<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY RFC0768 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.0768.xml"> <!ENTITY RFC0791 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.0791.xml"> <!ENTITY RFC0792 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.0792.xml"> <!ENTITY RFC0793 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.0793.xml"> <!ENTITY RFC2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"> <!ENTITY RFC2474 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2474.xml"> <!ENTITY RFC4271 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4271.xml"> <!ENTITY RFC4303 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4303.xml"> <!ENTITY RFC4360 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4360.xml"> <!ENTITY RFC4364 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4364.xml"> <!ENTITY RFC4456 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4456.xml"> <!ENTITY RFC4760 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4760.xml"> <!ENTITY RFC5575 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5575.xml"> <!ENTITY RFC5668 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5668.xml"> <!ENTITY RFC7153 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7153.xml"> <!ENTITY RFC7223 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7223.xml"> <!ENTITY RFC7606 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7606.xml"> <!ENTITY RFC7674 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7674.xml"> <!ENTITY RFC7950 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7950.xml"> <!ENTITY RFC8126 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8126.xml"> <!ENTITY RFC8174 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY RFC8294 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8294.xml"> <!ENTITY RFC6811 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.6811.xml"> <!ENTITY RFC8205 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8205.xml"> <!ENTITY I-D.ietf-idr-flow-spec-v6 SYSTEM "http://xml.resource.org/public/rfc/bibxml3/reference.I-D.ietf-idr-flow-spec-v6.xml"> <!ENTITY I-D.vandevelde-idr-flowspec-path-redirect SYSTEM "http://xml.resource.org/public/rfc/bibxml3/reference.I-D.vandevelde-idr-flowspec-path-redirect.xml"> ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc toc="yes" ?> <?rfc symrefs="yes" ?> <?rfc sortrefs="yes"?> <?rfc compact="yes" ?> <?rfc subcompact="no" ?> <?rfc iprnotified="no" ?> <?rfc strict="no" ?>"rfc2629-xhtml.ent"> <rfccategory="std" docName="draft-ietf-idr-rfc5575bis-27"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-idr-rfc5575bis-25" number="8955" ipr="trust200902"obsoletes="5575,7674">obsoletes="5575, 7674" updates="" submissionType="IETF" category="std" consensus="true" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 2.44.0 --> <front> <title abbrev="Flow Specification">Dissemination of Flow Specification Rules</title> <seriesInfo name="RFC" value="8955"/> <author fullname="Christoph Loibl"initials="C.L."initials="C." surname="Loibl"> <organization>next layer Telekom GmbH</organization> <address> <postal> <street>Mariahilfer Guertel 37/7</street> <city>Vienna</city><region></region><region/> <code>1150</code><country>AT</country><country>Austria</country> </postal> <phone>+43 664 1176414</phone> <email>cl@tix.at</email> </address> </author> <author fullname="Susan Hares"initials="S"initials="S." surname="Hares"> <organization>Huawei</organization> <address> <postal> <street>7453 Hickory Hill</street> <city>Saline</city> <region>MI</region> <code>48176</code><country>USA</country><country>United States of America</country> </postal> <email>shares@ndzh.com</email> </address> </author> <author fullname="Robert Raszuk"initials="R"initials="R." surname="Raszuk"><organization>Bloomberg LP</organization><organization>NTT Network Innovations</organization> <address> <postal><street>731 Lexington Ave</street> <city>New York City</city> <region>NY</region> <code>10022</code> <country>USA</country><street>940 Stewart Dr</street> <city>Sunnyvale</city> <region>CA</region> <code>94085</code> <country>United States of America</country> </postal> <email>robert@raszuk.net </email> </address> </author> <author fullname="Danny McPherson"initials="D"initials="D." surname="McPherson"> <organization>Verisign</organization> <address> <postal><street></street> <city></city> <code></code> <country>USA</country><street/> <city/> <code/> <country>United States of America</country> </postal> <email>dmcpherson@verisign.com</email> </address> </author> <author fullname="Martin Bacher"initials="M.B."initials="M." surname="Bacher"> <organization>T-Mobile Austria</organization> <address> <postal> <street>Rennweg 97-99</street> <city>Vienna</city><region></region><region/> <code>1030</code><country>AT</country><country>Austria</country> </postal> <email>mb.ietf@gmail.com</email> </address> </author> <date year="2020"/> <area>Routing Area</area> <workgroup>IDR Working Group</workgroup> <keyword>RFC</keyword> <keyword>Request for Comments</keyword> <keyword>I-D</keyword> <keyword>Internet-Draft</keyword> <keyword>Dissemination of Flow Specification Rules</keyword>month="December"/> <area>Routing</area> <workgroup>IDR</workgroup> <abstract> <t> This document defines a Border Gateway Protocol Network Layer Reachability Information (BGP NLRI) encoding format that can be used to distribute (intra-domain and inter-domain) traffic FlowSpecifications.Specifications for IPv4 unicast and IPv4 BGP/MPLS VPN services. This allows the routing system to propagate information regarding more specific components of the traffic aggregate defined by an IP destination prefix. </t> <t> It also specifies BGP Extended Community encoding formats,thatwhich can be used to propagate Traffic Filtering Actions along with the Flow Specification NLRI. Those Traffic Filtering Actions encode actions a routing system can take if the packet matches the Flow Specification. </t> <t>Additionally, it defines two applications of that encoding format: one that can be used to automate inter-domain coordination of traffic filtering, such as what is required in order to mitigate (distributed) denial-of-service attacks, and a second application to provide traffic filtering in the context of a BGP/MPLS VPN service. Other applications (e.g. centralized control of traffic in a SDN or NFV context) are also possible. Other documents may specify Flow Specification extensions. </t> <t> The information is carried via BGP, thereby reusing protocol algorithms, operational experience, and administrative processes such as inter-provider peering agreements. </t> <t>This document obsoletes bothRFC5575RFC 5575 andRFC7674.RFC 7674. </t> </abstract> </front> <middle> <section anchor="intro"title="Introduction"> <t> Thisnumbered="true" toc="default"> <name>Introduction</name> <t>This document obsoletes"<xref target="RFC5575" format="title" />"<xreftarget="RFC5575" />target="RFC5575">"Dissemination of Flow Specification Rules"</xref> (see <xref target="rfc5575differences"/>format="default"/> for the differences). This document also obsoletes"<xref target="RFC7674" format="title" />"<xref target="RFC7674"/>format="default">"Clarification of the Flowspec Redirect Extended Community"</xref>, since it incorporates the encoding of the BGP Flow Specification Redirect Extended Community in <xref target="rt_redirect_action_subtype"/>. </t>format="default"/>.</t> <t> Modern IP routers have the capability to forward traffic and to classify, shape, rate limit, filter, or redirect packets based on administratively defined policies. These traffic policy mechanisms allow the operator to define match rules that operate on multiple fields of the packet header.ActionsActions, such as the ones describedaboveabove, can be associated with each rule. </t> <t> The n-tuple consisting of the matching criteria defines an aggregate traffic Flow Specification. The matching criteria can include elements such as source and destination address prefixes, IP protocol, and transport protocol port numbers. </t><t> <xref<t><xref target="dissemination_ipv4_flowspec"/>format="default"/> of this document defines a general procedure to encode Flow Specifications for aggregated traffic flows so that they can be distributed as a BGP <xref target="RFC4271"/>format="default"/> NLRI. Additionally, <xref target="traffic_filtering_actions"/>format="default"/> of this document defines the required Traffic Filtering Actions BGP Extended Communities and mechanisms to use BGP for intra- and inter-provider distribution of traffic filtering rules in order tofilter (distributed) denial-of-service (DoS)mitigate DoS and DDoS attacks. </t> <t> By expanding routing information with Flow Specifications, the routing system can take advantage of the ACL (Access Control List) or firewall capabilities in the router's forwarding path. Flow Specifications can be seen as more specific routing entries to a unicast prefix and are expected to depend upon the existing unicast data information. </t><t> A<t>A Flow Specification received from an external autonomous system will need to be validated against unicast routing before being accepted (<xref target="validation_procedure"/>).format="default"/>). The Flow Specification received from an internal BGP peer within the same autonomous system <xref target="RFC4271"/>format="default"/> is assumed to have been validated prior to transmission within the internal BGP (iBGP) mesh of an autonomous system. If the aggregate traffic flow defined by the unicast destination prefix is forwarded to a given BGP peer, then the local system can install more specific Flow Specifications that may result in different forwarding behavior, as requested by thissystem. </t> <t> Fromsystem.</t> <t>From an operational perspective, the utilization of BGP as the carrier for this information allows a network service provider to reuse both internal route distribution infrastructure (e.g., route reflector or confederation design) and existing external relationships (e.g., inter-domain BGP sessions to a customernetwork). </t>network).</t> <t> While it is certainly possible to address this problem using other mechanisms, this solution has been utilized in deployments because of the substantial advantage of being an incremental addition to already deployed mechanisms. </t> <t> Possible applications of that extension are: Automated inter-domain coordination of traffic filtering, such as what is required in order to mitigate DoS and DDoS attacks or traffic filtering in the context of a BGP/MPLS VPN service. Other applications (e.g., centralized control of traffic in a Software-Defined Networking (SDN) or Network Function Virtualization (NFV) context) are also possible. </t> <t>In current deployments, the information distributed by this extension is originated both manually as well as automatically, the latter by systems that are able to detect malicious traffic flows. When automated systems are used, care should be taken to ensure the correctness of the automated system. Thethelimitations of the receiving systems that need to process these automated Flow Specifications need to be taken in consideration as well (see also <xref target="security_considerations"/>).format="default"/>). </t> <t> This specification defines required protocol extensions to address most common applications of IPv4 unicast and VPNv4 unicast filtering. The same mechanism can be reused and new match criteria added to address similar filtering needs for other BGP addressfamiliesfamilies, such as IPv6 families <xreftarget="I-D.ietf-idr-flow-spec-v6"></xref>.target="RFC8956" format="default"/>. </t> </section> <sectiontitle="Definitionsnumbered="true" toc="default"> <name>Definitions of Terms Used in ThisMemo"> <t> <list style="hanging"> <t hangText="AFI - ">AddressMemo</name> <dl newline="false" spacing="normal" indent="10"> <dt>AFI:</dt> <dd>Address FamilyIdentifier.</t> <t hangText="AS - ">Autonomous System.</t> <t hangText="Loc-RIB - "> TheIdentifier</dd> <dt>AS:</dt> <dd>Autonomous System</dd> <dt>Loc-RIB:</dt> <dd>The Loc-RIB contains the routes that have been selected by the local BGP speaker's Decision Process <xreftarget="RFC4271"></xref>. </t> <t hangText="NLRI - ">Networktarget="RFC4271" format="default"/>.</dd> <dt>NLRI:</dt> <dd>Network Layer ReachabilityInformation.</t> <t hangText="PE - ">ProviderInformation</dd> <dt>PE:</dt> <dd>Provider Edgerouter.</t> <t hangText="RIB - ">Routingrouter</dd> <dt>RIB:</dt> <dd>Routing InformationBase.</t> <t hangText="SAFI - ">SubsequentBase</dd> <dt>SAFI:</dt> <dd>Subsequent Address FamilyIdentifier.</t> <t hangText="VRF - ">VirtualIdentifier</dd> <dt>VRF:</dt> <dd>Virtual Routing andForwarding instance.</t> </list> </t> <t> TheForwarding</dd> </dl> <t>The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119"></xref>target="RFC2119"/> <xreftarget="RFC8174"></xref>target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere. </t>here.