. </t> <t>Whilst protocols that encrypt DNS messages on the wire provide protection against certain attacks, the resolver operator still has (in principle) full visibility of the query data and transport identifiers for each user. Therefore, a trust relationship (whether explicit or implicit) is assumed to exist between each user and the operator of the resolver(s) used by that user. The ability of the operator to provide a transparent,well documented,well-documented, and secure privacy service will likely serve as a major differentiating factor forprivacy consciousprivacy-conscious users if they make an active selection of which resolver to use. </t> <t>It should also be noted thatthe choice ofthere are both advantages and disadvantages to a user choosing to configure a single resolver (or a fixed set of resolvers) and an encrypted transport to use in all networkenvironments has both advantages and disadvantages.environments. For example, the user has a clear expectation of which resolvers have visibility of their query data. However, this resolver/transport selection may provide an added mechanismto trackfor tracking them as they move across network environments. Commitments from resolver operators to minimize such tracking as users move between networks are also likely to play a role in user selection of resolvers. </t> <t>Morerecentlyrecently, the global legislative landscape with regard to personal data collection, retention, and pseudonymization has seen significant activity. Providing detailed practice advice about these areas to the operator is out of scope, but <xreftarget="data-sharing"/>target="data-sharing" format="default"/> describes some mitigations ofdata sharingdata-sharing risk. </t> <t>This document has two main goals: </t><t> <list style="symbols"> <t>To<ul spacing="normal"> <li>To provide operational and policy guidance related to DNS over encrypted transports and to outline recommendations for data handling for operators of DNS privacyservices.</t> <t>Toservices.</li> <li>To introduce the Recursive operator Privacy Statement (RPS) and present a framework to assist writers of an RPS. An RPS is a document that an operator should publishwhichthat outlines their operational practices and commitments with regard to privacy, thereby providing a means for clients to evaluate both the measurable and claimed privacy properties of a given DNS privacy service. The framework identifies a set of elements and specifies an outline order for them. This document does not, however, define a particular privacy statement, nor does it seek to provide legal advice as to thecontents.</t> </list> </t>contents of an RPS.</li> </ul> <t>A desired operational impact is that all operators (both those providing resolvers within networks and those operating large public services) can demonstrate their commitment to userprivacyprivacy, thereby driving all DNS resolution services to a more equitable footing. Choices for users would (in this ideal world) be driven by otherfactors,factors -- e.g., differing security policies or minordifferencedifferences in operatorpolicy,policy -- rather than gross disparities in privacy concerns. </t> <t>Community insight[or judgment?](or judgment?) about operational practices can change quickly, and experience shows that a Best Current Practice (BCP) document about privacy and security is a point-in-time statement. Readers are advised to seek out any updates that apply to this document. </t> </section> <section anchor="scope"title="Scope"> <t>"DNSnumbered="true" toc="default"> <name>Scope</name> <t>"DNS PrivacyConsiderations"Considerations" <xreftarget="RFC7626"/>target="RFC7626" format="default"/> describes the general privacy issues and threats associated with the use of the DNS by Internetusers andusers; much of the threat analysis here is lifted from that document andfrom<xreftarget="RFC6973"/>. Howevertarget="RFC6973" format="default"/>. However, this document is limited in scope tobest practicebest-practice considerations for the provision of DNS privacy services by servers (recursive resolvers) to clients (stub resolvers or forwarders). Choices that are made exclusively by the end user, or those for operators of authoritativenameserversnameservers, are out of scope. </t> <t>This document includes (but is not limited to) considerations in the following areas: </t><t> <list style="numbers"> <t>Data "on<ol spacing="normal" type="1"> <li>Data "on thewire"wire" between a client and aserver.</t> <t>Data "at rest"server.</li> <li>Data "at rest" on a server (e.g., inlogs).</t> <t>Data "sent onwards"logs).</li> <li>Data "sent onwards" from the server (either on the wire or shared with a thirdparty).</t> </list> </t>party).</li> </ol> <t>Whilst the issues raised here are targeted at those operators who choose to offer a DNS privacy service, considerations for areas 2 and 3 could equally apply to operators who only offer DNS over unencrypted transports but who would otherwise like to align with privacy best practice. </t> </section> <section anchor="privacyrelated-documents"title="Privacy-related documents">numbered="true" toc="default"> <name>Privacy-Related Documents</name> <t>There are various documents that describe protocol changes that have the potential to either increase or decrease the privacy properties of the DNS in various ways. Note that this does not imply that some documents are good or bad, better or worse, just that (for example) some features may bring functional benefits at the price of a reduction inprivacyprivacy, and conversely some features increase privacy with an accompanying increase in complexity. A selection of the most relevant documentsareis listed in <xreftarget="documents"/>target="documents" format="default"/> for reference. </t> </section> <section anchor="terminology"title="Terminology">numbered="true" toc="default"> <name>Terminology</name> <t>The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xreftarget="RFC2119"/>target="RFC2119" format="default"/> <xreftarget="RFC8174"/>target="RFC8174" format="default"/> when, and only when, they appear in all capitals, as shown here. </t><t>DNS<t> DNS terminology is as described in <xreftarget="RFC8499"/>target="RFC8499"/>, except withone modification: we restate the clause inregard to theoriginaldefinition ofPrivacy-enablingprivacy-enabling DNS server in <xreftarget="RFC8310"/> to includetarget="RFC8499" section="6" sectionFormat="of" />. In this document we use therequirement thatfull definition of a DNS over (D)TLS privacy-enabling DNS server as given in <xref target="RFC8310"/>, i.e., that such a server should also offer at least one of the credentials described inSection 8 of<xreftarget="RFC8310"/>target="RFC8310" section="8" sectionFormat="of"/> and implement the (D)TLS profile described inSection 9 of<xreftarget="RFC8310"/>.target="RFC8310" section="9" sectionFormat="of"/>. </t> <t>Other Terms: </t><t> <list style="symbols"> <t>RPS: Recursive<dl> <dt>RPS:</dt><dd>Recursive operator PrivacyStatement,Statement; see <xreftarget="recursive-operator-privacy-statement-rps"/>.</t> <t>DNStarget="recursive-operator-privacy-statement-rps" format="default"/>.</dd> <dt>DNS privacyservice: Theservice:</dt><dd>The service that is offered via a privacy-enabling DNS server and is documented either in an informal statement of policy and practice with regard to users privacy or a formalRPS.</t> </list> </t>RPS.</dd> </dl> </section> <section anchor="recommendations-for-dns-privacy-services"title="Recommendationsnumbered="true" toc="default"> <name>Recommendations for DNSprivacy services">Privacy Services</name> <t>In the followingsectionssections, we first outline the threats relevant to the specific topic and then discuss the potential actions that can be taken to mitigate them. </t> <t>We describe two classes of threats: </t><t> <list style="symbols"><ul spacing="normal"> <li> <t>Threats described in <xreftarget="RFC6973"/> 'Privacytarget="RFC6973" format="default"/>, "Privacy Considerations for InternetProtocols' <list style="symbols"> <t>PrivacyProtocols" </t> <ul spacing="normal"> <li>Privacy terminology, threats to privacy, and mitigations as described in Sections3, 5,<xref target="RFC6973" section="3" sectionFormat="bare"/>, <xref target="RFC6973" section="5" sectionFormat="bare"/>, and6<xref target="RFC6973" section="6" sectionFormat="bare"/> of <xreftarget="RFC6973"/>.</t> </list></t>target="RFC6973"/>.</li> </ul> </li> <li> <t>DNS Privacy Threats<list style="symbols"> <t>These</t> <ul spacing="normal"> <li>These are threats to the users and operators of DNS privacy services that are not directly covered by <xreftarget="RFC6973"/>.target="RFC6973" format="default"/>. These may be more operational innaturenature, such ascertificate managementcertificate-management orservice availability issues.</t> </list></t> </list> </t>service-availability issues.</li> </ul> </li> </ul> <t>We describe three classes of actions that operators of DNS privacy services can take: </t><t> <list style="symbols"> <t>Threat<ul spacing="normal"> <li>Threat mitigation forwell understoodwell-understood and documented privacy threats to the users of the serviceandand, in somecases tocases, the operators of theservice.</t> <t>Optimizationservice.</li> <li>Optimization of privacy services from an operational or managementperspective.</t> <t>Additionalperspective.</li> <li>Additional options that could further enhance the privacy and usability of theservice.</t> </list> </t>service.</li> </ul> <t>This document does not specifypolicy -policy, only bestpractice, howeverpractice. However, for DNSPrivacyprivacy services to be considered compliant with thesebest practice guidelinesbest-practice guidelines, theySHOULD<bcp14>SHOULD</bcp14> implement (where appropriate) all: </t><t> <list style="symbols"> <t>Threat<ul spacing="normal"> <li>Threat mitigations to be minimallycompliant.</t> <t>Optimizationscompliant.</li> <li>Optimizations to be moderatelycompliant.</t> <t>Additionalcompliant.</li> <li>Additional options to be maximallycompliant.</t> </list> </t>compliant.</li> </ul> <t>The rest of this document does not use normative language but instead refers only to the three differing classes of actionwhichthat correspond to the three named levels of compliance stated above. However, compliance (to the indicated level) remains a normative requirement. </t> <section anchor="on-the-wire-between-client-and-server"title="Onnumbered="true" toc="default"> <name>On thewireWire betweenclientClient andserver">Server</name> <t>In thissectionsection, we consider both data on the wire and the service provided to the client. </t> <section anchor="transport-recommendations"title="Transport recommendations"> <t><xref target="RFC6973"/> Threats: </t> <t> <list style="symbols"> <t>Surveillance: <list style="symbols"> <t>Passivenumbered="true" toc="default"> <name>Transport Recommendations</name> <dl newline="true"> <dt>Threats described in <xref target="RFC6973" format="default"/>:</dt> <dd> <dl newline="true"> <dt>Surveillance:</dt> <dd>Passive surveillance of traffic on thewire</t> </list></t> </list> </t> <t>DNSwire.</dd> </dl> </dd> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>ActiveThreats:</dt> <dd>Active injection of spurious data ortraffic.</t> </list> </t> <t>Mitigations: </t> <t>Atraffic.</dd> <dt>Mitigations:</dt> <dd><t>A DNS privacy service can mitigate these threats by providing service over one or more of the followingtransports </t> <t> <list style="symbols"> <t>DNStransports:</t> <ul spacing="normal"> <li>DNS over TLS (DoT) <xreftarget="RFC7858"/> andtarget="RFC7858" format="default"/> <xreftarget="RFC8310"/>.</t> <t>DNStarget="RFC8310" format="default"/>.</li> <li>DNS over HTTPS (DoH) <xreftarget="RFC8484"/>.</t> </list> </t>target="RFC8484" format="default"/>.</li> </ul> </dd> </dl> <t>It is noted that a DNS privacy service can also be provided over DNS over DTLS <xreftarget="RFC8094"/>, howevertarget="RFC8094" format="default"/>; however, this is an Experimentalspecificationspecification, and there are no known implementations at the time of writing. </t> <t>It is also noted that DNS privacy service might be provided overIPSec, DNSCrypt,DNSCrypt <xref target="DNSCrypt"/>, IPsec, or VPNs. However, there are no specific RFCs that cover the use of these transports forDNSDNS, and any discussion of best practice for providing such a service is out of scope for this document. </t> <t>Whilst encryption of DNS traffic can protect against active injection on the paths traversed by the encryptedconnectionconnection, this does not diminish the need forDNSSEC,DNSSEC; see <xreftarget="dnssec"/>.target="dnssec" format="default"/>. </t> </section> <section anchor="authentication-of-dns-privacy-services"title="Authenticationnumbered="true" toc="default"> <name>Authentication of DNSprivacy services"> <t><xref target="RFC6973"/> Threats: </t> <t> <list style="symbols"> <t>Surveillance: <list style="symbols"> <t>ActivePrivacy Services</name> <dl newline="true"> <dt>Threats described in <xref target="RFC6973" format="default"/>:</dt> <dd> <dl newline="true"> <dt>Surveillance:</dt> <dd>Active attacks on client resolverconfiguration</t> </list></t> </list> </t> <t>Mitigations: </t>configuration.