<?xml version="1.0"encoding="US-ASCII"?>encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc toc="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc iprnotified="no"?> <?rfc strict="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?>"rfc2629-xhtml.ent"> <rfccategory="std"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-detnet-mpls-13" number="8964" ipr="trust200902"submissionType="IETF">submissionType="IETF" category="std" consensus="true" obsoletes="" updates="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 3.3.0 --> <front> <title abbrev="DetNet Data Plane: MPLS">DetNetDeterministic Networking (DetNet) Data Plane: MPLS</title> <seriesInfo name="RFC" value="8964"/> <author role="editor"fullname="Balázsfullname="Balázs Varga" initials="B." surname="Varga"> <organization>Ericsson</organization> <address> <postal> <street>Magyar Tudosok krt. 11.</street> <city>Budapest</city> <country>Hungary</country> <code>1117</code> </postal> <email>balazs.a.varga@ericsson.com</email> </address> </author> <authorfullname="Jánosfullname="János Farkas" initials="J." surname="Farkas"> <organization>Ericsson</organization> <address> <postal> <street>Magyar Tudosok krt. 11.</street> <city>Budapest</city> <country>Hungary</country> <code>1117</code> </postal> <email>janos.farkas@ericsson.com</email> </address> </author> <author fullname="Lou Berger" initials="L." surname="Berger"> <organization>LabN Consulting, L.L.C.</organization> <address> <email>lberger@labn.net</email> </address> </author> <author fullname="Andrew G. Malis"initials="A.G."initials="A." surname="Malis"> <organization>Malis Consulting</organization> <address> <email>agmalis@gmail.com</email> </address> </author> <author fullname="Stewart Bryant" initials="S." surname="Bryant"> <organization>Futurewei Technologies</organization> <address><email>stewart.bryant@gmail.com</email><email>sb@stewartbryant.com</email> </address> </author> <author fullname="Jouni Korhonen" initials="J." surname="Korhonen"><!--organization abbrev="Nordic">Nordic Semiconductor</organization--><address> <email>jouni.nospam@gmail.com</email> </address> </author><!--author fullname="Donald Fauntleroy Duck" initials="D. F." surname="Duck"> <organization abbrev="Royal Bros.">Royal Bros.</organization> <address> <postal> <street>13 Paradise Road</street> <city>Duckburg</city> <region>Calisota</region> <country>USA</country> </postal> </address> </author--><date/>year="2021" month="January"/> <workgroup>DetNet</workgroup> <abstract> <t> This document specifies the Deterministic Networking (DetNet) data plane when operating over an MPLS Packet Switched Network. It leverages existing pseudowire (PW) encapsulations and MPLS Traffic Engineering (MPLS-TE) encapsulations and mechanisms. This document builds on the DetNetArchitecturearchitecture andData Plane Framework.data plane framework. </t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="sec_intro"> <!-- Note: There are no dedicated section to procedures like "DetNet IP Data Plane Procedures" here. Do we need it like in DetNet-IP document ??? -->anchor="sec_intro" numbered="true" toc="default"> <name>Introduction</name> <t> Deterministic Networking (DetNet) is a service that can be offered by a network to DetNet flows. DetNet provides a capability for the delivery of data flows with extremely low packet loss rates and bounded end-to-end delivery latency. General background and concepts of DetNet can be found in the DetNetArchitecturearchitecture <xreftarget="RFC8655"/>.target="RFC8655" format="default"/>. </t> <t> The purpose of this document is to describe the use of the MPLS data plane to establish and support DetNet flows. The DetNetArchitecturearchitecture models theDetNet relatedDetNet-related data plane functions as being decomposed into two sub-layers: a service sub-layer and a forwarding sub-layer. The service sub-layer is used to provide DetNet servicefunctionsfunctions, such as protection and reordering. At the DetNet dataplaneplane, a new set of functions(PREOF)(Packet Replication, Elimination and Ordering Functions (PREOF)) provide theservice sub-layertasks specifictasks.to the service sub-layer. The forwarding sub-layer is used to provide forwarding assurance (low loss, assured latency, and limited out-of-order delivery). The use of the functionalities of the DetNet service sub-layer and the DetNet forwarding sub-layer require careful design and control by thecontroller planeController Plane in addition to theDetNet specificDetNet-specific use of MPLS encapsulation as specified by this document. </t> <t> This document specifies the DetNet data plane operation and the on-wire encapsulation of DetNet flows over an MPLS-based Packet Switched