</t> </section> <sectiontitle="Flow Specifications"> <t> Anumbered="true" toc="default"> <name>Flow Specifications</name> <t>A Flow Specification is an n-tuple consisting of several matching criteria that can be applied to IP traffic. A given IP packet is said to match the defined Flow Specification if it matches all the specified criteria. This n-tuple is encoded into a BGP NLRI definedbelow. </t> <t> </t>below.</t> <t>A given Flow Specification may be associated with a set of attributes, depending on the particular application; such attributes may or may not include reachability information (i.e., NEXT_HOP). Well-known or AS-specific community attributes can be used to encode a set of predeterminedactions. </t> <t> Aactions.</t> <t>A particular application is identified by a specific (Address Family Identifier, Subsequent Address Family Identifier (AFI, SAFI)) pair <xreftarget="RFC4760"></xref>target="RFC4760" format="default"/> and corresponds to a distinct set of RIBs. Those RIBs should be treated independently from each other in order to assurenon-interferencenoninterference between distinctapplications. </t> <t> BGPapplications.</t> <t>BGP itself treats the NLRI as a key to an entry in its databases. Entries that are placed in the Loc-RIB are then associated with a given set of semantics, which is application dependent. This is consistent with existing BGP applications. For instance, IP unicast routing (AFI=1, SAFI=1) and IP multicast reverse-path information (AFI=1, SAFI=2) are handled by BGP without any particular semantics being associated with them until installed in theLoc-RIB. </t>Loc-RIB.</t> <t> Standard BGP policy mechanisms, such as UPDATE filtering by NLRI prefix as well as communitymatching andmatching, must apply to the Flow specification defined NLRI-type. Network operators can also control propagation of such routing updates by enabling or disabling the exchange of a particular (AFI, SAFI) pair on a given BGP peering session. </t> </section> <sectiontitle="Disseminationanchor="dissemination_ipv4_flowspec" numbered="true" toc="default"> <name>Dissemination of IPv4 Flow SpecificationInformation" anchor="dissemination_ipv4_flowspec"> <t> ThisInformation</name> <t>This document defines a Flow Specification NLRI type (<xref target="fs_nlri"/>)format="default"/>) that may include severalcomponentscomponents, such as destination prefix, source prefix, protocol, ports, and others (see <xref target="nlri_value_encoding"/> below). </t> <t> Thisformat="default"/> below).</t> <t>This NLRI information is encoded using MP_REACH_NLRI and MP_UNREACH_NLRIattributesattributes, as defined in <xreftarget="RFC4760"></xref>.target="RFC4760" format="default"/>. When advertising Flow Specifications, the Length ofNext Hopthe Next-Hop Network AddressMUST<bcp14>MUST</bcp14> be set to 0. The Network Address ofNext Hopthe Next-Hop fieldMUST<bcp14>MUST</bcp14> beignored. </t> <t> Theignored.</t> <t>The NLRI field of the MP_REACH_NLRI and MP_UNREACH_NLRI is encoded as one or more 2-tuples of the form <length, NLRI value>. It consists of a 1- or 2-octet length field followed by a variable-length NLRI value. The length is expressed inoctets. </t> <t>octets.</t> <figuretitle="Flowanchor="fs_nlri"> <name>Flow Specification NLRI forIPv4" anchor="fs_nlri"> <artwork>IPv4</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +-------------------------------+ | length (0xnn or 0xfnnn) | +-------------------------------+ | NLRI value (variable) | +-------------------------------+</artwork>]]></artwork> </figure></t> <t> Implementations<t>Implementations wishing to exchange Flow SpecificationMUST<bcp14>MUST</bcp14> use BGP's Capability Advertisement facility to exchange the Multiprotocol Extension Capability Code (Code1)1), as defined in <xreftarget="RFC4760"></xref>.target="RFC4760" format="default"/>. The (AFI, SAFI) pair carried in the Multiprotocol Extension CapabilityMUST<bcp14>MUST</bcp14> be (AFI=1, SAFI=133) for IPv4 FlowSpecification,Specification and (AFI=1, SAFI=134) for VPNv4 FlowSpecification. </t>Specification.</t> <sectiontitle="Length Encoding">numbered="true" toc="default"> <name>Length Encoding</name> <t><list style="symbols"> <t>IfThe length field indicates the length in octets of the variable NLRI value: </t> <ul spacing="normal"> <li>If the NLRI length is smaller than 240 (0xf0 hex) octets, the length field can be encoded as a single octet.</t> <t>Otherwise,</li> <li>Otherwise, it is encoded as an extended-length 2-octet value in which the most significant nibble has the hex value0xf.</t> </list> </t> <t> In0xf.</li> </ul> <t>In <xref target="fs_nlri"/>format="default"/> above, valuesless-thanless than 240 are encoded using two hex digits (0xnn). Values above 239 are encoded using 3 hex digits (0xfnnn). The highest value that can be represented with this encoding is 4095. Forexampleexample, the length value of 239 is encoded as 0xef (singleoctet)octet), while 240 is encoded as 0xf0f0(2-octet). </t>(2 octets).</t> </section> <section anchor="nlri_value_encoding"title="NLRInumbered="true" toc="default"> <name>NLRI ValueEncoding">Encoding</name> <t> The Flow Specification NLRI value consists of a list of optional components and is encoded as follows: </t> <t>Encoding: <[component]+></t><t> A<t>A specific packet is considered to match the Flow Specification when it matches the intersection (AND) of all the components present in the FlowSpecification. </t> <t> Components MUSTSpecification.</t> <t>Components <bcp14>MUST</bcp14> follow strict type ordering by increasing numerical order. A given component typeMAY<bcp14>MAY</bcp14> (exactly once) be present in the Flow Specification. If present, itMUST<bcp14>MUST</bcp14> precede any component of higher numeric typevalue. </t> <t> Allvalue.</t> <t>All combinations of components within a single Flow Specification are allowed. However, some combinations cannot match any packets(e.g.(e.g., "ICMP Type AND Port" will never match anypackets),packets) and thusSHOULD NOT<bcp14>SHOULD NOT</bcp14> be propagated byBGP. </t> <t> ABGP.</t> <t>An NLRI value not encoded as specified here, includingaan NLRI that contains an unknown component type, is considered malformed and error handling according to <xref target="errorhandling"/>format="default"/> isperformed. </t>performed.</t> <section anchor="operators"title="Operators"> <t> Mostnumbered="true" toc="default"> <name>Operators</name> <t>Most of the components described below make use of comparison operators. Which of the two operators is used is defined by the components in <xref target="flowspec_components"/>.format="default"/>. The operators are encoded as a singleoctet. </t>octet.</t> <section anchor="numeric_operator"title="Numericnumbered="true" toc="default"> <name>Numeric Operator(numeric_op)">(numeric_op)</name> <t>This operator is encoded as shown in <xref target="figure_numeric_operator"/>.format="default"/>.</t> <figuretitle="Numeric Operator (numeric_op)"anchor="figure_numeric_operator"><artwork><name>Numeric Operator (numeric_op)</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | e | a | len | 0 |lt |gt |eq | +---+---+---+---+---+---+---+---+</artwork>]]></artwork> </figure><list style="hanging"> <t hangText="e -">end-of-list bit: Set<dl newline="false" spacing="normal" indent="6"> <dt>e (end-of-list bit):</dt> <dd>Set in the last {op, value} pair in thelist. </t> <t hangText="a -">AND bit: Iflist</dd> <dt>a (AND bit):</dt> <dd>If unset, the result of the previous {op, value} pair is logically ORed with the current one. If set, the operation is a logical AND. In the first operator octet of asequencesequence, itMUST<bcp14>MUST</bcp14> be encoded as unset andMUST<bcp14>MUST</bcp14> be treated as always unset on decoding. The AND operator has higher priority than OR for the purposes of evaluating logicalexpressions. </t> <t hangText="len -">length: Theexpressions.</dd> <dt>len (length):</dt> <dd>The length of the value field for this operator given as (1 << len). This encodes 1 (len=00), 2 (len=01), 4 (len=10), and 8 (len=11)octets. </t> <t hangText="0 -">MUSToctets.</dd> <dt>0:</dt> <dd><bcp14>MUST</bcp14> be set to 0 on NLRIencoding,encoding andMUST<bcp14>MUST</bcp14> be ignored duringdecoding </t> <t hangText="lt -">less thandecoding</dd> <dt>lt:</dt> <dd>less-than comparison between data andvalue. </t> <t hangText="gt -">greater thanvalue</dd> <dt>gt:</dt> <dd>greater-than comparison between data andvalue. </t> <t hangText="eq -">equalityvalue</dd> <dt>eq:</dt> <dd>equality between data andvalue. </t> </list> </t> <t> Thevalue</dd> </dl> <t>The bits lt, gt, and eq can be combined to produce common relationaloperatorsoperators, such as "less or equal", "greater or equal", and "not equalto"to", as shown in <xref target="table_comparison_operator"/>. </t> <texttableformat="default"/>.</t> <table anchor="table_comparison_operator"title="Comparison operation combinations"> <ttcol align="center">lt</ttcol> <ttcol align="center">gt</ttcol> <ttcol align="center">eq</ttcol> <ttcolalign="center"> <name>Comparison Operation Combinations</name> <thead> <tr> <th align="center">lt</th> <th align="center">gt</th> <th align="center">eq</th> <th align="left">Resultingoperation</ttcol> <c>0</c><c>0</c><c>0</c><c>operation</th> </tr> </thead> <tbody> <tr> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="left"> false (independent of thevalue)</c> <c>0</c><c>0</c><c>1</c><c>value)</td> </tr> <tr> <td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="left"> == (equal)</c> <c>0</c><c>1</c><c>0</c><c></td> </tr> <tr> <td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="left"> > (greater than)</c> <c>0</c><c>1</c><c>1</c><c></td> </tr> <tr> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td> <td align="left"> >= (greater than orequal)</c> <c>1</c><c>0</c><c>0</c><c>equal)</td> </tr> <tr> <td align="center">1</td> <td align="center">0</td> <td align="center">0</td> <td align="left"> < (lessthan)</c> <c>1</c><c>0</c><c>1</c><c>than)</td> </tr> <tr> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td> <td align="left"> <= (less than orequal)</c> <c>1</c><c>1</c><c>0</c><c>equal)</td> </tr> <tr> <td align="center">1</td> <td align="center">1</td> <td align="center">0</td> <td align="left"> != (not equalvalue)</c> <c>1</c><c>1</c><c>1</c><c>value)</td> </tr> <tr> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="left"> true (independent of thevalue)</c> </texttable>value)</td> </tr> </tbody> </table> </section> <section anchor="bitmask_operator"title="Bitmasknumbered="true" toc="default"> <name>Bitmask Operator(bitmask_op)">(bitmask_op)</name> <t>This operator is encoded as shown in <xref target="figure_bitmask_operator"/>.format="default"/>. </t> <figuretitle="Bitmask Operator (bitmask_op)"anchor="figure_bitmask_operator"><artwork><name>Bitmask Operator (bitmask_op)</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | e | a | len | 0 | 0 |not| m | +---+---+---+---+---+---+---+---+</artwork>]]></artwork> </figure></t> <t> <list style="hanging"> <t hangText="e,<dl newline="false" spacing="normal" indent="6"> <dt>e, a, len- Most significant nibble:">(end-of-list(end-of-list bit, AND bit, and lengthfield), asfield):</dt> <dd>Most significant nibble; defined in the Numeric Operator format in <xref target="numeric_operator"/>. </t> <t hangText="not - NOT bit:"> Ifformat="default"/>.</dd> <dt>not (NOT bit):</dt> <dd>If set, logical negation ofoperation. </t> <t hangText="m - Match bit:"> Ifoperation.</dd> <dt>m (Match bit):</dt> <dd>If set, this is a bitwise match operation defined as "(data AND value) == value"; if unset, (data AND value) evaluates to TRUE if any of the bits in the value mask are set in thedata </t> <t hangText="0 - alldata.</dd> <dt>0 (all 0bits:"> MUSTbits):</dt> <dd><bcp14>MUST</bcp14> be set to 0 on NLRIencoding,encoding andMUST<bcp14>MUST</bcp14> be ignored duringdecoding </t> </list> </t>decoding</dd> </dl> </section> </section> <section anchor="flowspec_components"title="Components">numbered="true" toc="default"> <name>Components</name> <t> The encoding of each of the components begins with a type field (1 octet) followed by a variable length parameter. The following sections define component types and parameter encodings for the IPv4 IP layer and transport layer headers. IPv6 NLRI component types are described in <xreftarget="I-D.ietf-idr-flow-spec-v6"></xref>.target="RFC8956" format="default"/>. </t> <section anchor="type_1"title="Typetoc="include" numbered="true"> <name>Type 1 - DestinationPrefix" toc="include">Prefix</name> <t>Encoding: <type (1 octet), length (1 octet), prefix(variable)> </t>(variable)></t> <t>Defines the destination prefix to match. The length and prefix fields are encoded as in BGP UPDATE messages <xref target="RFC4271"/> </t>format="default"/>.</t> </section> <section anchor="type_2"title="Typetoc="include" numbered="true"> <name>Type 2 - SourcePrefix" toc="include">Prefix</name> <t>Encoding: <type (1 octet), length (1 octet), prefix(variable)> </t>(variable)></t> <t>Defines the source prefix to match. The length and prefix fields are encoded as in BGP UPDATE messages <xref target="RFC4271"/> </t>format="default"/>.