</dd> </dl> </dd> <dt>Mitigations:</dt> <dd> <t>DNS privacy services should ensure clients can authenticate the server. Note that this, in effect, commits the DNS privacy service to a public identity users will trust. </t> <t>When using DoT, clients that select a'Strict Privacy'"Strict Privacy" usage profile <xreftarget="RFC8310"/>target="RFC8310" format="default"/> (to mitigate the threat of active attack on the client) require the ability to authenticate the DNS server. To enable this, DNS privacy services that offerDNS over TLSDoT need to provide credentials that will be accepted by the client's trust model, in the form of either X.509 certificates <xreftarget="RFC5280"/>target="RFC5280" format="default"/> or Subject Public Key Info (SPKI) pin sets <xreftarget="RFC8310"/>.target="RFC8310" format="default"/>. </t> <t>When offering DoH <xreftarget="RFC8484"/>,target="RFC8484" format="default"/>, HTTPS requires authentication of the server as part of the protocol. </t><t>Server operators should also follow the best practices with regard to certificate revocation as described in <xref target="RFC7525"/>. </t></dd> </dl> <section anchor="certificate-management"title="Certificate management">numbered="true" toc="default"> <name>Certificate Management</name> <t>Anecdotal evidence to date highlights the management of certificates as one of the more challenging aspects for operators of traditional DNS resolvers that choose to additionally provide a DNS privacyserviceservice, as management of such credentials is new to those DNS operators. </t> <t>It is noted that SPKI pin set management is described in <xreftarget="RFC7858"/>target="RFC7858" format="default"/> but thatkey pinningkey-pinning mechanisms in general have fallen out of favor operationally for variousreasonsreasons, such as the logistical overhead of rolling keys. </t><t>DNS<dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>InvalidThreats:</dt> <dd> <ul spacing="normal"> <li>Invalid certificates, resulting in an unavailableserviceservice, which might force a user tofallbackfall back tocleartext.</t> <t>Mis-identificationcleartext.</li> <li>Misidentification of a server by a client -- e.g., typos in DoH URL templates <xreftarget="RFC8484"/>target="RFC8484" format="default"/> or authentication domain names <xreftarget="RFC8310"/> whichtarget="RFC8310" format="default"/> that accidentally direct clients toattacker controlled servers.</t> </list> </t> <t>Mitigations: </t>attacker-controlled servers.</li> </ul> </dd> <dt>Mitigations:</dt> <dd> <t>It is recommended that operators: </t><t> <list style="symbols"> <t>Follow<ul spacing="normal"> <li>Follow the guidance inSection 6.5 of<xreftarget="RFC7525"/>target="RFC7525" section="6.5" sectionFormat="of"/> withregardsregard to certificaterevocation.</t> <t>Automaterevocation.</li> <li>Automate the generation, publication, and renewal of certificates. For example,ACMEAutomatic Certificate Management Environment (ACME) <xreftarget="RFC8555"/>target="RFC8555" format="default"/> provides a mechanism to actively manage certificates through automation and has been implemented by a number of certificateauthorities.</t> <t>Monitorauthorities.</li> <li>Monitor certificates to prevent accidental expiration ofcertificates.</t> <t>Choosecertificates.</li> <li>Choose a short, memorable authentication domain name for theservice.</t> </list> </t>service.</li> </ul> </dd> </dl> </section> </section> <section anchor="protocol-recommendations"title="Protocol recommendations">numbered="true" toc="default"> <name>Protocol Recommendations</name> <section anchor="dot"title="DoT"> <t>DNSnumbered="true" toc="default"> <name>DoT</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>KnownThreats:</dt> <dd> <ul spacing="normal"> <li>Known attacks onTLSTLS, such as those described in <xreftarget="RFC7457"/>.</t> <t>Traffictarget="RFC7457" format="default"/>.</li> <li>Traffic analysis, for example: <xreftarget="Pitfalls-of-DNS-Encryption"/>.</t> <t>Potentialtarget="Pitfalls-of-DNS-Encryption" format="default"/> (focused on DoT).</li> <li>Potential for client tracking via transportidentifiers.</t> <t>Blockingidentifiers.</li> <li>Blocking ofwell knownwell-known ports (e.g., 853 forDoT).</t> </list> </t> <t>Mitigations: </t>DoT).</li> </ul> </dd> <dt>Mitigations:</dt> <dd> <t>In the case of DoT, TLS profiles fromSection 9 of<xreftarget="RFC8310"/>target="RFC8310" section="9" sectionFormat="of"/> and theCountermeasures"Countermeasures to DNS TrafficAnalysisAnalysis" fromsection 11.1 of<xreftarget="RFC8310"/>target="RFC8310" section="11.1" sectionFormat="of"/> provide strong mitigations. This includes but is not limited to: </t><t> <list style="symbols"> <t>Adhering<ul spacing="normal"> <li>Adhering to <xreftarget="RFC7525"/>.</t> <t>Implementingtarget="RFC7525" format="default"/>.</li> <li>Implementing only (D)TLS 1.2 orlaterlater, as specified in <xreftarget="RFC8310"/>.</t> <t>Implementing EDNS(0)target="RFC8310" format="default"/>.</li> <li>Implementing Extension Mechanisms for DNS (EDNS(0)) Padding <xreftarget="RFC7830"/>target="RFC7830" format="default"/> using the guidelines in <xreftarget="RFC8467"/>target="RFC8467" format="default"/> or a successorspecification.</t> <t>Serversspecification.</li> <li>Servers should not degrade in any way the query service level provided to clients that do not use any form of session resumption mechanism, such as TLS session resumption <xreftarget="RFC5077"/>target="RFC5077" format="default"/> with TLS1.2, section 2.2 of <xref target="RFC8446"/>,1.2 (<xref target="RFC8446" section="2.2" sectionFormat="of"/>) or Domain Name System (DNS) Cookies <xreftarget="RFC7873"/>.</t> <t>Atarget="RFC7873" format="default"/>.</li> <li>A DoT privacy service on both port 853 and 443. If the operator deploys DoH on the same IPaddressaddress, this requires the use of the'dot' ALPN"dot" Application-Layer Protocol Negotiation (ALPN) value <xreftarget="dot-ALPN"/>.</t> </list> </t> <t>Optimizations: </t> <t> <list style="symbols"> <t>Concurrenttarget="dot-ALPN" format="default"/>.</li> </ul> </dd> <dt>Optimizations:</dt> <dd> <ul spacing="normal"> <li>Concurrent processing of pipelined queries, returning responses as soon as available, potentially out oforderorder, as specified in <xreftarget="RFC7766"/>.target="RFC7766" format="default"/>. This is often called'OOOR' -"OOOR" -- out-of-order responses (providing processing performance similar to HTTPmultiplexing).</t> <t>Managementmultiplexing).</li> <li>Management of TLS connections to optimize performance for clients using <xreftarget="RFC7766"/>target="RFC7766" format="default"/> and EDNS(0) Keepalive <xreftarget="RFC7828"/></t> </list> </t> <t>Additional Options: </t> <t>Managementtarget="RFC7828" format="default"/></li> </ul> </dd> <dt>Additional Options:</dt> <dd>Management of TLS connections to optimize performance for clients using DNS Stateful Operations <xreftarget="RFC8490"/>. </t>target="RFC8490" format="default"/>. </dd> </dl> </section> <section anchor="doh"title="DoH"> <t>DNSnumbered="true" toc="default"> <name>DoH</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>KnownThreats:</dt> <dd> <ul spacing="normal"> <li>Known attacks onTLSTLS, such as those described in <xreftarget="RFC7457"/>.</t> <t>Traffictarget="RFC7457" format="default"/>.</li> <li>Traffic analysis, for example: <xreftarget="DNS-Privacy-not-so-private"/>.</t> <t>Potentialtarget="DNS-Privacy-not-so-private" format="default"/> (focused on DoH).</li> <li>Potential for client tracking via transportidentifiers.</t> </list> </t> <t>Mitigations: </t> <t> <list style="symbols"> <t>Clientsidentifiers.</li> </ul> </dd> <dt>Mitigations:</dt> <dd> <ul spacing="normal"> <li>Clients must be able to forgo the use of HTTPCookiescookies <xreftarget="RFC6265"/>target="RFC6265" format="default"/> and still use theservice.</t> <t>Useservice.</li> <li>Use of HTTP/2 padding and/or EDNS(0)paddingpadding, as described inSection 9 of<xreftarget="RFC8484"/></t> <t>Clientstarget="RFC8484" section="9" sectionFormat="of"/>.</li> <li>Clients should not be required to include any headers beyond the absolute minimum to obtain service from a DoH server. (SeeSection 6.1 of<xreftarget="I-D.ietf-httpbis-bcp56bis"/>.)</t> </list> </t>target="I-D.ietf-httpbis-bcp56bis" section="6.1" sectionFormat="of"/>.)</li> </ul> </dd> </dl> </section> </section> <section anchor="dnssec"title="DNSSEC"> <t>DNSnumbered="true" toc="default"> <name>DNSSEC</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>UsersThreats:</dt> <dd>Users may be directed to bogus IP addresseswhich,that, depending on the application,protocolprotocol, and authentication method, might lead users to reveal personal information to attackers. One example is a website that doesn't use TLS oritswhose TLS authentication can somehow besubverted.</t> </list> </t> <t>Mitigations: </t> <t> <list style="symbols"> <t>Allsubverted.</dd> <dt>Mitigations:</dt> <dd>All DNS privacy services must offer a DNS privacy service that performs Domain Name System Security Extensions (DNSSEC) validation. Inadditionaddition, they must be able to provide the DNSSECRRsResource Records (RRs) to the client so that it can perform its ownvalidation.</t> </list> </t>validation.</dd> </dl> <t>The addition of encryption to DNS does not remove the need for DNSSEC <xreftarget="RFC4033"/> -target="RFC4033" format="default"/>; they are independent and fully compatible protocols, each solving different problems. The use of one does not diminish the need nor the usefulness of the other. </t> <t>While the use of an authenticated and encrypted transport protects origin authentication and data integrity between a client and a DNS privacyserviceservice, it provides no proof (for anon-validatingnonvalidating client) that the data provided by the DNS privacy service was actually DNSSEC authenticated. As with cleartextDNSDNS, the user is still solely trusting theADAuthentic Data (AD) bit (if present) set by the resolver. </t> <t>It should also be noted that the use of an encrypted transport for DNS actually solves many of the practical issues encountered by DNS validating clientse.g.-- e.g., interference by middleboxes with cleartext DNS payloads is completely avoided. In thissensesense, a validating client that uses a DNS privacy servicewhichthat supports DNSSEC has a far simpler task in terms of DNSSECRoadblockroadblock avoidance <xreftarget="RFC8027"/>.target="RFC8027" format="default"/>. </t> </section> <section anchor="availability"title="Availability"> <t>DNSnumbered="true" toc="default"> <name>Availability</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>A failedThreats:</dt> <dd> A failing DNS privacy service could force the user to switch providers,fallbackfall back tocleartextcleartext, or accept no DNS service for theoutage.</t> </list> </t> <t>Mitigations: </t> <t>Aduration of the outage. </dd> <dt>Mitigations:</dt> <dd><t>A DNS privacy service should strive to engineer encrypted services to the same availability level as any unencrypted services they provide. Particular care should to be taken to protect DNS privacy services against denial-of-service (DoS) attacks, as experience has shown that unavailability of DNS resolving because of attacks is a significant motivation for users to switch services. See, forexampleexample, Section IV-C of <xreftarget="Passive-Observations-of-a-Large-DNS"/>. </t>target="Passive-Observations-of-a-Large-DNS" format="default"/>.</t> <t>Techniques such as those described inSection 10 of<xreftarget="RFC7766"/>target="RFC7766" section="10" sectionFormat="of"/> can be of use to operators to defend against such attacks. </t> </dd> </dl> </section> <section anchor="service-options"title="Service options"> <t>DNSnumbered="true" toc="default"> <name>Service Options</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>UnfairlyThreats:</dt> <dd>Unfairly disadvantaging users of the privacy service with respect to the services available. This could force the user to switch providers,fallbackfall back tocleartextcleartext, or accept no DNS service for theoutage.</t> </list> </t> <t>Mitigations: </t> <t>Aduration of the outage.</dd> <dt>Mitigations:</dt> <dd>A DNS privacy service should deliver the same level of service as offered onun-encryptedunencrypted channels in terms of options such as filtering (or lack thereof), DNSSEC validation, etc.</t></dd> </dl> </section> <section anchor="impact-of-encryption-on-monitoring-by-dns-privacy-service-operators"title="Impactnumbered="true" toc="default"> <name>Impact of Encryption on Monitoring by DNS Privacy ServiceOperators"> <t>DNSOperators</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>IncreasedThreats:</dt> <dd>Increased use of encryption can impact a DNS privacy serviceoperatoroperator's ability to monitor traffic and therefore manage their DNS servers <xreftarget="RFC8404"/>.</t> </list> </t>target="RFC8404" format="default"/>.</dd> </dl> <t>Many monitoring solutions for DNS traffic rely on theplain textplaintext nature of this traffic and work by intercepting traffic on the wire, either using a separate view on the connection between clients and the resolver, or as a separate process on the resolver system that inspects network traffic. Such solutions will no longer function when traffic between clients and resolvers is encrypted. Many DNS privacy service operators stillhaveneed to inspect DNStraffic,traffic -- e.g., to monitor for network security threats. Operators may therefore need to invest in an alternative means of monitoring that relies on either the resolver software directly, or exporting DNS traffic from the resolverusing e.g.,using, for example, <xreftarget="dnstap"/>.target="dnstap" format="default"/>. </t><t>Optimization: </t> <t>When<dl newline="true"> <dt>Optimization:</dt> <dd>When implementing alternative means for traffic monitoring, operators of a DNS privacy service should consider usingprivacy consciousprivacy-conscious means to doso (see sectionso. See <xreftarget="data-at-rest-on-the-server"/>target="data-at-rest-on-the-server" format="default"/> for more details on data handling andalsothe discussion on the use of Bloom Filters in <xreftarget="ip-address-techniques"/>. </t>target="ip-address-techniques" format="default"/>. </dd> </dl> </section> <section anchor="limitations-of-fronting-a-dns-privacy-service-with-a-pure-tls-proxy"title="Limitationsnumbered="true" toc="default"> <name>Limitations offrontingFronting a DNSprivacy servicePrivacy Service with apurePure TLSproxy"> <t>DNSProxy</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>LimitedThreats:</dt> <dd> <ul spacing="normal"> <li>Limited ability to manage or monitor incoming connections usingDNS specific techniques.</t> <t>MisconfigurationDNS-specific techniques.</li> <li>Misconfiguration (e.g., of thetarget servertarget-server address in the proxy configuration) could lead to data leakage if theproxy to target serverproxy-to-target-server path is notencrypted.</t> </list> </t> <t>Optimization: </t> <t>Someencrypted.</li> </ul> </dd> <dt>Optimization:</dt> <dd><t>Some operators may choose to implement DoT using a TLS proxy(e.g.