Network (PSN) using the service reference model. MPLS encapsulation already provides a solid foundation of building blocks to enable the DetNet service and forwarding sub-layer functions.MPLS encapsulatedMPLS-encapsulated DetNet can be carried over a variety of different network technologies that can provide theDetNet requiredlevel ofservice.service required for DetNet. However, the specific details of how DetNet MPLS is carried over different network technologies are out of scopeoffor this document. </t> <t>MPLS encapsulatedMPLS-encapsulated DetNet flows can carry different types of traffic. The details of the types of traffic that are carried in DetNet are also out of scopeoffor this document. An example of IP using DetNet MPLS sub-networks can be found in <xreftarget="I-D.ietf-detnet-ip"/>.target="RFC8939" format="default"/>. DetNet MPLS may use an associated controller and Operations, Administration, and Maintenance (OAM) functions that are defined outside of this document. </t> <t> Background information common to all data planes for DetNet can be found in the DetNetData Plane Frameworkdata plane framework <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. </t> </section> <sectiontitle="Terminology">numbered="true" toc="default"> <name>Terminology</name> <sectiontitle="Termsnumbered="true" toc="default"> <name>Terms Used in ThisDocument">Document</name> <t> This document uses the terminology established in the DetNet architecture <xreftarget="RFC8655"/>target="RFC8655" format="default"/> and the DetNetData Plane Frameworkdata plane framework <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. The reader is assumed to be familiar with these documents, any terminology definedthereintherein, and basicMPLS relatedMPLS-related terminologies in <xreftarget="RFC3031"/>.target="RFC3031" format="default"/>. </t> <t> The following terminology is introduced in this document:<list style="hanging" hangIndent="14"> <t hangText="F-Label"></t> <dl newline="false" spacing="normal" indent="14"> <dt>F-Label</dt> <dd> ADetnetDetNet "forwarding" label that identifies theLSPLabel Switched Path (LSP) used to forward a DetNet flow across an MPLS PSN, i.e., a hop-by-hop label used betweenlabel switching routers (LSR). </t> <t hangText="S-Label">Label Switching Routers (LSRs). </dd> <dt>S-Label</dt> <dd> A DetNet "service" label that is used between DetNet nodes that implement the DetNet service sub-layer functions. An S-Label is used to identify a DetNet flow at the DetNet service sub-layer at a receiving DetNet node.</t> <t hangText="A-Label"></dd> <dt>A-Label</dt> <dd> A special case of an S-Label, whose aggregation properties are known only at the aggregation and deaggregationend-points. </t> <t hangText="d-CW">end points. </dd> <dt>d-CW</dt> <dd> A DetNet Control Word (d-CW) that is used for sequencing information of a DetNet flow at the DetNet service sub-layer.</t> </list> </t></dd> </dl> </section> <sectiontitle="Abbreviations">numbered="true" toc="default"> <name>Abbreviations</name> <t> The following abbreviations are used in this document:<list style="hanging" hangIndent="14"> <t hangText="CoS">Class of Service.</t> <t hangText="CW">Control Word.</t> <t hangText="DetNet">Deterministic Networking.</t> <t hangText="LSR">Label</t> <dl newline="false" spacing="normal" indent="14"> <dt>CoS</dt> <dd>Class of Service</dd> <dt>CW</dt> <dd>Control Word</dd> <dt>DetNet</dt> <dd>Deterministic Networking</dd> <dt>LSR</dt> <dd>Label SwitchingRouter.</t> <t hangText="MPLS">MultiprotocolRouter</dd> <dt>MPLS</dt> <dd>Multiprotocol LabelSwitching.</t> <t hangText="MPLS-TE">MultiprotocolSwitching</dd> <dt>MPLS-TE</dt> <dd>Multiprotocol Label Switching-TrafficEngineering.</t> <t hangText="MPLS-TP">MultiprotocolEngineering</dd> <dt>MPLS-TP</dt> <dd>Multiprotocol Label Switching-TransportProfile.</t> <t hangText="OAM">Operations,Profile</dd> <dt>OAM</dt> <dd>Operations, Administration, andMaintenance.</t> <t hangText="PE">Provider Edge.</t> <t hangText="PEF">PacketMaintenance</dd> <dt>PE</dt> <dd>Provider Edge</dd> <dt>PEF</dt> <dd>Packet EliminationFunction.</t> <t hangText="PRF">PacketFunction</dd> <dt>PRF</dt> <dd>Packet ReplicationFunction.</t> <t hangText="PREOF">PacketFunction</dd> <dt>PREOF</dt> <dd>Packet Replication, Elimination and OrderingFunctions.</t> <t hangText="POF">PacketFunctions</dd> <dt>POF</dt> <dd>Packet OrderingFunction.</t> <t hangText="PSN">PacketFunction</dd> <dt>PSN</dt> <dd>Packet SwitchedNetwork.</t> <t hangText="PW">PseudoWire.</t> <t hangText="QoS">Quality of Service.</t> <t hangText="S-PE">SwitchingNetwork</dd> <dt>PW</dt> <dd>Pseudowire</dd> <dt>QoS</dt> <dd>Quality of Service</dd> <dt>S-PE</dt> <dd>Switching ProviderEdge.