</t> </section> <section anchor="type_3"title="Typetoc="include" numbered="true"> <name>Type 3 - IPProtocol" toc="include">Protocol</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t>value]+></t> <t>Contains a list of {numeric_op, value} pairs that are used to match the IP protocol value octet in IP packet header (see <xref target="RFC0791"/> Section 3.1). </t> <t> ThissectionFormat="of" section="3.1"/>).</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 3 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as single octet (numeric_oplen=00). </t>len=00).</t> </section> <section anchor="type_4"title="Typetoc="include" numbered="true"> <name>Type 4 -Port" toc="include">Port</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t>value]+></t> <t>Defines a list of {numeric_op, value} pairs thatmatchesmatch source OR destination TCP/UDP ports (see <xref target="RFC0793"/> Section 3.1sectionFormat="of" section="3.1"/> and the "Format" section of <xref target="RFC0768"/> Section "Format").format="default"/>). This component matches if either the destination port OR the source port ofaan IP packet matches thevalue. </t> <t> Thisvalue.</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 4 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as 1- or 2-octet quantities (numeric_op len=00 orlen=01). </t> <t> Inlen=01).</t> <t>In case of the presence of the port (destination-port<xref(<xref target="type_5"/>,format="default"/>), source-port<xref target="type_6"/>) component(<xref target="type_6" format="default"/>)) component, only TCP or UDP packets can match the entire Flow Specification. The port component, if present, never matches when the packet's IP protocol value is not 6 (TCP) or 17 (UDP), if the packet is fragmented and this is not the first fragment, or if the system is unable to locate the transport header. Different implementations may or may not be able to decode the transport header in the presence of IP options or Encapsulating Security Payload (ESP) NULL <xreftarget="RFC4303"></xref> encryption. </t>target="RFC4303" format="default"/> encryption.</t> </section> <section anchor="type_5"title="Typetoc="include" numbered="true"> <name>Type 5 - DestinationPort" toc="include">Port</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t>value]+></t> <t> Defines a list of {numeric_op, value} pairs used to match the destination port of a TCP or UDP packet (see also <xref target="RFC0793"/> Section 3.1sectionFormat="of" section="3.1"/> and the "Format" section of <xref target="RFC0768"/> Section "Format"). </t> <t> Thisformat="default"/>.</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 5 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as 1- or 2-octet quantities (numeric_op len=00 orlen=01). </t>len=01).</t> <t>The last paragraph of <xref target="type_4"/>format="default"/> also applies to this component.</t> </section> <section anchor="type_6"title="Typetoc="include" numbered="true"> <name>Type 6 - SourcePort" toc="include">Port</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t> <t> Definesvalue]+></t> <t>Defines a list of {numeric_op, value} pairs used to match the source port of a TCP or UDP packet (see also <xref target="RFC0793"/> Section 3.1sectionFormat="of" section="3.1"/> and the "Format" section of <xref target="RFC0768"/> Section "Format"). </t> <t> Thisformat="default"/>.</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 6 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as 1- or 2-octet quantities (numeric_op len=00 orlen=01). </t>len=01).</t> <t>The last paragraph of <xref target="type_4"/>format="default"/> also applies to this component.</t> </section> <section anchor="type_7"title="Typetoc="include" numbered="true"> <name>Type 7 - ICMPtype" toc="include">Type</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t>value]+></t> <t>Defines a list of {numeric_op, value} pairs used to match the type field of an ICMP packet (see also the "Message Formats" section of <xref target="RFC0792"/> Section "Message Formats"). </t> <t> Thisformat="default"/>).</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 7 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as single octet (numeric_oplen=00). </t>len=00).</t> <t> In case of the presence of the ICMP typecomponentcomponent, only ICMP packets can match the entire Flow Specification. The ICMP type component, if present, never matches when the packet's IP protocol value is not 1 (ICMP), if the packet is fragmented and this is not the first fragment, or if the system is unable to locate the transport header. Different implementations may or may not be able to decode the transport header in the presence of IP options or Encapsulating Security Payload (ESP) NULL <xreftarget="RFC4303"></xref>target="RFC4303" format="default"/> encryption. </t> </section> <section anchor="type_8"title="Typetoc="include" numbered="true"> <name>Type 8 - ICMPcode" toc="include">Code</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t> <t> Definesvalue]+></t> <t>Defines a list of {numeric_op, value} pairs used to match the code field of an ICMP packet (see also the "Message Formats" section of <xref target="RFC0792"/> Section "Message Formats"). </t> <t> Thisformat="default"/>).</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 8 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as single octet (numeric_oplen=00). </t>len=00).</t> <t> In case of the presence of the ICMP codecomponentcomponent, only ICMP packets can match the entire Flow Specification. The ICMP code component, if present, never matches when the packet's IP protocol value is not 1 (ICMP), if the packet is fragmented and this is not the first fragment, or if the system is unable to locate the transport header. Different implementations may or may not be able to decode the transport header in the presence of IP options or Encapsulating Security Payload (ESP) NULL <xreftarget="RFC4303"></xref>target="RFC4303" format="default"/> encryption. </t> </section> <section anchor="type_9"title="Typetoc="include" numbered="true"> <name>Type 9 - TCPflags" toc="include">Flags</name> <t>Encoding: <type (1 octet), [bitmask_op,bitmask]+> </t> <t> Definesbitmask]+></t> <t>Defines a list of {bitmask_op, bitmask} pairs used to match TCPControl Bitscontrol bits (see also <xreftarget="RFC0793"></xref> Section 3.1). </t> <t> Thistarget="RFC0793" sectionFormat="of" section="3.1"/>).</t> <t>This component uses the Bitmask Operator (bitmask_op) described in <xref target="bitmask_operator"/>.format="default"/>. Type 9 component bitmasksMUST<bcp14>MUST</bcp14> be encoded as 1- or 2-octet bitmask (bitmask_op len=00 orlen=01). </t>len=01).</t> <t>When a single octet (bitmask_op len=00) is specified, it matches octet 14 of the TCP header (see also <xreftarget="RFC0793"></xref> Section 3.1),target="RFC0793" sectionFormat="of" section="3.1"/>), which contains the TCPControl Bits.control bits. When a 2-octet (bitmask_op len=01) encoding is used, it matches octets 13 and 14 of the TCP header with the data offset (leftmost 4 bits) always treated as0. </t>0.</t> <t> In case of the presence of the TCP flagscomponentcomponent, only TCP packets can match the entire Flow Specification. The TCP flags component, if present, never matches when the packet's IP protocol value is not 6 (TCP), if the packet is fragmented and this is not the first fragment, or if the system is unable to locate the transport header. Different implementations may or may not be able to decode the transport header in the presence of IP options or Encapsulating Security Payload (ESP) NULL <xreftarget="RFC4303"></xref>target="RFC4303" format="default"/> encryption. </t> </section> <section anchor="type_10"title="Typetoc="include" numbered="true"> <name>Type 10 - Packetlength" toc="include">Length</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t> <t> Definesvalue]+></t> <t>Defines a list of {numeric_op, value} pairs used to match on the total IP packet length (excluding Layer 2 but including IPheader). </t> <t> Thisheader).</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 10 component valuesSHOULD<bcp14>SHOULD</bcp14> be encoded as 1- or 2-octet quantities (numeric_op len=00 orlen=01). </t>len=01).</t> </section> <section anchor="type_11"title="Typetoc="include" numbered="true"> <name>Type 11 - DSCP (Diffserv CodePoint)" toc="include">Point)</name> <t>Encoding: <type (1 octet), [numeric_op,value]+> </t>value]+></t> <t> Defines a list of {numeric_op, value} pairs used to match the 6-bit DSCP field (see also <xreftarget="RFC2474"></xref>). </t> <t> Thistarget="RFC2474" format="default"/>).</t> <t>This component uses the Numeric Operator (numeric_op) described in <xref target="numeric_operator"/>.format="default"/>. Type 11 component valuesMUST<bcp14>MUST</bcp14> be encoded as single octet (numeric_oplen=00). </t> <t> Thelen=00).</t> <t>The six least significant bits contain the DSCP value. All other bitsSHOULD<bcp14>SHOULD</bcp14> be treated as0. </t>0.</t> </section> <section anchor="type_12"title="Typetoc="include" numbered="true"> <name>Type 12 -Fragment" toc="include">Fragment</name> <t>Encoding: <type (1 octet), [bitmask_op,bitmask]+> </t>bitmask]+></t> <t> Defines a list of {bitmask_op, bitmask} pairs used to match specific IPfragments. </t> <t> Thisfragments.</t> <t>This component uses the Bitmask Operator (bitmask_op) described in <xref target="bitmask_operator"/>.format="default"/>. The Type 12 component bitmaskMUST<bcp14>MUST</bcp14> be encoded as single octet bitmask (bitmask_oplen=00). </t> <t>len=00).</t> <figuretitle="Fragment Bitmask Operand"anchor="figure_fragment_bitmask_operand"><artwork><name>Fragment Bitmask Operand</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 0 | 0 | 0 |LF |FF |IsF|DF | +---+---+---+---+---+---+---+---+</artwork>]]></artwork> </figure></t><t>Bitmaskvalues: <list style="hanging"> <t hangText="DF -">Don't fragment - matchvalues:</t> <dl newline="false" spacing="normal" indent="6"> <dt>DF (Don't Fragment):</dt> <dd>match if<xref target="RFC0791" />IP Header Flags Bit-1 (DF) <xref target="RFC0791"/> is1 </t> <t hangText="IsF -">Is1</dd> <dt>IsF (Is a fragment other than thefirst - matchfirst):</dt> <dd>match if the <xreftarget="RFC0791" />target="RFC0791"/> IP Header Fragment Offset is not0 </t> <t hangText="FF -">First fragment - match0</dd> <dt>FF (First Fragment):</dt> <dd>match if the <xreftarget="RFC0791" />target="RFC0791"/> IP Header Fragment Offset is 0 AND Flags Bit-2 (MF) is1 </t> <t hangText="LF -">Last fragment - match1</dd> <dt>LF (Last Fragment):</dt> <dd>match if the <xreftarget="RFC0791" />target="RFC0791"/> IP Header Fragment Offset is not 0 AND Flags Bit-2 (MF) is0 </t> <t hangText="0 -">MUST0</dd> <dt>0:</dt> <dd><bcp14>MUST</bcp14> be set to 0 on NLRIencoding,encoding andMUST<bcp14>MUST</bcp14> be ignored duringdecoding </t> </list> </t>decoding</dd> </dl> </section> </section> </section> <sectiontitle="Examplesnumbered="true" toc="default"> <name>Examples ofEncodings">Encodings</name> <sectiontitle="Example 1" toc="exclude"> <t> Antoc="exclude" numbered="true"> <name>Example 1</name> <t>An example of a Flow Specification NLRI encoding for: "all packets to 192.0.2.0/24 and TCP port25". </t> <t> <figure> <artwork> +--------+----------------+----------+----------+ | length | destination | protocol | port | +--------+----------------+----------+----------+ | 0x0b | 0125".</t> <table anchor="ex-1" align="center"> <thead> <tr> <th>length</th> <th>destination</th> <th>protocol</th> <th>port</th> </tr> </thead> <tbody> <tr> <td>0x0b</td> <td>01 18 c0 0002 | 0302</td> <td>03 8106 | 0406</td> <td>04 8119 | +--------+----------------+----------+----------+ </artwork> </figure> </t> <t> Decoded: <figure> <artwork> +-------+------------+-------------------------------+ | Value | | | +-------+------------+-------------------------------+ | 0x0b | length |19</td> </tr> </tbody> </table> <t>Decoded:</t> <table anchor="ex-1-decoded" align="center"> <thead> <tr> <th>Value</th> <th rowspan="1" colspan="2"></th> </tr> </thead> <tbody> <tr> <td>0x0b</td> <td>length</td> <td> 11 octets(len<240 1-octet) | | 0x01 | type | Type(if len<240, 1 octet)</td> </tr> <tr> <td>0x01</td> <td>type</td> <td>Type 1 - DestinationPrefix | | 0x18 | length | 24 bit | | 0xc0 | prefix | 192 | | 0x00 | prefix | 0 | | 0x02 | prefix | 2 | | 0x03 | type | TypePrefix</td> </tr> <tr> <td>0x18</td> <td>length</td> <td>24 bit</td> </tr> <tr> <td>0xc0</td> <td>prefix</td> <td>192</td> </tr> <tr> <td>0x00</td> <td>prefix</td> <td>0</td> </tr> <tr> <td>0x02</td> <td>prefix</td> <td>2</td> </tr> <tr> <td>0x03</td> <td>type</td> <td>Type 3 - IPProtocol | | 0x81 | numeric_op | end-of-list,Protocol</td> </tr> <tr> <td>0x81</td> <td>numeric_op</td> <td>end-of-list, value size=1,== | | 0x06 | value | 6 (TCP) | | 0x04 | type | Type==</td> </tr> <tr> <td>0x06</td> <td>value</td> <td>6 (TCP)</td> </tr> <tr> <td>0x04</td> <td>type</td> <td>Type 4 -Port | | 0x81 | numeric_op | end-of-list,Port</td> </tr> <tr> <td>0x81</td> <td>numeric_op</td> <td>end-of-list, value size=1,== | | 0x19 | value | 25 | +-------+------------+-------------------------------+ </artwork> </figure> This==</td> </tr> <tr> <td>0x19</td> <td>value</td> <td>25</td> </tr> </tbody> </table> <t>This constitutesaan NLRI withaan NLRI length of 11octets. </t>octets.