(e.g., <xreftarget="nginx"/>,target="nginx" format="default"/>, <xreftarget="haproxy"/>,target="haproxy" format="default"/>, or <xreftarget="stunnel"/>)target="stunnel" format="default"/>) in front of a DNS nameserver because of proven robustness and capacity when handling large numbers of client connections,load balancing capabilitiesload-balancing capabilities, and good tooling. Currently, however, because such proxies typically have no specific handling of DNS as a protocol over TLS orDTLSDTLS, using them can restrict traffic management at the proxy layer andatthe DNS server. For example, all traffic received by a nameserver behind such a proxy will appear to originate from theproxyproxy, and DNS techniques such asACLs, RRL,Access Control Lists (ACLs), Response Rate Limiting (RRL), or DNS64 <xref target="RFC6147"/> will be hard or impossible to implement in the nameserver. </t> <t>Operators may choose to use aDNS aware proxyDNS-aware proxy, such as <xreftarget="dnsdist"/> whichtarget="dnsdist" format="default"/>, that offers custom options (similar tothatthose proposed in <xreftarget="I-D.bellis-dnsop-xpf"/>)target="I-D.bellis-dnsop-xpf" format="default"/>) to add source information to packets to address this shortcoming. It should be noted that such options potentially significantly increase the leaked information in the event of a misconfiguration. </t> </dd> </dl> </section> </section> <section anchor="data-at-rest-on-the-server"title="Datanumbered="true" toc="default"> <name>Data atrestRest on theserver">Server</name> <section anchor="data-handling"title="Data handling"> <t><xref target="RFC6973"/> Threats: </t> <t> <list style="symbols"> <t>Surveillance.</t> <t>Stored data compromise.</t> <t>Correlation.</t> <t>Identification.</t> <t>Secondary use.</t> <t>Disclosure.</t> </list> </t> <t>Other Threats </t> <t> <list style="symbols"> <t>Contraventionnumbered="true" toc="default"> <name>Data Handling</name> <dl newline="true"> <dt>Threats described in <xref target="RFC6973" format="default"/>:</dt> <dd> <ul spacing="normal"> <li>Surveillance.</li> <li>Stored-data compromise.</li> <li>Correlation.</li> <li>Identification.</li> <li>Secondary use.</li> <li>Disclosure.</li> </ul> </dd> <dt>Other Threats</dt> <dd> <ul spacing="normal"> <li>Contravention of legal requirements not to process userdata.</t> </list> </t> <t>Mitigations: </t> <t>Thedata.</li> </ul> </dd> <dt>Mitigations:</dt> <dd><t>The following are recommendations relating to common activities for DNS serviceoperators andoperators; in allcasescases, data retention should be minimized or completely avoided if possible for DNS privacy services. If data isretainedretained, it should be encrypted and either aggregated, pseudonymized, or anonymized whenever possible. Ingeneralgeneral, the principle of data minimization described in <xreftarget="RFC6973"/>target="RFC6973" format="default"/> should beapplied. </t> <t> <list style="symbols"> <t>Transientapplied.</t> <ul spacing="normal"> <li>Transient data (e.g.,that isdata used forreal timereal-time monitoring and threatanalysisanalysis, which might be held only in memory) should be retained for the shortest possible period deemed operationallyfeasible.</t> <t>Thefeasible.</li> <li>The retention period of DNS traffic logs should be onlythoseas long as is required to sustain operation of the serviceand,and meet regulatory requirements, to the extent thatsuch exists, meet regulatory requirements.</t> <t>DNSthey exist.</li> <li>DNS privacy services should not track users except for the particular purpose of detecting and remedying technically malicious (e.g., DoS) or anomalous use of theservice.</t> <t>Dataservice.</li> <li>Data access should be minimized to only those personnel who require access to perform operational duties. It should also be limited to anonymized or pseudonymized data where operationally feasible, with access to full logs (if any are held) only permitted whennecessary.</t> </list> </t> <t>Optimizations: </t> <t> <list style="symbols"> <t>Considernecessary.</li> </ul> </dd> <dt>Optimizations:</dt> <dd> <ul spacing="normal"> <li>Consider use offull diskfull-disk encryption for logs anddata capture storage.</t> </list> </t>data-capture storage.</li> </ul> </dd> </dl> </section> <section anchor="data-minimization-of-network-traffic"title="Data minimizationnumbered="true" toc="default"> <name>Data Minimization ofnetwork traffic">Network Traffic</name> <t>Data minimization refers to collecting, using, disclosing, and storing the minimal data necessary to perform a task, and this can be achieved by removing or obfuscating privacy-sensitive information in network traffic logs. This is typically personaldata,data or data that can be used to link a record to an individual, but it may also includerevealingother confidentialinformation,information -- forexampleexample, on the structure of an internal corporate network. </t> <t>The problem of effectively ensuring that DNS traffic logs contain no or minimal privacy-sensitive information is not one that currently has a generally agreed solution or any standards to inform this discussion. This section presents an overview of current techniques to simply provide reference on the current status of this work. </t> <t>Research into data minimization techniques (and particularly IP address pseudonymization/anonymization) was sparked in the late1990s/early1990s / early 2000s, partly driven by the desire to share significant corpuses of traffic captures for research purposes. Several techniques reflecting different requirements in this area and different performance/resourcetradeoffstrade-offs emerged over the course of the decade. Developments over the last decade have been both a blessing and a curse; the large increase in size between an IPv4 and an IPv6 address, for example, renders some techniques impractical, but also makes available a much larger amount of input entropy, the better to resistbrute forcebrute-force re-identification attacks that have grown in practicality over the period. </t> <t>Techniques employed may be broadly categorized as either anonymization or pseudonymization. The following discussion uses the definitions from <xreftarget="RFC6973"/> Section 3,target="RFC6973" section="3" sectionFormat="comma"/>, with additional observations from <xreftarget="van-Dijkhuizen-et-al."/>target="van-Dijkhuizen-et-al" format="default"/>. </t><t> <list style="symbols"> <t>Anonymization.<ul spacing="normal"> <li>Anonymization. To enable anonymity of an individual, there must exist a set of individuals that appear to have the same attribute(s) as the individual. To the attacker or the observer, these individuals must appear indistinguishable from eachother.</t> <t>Pseudonymization.other.</li> <li>Pseudonymization. The true identity is deterministically replaced with an alternate identity (a pseudonym). When the pseudonymization schema is known, the process can be reversed, so the original identity becomes knownagain.</t> </list> </t>again.</li> </ul> <t>Inpracticepractice, there is a fine line between the two; for example,howit is difficult to categorize a deterministic algorithm for data minimization of IP addresses that produces a group of pseudonyms for a single given address. </t> </section> <section anchor="ip-address-pseudonymization-and-anonymization-methods"title="IP address pseudonymizationnumbered="true" toc="default"> <name>IP Address Pseudonymization andanonymization methods">Anonymization Methods</name> <t>A major privacy risk in DNS is connecting DNS queries to anindividualindividual, and the major vector for this in DNS traffic is the client IP address. </t> <t>There is active discussion in the space of effective pseudonymization of IP addresses in DNS trafficlogs, howeverlogs; however, there seems to be no single solution that is widely recognized as suitable for all or most use cases. There are also as yet no standards for this that are unencumbered by patents. </t> <t><xreftarget="ip-address-techniques"/>target="ip-address-techniques" format="default"/> provides a more detailed survey of various techniques employed or under development in2019.2020. </t> </section> <section anchor="pseudonymization-anonymization-or-discarding-of-other-correlation-data"title="Pseudonymization, anonymization, or discarding of other correlation data"> <t>DNSnumbered="true" toc="default"> <name>Pseudonymization, Anonymization, or Discarding of Other Correlation Data</name> <dl newline="true"> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>FingerprintingThreats:</dt> <dd> <ul spacing="normal"> <li>Fingerprinting of the client OS via variousmeansmeans, including: IP TTL/Hoplimit, TCP parameters (e.g., window size,ECNExplicit Congestion Notification (ECN) support,SACK), OS specificselective acknowledgment (SACK)), OS-specific DNS query patterns (e.g., for network connectivity, captive portal detection, orOS specific updates).</t> <t>FingerprintingOS-specific updates).</li> <li>Fingerprinting of the client application or TLS library by,e.g.,for example, HTTP headers (e.g., User-Agent, Accept, Accept-Encoding), TLSversion/Cipher suiteversion/Cipher-suite combinations, or other connectionparameters.</t> <t>Correlationparameters.</li> <li>Correlation of queries on multiple TCP sessions originating from the same IPaddress.</t> <t>Correlatingaddress.</li> <li>Correlating of queries on multiple TLS sessions originating from the same client, including viasession resumption mechanisms.</t> <t>Resolvers <spanx style="emph">might</spanx>session-resumption mechanisms.</li> <li>Resolvers <em>might</em> receive clientidentifiers,identifiers -- e.g.,MACMedia Access Control (MAC) addresses in EDNS(0)options - some Customer-premisesoptions. Some customer premises equipment (CPE) devices are known to add them <xreftarget="MAC-address-EDNS"/>.</t> </list> </t> <t>Mitigations: </t> <t> <list style="symbols"> <t>Datatarget="MAC-address-EDNS" format="default"/>.</li> </ul> </dd> <dt>Mitigations:</dt> <dd> <ul spacing="normal"> <li>Data minimization or discarding of such correlationdata.</t> </list> </t>data.</li> </ul> </dd> </dl> </section> <section anchor="cache-snooping"title="Cache snooping"> <t><xref target="RFC6973"/> Threats: </t> <t> <list style="symbols"> <t>Surveillance: <list style="symbols"> <t>Profilingnumbered="true" toc="default"> <name>Cache Snooping</name> <dl newline="true"> <dt>Threats described in <xref target="RFC6973" format="default"/>:</dt> <dd> <dl newline="true"> <dt>Surveillance:</dt> <dd>Profiling of client queries by malicious thirdparties.</t> </list></t> </list> </t> <t>Mitigations: </t> <t> <list style="symbols"> <t>Seeparties.</dd> </dl> </dd> <dt>Mitigations:</dt> <dd>See <xreftarget="ISC-Knowledge-database-on-cache-snooping"/>target="ISC-Knowledge-database-on-cache-snooping" format="default"/> for an example discussion on defending against cache snooping. Options proposed include limiting access to a server and limitingnon-recursive queries.</t> </list> </t>nonrecursive queries.</dd> </dl> </section> </section> <section anchor="data-sent-onwards-from-the-server"title="Data sent onwardsnumbered="true" toc="default"> <name>Data Sent Onwards from theserver">Server</name> <t>In thissectionsection, we consider both data sent on the wire in upstream queries and data shared with third parties. </t> <section anchor="protocol-recommendations-1"title="Protocol recommendations"> <t><xref target="RFC6973"/> Threats: </t> <t> <list style="symbols"> <t>Surveillance: <list style="symbols"> <t>Transmissionnumbered="true" toc="default"> <name>Protocol Recommendations</name> <dl newline="true"> <dt>Threats described in <xref target="RFC6973" format="default"/>:</dt> <dd> <dl newline="true"> <dt>Surveillance:</dt> <dd>Transmission of identifying dataupstream.</t> </list></t> </list> </t> <t>Mitigations: </t> <t>As specified in <xref target="RFC8310"/> for DoT but applicable to any DNS Privacy services theupstream.</dd> </dl> </dd> <dt>Mitigations:</dt> <dd><t>The servershould: </t> <t> <list style="symbols"> <t>Implementshould:</t> <ul spacing="normal"> <li>implement QNAME minimization <xreftarget="RFC7816"/>.</t> <t>Honortarget="RFC7816" format="default"/>.</li> <li>honor a SOURCE PREFIX-LENGTH set to 0 in a query containing the EDNS(0) Client Subnet (ECS) option (<xreftarget="RFC7871"/> Section 7.1.2).</t> </list> </t> <t>Optimizations: </t> <t> <list style="symbols"> <t>Astarget="RFC7871" section="7.1.2" sectionFormat="comma"/>). This is as specified in <xref target="RFC8310"/> for DoT but applicable to any DNS privacy service.</li> </ul> </dd> <dt>Optimizations:</dt> <dd><t>As perSection 2 of<xreftarget="RFC7871"/>target="RFC7871" section="2" sectionFormat="of"/>, the server shouldeither: <list style="symbols"> <t>noteither:</t> <ul spacing="normal"> <li>not use the ECS option in upstream queries at all,or</t> <t>offeror</li> <li>offer alternative services, one that sends ECS and one that doesnot.</t> </list></t> </list> </t>not.</li> </ul> </dd> </dl> <t>If operators do offer a service that sends the ECS optionsupstreamupstream, they should use the shortest prefix that is operationally feasible and ideally use a policy of allowlisting upstream servers to which to send ECStoin order to reduce data leakage. Operators should make clear in any policy statement what prefix length they actually send and the specific policy used. </t> <t>Allowlisting has the benefit that not only does the operator know which upstream servers can useECSECS, but alsoallowsthe operatortocan decide which upstream servers apply privacy policies that the operator is happy with.HoweverHowever, some operators consider allowlisting to incur significant operational overhead compared to dynamic detection of ECS support on authoritative servers. </t> <t>Additional options: </t><t> <list style="symbols"> <t>Aggressive<ul spacing="normal"> <li>"Aggressive Use of DNSSEC-ValidatedCacheCache" <xreftarget="RFC8198"/>target="RFC8198" format="default"/> and<xref target="RFC8020"/> (NXDOMAIN:"NXDOMAIN: There Really Is NothingUnderneath)Underneath" <xref target="RFC8020" format="default"/> to reduce the number of queries to authoritative servers to increaseprivacy.</t> <t>Runprivacy.</li> <li>Run a local copy of the root zoneon loopback<xreftarget="RFC8806"/>target="RFC8806" format="default"/> to avoid making queries to the root servers that might leakinformation.</t> </list> </t>information.