</t> <t hangText="T-PE">TerminatingEdge</dd> <dt>T-PE</dt> <dd>Terminating ProviderEdge.</t> <t hangText="TSN">Time-Sensitive Network.</t> </list> </t>Edge</dd> <dt>TSN</dt> <dd>Time-Sensitive Networking</dd> </dl> </section> <sectiontitle="Requirements Language">numbered="true" toc="default"> <name>Requirements Language</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> </section><!-- end of terminology --><sectiontitle="DetNetanchor="sec_dt_dp" numbered="true" toc="default"> <name>Overview of the DetNet MPLS DataPlane Overview" anchor="sec_dt_dp">Plane</name> <sectiontitle="Layersanchor="sec_lay_dt_dp" numbered="true" toc="default"> <name>Layers of DetNet DataPlane" anchor="sec_lay_dt_dp">Plane</name> <t> MPLS provides a wide range of capabilities that can beutilisedutilized by DetNet. Astraight forwardstraight-forward approach utilizing MPLS for a DetNet service sub-layer is based on the existing pseudowire (PW) encapsulations andby utilizingutilizes existingMPLS Traffic EngineeringMPLS-TE encapsulations and mechanisms. Background on PWs can be found in <xreftarget="RFC3985"/>target="RFC3985" format="default"/>, <xref target="RFC3032"/>, and <xreftarget="RFC3031"/>.target="RFC3031" format="default"/>. Background onMPLS Traffic EngineeringMPLS-TE can be found in <xreftarget="RFC3272"/>target="RFC3272" format="default"/> and <xreftarget="RFC3209"/>.target="RFC3209" format="default"/>. </t> <figureanchor="dn_mpls_dp_approach" align="center" title="DetNetanchor="dn_mpls_dp_approach"> <name>DetNet Adaptation to MPLS DataPlane">Plane</name> <artworkalign="center"><![CDATA[align="center" name="" type="" alt=""><![CDATA[ DetNet MPLS . Bottom of Stack . (inner label) +------------+ | Service | d-CW, S-Label (A-Label) +------------+ | Forwarding | F-Label(s) +------------+ Top of Stack . (outer label) . ]]></artwork> </figure> <t> The DetNet MPLS data plane representation is illustrated in <xreftarget="dn_mpls_dp_approach"/>.target="dn_mpls_dp_approach" format="default"/>. The service sub-layer includes a DetNetcontrol wordControl Word (d-CW) and an identifying service label (S-Label). The DetNetcontrol wordControl Word (d-CW) conforms to the Generic PW MPLS Control Word (PWMCW) defined in <xreftarget="RFC4385"/>.target="RFC4385" format="default"/>. An aggregation label (A-Label) is a special case of S-Label used for aggregation. </t> <t> A node operating on a received DetNet flow at theDetnetDetNet service sub-layer uses the local context associated with a received S-Label, i.e., a received F-Label, to determine which local DetNet operation(s) are applied to that packet. An S-Label may be taken from the platform label space <xreftarget="RFC3031"/>,target="RFC3031" format="default"/>, making itunique,unique and enabling DetNet flow identification regardless of which input interface or LSP the packet arrives on. It is important to note that S-Label values are driven by the receiver, not the sender. </t> <t> The DetNet forwarding sub-layer is supported by zero or more forwarding labels (F-Labels).MPLS Traffic EngineeringMPLS-TE encapsulations and mechanisms can be utilized to provide a forwarding sub-layer that is responsible for providing resource allocation and explicit routes. </t> </section> <sectiontitle="DetNetanchor="sec_mpls_dt_dp_scen" numbered="true" toc="default"> <name>DetNet MPLS Data PlaneScenarios" anchor="sec_mpls_dt_dp_scen">Scenarios</name> <figurealign="center" anchor="fig_dn_mpls_detnet" title="Aanchor="fig_dn_mpls_detnet"> <name>A DetNet MPLSNetwork"> <artwork><![CDATA[Network</name> <artwork name="" type="" align="left" alt=""><![CDATA[ DetNet MPLS Relay Transit Relay DetNet MPLS End System Node Node Node End System (T-PE) (S-PE) (LSR) (S-PE) (T-PE) +----------+ +----------+ | Appl. |<------------End to EndEnd-to-End Service ----------->| Appl. | +----------+ +---------+ +---------+ +----------+ | Service |<--| Service |-- DetNet flow --| Service |-->| Service | +----------+ +---------+ +----------+ +---------+ +----------+ |Forwarding| |Fwd| |Fwd| |Forwarding| |Fwd| |Fwd| |Forwarding| +-------.--+ +-.-+ +-.-+ +----.---.-+ +-.-+ +-.-+ +---.------+ : Link : / ,-----. \ : Link : / ,-----. \ +........+ +-[SubSub- ]-+ +......