</t> </section> <sectiontitle="Example 2" toc="exclude"> <t> Antoc="exclude" numbered="true"> <name>Example 2</name> <t>An example of a Flow Specification NLRI encoding for: "all packets to 192.0.2.0/24 from 203.0.113.0/24 and port {range [137, 139] or8080}". <figure> <artwork> +--------+----------------+----------------+-------------------------+ | length | destination | source | port | +--------+----------------+----------------+-------------------------+ | 0x12 | 018080}".</t> <table anchor="ex-2" align="center"> <thead> <tr> <th>length</th> <th>destination</th> <th>source</th> <th>port</th> </tr> </thead> <tbody> <tr> <td>0x12</td> <td>01 18 c0 0002 | 0202</td> <td>02 18 cb 0071 | 0471</td> <td>04 03 89 45 8b 91 1f90 | +--------+----------------+----------------+-------------------------+ </artwork> </figure> </t> <t> Decoded: <figure> <artwork> +--------+------------+-------------------------------+ | Value | | | +--------+------------+-------------------------------+ | 0x12 | length | 1890</td> </tr> </tbody> </table> <t>Decoded:</t> <table anchor="ex-2-decoded" align="center"> <thead> <tr> <th>Value</th> <th rowspan="1" colspan="2"></th> </tr> </thead> <tbody> <tr> <td>0x12</td> <td>length</td> <td>18 octets(len<240 1-octet) | | 0x01 | type | Type(if len<240, 1 octet)</td> </tr> <tr> <td>0x01</td> <td>type</td> <td>Type 1 - DestinationPrefix | | 0x18 | length | 24 bit | | 0xc0 | prefix | 192 | | 0x00 | prefix | 0 | | 0x02 | prefix | 2 | | 0x02 | type | TypePrefix</td> </tr> <tr> <td>0x18</td> <td>length</td> <td>24 bit</td> </tr> <tr> <td>0xc0</td> <td>prefix</td> <td>192</td> </tr> <tr> <td>0x00</td> <td>prefix</td> <td>0</td> </tr> <tr> <td>0x02</td> <td>prefix</td> <td>2</td> </tr> <tr> <td>0x02</td> <td>type</td> <td>Type 2 - SourcePrefix | | 0x18 | length |Prefix</td> </tr> <tr> <td>0x18</td> <td>length</td> <td> 24bit | | 0xcb | prefix | 203 | | 0x00 | prefix | 0 | | 0x71 | prefix | 113 | | 0x04 | type | Typebit</td> </tr> <tr> <td>0xcb</td> <td>prefix</td> <td>203</td> </tr> <tr> <td>0x00</td> <td>prefix</td> <td>0</td> </tr> <tr> <td>0x71</td> <td>prefix</td> <td>113</td> </tr> <tr> <td>0x04</td> <td>type</td> <td>Type 4 -Port | | 0x03 | numeric_op | value size=1, >= | | 0x89 | value | 137 | | 0x45 | numeric_op | "AND", valuePort</td> </tr> <tr> <td>0x03</td> <td>numeric_op</td> <td>value size=1,<= | | 0x8b | value | 139 | | 0x91 | numeric_op | end-of-list,>=</td> </tr> <tr> <td>0x89</td> <td>value</td> <td>137</td> </tr> <tr> <td>0x45</td> <td>numeric_op</td> <td>"AND", valuesize=2, == | | 0x1f90 |size=1, <=</td> </tr> <tr> <td>0x8b</td> <td>value</td> <td>139</td> </tr> <tr> <td>0x91</td> <td>numeric_op</td> <td>end-of-list, value| 8080 | +--------+------------+-------------------------------+ </artwork> </figure> Thissize=2, ==</td> </tr> <tr> <td>0x1f90</td> <td>value</td> <td>8080</td> </tr> </tbody> </table> <t>This constitutesaan NLRI withaan NLRI length of 18octets. </t>octets.</t> </section> <sectiontitle="Example 3" toc="exclude"> <t> Antoc="exclude" numbered="true"> <name>Example 3</name> <t>An example of a Flow Specification NLRI encoding for: "all packets to 192.0.2.1/32 and fragment { DF or FF } (matching packet with DF bit set or FirstFragments) <figure> <artwork> +--------+-------------------+----------+ | length | destination | fragment | +--------+-------------------+----------+ | 0x09 | 01Fragments)</t> <table anchor="ex-3" align="center"> <thead> <tr> <th>length</th> <th>destination</th> <th>fragment</th> </tr> </thead> <tbody> <tr> <td>0x09</td> <td>01 20 c0 00 0201 | 0c01</td> <td>0c 8005 | +--------+-------------------+----------+ </artwork> </figure> </t> <t> Decoded: <figure> <artwork> +-------+------------+------------------------------+ | Value | | | +-------+------------+------------------------------+ | 0x09 | length | 905</td> </tr> </tbody> </table> <t>Decoded:</t> <table> <thead> <tr> <th>Value</th> <th rowspan="1" colspan="2"></th> </tr> </thead> <tbody> <tr> <td>0x09</td> <td>length</td> <td>9 octets(len<240 1-octet) | | 0x01 | type | Type(if len<240, 1 octet)</td> </tr> <tr> <td>0x01</td> <td>type</td> <td>Type 1 - DestinationPrefix | | 0x20 | length |Prefix</td> </tr> <tr> <td>0x20</td> <td>length</td> <td> 32bit | | 0xc0 | prefix | 192 | | 0x00 | prefix | 0 | | 0x02 | prefix | 2 | | 0x01 | prefix | 1 | | 0x0c | type | Typebit</td> </tr> <tr> <td>0xc0</td> <td>prefix</td> <td>192</td> </tr> <tr> <td>0x00</td> <td>prefix</td> <td>0</td> </tr> <tr> <td>0x02</td> <td>prefix</td> <td>2</td> </tr> <tr> <td>0x01</td> <td>prefix</td> <td>1</td> </tr> <tr> <td>0x0c</td> <td>type</td> <td>Type 12 -Fragment | | 0x80 | bitmask_op | end-of-list, value size=1 | | 0x05 | bitmask | DF=1, FF=1 | +-------+------------+------------------------------+ </artwork> </figure> ThisFragment</td> </tr> <tr> <td>0x80</td> <td>bitmask_op</td> <td>end-of-list, value size=1</td> </tr> <tr> <td>0x05</td> <td>bitmask</td> <td>DF=1, FF=1</td> </tr> </tbody> </table> <t>This constitutesaan NLRI withaan NLRI length of 9octets. </t>octets.</t> </section> </section> </section> <section anchor="traffic_filtering"title="Traffic Filtering"> <t> Trafficnumbered="true" toc="default"> <name>Traffic Filtering</name> <t>Traffic filtering policies have been traditionally considered to be relatively static. Limitations of these static mechanisms caused this new dynamic mechanism to be designed for the three new applications of trafficfiltering: <list style="symbols"> <t>Preventionfiltering:</t> <ul spacing="normal"> <li>Prevention of traffic-based, denial-of-service(DOS) attacks.</t> <t>Traffic(DoS) attacks</li> <li>Traffic filtering in the context of BGP/MPLS VPNservice.</t> <t>Centralizedservice</li> <li>Centralized traffic control for SDN/NFVnetworks.</t> </list> Thesenetworks</li> </ul> <t>These applications require coordination among service providers and/or coordination among the AS within a serviceprovider. </t> <t> Theprovider.</t> <t>The Flow Specification NLRI defined in <xref target="dissemination_ipv4_flowspec"/>format="default"/> conveys information about traffic filtering rules for traffic that should be discarded or handled in a manner specified by a set ofpre-definedpredefined actions (which are defined in BGP Extended Communities). This mechanism is primarily designed to allow an upstream autonomous system to perform inbound filtering in their ingress routers of traffic that a given downstream AS wishes todrop. </t> <t> Indrop.</t> <t>In order to achieve this goal, this document specifies two application-specific NLRI identifiers that provide trafficfilters,filters and a set of actions encoding in BGP Extended Communities. The two application-specific NLRI identifiersare: <list style="symbols"> <t> IPv4are:</t> <ul spacing="normal"> <li>IPv4 Flow Specification identifier (AFI=1, SAFI=133) along with specific semantic rules for IPv4routes, and </t> <t> VPNv4routes and</li> <li>VPNv4 Flow Specification identifier (AFI=1, SAFI=134) value, which can be used to propagate traffic filtering information in a BGP/MPLS VPNenvironment. </t> </list> </t>environment.</li> </ul> <t> Encoding of the NLRI is described in <xref target="dissemination_ipv4_flowspec"/>format="default"/> for IPv4 Flow Specification and in <xref target="traffic_filtering_vpn"/>format="default"/> for VPNv4 Flow Specification. The filtering actions are described in <xref target="traffic_filtering_actions"/>.format="default"/>. </t> <sectiontitle="Orderinganchor="ordering_of_flow_spec" numbered="true" toc="default"> <name>Ordering of FlowSpecifications" anchor="ordering_of_flow_spec"> <t> MoreSpecifications</name> <t>More than one Flow Specification may match a particular traffic flow. Thus, it is necessary to define the order in which Flow Specifications get matched and actions being applied to a particular traffic flow. This ordering function is such that it does not depend on the arrival order of the Flow Specification via BGP and thus is consistent in thenetwork. </t> <t> Thenetwork.</t> <t>The relative order of two Flow Specifications is determined by comparing their respective components. The algorithm starts by comparing the left-most components (lowest component type value) of the Flow Specifications. If the types differ, the Flow Specification with lowest numeric type value has higher precedence (and thus will match before) than the Flow Specification that doesn't contain that component type. If the component types are the same, then atype- specifictype-specific comparison is performed (see below). If the types areequalequal, the algorithm continues with the nextcomponent. </t> <t> Forcomponent.</t> <t>For IP prefix values (IP destination or sourceprefix): Ifprefix), if one of the two prefixes to compare is a more specific prefix of the other, the more specific prefix has higher precedence.OtherwiseOtherwise, the one with the lowest IP value has higherprecedence. </t> <t> Forprecedence.</t> <t>For all other component types, unless otherwise specified, the comparison is performed by comparing the component data as a binary string using the memcmp() function as defined by <xref target="ISO_IEC_9899"/>.format="default"/>. For strings with equallengthslengths, the lowest string (memcmp) has higher precedence. For strings of different lengths, the common prefix is compared. If the common prefix is notequalequal, the string with the lowest prefix has higher precedence. If the common prefix is equal, the longest string is considered to have higher precedence than the shorterone. </t> <t> Theone.</t> <t>The code in <xref target="flow_rule_cmp_src"/>format="default"/> shows a Python3 implementation of the comparison algorithm. The full code was tested with Python 3.6.3 and can be obtained at <ereftarget="https://github.com/stoffi92/rfc5575bis/tree/master/flowspec-cmp">https://github.com/stoffi92/rfc5575bis/tree/master/flowspec-cmp</eref>. </t>brackets="angle" target="https://github.com/stoffi92/rfc5575bis/tree/master/flowspec-cmp"/>.</t> </section> </section> <sectiontitle="Validation Procedure" anchor="validation_procedure">anchor="validation_procedure" numbered="true" toc="default"> <name>Validation Procedure</name> <t>Flow Specifications received from a BGP peer that are accepted in the respective Adj-RIB-In are used as input to the route selection process. Although the forwarding attributes of two routes for the same Flow Specification prefix may be the same, BGP is still required to perform its path selection algorithm in order to select the correct set of attributes toadvertise. </t> <t> Theadvertise.</t> <t>The first step of the BGP Route Selection procedure(Section 9.1.2 of <xref target="RFC4271"></xref>(<xref target="RFC4271" sectionFormat="of" section="9.1.2"/>) is to exclude from the selection procedure routes that are considerednon-feasible.unfeasible. In the context of IP routing information, this step is used to validate that the NEXT_HOP attribute of a given route isresolvable. </t>resolvable.</t> <t> The concept can be extended, in the case of the Flow Specification NLRI, to allow other validation procedures. </t> <t> The validation process described below validates Flow Specifications against unicast routes received over the same AFI but the associated unicast routing information SAFI:<list> <t>Flow</t> <ul spacing="normal"> <li>Flow Specification received over SAFI=133 will be validated against routes received overSAFI=1 </t> <t>FlowSAFI=1.</li> <li>Flow Specification received over SAFI=134 will be validated against routes received overSAFI=128 </t> </list> </t> <t> InSAFI=128.</li> </ul> <t>In the absence of explicitconfigurationconfiguration, a Flow Specification NLRIMUST<bcp14>MUST</bcp14> be validated such that it is considered feasible if and only if all of the conditions below aretrue: <list> <t> a) Atrue:</t> <ol spacing="normal" type="%c)"> <li>A destination prefix component is embedded in the FlowSpecification. </t> <t> b) TheSpecification.</li> <li>The originator of the Flow Specification matches the originator of the best-match unicast route for the destination prefix embedded in the Flow Specification (this is the unicast route with the longest possible prefix length covering the destination prefix embedded in the FlowSpecification). </t> <t> c) ThereSpecification).</li> <li>There are no "more-specific" unicast routes, when compared with the flow destination prefix, that have been received from a different neighboring AS than the best-match unicast route, which has been determined in ruleb). </t> </list> </t> <t> However,b.</li> </ol> <t>However, rulea) MAYa <bcp14>MAY</bcp14> be relaxed by explicit configuration, permitting Flow Specifications that include no destination prefix component. If such is the case, rulesb)b andc)c are moot andMUST<bcp14>MUST</bcp14> bedisregarded. </t> <t> Bydisregarded.