</li> </ul> </section> <section anchor="client-query-obfuscation"title="Client query obfuscation">numbered="true" toc="default"> <name>Client Query Obfuscation</name> <t>Additional options: </t> <t>Since queries from recursive resolvers to authoritative servers are performed using cleartext (at the time of writing), resolver services need to consider the extent to which they may be directly leaking information about their client community via these upstream queries and what they can do to mitigate this further.Note, thatNote that, even when all the relevant techniques described above areemployedemployed, there may still be attackspossible, e.g.possible -- e.g., <xreftarget="Pitfalls-of-DNS-Encryption"/>.target="Pitfalls-of-DNS-Encryption" format="default"/>. For example, a resolver with a very small community of users risks exposing data in this way and ought to obfuscate this traffic by mixing it with'generated'"generated" traffic to make client characterization harder. The resolver could also employ aggressivepre-fetchprefetch techniques as a further measure to counter traffic analysis. </t> <t>At the time ofwritingwriting, there are no standardized or widely recognized techniques to perform such obfuscation or bulkpre-fetches.prefetches. </t> <t>Another technique that particularly small operators may consider is forwarding local traffic to a larger resolver (with a privacy policy that aligns with their own practices) over an encryptedprotocolprotocol, so that the upstream queries are obfuscated among those of the large resolver. </t> </section> <section anchor="data-sharing"title="Data sharing"> <t><xref target="RFC6973"/> Threats: </t> <t> <list style="symbols"> <t>Surveillance.</t> <t>Stored data compromise.</t> <t>Correlation.</t> <t>Identification.</t> <t>Secondary use.</t> <t>Disclosure.</t> </list> </t> <t>DNSnumbered="true" toc="default"> <name>Data Sharing</name> <dl newline="true"> <dt>Threats described in <xref target="RFC6973" format="default"/>:</dt> <dd> <ul spacing="normal"> <li>Surveillance.</li> <li>Stored-data compromise.</li> <li>Correlation.</li> <li>Identification.</li> <li>Secondary use.</li> <li>Disclosure.</li> </ul> </dd> <dt>DNS PrivacyThreats: </t> <t> <list style="symbols"> <t>ContraventionThreats:</dt> <dd>Contravention of legal requirements not to process userdata.</t> </list> </t> <t>Mitigations: </t>data.</dd> <dt>Mitigations:</dt> <dd> <t>Operators should not share identifiable data withthird-parties.third parties. </t> <t>If operators choose to share identifiable data withthird-partiesthird parties in specificcircumstancecircumstances, they should publish the terms under which data is shared. </t> <t>Operators should consider including specific guidelines for the collection of aggregated and/or anonymized data for research purposes, within or outside of their own organization. This can benefit not only the operator (through inclusion in novel research) but also the wider Internet community. See the policy published by SURFnet <xreftarget="SURFnet-policy"/>target="SURFnet-policy" format="default"/> on data sharing for research as an example. </t> </dd> </dl> </section> </section> </section> <section anchor="recursive-operator-privacy-statement-rps"title="Recursive operatornumbered="true" toc="default"> <name>Recursive Operator Privacy Statement(RPS)">(RPS)</name> <t>To be compliant with this BestCommon PracticesCurrent Practice document, a DNS recursive operatorSHOULD<bcp14>SHOULD</bcp14> publish a Recursive operator Privacy Statement (RPS). Adopting the outline, and including the headings in the order provided, is a benefit to persons comparing RPSs from multiple operators. </t> <t><xreftarget="current-policy-and-privacy-statements"/>target="current-policy-and-privacy-statements" format="default"/> provides a comparison of some existing policy and privacy statements. </t> <section anchor="outline-of-an-rps"title="Outlinenumbered="true" toc="default"> <name>Outline of anRPS">RPS</name> <t>The contents of Sections <xreftarget="policy"/>target="policy" format="counter"/> and <xreftarget="practice"/>target="practice" format="counter"/> are non-normative, other than the order of the headings. Material under each topic is present to assist the operator developing their ownRPS and:RPS. This material: </t><t> <list style="symbols"> <t>Relates <spanx style="emph">only</spanx><ul spacing="normal"> <li>Relates <em>only</em> to matters aroundtothe technical operation of DNS privacy services, andnot on anyno othermatters.</t> <t>Doesmatters.</li> <li>Does not attempt to offer an exhaustive list for the contents of anRPS.</t> <t>IsRPS.</li> <li>Is not intended to form the basis of any legal/compliancedocumentation.</t> </list> </t>documentation.</li> </ul> <t><xreftarget="example-rps"/>target="example-rps" format="default"/> provides an example (also non-normative) of an RPS statement for a specific operator scenario. </t> <section anchor="policy"title="Policy"> <t> <list style="numbers"> <t>Treatmentnumbered="true" toc="default"> <name>Policy</name> <ol spacing="normal" type="1"> <li>Treatment of IP addresses. Make an explicit statement that IP addresses are treated as personaldata.</t>data.</li> <li> <t>Data collection and sharing. Specify clearly what data (including IP addresses) is:<list style="symbols"> <t>Collected</t> <ul spacing="normal"> <li>Collected and retained by the operator, and for what period it isretained.</t> <t>Sharedretained.</li> <li>Shared withpartners.</t>partners.</li> <li> <t>Shared, sold, or rented tothird-parties. <vspace/></t> </list> and inthird parties. </t> <t/> </li> </ul> <t> In eachcasecase, specify whetheritdata is aggregated, pseudonymized, or anonymized and the conditions of data transfer. Where possible provide details of the techniques used for the above data minimizations.</t><t>Exceptions.</li> <li>Exceptions. Specify any exceptions to theabove,above -- for example, technically malicious or anomalousbehavior.</t> <t>Associatedbehavior.</li> <li>Associated entities. Declare and explicitly enumerate any partners, third-party affiliations, or sources offunding.</t> <t>Correlation.funding.</li> <li>Correlation. Whether user DNS data is correlated or combined with any other personal information held by theoperator.</t>operator.</li> <li> <t>Result filtering. This section should explain whether the operator filters,editsedits, or alters in any way the replies that it receives from the authoritative servers for each DNSzone,zone before forwarding them to the clients. For each category listed below, the operator should also specify how the filtering lists are created and managed, whether it employs any third-party sources for such lists, and which ones.<list style="symbols"> <t>Specify</t> <ul spacing="normal"> <li>Specify if any replies are being filtered out or altered fornetworknetwork- andcomputer securitycomputer-security reasons (e.g., preventing connections to malware-spreading websites or botnet controlservers).</t> <t>Specifyservers).</li> <li>Specify if any replies are being filtered out or altered for mandatory legal reasons, due to applicable legislation or binding orders by courts and other publicauthorities.</t> <t>Specifyauthorities.</li> <li>Specify if any replies are being filtered out or altered for voluntary legal reasons, due to an internal policy by the operator aiming at reducing potential legalrisks.</t> <t>Specifyrisks.</li> <li>Specify if any replies are being filtered out or altered for any other reason, including commercialones.</t> </list></t> </list> </t>ones.</li> </ul> </li> </ol> </section> <section anchor="practice"title="Practice"> <t>[NOTE FOR RFC EDITOR: Please update this section to use letters for the sub-bullet points instead of numbers. This was not done during review because the markdown tool used to write the document did not support it.] </t>numbered="true" toc="default"> <name>Practice</name> <t>Communicate the current operational practices of the service. </t><t> <list style="numbers"> <t>Deviations.<ol spacing="normal"> <li>Deviations. Specify any temporary or permanent deviations from the policy for operationalreasons.</t> <t>Client facingreasons.</li> <li> <t>Client-facing capabilities. With reference to each subsection of <xreftarget="on-the-wire-between-client-and-server"/>target="on-the-wire-between-client-and-server" format="default"/>, provide specific details of which capabilities (transport, DNSSEC, padding, etc.) are provided on whichclient facingclient-facing addresses/port combination or DoH URI template. For <xreftarget="authentication-of-dns-privacy-services"/>,target="authentication-of-dns-privacy-services" format="default"/>, clearly specify which specific authentication mechanisms are supported for each endpoint that offers DoT:<list style="numbers"> <t>The</t> <ol spacing="normal" type="a"> <li>The authentication domain name to be used (ifany).</t>any).</li> <li> <t>The SPKI pin sets to be used (if any) and policy for rolling keys.<vspace/></t> </list></t> <t>Upstream</t> <t/> </li> </ol> </li> <li>Upstream capabilities. With reference tosection<xreftarget="data-sent-onwards-from-the-server"/>target="data-sent-onwards-from-the-server" format="default"/>, provide specific details of which capabilities are provided upstream for data sent to authoritativeservers.</t> <t>Support.servers.</li> <li>Support. Provide contact/support information for theservice.</t> <t>Dataservice.</li> <li>Data Processing. This section can optionally communicate linkstoto, and thehigh levelhigh-level contentsofof, any separate statements the operator has publishedwhichthat cover applicabledata processingdata-processing legislation or agreements with regard to the location(s) of serviceprovision.</t> </list> </t>provision.</li> </ol> </section> </section> <section anchor="enforcementaccountability"title="Enforcement/accountability">numbered="true" toc="default"> <name>Enforcement/Accountability</name> <t>Transparency reports may help with building user trust that operators adhere to their policies and practices. </t><t>Independent<t>Where possible, independent monitoring or analysis could be performedwhere possibleof: </t><t> <list style="symbols"> <t>ECS,<ul spacing="normal"> <li>ECS, QNAME minimization, EDNS(0) padding,etc.</t> <t>Filtering.</t> <t>Uptime.</t> </list> </t>etc.</li> <li>Filtering.</li> <li>Uptime.</li> </ul> <t>This is by analogy with several TLS orwebsite analysiswebsite-analysis tools that are currently available -- e.g., <xreftarget="SSL-Labs"/>target="SSL-Labs" format="default"/> or <xreftarget="Internet.nl"/>.target="Internet.nl" format="default"/>. </t><t>Additionally<t>Additionally, operators could choose to engage the services of athird partythird-party auditor to verify their compliance with their published RPS. </t> </section> </section> <section anchor="iana-considerations"title="IANA considerations"> <t>None </t>numbered="true" toc="default"> <name>IANA Considerations</name> <t>This document has no IANA actions.</t> </section> <section anchor="security-considerations"title="Security considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>Security considerations for DNS over TCP are given in <xreftarget="RFC7766"/>,target="RFC7766" format="default"/>, many of which are generally applicable tosession basedsession-based DNS. Guidance on operational requirements for DNS over TCP are also available in[I-D.dnsop-dns-tcp-requirements].<xref target="I-D.ietf-dnsop-dns-tcp-requirements"/>. Security considerations for DoT are given in[RFC7858]<xref target="RFC7858" /> and <xreftarget="RFC8310"/>,target="RFC8310" format="default"/>, and those for DoH in[RFC8484].<xref target="RFC8484"/>. </t> <t>Security considerations for DNSSEC are given in <xreftarget="RFC4033"/>,target="RFC4033" format="default"/>, <xreftarget="RFC4034"/>target="RFC4034" format="default"/>, and <xreftarget="RFC4035"/>. </t> </section> <section anchor="acknowledgements" title="Acknowledgements"> <t>Many thanks to Amelia Andersdotter for a very thorough review of the first draft of this document and Stephen Farrell for a thorough review at WGLC and for suggesting the inclusion of an example RPS. Thanks to John Todd for discussions on this topic, and to Stephane Bortzmeyer, Puneet Sood and Vittorio Bertola for review. Thanks to Daniel Kahn Gillmor, Barry Green, Paul Hoffman, Dan York, Jon Reed, Lorenzo Colitti for comments at the mic. Thanks to Loganaden Velvindron for useful updates to the text. </t> <t>Sara Dickinson thanks the Open Technology Fund for a grant to support the work on this document. </t> </section> <section anchor="contributors" title="Contributors"> <t>The below individuals contributed significantly to the document: </t> <t>John Dickinson <vspace/> Sinodun Internet Technologies <vspace/> Magdalen Centre <vspace/> Oxford Science Park <vspace/> Oxford OX4 4GA <vspace/> United Kingdom </t> <t>Jim Hague <vspace/> Sinodun Internet Technologies <vspace/> Magdalen Centre <vspace/> Oxford Science Park <vspace/> Oxford OX4 4GA <vspace/> United Kingdom </t> </section> <section anchor="changelog" title="Changelog"> <t>draft-ietf-dprive-bcp-op-13 </t> <t> <list style="symbols"> <t>Minor edits</t> </list> </t> <t>draft-ietf-dprive-bcp-op-12 </t> <t> <list style="symbols"> <t>Change DROP to RPS throughout</t> </list> </t> <t>draft-ietf-dprive-bcp-op-11 </t> <t> <list style="symbols"> <t>Improve text around use of normative language</t> <t>Fix section 5.1.3.2 bullets</t> <t>Improve text in 6.1.2. item 2.</t> <t>Rework text of 6.1.2. item 5 and update example DROP</t> <t>Various editorial improvements</t> </list> </t> <t>draft-ietf-dprive-bcp-op-10 </t> <t> <list style="symbols"> <t>Remove direct references to draft-ietf-dprive-rfc7626-bis, instead have one general reference RFC7626</t> <t>Clarify that the DROP statement outline is non-normative and add some further qualifications about content</t> <t>Update wording on data sharing to remove explicit discussion of consent</t> <t>Move table in section 5.2.3 to an appendix</t> <t>Move section 6.2 to an appendix</t> <t>Corrections to references, typos and editorial updates from initial IESG comments.