+ +-[SubSub- ]-+ [Network] [Network] `-----' `-----' |<- LSP -->| |<-------- LSP -----------| |<--- LSP -->| |<----------------- DetNet MPLS --------------------->| ]]></artwork> </figure> <t> <xreftarget="fig_dn_mpls_detnet"/>target="fig_dn_mpls_detnet" format="default"/> illustrates a hypothetical DetNet MPLS-only network composed ofDetNet aware MPLS enabledDetNet-aware MPLS-enabled endsystems,systems operating over aDetNet awareDetNet-aware MPLS network. In this figure, the relay nodes are PE devices that define the MPLS LSPboundariesboundaries, and the transit nodes are LSRs. </t> <t> DetNet end systems and relay nodes understand the particular needs of DetNet flows and provide both DetNet service and forwarding sub-layer functions. In the case of MPLS, DetNet service-aware nodes add,removeremove, and process d-CWs,S-LabelsS-Labels, andF-labelsF-Labels as needed. DetNet MPLS nodes provide functionality analogous to T-PEs when they sit at the edge of an MPLSdomain,domain and S-PEs when they are in the middle of an MPLSdomain,domain; see <xreftarget="RFC6073"/>.target="RFC6073" format="default"/>. </t> <t> In a DetNet MPLS network, transit nodes may beDetNet service awareDetNet-service-aware ormay be DetNet unawareDetNet-unaware MPLS Label Switching Routers (LSRs). In this latter case, such LSRs would be unaware of the special requirements of the DetNet servicesub-layer,sub-layer but would still provide traffic engineering functions and the QoS capabilities needed to ensure that the (TE) LSPs meet the service requirements of the carried DetNet flows. </t> <t> The application of DetNet using MPLS supports a number of controlplane/managementand management plane types. These types support certain MPLS data plane deployments. Forexampleexample, RSVP-TE, MPLS-TP, or MPLS Segment Routing (when extended to support resource allocation) are all valid MPLS deployment cases. </t> <t> <xreftarget="fig_pw_detnet"/>target="fig_pw_detnet" format="default"/> illustrates how an end-to-end MPLS-based DetNet service is provided inamore detail. In this figure, thecustomer end systems, CE1Customer Edge (CE1 andCE2,CE2) are able to send and receiveMPLS encapsulatedMPLS-encapsulated DetNet flows, and R1,R2R2, and R3 are relay nodes in the middle of a DetNet network. The 'X' in the endsystems,systems and relay nodes represents potential DetNet compound flow packet replication and elimination points. In this example, service protection is supported utilizing at least two DetNet member flows and TE LSPs. For a unidirectional flow, R1 supportsPRFPRF, and R3 supports PEF and POF. Note that the relay nodes may change the underlying forwarding sub-layer, forexampleexample, tunneling MPLS over IEEE 802.1 TSN <xreftarget="I-D.ietf-detnet-mpls-over-tsn"/>,target="I-D.ietf-detnet-mpls-over-tsn" format="default"/> or simply overinterconnectinterconnected network links. </t> <figurealign="center" anchor="fig_pw_detnet" title="MPLS-Basedanchor="fig_pw_detnet"> <name>MPLS-Based NativeDetNet"> <artwork><![CDATA[DetNet</name> <artwork name="" type="" align="left" alt=""><![CDATA[ DetNet DetNet DetNet Service Transit Transit Service DetNet MPLS | |<-Tnl->| |<-Tnl->| | MPLS End | V 1 V V 2 V | End System | +--------+ +--------+ +--------+ | System +---+ | | R1 |=======| R2 |=======| R3 | | +---+ | X...DFa...|._X_....|..DF1..|.__ ___.|..DF3..|...._X_.|.DFa..|.X | |CE1|========| \ | | X | | / |======|CE2| | | | | \_.|..DF2..|._/ \__.|..DF4..|._/ | | | | +---+ | |=======| |=======| | +---+ ^ +--------+ +--------+ +--------+ ^ | Relay Node Relay Node Relay Node | | (S-PE) (S-PE) (S-PE) | | | |<---------------------- DetNet MPLS --------------------->| | | |<---------------End to EndEnd-to-End DetNet Service -------------->| -------------------------- Data Flow ------------------------->X =]]></artwork> </figure> <dl newline="false" spacing="normal" indent="6"> <dt>X</dt> <dd>- Optional service protection (none, PRF, PREOF,PEF/POF) DFx =PEF/POF)</dd> <dt>DFx</dt> <dd>- DetNet member flow x over a TELSP ]]></artwork> </figure>LSP</dd> </dl> </section> </section><!-- end of data plane overview --> <!-- ================================================================= --> <!-- =================== MPLS Encap considerations ================ --> <!-- ================================================================= --><sectiontitle="MPLS-Basedanchor="dn-dt-solution" numbered="true" toc="default"> <name>MPLS-Based DetNet Data PlaneSolution" anchor="dn-dt-solution">Solution</name> <sectiontitle="DetNet Overanchor="dn-MPLS-en-comps" numbered="true" toc="default"> <name>DetNet over MPLS EncapsulationComponents" anchor="dn-MPLS-en-comps">Components</name> <t> To carry DetNet overMPLSMPLS, the following is required:<list style="numbers"> <t>A</t> <ol spacing="normal" type="1"> <li>A method of identifying the MPLS payloadtype.</t> <t>Atype.</li> <li>A method of identifying the DetNet flow(s) to the processingelement.</t> <t>Aelement.</li> <li>A method of distinguishing DetNet OAM packets from DetNet datapackets.</t> <t>Apackets.</li> <li>A method of carrying the DetNet sequencenumber.</t> <t>Anumber.</li> <li>A suitable LSP to deliver the packet to the egressPE.</t> <t>APE.</li> <li>A method of carrying queuing and forwardingindication.