</t> <t>By "originator" of a BGP route, we mean either the address of the originator in the ORIGINATOR_ID Attribute <xref target="RFC4456"/>,format="default"/> or the source IP address of the BGP peer, if this path attribute is notpresent. </t> <t> BGPpresent.</t> <t>BGP implementationsMUST<bcp14>MUST</bcp14> also enforce that the AS_PATH attribute of a route received via the External Border Gateway Protocol (eBGP) contains the neighboring AS in the left-most position of the AS_PATH attribute. While this rule is optional in the BGP specification, it becomes necessary to enforce it here for securityreasons. </t> <t> Thereasons.</t> <t>The best-match unicast route may change over the time independently of the Flow Specification NLRI. Therefore, a revalidation of the Flow Specification NLRIMUST<bcp14>MUST</bcp14> be performed whenever unicast routes change. Revalidation is defined as retesting rulesa)a toc)c as describedabove. </t> <t>Explanation: </t> <t> Theabove.</t> <t>Explanation:</t> <t>The underlying concept is that the neighboring AS that advertises the best unicast route for a destination is allowed to advertise Flow Specification information that conveys a destination prefix that is more or equally specific. Thus, as long as there are no "more-specific" unicastroutes,routes received from a different neighboring AS, which would be affected by that Flow Specification, the Flow Specification is validatedsuccessfully. </t> <t> Thesuccessfully.</t> <t>The neighboring AS is the immediate destination of the traffic described by the Flow Specification. If it requests these flows to be dropped, that request can be honored without concern that it represents a denial of service in itself. The reasoning is that this is as if the traffic is being dropped by the downstream autonomous system, and there is no added value in carrying the traffic toit. </t>it.</t> </section> <section anchor="traffic_filtering_actions"title="Trafficnumbered="true" toc="default"> <name>Traffic FilteringActions"> <t> ThisActions</name> <t>This document defines a minimum set of Traffic Filtering Actions that it standardizes as BGPextended communitiesExtended Communities <xreftarget="RFC4360"></xref>.target="RFC4360" format="default"/>. This is not meant to be an inclusive list of all the possibleactions,actions but only a subset that can be interpreted consistently across the network. Additional actions can be defined as either requiring standards or as vendorspecific. </t> <t> Thespecific.</t> <t>The default action for a matching Flow Specification is to accept the packet (treat the packet according to the normal forwardingbehaviourbehavior of thesystem). </t>system).</t> <t>This document defines the followingextended communitiesExtended Communities values shown in <xref target="traffic_extended_communities"/>format="default"/> in the form0xttss0xttss, where tt indicates the type and ss indicates the sub-type of theextended community.Extended Community. Encodings for theseextended communitiesExtended Communities are describedbelow. </t> <texttablebelow.</t> <table anchor="traffic_extended_communities"title="Trafficalign="center"> <name>Traffic Filtering Action ExtendedCommunities"> <ttcolCommunities</name> <thead> <tr> <th align="left">community0xttss</ttcol> <ttcol align="left">action</ttcol> <ttcol align="left">encoding</ttcol> <c>0x8006</c> <c>traffic-rate-bytes0xttss</th> <th align="left">action</th> <th align="left">encoding</th> </tr> </thead> <tbody> <tr> <td align="left">0x8006</td> <td align="left">traffic-rate-bytes (<xref target="traffic_rate_in_bytes"/>)</c> <c>2-octetformat="default"/>)</td> <td align="left">2-octet AS, 4-octetfloat</c> <c>TBD</c> <c>traffic-rate-packetsfloat</td> </tr> <tr> <td align="left">0x800c</td> <td align="left">traffic-rate-packets (<xreftarget="traffic_rate_in_bytes" />)</c> <c>2-octettarget="traffic_rate_in_packets" format="default"/>)</td> <td align="left">2-octet AS, 4-octetfloat</c> <c>0x8007</c> <c>traffic-actionfloat</td> </tr> <tr> <td align="left">0x8007</td> <td align="left">traffic-action (<xref target="traffic_action_subtype"/>)</c> <c>bitmask</c> <c>0x8008</c> <c>rt-redirectformat="default"/>)</td> <td align="left">bitmask</td> </tr> <tr> <td align="left">0x8008</td> <td align="left">rt-redirect AS-2octet (<xref target="rt_redirect_action_subtype"/>)</c> <c>2-octetformat="default"/>)</td> <td align="left">2-octet AS, 4-octetvalue</c> <c>0x8108</c> <c>rt-redirectvalue</td> </tr> <tr> <td align="left">0x8108</td> <td align="left">rt-redirect IPv4 (<xref target="rt_redirect_action_subtype"/>)</c> <c>4-octetformat="default"/>)</td> <td align="left">4-octet IPv4 address, 2-octetvalue</c> <c>0x8208</c> <c>rt-redirectvalue</td> </tr> <tr> <td align="left">0x8208</td> <td align="left">rt-redirect AS-4octet (<xref target="rt_redirect_action_subtype"/>)</c> <c>4-octetformat="default"/>)</td> <td align="left">4-octet AS, 2-octetvalue</c> <c>0x8009</c> <c>traffic-markingvalue</td> </tr> <tr> <td align="left">0x8009</td> <td align="left">traffic-marking (<xref target="traffic_marking_subtype"/>)</c> <c>DSCP value</c> </texttable> <t> Multipleformat="default"/>)</td> <td align="left">DSCP value</td> </tr> </tbody> </table> <t>Multiple Traffic Filtering Actions defined in this document may be present for a single Flow Specification andSHOULD<bcp14>SHOULD</bcp14> be applied to the traffic flow (forexampleexample, traffic-rate-bytes and rt-redirect can be applied to packets at the same time). If not all of the Traffic Filtering Actions can be applied to a trafficflowflow, they should be treated as interfering Traffic Filtering Actions(see below). </t> <t> Some(see below).</t> <t>Some Traffic Filtering Actions may interfere with each other or even contradict. <xref target="rules_action_interference"/>format="default"/> of this document provides general considerations on such Traffic Filtering Action interference. Any additional definition of Traffic Filtering ActionsSHOULD<bcp14>SHOULD</bcp14> specify the action to take if those Traffic Filtering Actions interfere (also with existing Traffic FilteringActions). </t> <t> AllActions).</t> <t>All Traffic Filtering Actions are specified as transitive BGP ExtendedCommunities. </t>Communities.</t> <section anchor="traffic_rate_in_bytes"title="Trafficnumbered="true" toc="default"> <name>Traffic Rate in Bytes (traffic-rate-bytes)sub-type 0x06">Sub-Type 0x06</name> <t>The traffic-rate-bytesextended communityExtended Community uses the followingextended community encoding: </t>Extended Community encoding:</t> <t> The first two octets carry the 2-octet id, which can be assigned from a 2-octet AS number. When a 4-octet AS number is locally present, the 2 least significant octets of such an AS number can be used. This value is purely informational andSHOULD NOT<bcp14>SHOULD NOT</bcp14> be interpreted by the implementation. </t><t> The<t>The remaining 4 octets carry the maximum rate information in IEEE floating point <xreftarget="IEEE.754.1985"></xref>target="IEEE.754.1985" format="default"/> format, units being bytes per second. A traffic-rate of 0 should result on all traffic for the particular flow to be discarded. Onencodingencoding, the traffic-rateMUST NOT<bcp14>MUST NOT</bcp14> be negative. Ondecodingdecoding, negative valuesMUST<bcp14>MUST</bcp14> be treated as zero (discard alltraffic). </t>traffic).</t> <t>Interferes with: May interfere with the traffic-rate-packets (see <xref target="traffic_rate_in_packets"/>).format="default"/>). A policy may allow both filtering by traffic-rate-packets and traffic-rate-bytes. If the policy does not allow this, these two actions willconflict. </t>conflict.</t> </section> <section anchor="traffic_rate_in_packets"title="Trafficnumbered="true" toc="default"> <name>Traffic Rate in Packets (traffic-rate-packets)sub-type TBD"> <t> TheSub-Type 0x0c</name> <t>The traffic-rate-packetsextended communityExtended Community uses the same encoding as the traffic-rate-bytesextended community.Extended Community. The floating point value carries the maximum packet rate in packets per second. A traffic-rate-packets of 0 should result in all traffic for the particular flow to be discarded. Onencodingencoding, the traffic-rate-packetsMUST NOT<bcp14>MUST NOT</bcp14> be negative. Ondecodingdecoding, negative valuesMUST<bcp14>MUST</bcp14> be treated as zero (discard alltraffic). </t>traffic).</t> <t>Interferes with: May interfere with the traffic-rate-bytes (see <xref target="traffic_rate_in_bytes"/>).format="default"/>). A policy may allow both filtering by traffic-rate-packets and traffic-rate-bytes. If the policy does not allow this, these two actions willconflict. </t>conflict.</t> </section> <section anchor="traffic_action_subtype"title="Traffic-actionnumbered="true" toc="default"> <name>Traffic-Action (traffic-action)sub-type 0x07">Sub-Type 0x07</name> <t>The traffic-actionextended communityExtended Community consists of 6 octets of which only the 2 least significant bits of the 6th octet (from left to right) are defined by thisdocumentdocument, as shown in <xref target="figure_traffic_action_encoding"/>.format="default"/>. </t><t><figuretitle="Traffic-actionanchor="figure_traffic_action_encoding"> <name>Traffic-Action Extended CommunityEncoding" anchor="figure_traffic_action_encoding"> <artwork>Encoding</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Traffic Action Field | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tr. Action Field (cont.) |S|T| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure></t> <t>where S<t>S and T are definedas: <list style="symbols"> <t>T: Terminalas:</t> <dl newline="false" spacing="normal" indent="6"> <dt>T</dt> <dd>Terminal Action (bit 47): When this bit is set, the traffic filtering engine will evaluate any subsequent Flow Specifications (as defined by the ordering procedure <xref target="ordering_of_flow_spec"/>).format="default"/>). If not set, the evaluation of the traffic filters stops when this Flow Specification isevaluated. </t> <t>S: Sampleevaluated.</dd> <dt>S</dt> <dd>Sample (bit 46): Enables traffic sampling and logging for this Flow Specification (only effective whenset). </t> <t>Trafficset).</dd> <dt>Traffic ActionField: OtherField:</dt> <dd>Other Traffic Action Field (see <xref target="IANA"/>)format="default"/>) bits unused in this specification. These bitsMUST<bcp14>MUST</bcp14> be set to 0 onencoding,encoding andMUST<bcp14>MUST</bcp14> be ignored duringdecoding. </t> </list> </t> <t> Thedecoding.</dd> </dl> <t>The use of the Terminal Action (bit 47) may result in more than one Flow Specification matching a particular traffic flow. All the Traffic Filtering Actions from these Flow Specifications shall be collected and applied. In case of interfering Traffic FilteringActionsActions, it is an implementation decision which Traffic Filtering Actions are selected. See also <xref target="rules_action_interference"/>. </t>format="default"/>.</t> <t>Interferes with: No other BGP Flow Specification Traffic Filtering Action in thisdocument. </t>document.</t> </section> <section anchor="rt_redirect_action_subtype"title="RTnumbered="true" toc="default"> <name>RT Redirect (rt-redirect)sub-type 0x08">Sub-Type 0x08</name> <t>The redirectextended communityExtended Community allows the traffic to be redirected to a VRF routing instance that lists the specified route-target in its import policy. If several local instances match this criteria, the choice between them is a local matter (for example, the instance with the lowest Route Distinguisher value can beelected). </t>elected).</t> <t>This Extended Community allows 3 different encodings formats for the route-target (type 0x80, 0x81, 0x82). It uses the same encoding as the Route Target Extended Community in Sections3.1<xref target="RFC4360" section="3.1" sectionFormat="bare"/> (type 0x80: 2-octet AS, 4-octet value),3.2<xref target="RFC4360" section="3.2" sectionFormat="bare"/> (type 0x81: 4-octet IPv4 address, 2-octetvalue)value), and4<xref target="RFC4360" section="4" sectionFormat="bare"/> of <xref target="RFC4360"/>format="default"/> andSection 2<xref target="RFC5668" sectionFormat="of" section="2"/> (type 0x82: 4-octet AS, 2-octet value)of <xref target="RFC5668" />with the high-order octet of the Type field 0x80, 0x81, 0x82 respectively and the low-order octet of the Type field (Sub-Type) always0x08. </t>0x08.</t> <t>Interferes with: No other BGP Flow Specification Traffic Filtering Action in thisdocument. </t>document.</t> </section> <section anchor="traffic_marking_subtype"title="Trafficnumbered="true" toc="default"> <name>Traffic Marking (traffic-marking)sub-type 0x09">Sub-Type 0x09</name> <t> The traffic markingextended communityExtended Community instructs a system to modify the DSCP bits in the IP header (<xref target="RFC2474"/> Section 3)sectionFormat="of" section="3"/>) of a transiting IP packet to the corresponding value encoded in the 6 least significant bits of theextended community valueExtended Community value, as shown in <xref target="figure_traffic_marking_encoding"/>. </t>format="default"/>.