</t> </list> </t> <t>draft-ietf-dprive-bcp-op-09 </t> <t> <list style="symbols"> <t>Fix references so they match the correct section numbers in draft-ietf-dprive-rfc7626-bis-05</t> </list> </t> <t>draft-ietf-dprive-bcp-op-08 </t> <t> <list style="symbols"> <t>Address IETF Last call comments.</t> </list> </t> <t>draft-ietf-dprive-bcp-op-07 </t> <t> <list style="symbols"> <t>Editorial changes following AD review.</t> <t>Change all URIs to Informational References.</t> </list> </t> <t>draft-ietf-dprive-bcp-op-06 </t> <t> <list style="symbols"> <t>Final minor changes from second WGLC.</t> </list> </t> <t>draft-ietf-dprive-bcp-op-05 </t> <t> <list style="symbols"> <t>Remove some text on consent: <list style="symbols"> <t>Paragraph 2 in section 5.3.3</t> <t>Item 6 in the DROP Practice statement (and example)</t> </list></t> <t>Remove .onion and TLSA options</t> <t>Include ACME as a reference for certificate management</t> <t>Update text on session resumption usage</t> <t>Update section 5.2.4 on client fingerprinting</t> </list> </t> <t>draft-ietf-dprive-bcp-op-04 </t> <t> <list style="symbols"> <t>Change DPPPS to DROP (DNS Recursive Operator Privacy) statement</t> <t>Update structure of DROP slightly</t> <t>Add example DROP statement</t> <t>Add text about restricting access to full logs</t> <t>Move table in section 5.2.3 from SVG to inline table</t> <t>Fix many editorial and reference nits</t> </list> </t> <t>draft-ietf-dprive-bcp-op-03 </t> <t> <list style="symbols"> <t>Add paragraph about operational impact</t> <t>Move DNSSEC requirement out of the Appendix into main text as a privacy threat that should be mitigated</t> <t>Add TLS version/Cipher suite as tracking threat</t> <t>Add reference to Mozilla TRR policy</t> <t>Remove several TODOs and QUESTIONS.</t> </list> </t> <t>draft-ietf-dprive-bcp-op-02 </t> <t> <list style="symbols"> <t>Change 'open resolver' for 'public resolver'</t> <t>Minor editorial changes</t> <t>Remove recommendation to run a separate TLS 1.3 service</t> <t>Move TLSA to purely a optimization in Section 5.2.1</t> <t>Update reference on minimal DoH headers.</t> <t>Add reference on user switching provider after service issues in Section 5.1.4</t> <t>Add text in Section 5.1.6 on impact on operators.</t> <t>Add text on additional threat to TLS proxy use (Section 5.1.7)</t> <t>Add reference in Section 5.3.1 on example policies.</t> </list> </t> <t>draft-ietf-dprive-bcp-op-01 </t> <t> <list style="symbols"> <t>Many minor editorial fixes</t> <t>Update DoH reference to RFC8484 and add more text on DoH</t> <t>Split threat descriptions into ones directly referencing RFC6973 and other DNS Privacy threats</t> <t>Improve threat descriptions throughout</t> <t>Remove reference to the DNSSEC TLS Chain Extension draft until new version submitted.</t> <t>Clarify use of allowlisting for ECS</t> <t>Re-structure the DPPPS, add Result filtering section.</t> <t>Remove the direct inclusion of privacy policy comparison, now just reference dnsprivacy.org and an example of such work.</t> <t>Add an appendix briefly discussing DNSSEC</t> <t>Update affiliation of 1 author</t> </list> </t> <t>draft-ietf-dprive-bcp-op-00 </t> <t> <list style="symbols"> <t>Initial commit of re-named document after adoption to replace draft-dickinson-dprive-bcp-op-01</t> </list> </t> <t>target="RFC4035" format="default"/>. </t> </section> </middle> <back><references title="Normative References"> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4033.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5280.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6973.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7457.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7525.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7766.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7816.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7828.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7830.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7858.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7871.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8020.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8198.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8310.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8467.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8484.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8490.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8499.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8806.xml"?><displayreference target="I-D.bellis-dnsop-xpf" to="DNS-XPF"/> <displayreference target="I-D.ietf-dnsop-dns-tcp-requirements" to="DNS-OVER-TCP"/> <displayreference target="I-D.ietf-httpbis-bcp56bis" to="BUILD-W-HTTP"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4033.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5280.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6973.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7457.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7525.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7766.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7816.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7828.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7830.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7858.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7871.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8020.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8198.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8310.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8467.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8484.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8490.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8499.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8806.xml"/> </references><references title="Informative References"><references> <name>Informative References</name> <referenceanchor='Bloom-filter' target='http://dl.ifip.org/db/conf/im/im2019/189282.pdf'>anchor="Bloom-filter" target="http://dl.ifip.org/db/conf/im/im2019/189282.pdf"> <front> <title>Privacy-Conscious Threat Intelligence Using DNSBLOOM</title> <authorinitials='R.' surname='van Rijswijk-Deij'>initials="R." surname="van Rijswijk-Deij"> </author> <authorinitials='G.' surname='Rijnders'>initials="G." surname="Rijnders"> </author> <authorinitials='M.' surname='Bomhoff'>initials="M." surname="Bomhoff"> </author> <authorinitials='L.' surname='Allodi'>initials="L." surname="Allodi"> </author> <dateyear='2019'/>year="2019"/> </front> <refcontent>IFIP/IEEE International Symposium on Integrated Network Management (IM2019)</refcontent> </reference> <referenceanchor='Brenker-and-Arnes' target='https://pdfs.semanticscholar.org/7b34/12c951cebe71cd2cddac5fda164fb2138a44.pdf'>anchor="Brekne-and-Arnes" target="https://pdfs.semanticscholar.org/7b34/12c951cebe71cd2cddac5fda164fb2138a44.pdf"> <front><title>CIRCUMVENTING IP-ADDRESS PSEUDONYMIZATION</title><title>Circumventing IP-address pseudonymization</title> <authorinitials='T.' surname='Brekne'>initials="T." surname="Brekne"> </author> <authorinitials='A.' surname='Arnes'>initials="A." surname="Årnes"> </author> <dateyear='2005'/>year="2005"/> </front> <seriesInfo name="Communications and" value="Computer Networks" /> </reference> <referenceanchor='Crypto-PAn' target='https://github.com/CESNET/ipfixcol/tree/master/base/src/intermediate/anonymization/Crypto-PAn'>anchor="Crypto-PAn" target="https://github.com/CESNET/ipfixcol/tree/master/base/src/intermediate/anonymization/Crypto-PAn"> <front> <title>Crypto-PAn</title> <author> <organization>CESNET</organization> </author> <dateyear='2015'/>year="2015" month="March"/> </front> <seriesInfo name="commit" value="636b237"/> </reference> <referenceanchor='DNS-Privacy-not-so-private' target='https://petsymposium.org/2018/files/hotpets/4-siby.pdf'>anchor="DNS-Privacy-not-so-private" target="https://petsymposium.org/2018/files/hotpets/4-siby.pdf"> <front> <title>DNS Privacy not so private: the traffic analysis perspective.</title> <authorinitials='S.' surname='Silby'>initials="S." surname="Silby"> </author> <authorinitials='M.' surname='Juarez'>initials="M." surname="Juarez"> </author> <authorinitials='N.' surname='Vallina-Rodriguez'>initials="N." surname="Vallina-Rodriguez"> </author> <authorinitials='C.' surname='Troncosol'>initials="C." surname="Troncoso"> </author> <dateyear='2019'/>year="2018"/> </front> <seriesInfo name="Privacy Enhancing Technologies" value="Symposium"/> </reference> <referenceanchor='DoH-resolver-policy' target='https://wiki.mozilla.org/Security/DOH-resolver-policy'>anchor="DoH-resolver-policy" target="https://wiki.mozilla.org/Security/DOH-resolver-policy"> <front> <title>Security/DOH-resolver-policy</title> <author> <organization>Mozilla</organization> </author> <dateyear='2019'/>year="2019"/> </front> </reference> <referenceanchor='Geolocation-Impact-Assessement' target='https://support.google.com/analytics/answer/2763052?hl=en'>anchor="Geolocation-Impact-Assessment" target="https://www.conversionworks.co.uk/blog/2017/05/19/anonymize-ip-geo-impact-test/"> <front> <title>Anonymize IP Geolocation Accuracy Impact Assessment</title> <author> <organization>Conversion Works</organization> </author> <dateyear='2017'/>day="19" month="May" year="2017"/> </front> </reference> <referenceanchor='Harvan' target='http://mharvan.net/talks/noms-ip_anon.pdf'>anchor="Harvan" target="http://mharvan.net/talks/noms-ip_anon.pdf"> <front> <title>Prefix- and Lexicographical-order-preserving IP Address Anonymization</title> <authorinitials='M.' surname='Harvan'>initials="M." surname="Harvan"> </author> <dateyear='2006'/>year="2006"/> </front> <refcontent>IEEE/IFIP Network Operations and Management Symposium</refcontent> <seriesInfo name="DOI" value="10.1109/NOMS.2006.1687580"/> </reference><?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.bellis-dnsop-xpf.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-dnsop-dns-tcp-requirements.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-httpbis-bcp56bis.xml"?><xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.bellis-dnsop-xpf.xml"/> <!-- [I-D.ietf-dnsop-dns-tcp-requirements] IESG state I-D Exists --> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-dnsop-dns-tcp-requirements.xml"/> <!-- [I-D.ietf-httpbis-bcp56bis] IESG state Expired --> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-httpbis-bcp56bis.xml"/> <referenceanchor='IP-Anonymization-in-Analytics' target='https://support.google.com/analytics/answer/2763052?hl=en'>anchor="IP-Anonymization-in-Analytics" target="https://support.google.com/analytics/answer/2763052?hl=en"> <front> <title>IP Anonymization in Analytics</title> <author> <organization>Google</organization> </author> <dateyear='2019'/>year="2019"/> </front> </reference> <referenceanchor='ISC-Knowledge-database-on-cache-snooping' target='https://kb.isc.org/docs/aa-00482'>anchor="ISC-Knowledge-database-on-cache-snooping" target="https://kb.isc.org/docs/aa-00482"> <front> <title>DNS Cache snooping - should I be concerned?</title><author> <organization>ISC Knowledge Database</organization> </author><author initials="S" surname="Goldlust" /> <author initials="C" surname="Almond" /> <dateyear='2018'/>year="2018" month="October" day="15"/> </front> <seriesInfo name="ISC" value="Knowledge Database"/> </reference> <referenceanchor='Internet.nl' target='https://internet.nl'>anchor="Internet.nl" target="https://internet.nl"> <front> <title>Internet.nl Is Your Internet Up To Date?</title> <author> <organization>Internet.nl</organization> </author> <dateyear='2019'/>year="2019"/> </front> </reference> <referenceanchor='MAC-address-EDNS' target='https://lists.dns-oarc.net/pipermail/dns-operations/2016-January/014143.html'>anchor="DNSCrypt" target="https://www.dnscrypt.org"> <front> <title>DNSCrypt - Official Project Home Page</title> <author/> <date/> </front> </reference> <reference anchor="MAC-address-EDNS" target="https://lists.dns-oarc.net/pipermail/dns-operations/2016-January/014143.html"> <front> <title>Embedding MAC address in DNS requests for selectivefiltering IDs</title> <author> <organization>DNS-OARC mailing list</organization> </author>filtering</title> <author initials="B" surname="Hubert"/> <dateyear='2016'/>year="2016" month="January" day="25"/> </front> <seriesInfo name="DNS-OARC" value="mailing list" /> </reference> <referenceanchor='Passive-Observations-of-a-Large-DNS' target='http://tma.ifip.org/2018/wp-content/uploads/sites/3/2018/06/tma2018_paper30.pdf'>anchor="Passive-Observations-of-a-Large-DNS" target="http://tma.ifip.org/2018/wp-content/uploads/sites/3/2018/06/tma2018_paper30.pdf"> <front> <title>Passive Observations of a Large DNS Service: 2.5 Years in the Life of Google</title> <authorinitials='W. B.' surname='de Vries'>initials="W. B." surname="de Vries"> </author> <authorinitials='R.' surname='van Rijswijk-Deij'>initials="R." surname="van Rijswijk-Deij"> </author> <authorinitials='P.' surname='de Boer'>initials="P-T" surname="de Boer"> </author> <authorinitials='A.' surname='Pras'>initials="A." surname="Pras"> </author> <dateyear='2018'/>year="2018"/> </front> <seriesInfo name="DOI" value="10.23919/TMA.2018.8506536"/> </reference> <referenceanchor='Pitfalls-of-DNS-Encryption' target='https://dl.acm.org/citation.cfm?id=2665959'>anchor="Pitfalls-of-DNS-Encryption" target="https://dl.acm.org/citation.cfm?id=2665959"> <front> <title>Pretty Bad Privacy: Pitfalls of DNS Encryption</title> <authorinitials='H.' surname='Shulman' fullname='Haya Shulman'>initials="H." surname="Shulman" fullname="Haya Shulman"> <organization>Fachbereich Informatik, Technische Universität Darmstadt</organization> </author> <dateyear='2014'/>year="2014" month="November"/> </front> <seriesInfo name="DOI" value="10.1145/2665943.2665959"/> <refcontent>Proceedings of the 13th Workshop on Privacy in the Electronic Society, pp. 191-200</refcontent> </reference> <referenceanchor='PowerDNS-dnswasher' target='https://github.com/PowerDNS/pdns/blob/master/pdns/dnswasher.cc'>anchor="PowerDNS-dnswasher" target="https://github.com/PowerDNS/pdns/blob/master/pdns/dnswasher.cc"> <front> <title>dnswasher</title> <author> <organization>PowerDNS</organization> </author> <dateyear='2019'/>day="24" month="April" year="2020"/> </front> <seriesInfo name="commit" value="050e687" /> </reference><?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4034.