</t> </list> </t>indication.</li> </ol> <t> In thisdesigndesign, an MPLS service label (theS-Label),S-Label) is similar to a pseudowire (PW) label <xreftarget="RFC3985"/>,target="RFC3985" format="default"/> and is used to identify both the DetNet flow identity and thepayloadMPLS payload type satisfying (1) and (2) in the list above. OAM traffic discrimination happens through the use of the Associated Channel method described in <xreftarget="RFC4385"/>.target="RFC4385" format="default"/>. The DetNet sequence number is carried in the DetNet ControlwordWord, which also carries the Data/OAM discriminator. To simplify implementation and to maximizeinteroperabilityinteroperability, two sequence number sizes are supported: a16 bit16-bit sequence number and a28 bit28-bit sequence number. The16 bit16-bit sequence number is needed to support some types of legacy clients. The28 bit28-bit sequence number is used in situations where it is necessary to ensurethatthat, inhigh speed networkshigh-speed networks, the sequence number space does not wrap whilst packets are in flight. </t> <t> The LSP used to forward the DetNet packet is not restricted regarding any method used for establishing that LSP (for example, MPLS-LDP, MPLS-TE, MPLS-TP <xreftarget="RFC5921"/>, MPLS-SRtarget="RFC5921" format="default"/>, MPLS Segment Routing <xreftarget="RFC8660"/>,target="RFC8660" format="default"/>, etc.). TheLSP (F-Label) label(s) and/orF-Label(s) and the S-Label may be used alone or together to indicate the required queue processing as well as the forwarding parameters. Note that the possible use of Penultimate Hop Popping (PHP) means that the S-Label may be the only label received at the terminating DetNet service. </t> </section> <sectiontitle="MPLSanchor="pwSolution" numbered="true" toc="default"> <name>MPLS Data PlaneEncapsulation" anchor="pwSolution">Encapsulation</name> <t> <xreftarget="fig_pw_mpls"/>target="fig_pw_mpls" format="default"/> illustrates a DetNet data plane MPLS encapsulation. The MPLS-based encapsulation of the DetNet flows is well suited for the scenarios described in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. Furthermore, an end-to-end DetNetserviceservice, i.e., native DetNet deployment (see <xreftarget="sec_mpls_dt_dp_scen"/>)target="sec_mpls_dt_dp_scen" format="default"/>), is also possible if DetNet end systems are capable of initiating andtermination MPLS encapsulated packets. </t> <t> Theterminating MPLS-encapsulated packets.</t> <t>The MPLS-based DetNet data plane encapsulation consistsof: <list style="symbols"> <t>of:</t> <ul spacing="normal"> <li>A DetNetcontrol wordControl Word (d-CW) containing sequencing information for packet replication and duplicate elimination purposes, and the OAMindicator.</t> <t>indicator.</li> <li>A DetNet serviceLabellabel (S-Label) that identifies a DetNet flow at the receiving DetNet service sub-layer processingnode. </t> <t> Zeronode.</li> <li>Zero or moreDetnetDetNet MPLSForwardingforwarding label(s) (F-Label) used to direct the packet along thelabel switched pathLabel Switched Path (LSP) to the next DetNet service sub-layer processing node along the path. WhenPenultimate Hop PoppingPHP is inuseuse, there may be nolabelF-Label in the protocol stack on the finalhop. </t> <t> Thehop.</li> <li>The necessary data-link encapsulation is then applied prior to transmission over the physicalmedia. </t> </list> </t>media.</li> </ul> <figuretitle="Encapsulationanchor="fig_pw_mpls"> <name>Encapsulation of a DetNet App-Flow in an MPLSPSN" anchor="fig_pw_mpls">PSN</name> <artworkalign="center"><![CDATA[align="center" name="" type="" alt=""><![CDATA[ DetNet MPLS-based encapsulation +---------------------------------+ | | | DetNet App-Flow | | Payload Packet | | | +---------------------------------+ <--\ | DetNet Control Word | | +---------------------------------+ +--> DetNet data plane | S-Label | | MPLS encapsulation +---------------------------------+ | | [ F-Label(s) ] | | +---------------------------------+ <--/ | Data-Link | +---------------------------------+ | Physical | +---------------------------------+]]> </artwork></figure>]]></artwork> </figure> <sectiontitle="DetNetanchor="dn-sn" numbered="true" toc="default"> <name>DetNet Control Word andtheDetNet SequenceNumber" anchor="dn-sn">Number</name> <t> A DetNetcontrol wordControl Word (d-CW) conforms to the Generic PW MPLS Control Word (PWMCW) defined in <xreftarget="RFC4385"/>.target="RFC4385" format="default"/>. The d-CW formatted as shown in <xreftarget="fig_detnet_cw"/> MUSTtarget="fig_detnet_cw" format="default"/> <bcp14>MUST</bcp14> be present in all DetNet packets containingapp-flowApp-flow data. This format of the d-CW was created