</t> <t>TheextendedExtended Community is encoded asfollows:follows:</t> <figuretitle="Trafficanchor="figure_traffic_marking_encoding"> <name>Traffic Marking Extended CommunityEncoding" anchor="figure_traffic_marking_encoding"> <artwork>Encoding</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved | reserved | reserved | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved | r.| DSCP | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure></t> <t> <list style="symbols"> <t>DSCP: new<dl newline="false" spacing="normal" indent="6"> <dt>DSCP:</dt> <dd>new DSCP value for the transiting IPpacket. </t> <t>reserved, r.: MUSTpacket</dd> <dt>reserved (r):</dt> <dd><bcp14>MUST</bcp14> be set to 0 onencoding,encoding andMUST<bcp14>MUST</bcp14> be ignored duringdecoding. </t> </list> </t>decoding</dd> </dl> <t>Interferes with: No other BGP Flow Specification Traffic Filtering Action in this document.</t> </section> <sectiontitle="Interactionnumbered="true" toc="default"> <name>Interaction withotherOther Filtering Mechanisms inRouters">Routers</name> <t> Implementations should provide mechanisms that map an arbitrary BGP community value (normal or extended) to Traffic Filtering Actions that require different mappings on different systems in the network. For instance, providing packets with a worse-than-best-effort per-hop behavior is a functionality that is likely to be implemented differently in different systems and for which no standard behavior is currently known. Rather than attempting to define it here, this can be accomplished by mapping a user-defined community value to platform-/network-specific behavior via user configuration. </t> </section> <section anchor="rules_action_interference"title="Considerationsnumbered="true" toc="default"> <name>Considerations on Traffic Filtering ActionInterference"> <t> SinceInterference</name> <t>Since Traffic Filtering Actions are represented as BGP extended community values, Traffic Filtering Actions may interfere with each other(e.g.(e.g., there may be more than one conflicting traffic-rate-bytes Traffic Filtering Action associated with a single Flow Specification). Traffic Filtering Action interference has no impact on BGP propagation of Flow Specifications (all communities are propagated according topolicies). </t> <t> Ifpolicies).</t> <t>If a Flow Specification associated with interfering Traffic Filtering Actions is selected for packet forwarding, it is an implementation decision which of the interfering Traffic Filtering Actions are selected. Implementors of this specificationSHOULD<bcp14>SHOULD</bcp14> document thebehaviourbehavior of their implementation in suchcases. </t> <t> Operatorscases.</t> <t>Operators are encouraged to make use of the BGP policy framework supported by their implementation in order to achieve a predictablebehaviour.behavior. See also <xref target="security_considerations"/>. </t>format="default"/>.</t> </section> </section> <section anchor="traffic_filtering_vpn"title="Disseminationnumbered="true" toc="default"> <name>Dissemination of Traffic Filtering in BGP/MPLS VPNNetworks">Networks</name> <t> Provider-based Layer 3 VPN networks, such as the ones using a BGP/ MPLS IP VPN <xreftarget="RFC4364"></xref>target="RFC4364" format="default"/> control plane, may have different traffic filtering requirements than Internet service providers. But also Internet service providers may use those VPNs for scenarios like having the Internet routing table in a VRF, resulting in the same traffic filtering requirements as defined for the global routing table environment within this document. This document defines an additional BGP NLRI type (AFI=1, SAFI=134) value, which can be used to propagate Flow Specification in a BGP/MPLS VPN environment. </t> <t> The NLRI format for this address family consists of a fixed-length Route Distinguisher field (8 octets) followed by the Flow Specification NLRI value (<xref target="nlri_value_encoding"/>).format="default"/>). The NLRI length field shall include both the 8 octets of the Route Distinguisher as well as the subsequent Flow Specification NLRI value. The resulting encoding is shown in <xref target="figure_fs_nlri_mpls"/>.format="default"/>. </t><t><figuretitle="Flowanchor="figure_fs_nlri_mpls"> <name>Flow Specification NLRI forMPLS" anchor="figure_fs_nlri_mpls"> <artwork>MPLS</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +--------------------------------+ | length (0xnn or 0xfn nn) | +--------------------------------+ | Route Distinguisher (8 octets) | +--------------------------------+ | NLRI value (variable) | +--------------------------------+</artwork>]]></artwork> </figure></t><t> Propagation of this NLRI is controlled by matching Route Target extended communities associated with the BGP path advertisement with the VRF import policy, using the same mechanism as described in BGP/ MPLS IP VPNs <xreftarget="RFC4364"></xref>.target="RFC4364" format="default"/>. </t> <t> Flow Specifications received via this NLRI apply only to traffic that belongs to the VRF(s) in which it is imported. By default, traffic received from a remote PE is switched via an MPLS forwarding decision and is not subject to filtering. </t><t> Contrary<t>Contrary to the behavior specified for the non-VPN NLRI, Flow Specifications are accepted by default, when received from remote PErouters. </t> <t> Therouters.</t> <t>The validation procedure (<xref target="validation_procedure"/>)format="default"/>) and Traffic Filtering Actions (<xref target="traffic_filtering_actions"/>)format="default"/>) are the same as forIPv4. </t>IPv4.</t> </section> <sectiontitle="Traffic Monitoring">numbered="true" toc="default"> <name>Traffic Monitoring</name> <t> Traffic filtering applications require monitoring and traffic statistics facilities. While this is an implementation specific choice, implementationsSHOULD<bcp14>SHOULD</bcp14> provide:<list style="symbols"> <t> A</t> <ul spacing="normal"> <li>A mechanism to log the packet header of filteredtraffic. </t> <t>Atraffic.</li> <li>A mechanism to count the number of matches for a given FlowSpecification. </t> </list> </t>Specification rule.</li> </ul> </section> <section anchor="errorhandling"title="Error Handling">numbered="true" toc="default"> <name>Error Handling</name> <t> Error handling according to <xreftarget="RFC7606"></xref>target="RFC7606" format="default"/> and <xreftarget="RFC4760"></xref>target="RFC4760" format="default"/> applies to this specification. </t> <t> This document introduces Traffic Filtering Action Extended Communities. Malformed Traffic Filtering Action Extended Communities in the sense of <xreftarget="RFC7606"></xref> Section 7.14.target="RFC7606" sectionFormat="of" section="7.14"/> are Extended Community values that cannot be decoded according to <xref target="traffic_filtering_actions"/>format="default"/> of this document. </t> </section> <section anchor="IANA"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <t> This section complies with <xreftarget="RFC7153"></xref>.target="RFC7153" format="default"/>. </t> <sectiontitle="AFI/SAFI Definitions">numbered="true" toc="default"> <name>AFI/SAFI Definitions</name> <t> IANA maintains a registry entitled "SAFI Values". For the purpose of this work, IANAis requested to updatehas updated the following SAFIsto read according toas shown in the tablebelowbelow. (Note: This document obsoletes bothRFC7674<xref target="RFC7674" format="default"/> andRFC5575<xref target="RFC5575" format="default"/>, and all references to those documentsshould behave been deleted from theregistry below):registry.) </t><texttable<table anchor="iana_safi"title="Registry:align="center"> <name>Registry: SAFIValues"> <ttcol align="left">Value</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>133</c> <c>DisseminationValues</name> <thead> <tr> <th align="left">Value</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">133</td> <td align="left">Dissemination of Flow Specificationrules</c> <c>[this document]</c> <c>134</c> <c>L3VPNrules</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">134</td> <td align="left">L3VPN Dissemination of Flow Specificationrules</c> <c>[this document]</c> </texttable> <t> Therules</td> <td align="left">RFC 8955</td> </tr> </tbody> </table> <t>The above textual changesgeneralisegeneralize the definition of the SAFIs rather than change its underlying meaning. Therefore, based on"<xref target="RFC7950" format="title" />"<xreftarget="RFC7950" />,target="RFC7950">"The YANG 1.1 Data Modeling Language"</xref>, the above textimpliesmeans that the following YANG enums from"<xref target="RFC8294" format="title" />"<xreftarget="RFC8294" /> need totarget="RFC8294">"Common YANG Data Types for the Routing Area"</xref> have had their names and descriptions at <ereftarget="https://www.iana.org/assignments/iana-routing-types">https://www.iana.org/assignments/iana-routing-types</eref>brackets="angle" target="https://www.iana.org/assignments/iana-routing-types"/> changedto: <figure> <artwork><![CDATA[ <CODE BEGINS>to:</t> <sourcecode name="" type="yang" markers="true"><![CDATA[ enum flow-spec-safi { value 133; description "Dissemination of Flow Specification rules SAFI."; } enum l3vpn-flow-spec-safi { value 134; description "L3VPN Dissemination of Flow Specification rules SAFI."; }<CODE ENDS> ]]></artwork> </figure> A]]></sourcecode> <t>A new revision statementshould behas been added to the module asfollows: <figure> <artwork><![CDATA[ <CODE BEGINS>follows:</t> <sourcecode name="" type="yang" markers="true"><![CDATA[ revision [revision date] { description "Non-backwards-compatible change of SAFI names (SAFI values 133, 134)."; reference"[this document]:"RFC 8955: Dissemination of Flow Specification Rules."; }<CODE ENDS> ]]></artwork> </figure> </t>]]></sourcecode> </section> <sectiontitle="Flownumbered="true" toc="default"> <name>Flow ComponentDefinitions">Definitions</name> <t> A Flow Specification consists of a sequence of flow components, which are identified by an 8-bit component type. IANA has created and maintains a registry entitled "Flow Spec Component Types". IANAis requested to updatehas updated the reference for this registry to[this document]. FurthermoreRFC 8955. Furthermore, the references to the valuesshould behave been updated according to the table below (Note: This document obsoletes bothRFC7674<xref target="RFC7674" format="default"/> andRFC5575<xref target="RFC5575" format="default"/>, and all references to those documentsshould behave been deleted from theregistry below).registry.) </t><texttable<table anchor="iana_flow_component_types"title="Registry:align="center"> <name>Registry: Flow Spec ComponentTypes"> <ttcol align="left">Value</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>1</c> <c>Destination Prefix</c> <c>[this document]</c> <c>2</c> <c>Source Prefix</c> <c>[this document]</c> <c>3</c> <c>IP Protocol</c> <c>[this document]</c> <c>4</c> <c>Port</c> <c>[this document]</c> <c>5</c> <c>Destination port</c> <c>[this document]</c> <c>6</c> <c>Source port</c> <c>[this document]</c> <c>7</c> <c>ICMP type</c> <c>[this document]</c> <c>8</c> <c>ICMP code</c> <c>[this document]</c> <c>9</c> <c>TCP flags</c> <c>[this document]</c> <c>10</c> <c>Packet length</c> <c>[this document]</c> <c>11</c> <c>DSCP</c> <c>[this document]</c> <c>12</c> <c>Fragment</c> <c>[this document]</c> </texttable> <t> InTypes</name> <thead> <tr> <th align="left">Value</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">1</td> <td align="left">Destination Prefix</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">2</td> <td align="left">Source Prefix</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">3</td> <td align="left">IP Protocol</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">4</td> <td align="left">Port</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">5</td> <td align="left">Destination port</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">6</td> <td align="left">Source port</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">7</td> <td align="left">ICMP type</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">8</td> <td align="left">ICMP code</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">9</td> <td align="left">TCP flags</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">10</td> <td align="left">Packet length</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">11</td> <td align="left">DSCP</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">12</td> <td align="left">Fragment</td> <td align="left">RFC 8955</td> </tr> </tbody> </table> <t>In order to manage the limited number space and accommodate several usages, the following policies defined by <xref target="RFC8126"/>format="default"/> areused: </t> <texttableused:</t> <table anchor="iana_flow_component_types_policies"title="Flowalign="center"> <name>Flow Spec Component TypesPolicies"> <ttcolPolicies</name> <thead> <tr> <th align="left">TypeValues</ttcol> <ttcol align="left">Policy</ttcol> <c>0</c> <c>Reserved</c> <c>[1Values</th> <th align="left">Policy</th> </tr> </thead> <tbody> <tr> <td align="left">0</td> <td align="left">Reserved</td> </tr> <tr> <td align="left">[1 ..127]</c> <c>Specification Required</c> <c>[128127]</td> <td align="left">Specification Required</td> </tr> <tr> <td align="left">[128 ..254]</c> <c>Expert Review</c> <c>255</c> <c>Reserved</c> </texttable> <t> <list style="hanging" hangIndent="6"> <t hangText="Guidance254]</td> <td align="left">Expert Review</td> </tr> <tr> <td align="left">255</td> <td align="left">Reserved</td> </tr> </tbody> </table> <dl newline="true"> <dt>Guidance forExperts:"> <vspace />Experts:</dt> <dd> The registration policy for the range 128-254requiresis ExpertReview as the registration policy.Review. TheExpertsexperts are expected to check the clarity of purpose and use of the requested code points. TheExpertsexperts must also verify that any specification produced in the IETF that requests one of these code points has been made available for review by the IDRworking groupWorking Group and that any specification produced outside the IETF does not conflict with work that is active or already published within the IETF. It must be pointed out that introducing new component types may break interoperability with existing implementations of this protocol.