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4035.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5077.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6235.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6265.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7626.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7873.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8027.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8094.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8404.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8555.xml"?> <?rfc include="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8618.xml"?><xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4034.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4035.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5077.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6147.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6235.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6265.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7626.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7873.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8027.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8094.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8404.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8555.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8618.xml"/> <referenceanchor='Ramaswamy-and-Wolf' target='http://www.ecs.umass.edu/ece/wolf/pubs/ton2007.pdf'>anchor="Ramaswamy-and-Wolf" target="http://www.ecs.umass.edu/ece/wolf/pubs/ton2007.pdf"> <front> <title>High-Speed Prefix-Preserving IP Address Anonymization for Passive Measurement Systems</title> <authorinitials='R.' surname='Ramaswamy'>initials="R." surname="Ramaswamy"> </author> <authorinitials='T.' surname='Wolf'>initials="T." surname="Wolf"> </author> <dateyear='2007'/>year="2007"/> </front> <seriesInfo name="DOI" value="10.1109/TNET.2006.890128"/> </reference> <referenceanchor='SSL-Labs' target='https://www.ssllabs.com/ssltest/'>anchor="SSL-Labs" target="https://www.ssllabs.com/ssltest/"> <front> <title>SSL Server Test</title> <author> <organization>SSL Labs</organization> </author> <dateyear='2019'/>year="2019"/> </front> </reference> <referenceanchor='SURFnet-policy' target='https://surf.nl/datasharing'>anchor="SURFnet-policy" target="https://surf.nl/datasharing"> <front> <title>SURFnet Data Sharing Policy</title><author> <organization>SURFnet</organization> </author><author initials ="C" surname="Baartmans" /> <author initials ="A" surname="van Wynsberghe" /> <author initials ="R" surname="van Rijswijk-Deij" /> <author initials ="F" surname="Jorna" /> <dateyear='2016'/>year="2016" month="June"/> </front> </reference> <referenceanchor='TCPdpriv' target='http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html'>anchor="tcpdpriv" target="http://fly.isti.cnr.it/software/tcpdpriv/"> <front><title>TCPdpriv</title><title>TCPDRIV - Program for Eliminating Confidential Information from Traces</title> <author> <organization>Ipsilon Networks, Inc.</organization> </author> <dateyear='2005'/>year="2004"/> </front> </reference> <referenceanchor='Xu-et-al.' target='http://an.kaist.ac.kr/~sbmoon/paper/intl-journal/2004-cn-anon.pdf'>anchor="Xu-et-al" target="http://an.kaist.ac.kr/~sbmoon/paper/intl-journal/2004-cn-anon.pdf"> <front> <title>Prefix-preserving IP address anonymization: measurement-based security evaluation and a new cryptography-based scheme</title> <authorinitials='J.' surname='Fan'>initials="J." surname="Fan"> </author> <authorinitials='J.' surname='Xu'>initials="J." surname="Xu"> </author> <authorinitials='M. H.' surname='Ammar'>initials="M.H." surname="Ammar"> </author> <authorinitials='S. B.' surname='Moon'>initials="S.B." surname="Moon"> </author> <dateyear='2004'/>year="2004"/> </front> <seriesInfo name="DOI" value="10.1016/j.comnet.2004.03.033"/> </reference> <referenceanchor='dnsdist' target='https://dnsdist.org'>anchor="dnsdist" target="https://dnsdist.org"> <front> <title>dnsdist Overview</title> <author> <organization>PowerDNS</organization> </author><date year='2019'/></front> </reference> <referenceanchor='dnstap' target='http://dnstap.info'>anchor="dnstap" target="https://dnstap.info"> <front><title>DNSTAP</title> <author> <organization>dnstap.info</organization> </author> <date year='2019'/><title>dnstap</title> <author /> </front> </reference> <referenceanchor='dot-ALPN' target='https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids'>anchor="dot-ALPN" target="https://www.iana.org/assignments/tls-extensiontype-values"> <front><title>TLS<title>Transport Layer Security (TLS) Extensions: TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs</title> <author><organization>IANA (iana.org)</organization><organization>IANA</organization> </author><date year='2020'/></front> </reference> <referenceanchor='haproxy' target='https://www.haproxy.org/'>anchor="haproxy" target="https://www.haproxy.org/"> <front><title>HAPROXY</title><title>HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer</title> <author><organization>haproxy.org</organization><organization/> </author><date year='2019'/></front> </reference> <referenceanchor='ipcipher1' target='https://medium.com/@bert.hubert/on-ip-address-encryption-security-analysis-with-respect-for-privacy-dabe1201b476'>anchor="ipcipher1" target="https://medium.com/@bert.hubert/on-ip-address-encryption-security-analysis-with-respect-for-privacy-dabe1201b476"> <front> <title>On IP address encryption: security analysis with respect for privacy</title> <authorinitials='B.' surname='Hubert'>initials="B." surname="Hubert"> </author> <dateyear='2017'/>year="2017" month="May" day="7"/> </front> <refcontent>Medium</refcontent> </reference> <referenceanchor='ipcipher2' target='https://github.com/PowerDNS/ipcipher'>anchor="ipcipher2" target="https://github.com/PowerDNS/ipcipher"> <front> <title>ipcipher</title> <author> <organization>PowerDNS</organization> </author> <dateyear='2017'/>year="2018" month="February" day="13"/> </front> <seriesInfo name="commit" value="fd47abe"/> </reference> <referenceanchor='ipcrypt' target='https://github.com/veorq/ipcrypt'>anchor="ipcrypt" target="https://github.com/veorq/ipcrypt"> <front> <title>ipcrypt: IP-format-preserving encryption</title> <author> <organization>veorq</organization> </author> <dateyear='2015'/>year="2015" month="July" day="6"/> </front> <seriesInfo name="commit" value="8cc12f9" /> </reference> <referenceanchor='ipcrypt-analysis' target='https://www.ietf.org/mail-archive/web/cfrg/current/msg09494.html'>anchor="ipcrypt-analysis" target="https://mailarchive.ietf.org/arch/msg/cfrg/cFx5WJo48ZEN-a5cj_LlyrdN8-0/"> <front><title>Analysis<title>Subject: Re: [Cfrg] Analysis of ipcrypt?</title> <authorinitials='J.' surname='Aumasson'>initials="J-P" surname="Aumasson"> </author> <dateyear='2018'/>year="2018" month="February" day="22"/> </front> <refcontent>message to the Cfrg mailing list</refcontent> </reference> <referenceanchor='nginx' target='https://nginx.org/'>anchor="nginx" target="https://nginx.org/"> <front><title>NGINX</title><title>nginx news</title> <author> <organization>nginx.org</organization> </author> <dateyear='2019'/>year="2019"/> </front> </reference> <referenceanchor='pcap' target='http://www.tcpdump.org/'>anchor="pcap" target="https://www.tcpdump.org/"> <front><title>PCAP</title><title>Tcpdump & Libpcap</title> <author><organization>tcpdump.org</organization><organization>The Tcpdump Group</organization> </author> <dateyear='2016'/>year="2020"/> </front> </reference> <referenceanchor='policy-comparison' target='https://dnsprivacy.org/wiki/display/DP/Comparison+of+policy+and+privacy+statements+2019'>anchor="policy-comparison" target="https://dnsprivacy.org/wiki/display/DP/Comparison+of+policy+and+privacy+statements+2019"> <front> <title>Comparison of policy and privacy statements 2019</title><author> <organization>dnsprivacy.org</organization> </author><author initials="S" surname="Dickinson" /> <dateyear='2019'/>day="18" month="December" year="2019" /> </front> <refcontent>DNS Privacy Project</refcontent> </reference> <referenceanchor='stunnel' target='https://kb.isc.org/article/AA-01386/0/DNS-over-TLS.html'>anchor="stunnel" target="https://kb.isc.org/article/AA-01386/0/DNS-over-TLS.html"> <front><title>DNS-over-TLS</title> <author> <organization>ISC Knowledge Database</organization> </author><title>DNS over TLS</title> <author initials="S" surname="Goldlust" /> <author initials="C" surname="Almond" /> <author initials="F" surname="Dupont" /> <dateyear='2018'/>year="2018" month="November" day="1"/> </front> <refcontent>ISC Knowledge Database"</refcontent> </reference> <referenceanchor='van-Dijkhuizen-et-al.' target='https://doi.org/10.1145/3182660'>anchor="van-Dijkhuizen-et-al" target="https://doi.org/10.1145/3182660"> <front> <title>A Survey of Network Traffic Anonymisation Techniques and Implementations</title> <authorinitials='N.' surname='Vaninitials="N." surname="Van Dijkhuizen'>"> </author> <authorinitials='J.' surname='Vaninitials="J." surname="Van DerHam'>Ham"> </author> <dateyear='2018'/>year="2018" month="May"/> </front> <seriesInfo name="DOI" value="10.1145/3182660"/> <refcontent>ACM Computing Surveys</refcontent> </reference> </references> </references> <section anchor="documents"title="Documents"> <t>Thisnumbered="true" toc="default"> <name>Documents</name> <t> This section provides an overview of some DNS privacy-relateddocuments, however,documents. However, this is neither an exhaustive list nor a definitive statement on thecharacteristiccharacteristics ofthe document.any document with regard to potential increases or decreases in DNS privacy. </t> <section anchor="potential-increases-in-dns-privacy"title="Potential increasesnumbered="true" toc="default"> <name>Potential Increases in DNSprivacy">Privacy</name> <t>These documents are limited in scope to communications between stub clients and recursive resolvers: </t><t> <list style="symbols"> <t>'Specification<ul spacing="normal"> <li>"Specification for DNS over Transport Layer Security(TLS)'(TLS)" <xreftarget="RFC7858"/>.</t> <t>'DNStarget="RFC7858" format="default"/>.</li> <li>"DNS over Datagram Transport Layer Security(DTLS)'(DTLS)" <xreftarget="RFC8094"/>.target="RFC8094" format="default"/>. Note that this document has theCategorycategory ofExperimental.</t> <t>'DNSExperimental.</li> <li>"DNS Queries over HTTPS(DoH)'(DoH)" <xreftarget="RFC8484"/>.</t> <t>'Usagetarget="RFC8484" format="default"/>.</li> <li>"Usage Profiles for DNS over TLS and DNS overDTLS'DTLS" <xreftarget="RFC8310"/>.</t> <t>'Thetarget="RFC8310" format="default"/>.</li> <li>"The EDNS(0) PaddingOption'Option" <xreftarget="RFC7830"/>target="RFC7830" format="default"/> and'Padding Policy"Padding Policies for Extension Mechanisms forEDNS(0)'DNS (EDNS(0))" <xreftarget="RFC8467"/>.</t> </list> </t>target="RFC8467" format="default"/>.</li> </ul> <t>These documents apply to recursive and authoritative DNS but are relevant when considering the operation of a recursive server: </t><t> <list style="symbols"> <t>'DNS<ul spacing="normal"> <li>"DNS Query NameminimizationMinimisation to ImprovePrivacy'Privacy" <xreftarget="RFC7816"/>.</t> </list> </t>target="RFC7816" format="default"/>.</li> </ul> </section> <section anchor="potential-decreases-in-dns-privacy"title="Potential decreasesnumbered="true" toc="default"> <name>Potential Decreases in DNSprivacy">Privacy</name> <t>These documents relate to functionality that could provide increased tracking of user activity as a side effect: </t><t> <list style="symbols"> <t>'Client<ul spacing="normal"> <li>"Client Subnet in DNSQueries'Queries" <xreftarget="RFC7871"/>.</t> <t>'Domaintarget="RFC7871" format="default"/>.</li> <li>"Domain Name System (DNS)Cookies'Cookies" <xreftarget="RFC7873"/>).</t> <t>'Transporttarget="RFC7873" format="default"/>).</li> <li>"Transport Layer Security (TLS) Session Resumption without Server-SideState'State" <xreftarget="RFC5077"/>target="RFC5077" format="default"/>, referred to here as simply TLS sessionresumption.</t> <t><xref target="RFC8446"/> Appendix C.4resumption.</li> <li> <xref target="RFC8446" section="C.4" sectionFormat="comma"/> describesClient Tracking Preventionclient tracking prevention in TLS1.3</t> <t>'A1.3</li> <li>"Compacted-DNS (C-DNS): A Format for DNS PacketCapture Format'Capture" <xreftarget="RFC8618"/>.</t> <t>Passivetarget="RFC8618" format="default"/>.</li> <li>Passive DNS <xreftarget="RFC8499"/>.</t> <t>Section 8 of <xref target="RFC8484"/>target="RFC8499" format="default"/>.</li> <li><xref target="RFC8484" sectionFormat="of" section="8"/> outlines the privacy considerations of DoH. Note that (while that document advises exposing the minimal set of data needed to achieve the desired featureset)set), depending on the specifics of a DoHimplementationimplementation, there may be increased identification and tracking compared to other DNStransports.</t> </list> </t>transports.</li> </ul> </section> <section anchor="related-operational-documents"title="Related operational documents"> <t> <list style="symbols"> <t>'DNSnumbered="true" toc="default"> <name>Related Operational Documents</name> <ul spacing="normal"> <li>"DNS Transport over TCP - ImplementationRequirements'Requirements" <xreftarget="RFC7766"/>.</t> <t>'Operational requirements for DNStarget="RFC7766" format="default"/>.</li> <li>"DNS Transport overTCP'TCP - Operational Requirements" <xreftarget="I-D.ietf-dnsop-dns-tcp-requirements"/>.</t> <t>'Thetarget="I-D.ietf-dnsop-dns-tcp-requirements" format="default"/>.</li> <li>"The edns-tcp-keepalive EDNS0Option'Option" <xreftarget="RFC7828"/>.</t> <t>'DNStarget="RFC7828" format="default"/>.</li> <li>"DNS StatefulOperations'Operations" <xreftarget="RFC8490"/>.</t> </list> </t>target="RFC8490" format="default"/>.