in order(1)to (1) allow larger sequence number space to avoid sequence number rollover frequency in some applications and (2)toallow sequence numbering systems that include the value zero as a valid sequence number, which simplifies implementation. </t> <figuretitle="DetNet Control Word"anchor="fig_detnet_cw"> <name>DetNet Control Word</name> <artworkalign="center"><![CDATA[align="center" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0 0 0 0| Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]> </artwork></figure> <t> <list style="hanging"> <t hangText="(bits]]></artwork> </figure> <dl newline="true" spacing="normal"> <dt>(bits 0 to3)"> <vspace blankLines="1"/> Per3)</dt> <dd>Per <xreftarget="RFC4385"/>, MUSTtarget="RFC4385" format="default"/>, <bcp14>MUST</bcp14> be set to zero(0). </t> <t hangText="Sequence(0).</dd> <dt>Sequence Number (bits 4 to31)"> <vspace blankLines="1"/> An31)</dt> <dd>An unsigned value implementing the DetNet sequence number. The sequence number space is a circular one with no restriction on the initialvalue. </t> </list> </t>value.</dd> </dl> <t> A separate sequence number spaceMUST<bcp14>MUST</bcp14> be maintained by the node that adds the d-CW for each DetNetapp-flow,App-flow, i.e., DetNet service. The followingsequence numberSequence Number field lengthsMUST<bcp14>MUST</bcp14> be supported:<list style="bullets"> <t>0 bits</t> <t>16 bits</t> <t>28 bits</t> </list> The</t> <ul spacing="normal"> <li>0 bits</li> <li>16 bits</li> <li>28 bits</li> </ul> <t>The sequence number lengthMUST<bcp14>MUST</bcp14> be provisioned on aper Detnet serviceper-DetNet-service basis via configuration, i.e., via thecontroller planeController Plane described in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. </t> <t> A0 bit sequence number0-bit Sequence Number field length indicates that there is no DetNet sequence number used for the flow. When the length is zero, thesequence numberSequence Number fieldMUST<bcp14>MUST</bcp14> be set to zero (0) on all packets sent for the flow. </t> <t> When thesequence numberSequence Number field length is 16 or 28 bits for a flow, the sequence numberMUST<bcp14>MUST</bcp14> be incremented by one for each newapp-flowApp-flow packet sent. When the field length is 16 bits, d-CW bits 4 to 15MUST<bcp14>MUST</bcp14> be set to zero (0). The values carried in this field canwrapwrap, and it is important to note that zero (0) is a valid field value. For example, where the sequence number size is 16 bits, the sequence will contain: 65535, 0, 1, where zero (0) is an ordinary sequence number. </t> <t> It is important to note that this document differs from <xreftarget="RFC4448"/>target="RFC4448" format="default"/>, where a sequence number of zero (0) is used to indicate that the sequence number check algorithm is not used. </t><t> The<t>The sequence number is optionally used during receiveprocessingprocessing, as described below in Sections <xreftarget="pef-requirements"/>target="pef-requirements" format="counter"/> and <xreftarget="pof-requirements"/>.target="pof-requirements" format="counter"/>. </t> </section> <section anchor="flow-identification"title="S-Labels">numbered="true" toc="default"> <name>S-Labels</name> <t> A DetNet flow at the DetNet service sub-layer is identified by an S-Label. MPLS-aware DetNet end systems and edge nodes, which are by definition MPLS ingress and egress nodes,MUST<bcp14>MUST</bcp14> add (push) and remove (pop) a DetNet service-specific d-CW and S-Label. Relay nodesMAY<bcp14>MAY</bcp14> swap S-Label values when processing a DetNet flow, i.e., incoming and outgoing S-Labels of a DetNet flow can be different. </t> <t> S-Label valuesMUST<bcp14>MUST</bcp14> be provisioned per DetNet service via configuration, i.e., via thecontroller planeController Plane described in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. Note that S-Labels provide identification at the downstream DetNet service sub-layer receiver, not the sender. As such, S-LabelsMUST<bcp14>MUST</bcp14> be allocated by the entity that controls the service sub-layer receiving a node's labelspace,space andMAY<bcp14>MAY</bcp14> be allocated from the platform label space <xreftarget="RFC3031"/>.target="RFC3031" format="default"/>. Because S-Labels are local to eachnodenode, rather than being a global identifier within a domain, they must be advertised to their upstream DetNet service-aware peer nodes (i.e., a DetNet MPLSEnd Systemend system or a DetNetRelayrelay orEdge Node)edge node) and interpreted in the context of their received F-Label(s). In some PREOF topologies, the node performing replication will be sending to multiple nodes performing PEF orPOF,POF and may need to send different S-Label values for