</t> </list> </t></dd> </dl> </section> <sectiontitle="Extendednumbered="true" toc="default"> <name>Extended Community Flow SpecificationActions">Actions</name> <t>The Extended Community Flow Specification Action types defined in this document consist of twoparts: <list> <t>Typeparts:</t> <ul spacing="normal"> <li>Type (BGP Transitive Extended CommunityType)</t> <t>Sub-Type</t> </list> </t> <t> ForType)</li> <li>Sub-Type</li> </ul> <t>For thetype-part,type part, IANA maintains a registry entitled "BGP Transitive Extended Community Types". For the purpose of this work (<xref target="traffic_filtering_actions"/>),format="default"/>), IANAis requested to updatehas updated the referencesto the following entries according toas shown in the tablebelowbelow. (Note: This document obsoletes bothRFC7674<xref target="RFC7674" format="default"/> andRFC5575<xref target="RFC5575" format="default"/>, and all references to those documentsshould behave been deleted in theregistry below): </t> <texttableregistry.)</t> <table anchor="iana_ext_comm_types"title="Registry:align="center"> <name>Registry: BGP Transitive Extended CommunityTypes"> <ttcolTypes</name> <thead> <tr> <th align="left">TypeValue</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>0x81</c> <c>Value</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">0x81</td> <td align="left"> Generic Transitive Experimental Use Extended Community Part 2 (Sub-Types are defined in the "Generic Transitive Experimental Use Extended Community Part 2 Sub-Types" Registry)</c> <c>[this document]</c> <c>0x82</c> <c></td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">0x82</td> <td align="left"> Generic Transitive Experimental Use Extended Community Part 3 (Sub-Types are defined in the "Generic Transitive Experimental Use Extended Community Part 3 Sub-Types" Registry)</c> <c>[this document]</c> </texttable> <t> For</td> <td align="left">RFC 8955</td> </tr> </tbody> </table> <t>For the sub-type part of theextended communityExtended Community Traffic FilteringActionsActions, IANA maintains the following registries. IANAis requested to updatehas updated all names and references according to the tables below and assign a new value for the "Flow spec traffic-rate-packets"Sub-TypeSub-Type. (Note: This document obsoletes bothRFC7674<xref target="RFC7674" format="default"/> andRFC5575<xref target="RFC5575" format="default"/>, and all references to those documentsshould behave been deleted from the registriesbelow).below.) </t><texttable<table anchor="iana_ext_comm_subtypes"title="Registry:align="center"> <name>Registry: Generic Transitive Experimental Use Extended CommunitySub-Types"> <ttcolSub-Types</name> <thead> <tr> <th align="left">Sub-TypeValue</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>0x06</c> <c> FlowValue</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">0x06</td> <td align="left">Flow spectraffic-rate-bytes </c> <c>[this document]</c> <c>TBD</c> <c> Flowtraffic-rate-bytes</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">0x0c</td> <td align="left">Flow spectraffic-rate-packets </c> <c>[this document]</c> <c>0x07</c> <c> Flowtraffic-rate-packets</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">0x07</td> <td align="left">Flow spec traffic-action (Use of the "Value" field is defined in the "Traffic Action Fields"registry) </c> <c>[this document]</c> <c>0x08</c> <c>registry)</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">0x08</td> <td align="left"> Flow spec rt-redirect AS-2octet format</c> <c>[this document]</c> <c>0x09</c> <c></td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">0x09</td> <td align="left"> Flow spec traffic-remarking</c> <c>[this document]</c> </texttable> <texttable</td> <td align="left">RFC 8955</td> </tr> </tbody> </table> <table anchor="iana_ext_comm_subtypes2"title="Registry:align="center"> <name>Registry: Generic Transitive Experimental Use Extended Community Part 2Sub-Types"> <ttcolSub-Types</name> <thead> <tr> <th align="left">Sub-TypeValue</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>0x08</c> <c>Value</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">0x08</td> <td align="left"> Flow spec rt-redirect IPv4 format</c> <c>[this document]</c> </texttable> <texttable</td> <td align="left">RFC 8955</td> </tr> </tbody> </table> <table anchor="iana_ext_comm_subtypes3"title="Registry:align="center"> <name>Registry: Generic Transitive Experimental Use Extended Community Part 3Sub-Types"> <ttcolSub-Types</name> <thead> <tr> <th align="left">Sub-TypeValue</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>0x08</c> <c>Value</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">0x08</td> <td align="left"> Flow spec rt-redirect AS-4octet format</c> <c>[this document]</c> </texttable></td> <td align="left">RFC 8955</td> </tr> </tbody> </table> <t>FurthermoreFurthermore, IANAis requested to updatehas updated the reference for the registries "Generic Transitive Experimental Use Extended Community Part 2 Sub-Types" and "Generic Transitive Experimental Use Extended Community Part 3 Sub-Types" to[this document].RFC 8955. </t><t> The<t>The "traffic-action"extended communityExtended Community (<xref target="traffic_action_subtype"/>)format="default"/>) defined in this document has 46 unused bits, which can be used to convey additional meaning. IANA created and maintains a registryentitled:entitled "Traffic Action Fields". IANAis requested to updatehas updated the reference for this registry to[this document]. FurthermoreRFC 8955. Furthermore, IANAis requested to updatehas updated the references according to the table below. These values should be assigned via IETF Review rulesonlyonly. (Note: This document obsoletes bothRFC7674<xref target="RFC7674" format="default"/> andRFC5575<xref target="RFC5575" format="default"/>, and all references to those documentsshould behave been deleted from theregistry below). </t> <texttableregistry.)</t> <table anchor="iana_traffic_action_subtype"title="Registry:align="center"> <name>Registry: Traffic ActionFields"> <ttcol align="left">Bit</ttcol> <ttcol align="left">Name</ttcol> <ttcol align="left">Reference</ttcol> <c>47</c><c>Terminal Action</c><c>[this document]</c> <c>46</c><c>Sample</c><c>[this document]</c> </texttable>Fields</name> <thead> <tr> <th align="left">Bit</th> <th align="left">Name</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">47</td> <td align="left">Terminal Action</td> <td align="left">RFC 8955</td> </tr> <tr> <td align="left">46</td> <td align="left">Sample</td> <td align="left">RFC 8955</td> </tr> </tbody> </table> </section> </section> <sectiontitle="Security Considerations" anchor="security_considerations">anchor="security_considerations" numbered="true" toc="default"> <name>Security Considerations</name> <t> As long as Flow Specifications are restricted to match the corresponding unicast routing paths for the relevant prefixes (<xref target="validation_procedure"/>),format="default"/>), the security characteristics of this proposal are equivalent to the existing security properties of BGP unicast routing. Any relaxation of the validation procedure described in <xref target="validation_procedure"/>format="default"/> may allow unwanted Flow Specifications to bepropagatedpropagated, and thus unwanted Traffic Filtering Actions may be applied toflows. </t>flows.</t> <t>Where the above mechanisms are not in place, this could open the door to further denial-of-serviceattacksattacks, such as unwanted traffic filtering,remarkingremarking, orredirection. </t>redirection.</t> <t> Deployment of specific relaxations of the validation within an administrative boundary of a network are useful in some networks for quickly distributing filters to prevent denial-of-service attacks. For a network to utilize this relaxation, the BGP policies must support additional filtering since the origin AS field is empty. Specifications relaxing the validation restrictionsMUST<bcp14>MUST</bcp14> contain security considerations that provide details on the required additional filtering. For example, the use ofOriginorigin validation can provide enhanced filtering within an AS confederation. </t> <t> Inter-provider routing is based on a web of trust. Neighboring autonomous systems are trusted to advertise valid reachability information. If this trust model is violated, a neighboring autonomous system may cause a denial-of-service attack by advertising reachability information for a given prefix for which it does not provide service (unfiltered address space hijack). Since validation of the Flow Specification is tied to the announcement of the best unicast route, the failure in the validation of best path route may prevent the FlowSpecificaitonSpecification from being used by a local router. Possible mitigations are <xref target="RFC6811"/>format="default"/> and <xref target="RFC8205"/>.format="default"/>. </t><t> On IXPs<t>On Internet Exchange Points (IXPs), routes are often exchanged via route serverswhichthat do not extend the AS_PATH. In suchcasescases, it is not possible to enforce the left-most AS in the AS_PATH to be the neighbor AS (the AS of the route server). Since the validation of Flow Specification (<xref target="validation_procedure"/>)format="default"/>) depends on this, additional care must be taken. It is advised to use a strict inbound route policy in suchscenarios. </t>scenarios.</t> <t> Enabling firewall-like capabilities in routers without centralized management could make certain failures harder to diagnose. For example, it is possible to allow TCP packets to pass between a pair of addresses but not ICMP packets. It is also possible to permit packets smaller than 900 or greater than 1000 octets to pass between a pair ofaddresses,addresses but not packets whose length is in the range900- 1000.900-1000. Such behavior may beconfusingconfusing, and these capabilities should be used with care whether manually configured or coordinated through the protocol extensions described in thisdocument. </t> <t> Flowdocument.</t> <t>Flow Specification BGP speakers(e.g.(e.g., automated DDoS controllers) not properly programmed, algorithms that are not performing as expected, or simply rogue systems may announce unintended Flow Specifications, send updates at a highraterate, or generate a high number of Flow Specifications. This may stress the receiving systems, exceed their capacity, or lead to unwanted Traffic Filtering Actions being applied toflows.flows.</t> <t> Systems may not be able to locate all header values required to identify a packet. This can be especially problematic in the case of fragmented packets that are not the first fragment and thus lack upper-layer protocol headers or Encapsulating Security Payload (ESP) NULL <xref target="RFC4303"/> encryption. </t> <t> While the general verification of the Flow Specification NLRI is specified in this document (<xref target="validation_procedure"/>)format="default"/>), the Traffic Filtering Actions received by a third party may need custom verification or filtering. Inparticularparticular, allnon traffic-ratenon-traffic-rate actions may allow a third party to modify packet forwarding properties and potentially gain access to other routing-tables/VPNs or undesired queues. This can be avoided by proper filtering/screening of the Traffic Filtering Action communities at network borders and only exposing a predefined subset of Traffic Filtering Actions (see <xref target="traffic_filtering_actions"/>)format="default"/>) to third parties. One way to achieve this is by mapping user-defined communities,thatwhich can be set by the third party, to Traffic Filtering Actions and not accepting Traffic Filtering Action extended communities from thirdparties. </t>parties.