</li> </ul> </section> </section> <section anchor="ip-address-techniques"title="IP address techniques">numbered="true" toc="default"> <name>IP Address Techniques</name> <t>The following table presents ahigh levelhigh-level comparison of various techniques employed or under development in2019,2019 and classifies them according to categorization of technique and other properties. Both the specific techniques and thecategorisationscategorizations are described in more detail in the following sections. The list of techniques includes the main techniques in currentuse,use but does not claim to be comprehensive. </t><texttable title="Table 1: Classification of techniques "> <ttcol align="left">Categorization/Property</ttcol> <ttcol align="center">GA</ttcol> <ttcol align="center">d</ttcol> <ttcol align="center">TC</ttcol> <ttcol align="center">C</ttcol> <ttcol align="center">TS</ttcol> <ttcol align="center">i</ttcol> <ttcol align="center">B</ttcol> <c>Anonymization</c><c>X</c><c>X</c><c>X</c><c></c><c></c><c></c><c>X</c> <c>Pseudoanonymization</c><c></c><c></c><c></c><c>X</c><c>X</c><c>X</c><c></c> <c>Format preserving</c><c>X</c><c>X</c><c>X</c><c>X</c><c>X</c><c>X</c><c></c> <c>Prefix preserving</c><c></c><c></c><c>X</c><c>X</c><c>X</c><c></c><c></c> <c>Replacement</c><c></c><c></c><c>X</c><c></c><c></c><c></c><c></c> <c>Filtering</c><c>X</c><c></c><c></c><c></c><c></c><c></c><c></c> <c>Generalization</c><c></c><c></c><c></c><c></c><c></c><c></c><c>X</c> <c>Enumeration</c><c></c><c>X</c><c></c><c></c><c></c><c></c><c></c> <c>Reordering/Shuffling</c><c></c><c></c><c>X</c><c></c><c></c><c></c><c></c> <c>Random substitution</c><c></c><c></c><c>X</c><c></c><c></c><c></c><c></c> <c>Cryptographic permutation</c><c></c><c></c><c></c><c>X</c><c>X</c><c>X</c><c></c> <c>IPv6 issues</c><c></c><c></c><c></c><c></c><c>X</c><c></c><c></c> <c>CPU intensive</c><c></c><c></c><c></c><c>X</c><c></c><c></c><c></c> <c>Memory intensive</c><c></c><c></c><c>X</c><c></c><c></c><c></c><c></c> <c>Security concerns</c><c></c><c></c><c></c><c></c><c></c><c>X</c><c></c> </texttable><table align="center"> <name>Classification of Techniques</name> <thead> <tr> <th align="left">Categorization/Property</th> <th align="center">GA</th> <th align="center">d</th> <th align="center">TC</th> <th align="center">C</th> <th align="center">TS</th> <th align="center">i</th> <th align="center">B</th> </tr> </thead> <tbody> <tr> <td align="left">Anonymization</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> </tr> <tr> <td align="left">Pseudonymization</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">Format preserving</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">Prefix preserving</td> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Replacement</td> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Filtering</td> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Generalization</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> </tr> <tr> <td align="left">Enumeration</td> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Reordering/Shuffling</td> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Random substitution</td> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Cryptographic permutation</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">IPv6 issues</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">CPU intensive</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Memory intensive</td> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> </tr> <tr> <td align="left">Security concerns</td> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center"/> <td align="center">X</td> <td align="center"/> </tr> </tbody> </table> <t>Legend oftechniques: GA =techniques:</t> <dl spacing="compact" indent="5"> <dt>GA</dt><dd>= GoogleAnalytics, d = dnswasher, TC = TCPdpriv, C = CryptoPAn, TS = TSA, i = ipcipher, B =Analytics</dd> <dt>d</dt><dd>= dnswasher</dd> <dt>TC</dt><dd>= TCPdpriv</dd> <dt>C</dt><dd>= CryptoPAn</dd> <dt>TS</dt><dd>= TSA</dd> <dt>i</dt><dd>= ipcipher</dd> <dt>B</dt><dd>= Bloomfilter </t>filter</dd> </dl> <t>The choice of which method to use for a particular application will depend on the requirements of that application and consideration of the threat analysis of the particular situation. </t> <t>For example, a common goal is that distributed packet captures must be in an existing dataformatformat, such as PCAP <xreftarget="pcap"/>target="pcap" format="default"/> orC-DNSCompacted-DNS (C-DNS) <xreftarget="RFC8618"/>target="RFC8618" format="default"/>, that can be used as input to existing analysis tools. In that case, use of a format-preserving technique is essential. This, though, is notcost-free -cost free; several authors (e.g., <xreftarget="Brenker-and-Arnes"/>target="Brekne-and-Arnes" format="default"/>) have observed that, as the entropy in an IPv4 address is limited, if an attacker can </t><t> <list style="symbols"> <t>ensure<ul spacing="normal"> <li>ensure packets are captured by the targetand</t> <t>sendand</li> <li>send forged traffic with arbitrary source and destination addresses to that targetand</t> <t>obtainand</li> <li>obtain a de-identified log of said traffic from thattarget</t> </list> </t>target,</li> </ul> <t>any format-preserving pseudonymization is vulnerable to an attack along the lines of a cryptographicchosen plaintextchosen-plaintext attack. </t> <section anchor="categorization-of-techniques"title="Categorizationnumbered="true" toc="default"> <name>Categorization oftechniques">Techniques</name> <t>Data minimization methods may be categorized by the processing used and the properties of their outputs. The following builds on the categorization employed in <xreftarget="RFC6235"/>:target="RFC6235" format="default"/>: </t><t> <list style="symbols"> <t>Format-preserving. Normally<dl spacing="normal"> <dt>Format-preserving.</dt><dd> Normally, when encrypting, the original data length and patterns in the data should be hidden from an attacker. Some applications of de-identification, such as network capture de-identification, require that the de-identified data is of the same form as the original data, to allow the data to be parsed in the same way as theoriginal.</t> <t>Prefix preservation.original.</dd> <dt>Prefix preservation.</dt><dd> Values such as IP addresses and MAC addresses contain prefix information that can be valuable inanalysis,analysis -- e.g., manufacturer ID in MAC addresses, or subnet in IP addresses. Prefix preservation ensures that prefixes are de-identified consistently;e.g.,for example, if two IP addresses are from the same subnet, a prefix preserving de-identification will ensure that their de-identified counterparts will also share a subnet. Prefix preservation may be fixed(i.e.(i.e., based on auser selecteduser-selected prefix length identified in advance to be preserved ) orgeneral.</t> <t>Replacement.general.</dd> <dt>Replacement.</dt><dd> A one-to-one replacement of a field to a new value of the sametype,type -- for example, using a regularexpression.</t> <t>Filtering.expression.</dd> <dt>Filtering.</dt><dd> Removing or replacing data in a field. Field data can be overwritten, often with zeros, either partially (truncation or reverse truncation) or completely (black-markeranonymization).</t> <t>Generalization.anonymization).</dd> <dt>Generalization.</dt><dd> Data is replaced by more general data with reduced specificity. One example would be to replace all TCP/UDP port numbers with one of two fixed values indicating whether the original port was ephemeral (>=1024) ornon-ephemeralnonephemeral (>1024). Another example, precision degradation, reduces the accuracyof e.g.,of, for example, a numeric value or atimestamp.</t> <t>Enumeration.timestamp.</dd> <dt>Enumeration.</dt><dd> With data from a well-ordered set, replace the first dataitemitem's data using a random initial value and then allocate ordered values for subsequent data items. When used with timestamp data, this preserves ordering but loses precision anddistance.</t> <t>Reordering/shuffling.distance.</dd> <dt>Reordering/shuffling.</dt><dd> Preserving the original data, but rearranging its order, often in a randommanner.</t> <t>Random substitution.manner.</dd> <dt>Random substitution.</dt><dd> As replacement, but using randomly generated replacementvalues.</t> <t>Cryptographic permutation.values.</dd> <dt>Cryptographic permutation.</dt><dd> Using a permutation function, such as a hash function or cryptographic block cipher, to generate a replacement de-identifiedvalue.</t> </list> </t>value.</dd> </dl> </section> <section anchor="specific-techniques"title="Specific techniques">numbered="true" toc="default"> <name>Specific Techniques</name> <section anchor="google-analytics-nonprefix-filtering"title="Googlenumbered="true" toc="default"> <name>Google Analyticsnon-prefix filtering">Non-Prefix Filtering</name> <t>Since May 2010, Google Analytics has provided a facility <xreftarget="IP-Anonymization-in-Analytics"/>target="IP-Anonymization-in-Analytics" format="default"/> that allows website owners to request that all theirusersusers' IP addresses are anonymized within Google Analytics processing. This very basic anonymization simply sets to zero the least significant 8 bits of IPv4 addresses, and the least significant 80 bits of IPv6 addresses. The level of anonymization this produces is perhaps questionable. There are some analysis results <xreftarget="Geolocation-Impact-Assessement"/> whichtarget="Geolocation-Impact-Assessment" format="default"/> that suggest that the impact of this on reducing the accuracy of determining the user's location from their IP address is less than might be hoped; the average discrepancy in identification of the user city for UK users is no more than 17%. </t><t>Anonymization:<dl> <dt>Anonymization:</dt><dd> Format-preserving, Filtering(trucation). </t>(truncation).</dd> </dl> </section> <section anchor="dnswasher"title="dnswasher">numbered="true" toc="default"> <name>dnswasher</name> <t>Since 2006, PowerDNShavehas included a de-identificationtooltool, dnswasher <xreftarget="PowerDNS-dnswasher"/>target="PowerDNS-dnswasher" format="default"/>, with their PowerDNS product. This is a PCAP filter that performs a one-to-one mapping ofend userend-user IP addresses with an anonymized address. A table of user IP addresses and their de-identified counterparts is kept; the first IPv4 user addresses is translated to 0.0.0.1, the second to0.0.0.20.0.0.2, and so on. The de-identified address therefore depends on the order that addresses arrive in the input, and when running over a large amount ofdatadata, the address translation tables can grow to a significant size. </t><t>Anonymization:<dl> <dt>Anonymization:</dt><dd> Format-preserving,Enumeration. </t>Enumeration.</dd> </dl> </section> <section anchor="prefixpreserving-map"title="Prefix-preserving map">numbered="true" toc="default"> <name>Prefix-Preserving Map</name> <t>Used in <xreftarget="TCPdpriv"/>,target="tcpdpriv" format="default"/>, this algorithm stores a set of original andanonymisedanonymized IP address pairs. When a new IP address arrives, it is compared with previous addresses to determine the longest prefix match. The new address is anonymized by using the same prefix, with the remainder of the address anonymized with a random value. The use of a random value means that TCPdpriv is not deterministic; different anonymized values will be generated on each run. The need to store previous addresses means that TCPdpriv has significant and unbounded memoryrequirements, and because of therequirements. The need toallocatedallocate anonymized addresses sequentially means that TCPdpriv cannot be used in parallel processing. </t><t>Anonymization:<dl> <dt>Anonymization:</dt><dd> Format-preserving, prefix preservation(general). </t>(general).</dd> </dl> </section> <section anchor="cryptographic-prefixpreserving-pseudonymization"title="Cryptographicnumbered="true" toc="default"> <name>Cryptographic Prefix-PreservingPseudonymization">Pseudonymization</name> <t>Cryptographic prefix-preserving pseudonymization was originally proposed as an improvement to the prefix-preserving map implemented in TCPdpriv, described in <xreftarget="Xu-et-al."/>target="Xu-et-al" format="default"/> and implemented in the <xreftarget="Crypto-PAn"/>target="Crypto-PAn" format="default"/> tool. Crypto-PAn is now frequently used as an acronym for the algorithm.InitiallyInitially, it was described for IPv4 addresses only; extension for IPv6 addresses was proposed in <xreftarget="Harvan"/>.target="Harvan" format="default"/>. This uses a cryptographic algorithm rather than a random value, and thus pseudonymity is determined uniquely by the encryption key, and is deterministic. It requires a separate AES encryption for each outputbit,bit and so has anon-trivialnontrivial calculation overhead. This can be mitigated to some extent (for IPv4, at least) bypre-calculatingprecalculating results for some number of prefix bits. </t><t>Pseudonymization:<dl> <dt>Pseudonymization:</dt><dd> Format-preserving, prefix preservation(general). </t>(general).</dd> </dl> </section> <section anchor="tophash-subtreereplicated-anonymization"title="Top-hash Subtree-replicated Anonymization">numbered="true" toc="default"> <name>Top-Hash Subtree-Replicated Anonymization</name> <t>Proposed in <xreftarget="Ramaswamy-and-Wolf"/>,target="Ramaswamy-and-Wolf" format="default"/>, Top-hash Subtree-replicated Anonymization (TSA) originated in response to the requirement for faster processing than Crypto-PAn. It used hashing for the most significant byte of an IPv4address,address and apre-calculated binary treeprecalculated binary-tree structure for the remainder of the address. To save memory space, replication is used within the tree structure, reducing the size of thepre-calculatedprecalculated structures to a fewMbmegabytes for IPv4 addresses. Address pseudonymization is done via hash and tablelookup,lookup and so requires minimal computation. However, due to themuch increasedmuch-increased address space for IPv6, TSA is not memory efficient for IPv6. </t><t>Pseudonymization:<dl> <dt>Pseudonymization:</dt><dd> Format-preserving, prefix preservation(general). </t>(general).