the different member flows for the same DetNet service. </t> <t> An S-Label will normally be at the bottom of the label stack once the last F-Label is removed, immediately preceding the d-CW. To support OAM at the service sub-layerlevel OAM,level, an OAM Associated Channel Header (ACH) <xreftarget="RFC4385"/>target="RFC4385" format="default"/> together with a Generic Associated Channel Label (GAL) <xreftarget="RFC5586"/> MAYtarget="RFC5586" format="default"/> <bcp14>MAY</bcp14> be used in place of a d-CW. </t> <t> Similarly, an Entropy LabelIndicator/EntropyIndicator (ELI) and Entropy Label(ELI/EL)(EL) <xreftarget="RFC6790"/> MAYtarget="RFC6790" format="default"/> <bcp14>MAY</bcp14> be carried below the S-Label in the label stack in networks where DetNet flows would otherwise receive ECMP treatment. When ELs are used, the same EL valueSHOULD<bcp14>SHOULD</bcp14> be used for all of the packets sent using a specific S-Label to force the flow to follow the same path. However, as outlined in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>target="RFC8938" format="default"/>, the use of ECMP for DetNet flows isNOT RECOMMENDED.<bcp14>NOT RECOMMENDED</bcp14>. ECMPMAY<bcp14>MAY</bcp14> be used for non-DetNet flows within a DetNet domain. </t> <t> When receiving a DetNet MPLS packet, an implementationMUST<bcp14>MUST</bcp14> identify the DetNet service associated with the incoming packet based on the S-Label. When a node is using platform labels for S-Labels, no additional information isneededneeded, as theS-labelS-Label uniquely identifies the DetNet service. In the case where platform labels are not used, zero or more F-Labels proceeding the S-LabelMUST<bcp14>MUST</bcp14> be used together with the S-Label to uniquely identify the DetNet service associated with a received packet. The incoming interfaceMAY<bcp14>MAY</bcp14> also be used together with any present F-Label(s) and the S-Label to uniquely identify an incoming DetNet service, for example, in the case where PHP is used. Note that the choice to use the platform label space for an S-Label or an S-Label plus one or more F-Labels to identify DetNet services is a local implementation choice, with one caveat. When one or moreF-labels,F-Labels, or the incoming interface, is needed together with an S-Label to uniquely identify a service, thecontroller planeController Plane must ensure that incoming DetNet MPLS packets arrive with the needed information(F-label(s)(F-Label(s) and/or the incoming interface) and provision the needed information. The provisioned informationMUST<bcp14>MUST</bcp14> then be used to identify incoming DetNet service based on the combination of S-Label and F-Label(s) or the incoming interface. </t> <t> The use of platform labels for S-Labels matches other pseudowire encapsulations forconsistencyconsistency, but there is no hard requirement in this regard. </t><t> Implementation<t>Implementation details of PREOFfunctionsare out of scope for this document. <xreftarget="IEEE802.1CB-2017"/>target="IEEE802.1CB-2017" format="default"/> defines equivalent replication andelimination specificelimination-specific aspects, which can be applied to PRF andPEF. </t>PEF.</t> <section anchor="prf-requirements"title="Packetnumbered="true" toc="default"> <name>Packet Replication FunctionProcessing">Processing</name> <t> The Packet Replication Function (PRF)function MAY<bcp14>MAY</bcp14> be supported by an implementation for outgoing DetNet flows. The use of the PRF for a particular DetNet serviceMUST<bcp14>MUST</bcp14> be provisioned via configuration, i.e., via thecontroller planeController Plane described in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. When replication is configured, the sameapp-flowApp-flow data will be sent over multiple outgoing DetNet member flows using forwarding sub-layer LSPs. An S-Label valueMUST<bcp14>MUST</bcp14> be configured per outgoing member flow. The same d-CW field valueMUST<bcp14>MUST</bcp14> be used on all outgoing member flows for each replicated MPLS packet.<!