</t> <t>This extension adds additional information to Internet routers. These are limited in terms of the maximum number of data elements they can hold as wellas the number of events they are able to process in a given unit of time. Service providers need to consider the maximum capacity of their devices and may need to limit the number of Flow Specifications accepted and processed. </t> </section> <section title="Contributors"> <t>Barry Greene, Pedro Marques, Jared Mauch and Nischal Sheth were authors on <xref target="RFC5575" />, and therefore are contributing authors on this document. </t> </section> <section title="Acknowledgements"> <t>The authors would like to thank Yakov Rekhter, Dennis Ferguson, Chris Morrow, Charlie Kaufman, and David Smith for their comments for the comments on the original <xref target="RFC5575" />. Chaitanya Kodeboyina helped design the flow validation procedure; and Steven Lin and Jim Washburn ironed out allas thedetails necessarynumber of events they are able toproduce a working implementation in the original <xref target="RFC5575" />. </t> <t> A packet rate Traffic Filtering Action was also describedprocess in aFlow Specification extension draft and the authors likegiven unit of time. Service providers need tothank Wesley Eddy, Justin Dailey and Gilbert Clark for their work. </t> <t>Additionally,consider theauthors would like to thank Alexander Mayrhofer, Nicolas Fevrier, Job Snijders, Jeffrey Haas and Adam Chappell formaximum capacity of theircommentsdevices andreview.may need to limit the number of Flow Specifications accepted and processed. </t> </section> </middle> <back><references title="Normative References"> &RFC0768; &RFC0791; &RFC0792; &RFC0793; &RFC2119; &RFC2474; &RFC4271; &RFC4360; &RFC4364; &RFC4456; &RFC4760; &RFC5668; &RFC7153; &RFC7606; &RFC8126; &RFC8174;<references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0768.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0791.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0792.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0793.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2474.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4271.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4360.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4364.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4456.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4760.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5668.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7153.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7606.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <reference anchor="ISO_IEC_9899"> <front> <title>Information technology -- Programming languages -- C</title> <seriesInfo name="ISO/IEC" value="9899:2018"/> <author> <organization>ISO</organization> </author> <date month="June"year="2018" />year="2018"/> </front><seriesInfo name="ISO/IEC" value="9899:2018"/></reference> <reference anchor="IEEE.754.1985"> <front> <title>Standard for Binary Floating-Point Arithmetic</title> <author> <organization>IEEE</organization> </author> <date month="August"year="1985" />year="1985"/> </front> <seriesInfo name="IEEE" value="754-1985"/> <seriesInfo name="DOI" value=" 10.1109/IEEESTD.2019.8766229"/> </reference> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4303.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5575.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6811.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7674.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7950.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8205.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8294.xml"/> <!-- draft-ietf-idr-flow-spec-v6-22 in queue 2020-12-14 --> <reference anchor="RFC8956" target="https://www.rfc-editor.org/info/rfc8956"> <front> <title>Dissemination of Flow Specification Rules for IPv6</title> <author initials='C' surname='Loibl' fullname='Christoph Loibl' role='editor'> <organization /> </author> <author initials='R' surname='Raszuk' fullname='Robert Raszuk' role='editor'> <organization /> </author> <author initials='S' surname='Hares' fullname='Susan Hares' role='editor'> <organization /> </author> <date month='December' year='2020' /> </front> <seriesInfo name="RFC" value="8956"/> <seriesInfo name="DOI" value="10.17487/RFC8956"/> </reference> </references><references title="Informative References"> &RFC4303; &RFC5575; &RFC6811; &RFC7674; &RFC7950; &RFC8205; &RFC8294; &I-D.ietf-idr-flow-spec-v6;</references> <sectiontitle="Exampleanchor="flow_rule_cmp_src" numbered="true" toc="default"> <name>Example Python code:flow_rule_cmp" anchor="flow_rule_cmp_src"> <t> <figure> <artwork><![CDATA[ <CODE BEGINS>flow_rule_cmp</name> <sourcecode name="" type="python" markers="true"><![CDATA[ """ Copyright (c) 2020 IETF Trust and the persons identified as authors ofdraft-ietf-idr-rfc5575bis.the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETFTrust’sTrust's Legal Provisions Relating to IETF Documents(http://trustee.ietf.org/license-info).(https://trustee.ietf.org/license-info). """ import itertools import collections import ipaddress EQUAL = 0 A_HAS_PRECEDENCE = 1 B_HAS_PRECEDENCE = 2 IP_DESTINATION = 1 IP_SOURCE = 2 FS_component = collections.namedtuple('FS_component', 'component_type op_value') class FS_nlri(object): """ FS_nlri class implementation that allows sorting. By calling .sort() onaan array of FS_nlri objects these will be sorted according to the flow_rule_cmp algorithm. Example: nlri = [ FS_nlri(components=[ FS_component(component_type=IP_DESTINATION, op_value=ipaddress.ip_network('10.1.0.0/16') ), FS_component(component_type=4, op_value=bytearray([0,1,2,3,4,5,6])), ]), FS_nlri(components=[ FS_component(component_type=5, op_value=bytearray([0,1,2,3,4,5,6])), FS_component(component_type=6, op_value=bytearray([0,1,2,3,4,5,6])), ]), ] nlri.sort() # sorts the arrayaccorindingaccording to the algorithm """ def __init__(self, components = None): """ components: list of type FS_component """ self.components = components def __lt__(self, other): # use the below algorithm for sorting result = flow_rule_cmp(self, other) if result == B_HAS_PRECEDENCE: return True else: return False def flow_rule_cmp(a, b): """ Example of the flowspec comparison algorithm. """ for comp_a, comp_b in itertools.zip_longest(a.components, b.components): # If a component type does not exist in one rule # this rule has lower precedence if not comp_a: return B_HAS_PRECEDENCE if not comp_b: return A_HAS_PRECEDENCE # Higher precedence for lower component type if comp_a.component_type < comp_b.component_type: return A_HAS_PRECEDENCE if comp_a.component_type > comp_b.component_type: return B_HAS_PRECEDENCE # component types are equal -> type specific comparison if comp_a.component_type in (IP_DESTINATION, IP_SOURCE): # assuming comp_a.op_value, comp_b.op_value of # type ipaddress.IPv4Network if comp_a.op_value.overlaps(comp_b.op_value): # longest prefixlen has precedence if comp_a.op_value.prefixlen > \ comp_b.op_value.prefixlen: return A_HAS_PRECEDENCE if comp_a.op_value.prefixlen < \ comp_b.op_value.prefixlen: return B_HAS_PRECEDENCE # components equal -> continue with next component elif comp_a.op_value > comp_b.op_value: return B_HAS_PRECEDENCE elif comp_a.op_value < comp_b.op_value: return A_HAS_PRECEDENCE else: # assuming comp_a.op_value, comp_b.op_value of type # bytearray if len(comp_a.op_value) == len(comp_b.op_value): if comp_a.op_value > comp_b.op_value: return B_HAS_PRECEDENCE if comp_a.op_value < comp_b.op_value: return A_HAS_PRECEDENCE # components equal -> continue with next component else: common = min(len(comp_a.op_value), len(comp_b.op_value)) if comp_a.op_value[:common] > \ comp_b.op_value[:common]: return B_HAS_PRECEDENCE elif comp_a.op_value[:common] < \ comp_b.op_value[:common]: return A_HAS_PRECEDENCE # the first common bytes match elif len(comp_a.op_value) > len(comp_b.op_value): return A_HAS_PRECEDENCE else: return B_HAS_PRECEDENCE return EQUAL<CODE ENDS> ]]></artwork> </figure> </t>]]></sourcecode> </section> <sectiontitle="Comparisonanchor="rfc5575differences" numbered="true" toc="default"> <name>Comparison with RFC5575" anchor="rfc5575differences"> <t> This5575</name> <t>This document includes numerous editorial changes to <xref target="RFC5575"/>.format="default"/>. It also completely incorporates the redirect action clarification document <xref target="RFC7674"/>.format="default"/>. It is recommended to read the entire document. The authors,howeverhowever, want to point out the following technical changes to <xref target="RFC5575"/>: <list> <t> <xrefformat="default"/>:</t> <ul spacing="normal"> <li><xref target="intro"/>format="default"/> introduces the Flow Specification NLRI. In <xref target="RFC5575"/>format="default"/>, this NLRI was defined as anopaque-keyopaque key in BGPs database. This specification has removed all references to anopaque-keyopaque key property. BGP implementations are able to understand the NLRIencoding. </t> <t> <xrefencoding.</li> <li><xref target="numeric_operator"/>format="default"/> defines a numeric operator and comparison bit combinations. In <xref target="RFC5575"/>format="default"/>, the meaning of those bit combination was not explicitly defined and left open to thereader. </t> <t>reader.</li> <li>Sections <xref target="type_3"/>format="counter"/> - <xref target="type_8"/>,format="counter"/>, <xref target="type_10"/>,format="counter"/>, and <xref target="type_11"/>format="counter"/> make use of the above numeric operator. The allowed length of the comparison value was not consistently defined in <xref target="RFC5575"/>. </t> <t> <xrefformat="default"/>.</li> <li><xref target="traffic_filtering_actions"/>format="default"/> defines all Traffic Filtering Action ExtendedcommunitiesCommunities as transitiveextended communities.Extended Communities. <xref target="RFC5575"/>format="default"/> defined the traffic-rate action to be non-transitive and did not define the transitivity of the other Traffic Filtering Action communities atall. </t> <t> <xrefall.</li> <li><xref target="traffic_rate_in_packets"/>format="default"/> introduces a new Traffic Filtering Action (traffic-rate-packets). This action did not exist in <xref target="RFC5575"/>. </t> <t> <xrefformat="default"/>.</li> <li><xref target="rt_redirect_action_subtype"/>format="default"/> contains the same redirect actions already defined in <xref target="RFC5575"/>format="default"/>, however, these actions have been renamed to "rt-redirect" to make it clearer that the redirection is based on route-target. This section also completely incorporates the <xref target="RFC7674"/>format="default"/> clarifications of the Flowspec Redirect ExtendedCommunity. </t> <t> <xrefCommunity.</li> <li><xref target="rules_action_interference"/>format="default"/> contains general considerations on interfering traffic actions. <xref target="traffic_action_subtype"/>format="default"/> also cross-references <xref target="rules_action_interference"/>.format="default"/>. <xref target="RFC5575"/>format="default"/> did not mentionthis. </t> <t> <xrefthis.</li> <li><xref target="errorhandling"/>format="default"/> contains new errorhandling. </t> </list> </t>handling.</li> </ul> </section> <section numbered="false" toc="default"> <name>Acknowledgments</name> <t>The authors would like to thank <contact fullname="Yakov Rekhter"/>, <contact fullname="Dennis Ferguson"/>, <contact fullname="Chris Morrow"/>, <contact fullname="Charlie Kaufman"/>, and <contact fullname="David Smith"/> for their comments on the original <xref target="RFC5575" format="default"/>. <contact fullname="Chaitanya Kodeboyina"/> helped design the flow validation procedure, and <contact fullname="Steven Lin"/> and <contact fullname="Jim Washburn"/> ironed out all the details necessary to produce a working implementation in the original <xref target="RFC5575" format="default"/>.</t> <t>A packet rate Traffic Filtering Action was also described in a Flow Specification extension draft and the authors would like to thank <contact fullname="Wesley Eddy"/>, <contact fullname="Justin Dailey"/>, and <contact fullname="Gilbert Clark"/> for their work.</t> <t>Additionally, the authors would like to thank <contact fullname="Alexander Mayrhofer"/>, <contact fullname="Nicolas Fevrier"/>, <contact fullname="Job Snijders"/>, <contact fullname="Jeffrey Haas"/>, and <contact fullname="Adam Chappell"/> for their comments and review.</t> </section> <section numbered="false" toc="default"> <name>Contributors</name> <t><contact fullname="Barry Greene"/>, <contact fullname="Pedro Marques"/>, <contact fullname="Jared Mauch"/>, and <contact fullname="Nischal Sheth were"/> authors on <xref target="RFC5575" format="default"/> and, therefore, are contributing authors on this document.</t> </section> </back> </rfc>