</dd> </dl> </section> <section anchor="ipcipher"title="ipcipher">numbered="true" toc="default"> <name>ipcipher</name> <t>Arecently-releasedrecently released proposal from PowerDNS, ipcipher <xreftarget="ipcipher1"/>target="ipcipher1" format="default"/> <xreftarget="ipcipher2"/>target="ipcipher2" format="default"/>, is a simple pseudonymization technique for IPv4 and IPv6 addresses. IPv6 addresses are encrypted directly with AES-128 using a key (which may be derived from a passphrase). IPv4 addresses are similarly encrypted, but using a recently proposed encryption <xreftarget="ipcrypt"/>target="ipcrypt" format="default"/> suitable for32bit32-bit block lengths. However, the author of ipcrypt has since indicated <xreftarget="ipcrypt-analysis"/>target="ipcrypt-analysis" format="default"/> that it has low security, and further analysis has revealed it is vulnerable to attack. </t><t>Pseudonymization: Format-preserving,<dl> <dt>Pseudonymization:</dt><dd>Format-preserving, cryptographicpermutation. </t>permutation.</dd> </dl> </section> <section anchor="bloom-filters"title="Bloom filters">numbered="true" toc="default"> <name>Bloom Filters</name> <t>van Rijswijk-Deij et al. have recently described work using BloomfiltersFilters <xreftarget="Bloom-filter"/>target="Bloom-filter" format="default"/> to categorize query traffic and record the traffic as the state of multiple filters. The goal of this work is to allow operators to identify so-called Indicators of Compromise (IOCs) originating from specific subnets without storing information about, orbebeing able tomonitormonitor, the DNS queries of an individual user. By using a Bloomfilter,Filter, it is possible to determine with a high probability if, for example, a particular query was made, but the set of queries made cannot be recovered from the filter. Similarly, by mixing queries from a sufficient number of users in a single filter, it becomes practically impossible to determine if a particular user performed a particular query. Large numbers of queries can be tracked in a memory-efficient way. As filter status is stored, this approach cannot be used to regeneratetraffic,traffic and so cannot be used with tools used to process live traffic. </t><t>Anonymized: Generalization. </t><dl> <dt>Anonymized:</dt><dd> Generalization.</dd> </dl> </section> </section> </section> <section anchor="current-policy-and-privacy-statements"title="Current policynumbered="true" toc="default"> <name>Current Policy andprivacy statements">Privacy Statements</name> <t>A tabular comparison of policy and privacy statements from various DNSPrivacyprivacy service operators based loosely on the proposed RPS structure can be found at <xreftarget="policy-comparison"/>.target="policy-comparison" format="default"/>. The analysis is based on the data available in December 2019. </t> <t>We note that the existingset ofpolicies vary widely in style,contentcontent, anddetaildetail, and it is not uncommon for the full text for a given operator to equate to more than 10 pages (A4 size) ofmoderate font sized A4 text.text in a moderate-sized font. It is anon-trivialnontrivial task today for a user to extract a meaningful overview of the different services on offer. </t> <t>It is also noted that Mozillahavehas published a DoH resolver policy <xreftarget="DoH-resolver-policy"/>, whichtarget="DoH-resolver-policy" format="default"/> that describes the minimum set of policy requirements that a party must satisfy to be considered as a potential partner forMozilla’sMozilla's Trusted Recursive Resolver (TRR) program. </t> </section> <section anchor="example-rps"title="Example RPS">numbered="true" toc="default"> <name>Example RPS</name> <t>The following example RPS is very loosely based on some elements of published privacy statements for some public resolvers, with additional fields populated to illustratethewhat the full contents of an RPS might look like. This should not be interpreted as </t><t> <list style="symbols"> <t>having<ul spacing="normal"> <li>having been reviewed or approved by any operator in anyway</t> <t>havingway</li> <li>having any legal standing or validity atall</t> <t>beingall</li> <li>being complete orexhaustive</t> </list> </t>exhaustive</li> </ul> <t>This is a purely hypothetical example of an RPS to outline example contents--- in thiscasecase, for a public resolver operator providing a basic DNS Privacy service via one IP address and one DoH URI withsecurity basedsecurity-based filtering. It does aim to meet minimal compliance as specified in <xreftarget="recommendations-for-dns-privacy-services"/>.target="recommendations-for-dns-privacy-services" format="default"/>. </t> <section anchor="policy-1"title="Policy"> <t> <list style="numbers"> <t>Treatmentnumbered="true" toc="default"> <name>Policy</name> <ol spacing="normal" type="1"> <li>Treatment of IP addresses. Many nations classify IP addresses as personal data, and we take a conservative approach in treating IP addresses as personal data in all jurisdictions in which our systemsreside.</t>reside.</li> <li> <t>Data collection and sharing.<list style="numbers"> <t>IP</t> <ol spacing="normal" type="a"> <li>IP addresses. Our normal course of data management does not have any IP address information or other personal data logged to disk or transmitted out of the location in which the query was received. We may aggregate certain counters to larger network block levels for statistical collection purposes, but those counters do not maintain specific IP addressdatadata, nor is the format or model of data stored capable of being reverse-engineered to ascertain what specific IP addresses made whatqueries.</t>queries.</li> <li> <t>Data collected in logs. We do keep some generalized location information (at thecity/metropolitan areacity / metropolitan-area level) so that we can conduct debugging and analyze abuse phenomena. We also use the collected information for the creation and sharing of telemetry (timestamp, geolocation, number of hits, first seen, last seen) for contributors, public publishing of general statistics of system use (protections, threat types, counts,etc.)etc.). When you use our DNSServices,services, here is the full list of items that are included in our logs:<list style="symbols"> <t>Request</t> <ul spacing="normal"> <li>Requested domainname,name -- e.g.,example.net</t> <t>Recordexample.net</li> <li>Record type of requesteddomain,domain -- e.g., A, AAAA, NS, MX, TXT,etc.</t>etc.</li> <li> <t>Transport protocol on which the requestarrived, i.e.arrived -- i.e., UDP, TCP, DoT,<vspace/>DoH</t><t>Origin</li> <li>Origin IP general geolocationinformation: i.e.information -- i.e., geocode, region ID, city ID, and metrocode</t> <t>IPcode</li> <li>IP protocol version–-- IPv4 orIPv6</t> <t>ResponseIPv6</li> <li>Response codesent,sent -- e.g., SUCCESS, SERVFAIL, NXDOMAIN,etc.</t> <t>Absoluteetc.</li> <li>Absolute arrival time using a precision inms</t> <t>Namems</li> <li>Name of the specific instance that processed thisrequest</t> <t>IPrequest</li> <li>IP address of the specific instance to which this request was addressed (no relation to therequestor’srequestor's IPaddress)</t> </list>address)</li> </ul> <t> We may keep the following data as summary information, including all the above EXCEPT for data about the DNS record requested:<list style="symbols"> <t>Currently-advertised</t> <ul spacing="normal"> <li>Currently advertised BGP-summarized IP prefix/netmask of apparent clientorigin</t> <t>Autonomousorigin</li> <li>Autonomous system number (BGP ASN) of apparent clientorigin</t> </list>origin</li> </ul> <t> All the above data may be kept in full or partial form in permanent archives.</t><t>Sharing</li> <li>Sharing of data. Except as described in this document, we do not intentionally share, sell, or rent individual personal information associated with the requestor(i.e.(i.e., source IP address or any other information that can positively identify the client using our infrastructure) with anyone without your consent. We generate and sharehigh levelhigh-level anonymized aggregatestatisticsstatistics, including threat metrics on threat type, geolocation, and if available, sector, as well as other verticalmetricsmetrics, including performance metrics on our DNS Services(i.e.(i.e., number of threats blocked, infrastructure uptime) when available with ourthreat intelligenceThreat Intelligence (TI) partners, academic researchers, or the public. Our DNSServicesservices share anonymized data on specific domains queried (records such as domain, timestamp, geolocation, number of hits, first seen, last seen) with ourthreat intelligenceThreat Intelligence partners. Our DNSServicesservice also builds, stores, and may share certain DNS data streams which store high level information about domain resolved, query types, result codes, and timestamp. These streams do not contain the IP address information of the requestor and cannot be correlated to IP address or other personal data. We do not and never will share any ofitsthe requestor's data with marketers, nor willitwe use this data for demographicanalysis.</t> </list></t> <t>Exceptions.analysis.</li> </ol> </li> <li>Exceptions. There are exceptions to this storage model: In the event of actions or observed behaviorswhichthat we deem malicious or anomalous, we may utilize more detailed logging to collect more specific IP address data in the process of normal networkdefencedefense and mitigation. This collection and transmission off-site will be limited to IP addresses that we determine are involved in theevent.</t> <t>Associatedevent.</li> <li>Associated entities. Details of our Threat Intelligence partners can be found at our website page (insertlink).</t> <t>Correlationlink).</li> <li>Correlation of Data. We do not correlate or combine information from our logs with any personal information that you have provided us for other services, or with your specific IPaddress.</t>address.</li> <li> <t>Result filtering.<list style="numbers"></t> <ol spacing="normal" type="a"> <li> <t>Filtering. Weutilise cyber threatutilize cyber-threat intelligence about malicious domains from a variety of public and private sources andblocksblock access to those malicious domains when your system attempts to contact them. An NXDOMAIN is returned for blocked sites.<list style="numbers"> <t>Censorship.</t> <ol spacing="normal" type="i"> <li>Censorship. We will not provide a censoring component and will limit our actions solely to the blocking of malicious domains around phishing, malware, andexploit kit domains.</t> <t>Accidentalexploit-kit domains.</li> <li>Accidental blocking. We implement allowlisting algorithms to make sure legitimate domains are not blocked by accident. However, in the rare case of blocking a legitimate domain, we work with the users to quickly allowlist that domain. Please use our support form (insert link) if you believe we are blocking a domain inerror.</t> </list></t> </list></t> </list> </t>error.</li> </ol> </li> </ol> </li> </ol> </section> <section anchor="practice-1"title="Practice"> <t> <list style="numbers"> <t>Deviationsnumbered="true" toc="default"> <name>Practice</name> <ol spacing="normal" type="1"> <li>Deviations from Policy. None in place since (insertdate).</t> <t>Client facingdate).</li> <li> <t>Client-facing capabilities.<list style="numbers"> <t>We</t> <ol spacing="normal" type="a"> <li>We offer UDP and TCP DNS on port 53 on (insert IPaddress)</t>address)</li> <li> <t>We offer DNS over TLS as specified inRFC7858RFC 7858 on (insert IP address). It is available on port 853 and port 443. We also implementRFC7766. <list style="numbers"> <t>TheRFC 7766. </t> <ol spacing="normal" type="i"> <li>The DoT authentication domain name used is (insert domainname).</t> <t>Wename).</li> <li>We do not publish SPKI pinsets.</t> </list></t> <t>Wesets.</li> </ol> </li> <li>We offer DNS over HTTPS as specified inRFC8484RFC 8484 on (insert URItemplate).</t> <t>Bothtemplate).</li> <li>Both services offer TLS 1.2 and TLS1.3.</t> <t>Both1.3.</li> <li>Both services pad DNS responses according toRFC8467.</t>RFC 8467.</li> <li> <t>Both services provide DNSSEC validation.<vspace/></t> </list></t></t> <t/> </li> </ol> </li> <li> <t>Upstream capabilities.<list style="numbers"> <t>Our</t> <ol spacing="normal" type="a"> <li>Our servers implement QNAMEminimization.</t> <t>Ourminimization.</li> <li>Our servers do not send ECSupstream.</t> </list></t> <t>Support.upstream.</li> </ol> </li> <li>Support. Support information for this service is available at (insertlink).</t> <t>Datalink).</li> <li>Data Processing. We operate as the legal entity (insert entity) registered in (insert country); assuchsuch, we operate under (insert country/region) law. Our separate statement regarding the specifics of our data processing policy, practice, and agreements can be found here (insertlink).</t> </list>link).</li> </ol> </section> </section> <section anchor="acknowledgements" numbered="false" toc="default"> <name>Acknowledgements</name> <t>Many thanks to <contact fullname="Amelia Andersdotter"/> for a very thorough review of the first draft of this document and <contact fullname="Stephen Farrell"/> for a thorough review at Working Group Last Call and for suggesting the inclusion of an example RPS. Thanks to <contact fullname="John Todd"/> for discussions on this topic, and to <contact fullname="Stéphane Bortzmeyer"/>, <contact fullname="Puneet Sood"/>, and <contact fullname="Vittorio Bertola"/> for review. Thanks to <contact fullname="Daniel Kahn Gillmor"/>, <contact fullname="Barry Green"/>, <contact fullname="Paul Hoffman"/>, <contact fullname="Dan York"/>, <contact fullname="Jon Reed"/>, and <contact fullname="Lorenzo Colitti"/> for comments at the mic. Thanks to <contact fullname="Loganaden Velvindron"/> for useful updates to the text. </t> <t><contact fullname="Sara Dickinson"/> thanks the Open Technology Fund for a grant to support the work on this document. </t> </section> <section anchor="contributors" numbered="false" toc="default"> <name>Contributors</name> <t>The below individuals contributed significantly to the document: </t> <contact fullname="John Dickinson"> <organization>Sinodun IT</organization> <address> <postal> <street/> <extaddr>Magdalen Centre</extaddr> <street>Oxford Science Park</street> <city>Oxford</city><code>OX4 4GA</code> <country>United Kingdom</country> <region/> </postal> </address> </contact> <contact fullname="Jim Hague"> <organization>Sinodun IT</organization> <address> <postal> <street/> <extaddr>Magdalen Centre</extaddr> <street>Oxford Science Park</street> <city>Oxford</city><code>OX4 4GA</code> <country>United Kingdom</country> <region/> </postal> </address> </contact> </section> </back> </rfc>