-- PRF MUST NOT be used with DetNet services configured with a d-CW sequence number field length of 0 bits. [Note: What if multiple receivers? We may use the PRF for serving multiple end-points.] --></t> </section> <section anchor="pef-requirements"title="Packetnumbered="true" toc="default"> <name>Packet Elimination FunctionProcessing">Processing</name> <t> ImplementationsMAY<bcp14>MAY</bcp14> support the Packet Elimination Function (PEF) for received DetNet MPLS flows. When supported, use of the PEF for a particular DetNet serviceMUST<bcp14>MUST</bcp14> be provisioned via configuration, i.e., via thecontroller planeController Plane described in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. </t> <t> After a DetNet service is identified for a received DetNet MPLS packet, as described above, if PEF is configured for that DetNet service, duplicate (replicated) instances of a particular sequence numberMUST<bcp14>MUST</bcp14> be discarded. The specific mechanisms used for an implementation to identify which received packets are duplicates and which are new is an implementation choice. Notethatthat, per <xreftarget="dn-sn"/>target="dn-sn" format="default"/>, thesequence numberSequence Number field length may be 16 or 28 bits, and the field value can wrap. PEFMUST NOT<bcp14>MUST NOT</bcp14> be used with DetNet flows configured with a d-CWsequence numberSequence Number field length of 0 bits. </t> <t> An implementationMAY<bcp14>MAY</bcp14> constrain the maximum number of sequence numbers that are tracked on either a platform-wide orper flowper-flow basis. Some implementationsMAY<bcp14>MAY</bcp14> support the provisioning of the maximum number of sequence numbers that are tracked on either a platform-wide orper flowper-flow basis. </t> </section> <section anchor="pof-requirements"title="Packetnumbered="true" toc="default"> <name>Packet Ordering FunctionProcessing">Processing</name> <t> A function that is related to in-order delivery is the Packet Ordering Function (POF). ImplementationsMAY<bcp14>MAY</bcp14> support POF. When supported, use of the POF for a particular DetNet serviceMUST<bcp14>MUST</bcp14> be provisioned via configuration, i.e., via thecontroller planeController Plane described by <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. ImplementationsMAY<bcp14>MAY</bcp14> require that PEF and POF be used in combination. There is no requirement related to the order of execution of thePacket EliminationPEF andOrdering FunctionsPOF in an implementation. </t> <t> After a DetNet service is identified for a received DetNet MPLS packet, as described above, if POF is configured for that DetNet service, packetsMUST<bcp14>MUST</bcp14> be processed in the order indicated in the received d-CWsequence numberSequence Number field, which may not be in the order the packets are received. As defined in <xreftarget="dn-sn"/>target="dn-sn" format="default"/>, thesequence numberSequence Number field length may be 16 or 28 bits, the sequence number is incremented by one (1) for each new MPLS packet sent for a particular DetNet service, and the field value can wrap. The specific mechanisms used for an implementation to identify the order of received packets is an implementation choice. </t> <t> An implementationMAY<bcp14>MAY</bcp14> constrain the maximum number ofout of orderout-of-order packets that can beprocessed,processed on either a platform-wide orper flowper-flow basis. The number ofout of orderout-of-order packets that can be processed also impacts the latency of a flow. </t> <t> The latency impact on the system resources needed to support a specific DetNet flow will need to be evaluated by thecontroller planeController Plane based on that flow's traffic specification. An example traffic specification that can be used withMPLS with Traffic Engineering (MPLS-TE)MPLS-TE can be found in <xreftarget="RFC2212"/>.target="RFC2212" format="default"/>. </t> <t> DetNet implementations can use flow-specific requirements (e.g., maximum number of out-of-orderpackets,packets and maximum latency of the flow) for configuration of POF-related buffers. POF implementation details areout-of-scopeout of scope for thisdocumentdocument, and POF configuration parameters are implementation specific. The Controller Plane identifies and sets the POF configuration parameters. </t> </section> </section> <section anchor="f-labels"title="F-Labels">numbered="true" toc="default"> <name>F-Labels</name> <t> F-Labels support the DetNet forwarding sub-layer. F-Labels are used to provide LSP-based connectivity between DetNet service sub-layer processing nodes. </t> <section anchor="f-labels-ssl"title="Service Sub-Layer Related Processing">numbered="true" toc="default"> <name>Service Sub-Layer-Related Processing</name> <t> DetNet MPLS end systems, edgenodesnodes, and relay nodes may operate at the DetNet service sub-layer with understanding of DetNet services and their requirements. As mentioned earlier, when operating at thislayerlayer, such nodes can push,poppop, or swap (pop then push) S-Labels. In all cases, the F-Label(s) used for a DetNet service are alwaysreplacedreplaced, and the following procedures apply. </t> <t> When sending a DetNet flow, zero or more F-LabelsMAY<bcp14>MAY</bcp14> be pushed on top of an S-Label by the node pushing an S-Label. The F-Label(s) to be pushed when sending a particular DetNet serviceMUST<bcp14>MUST</bcp14> be provisioned per outgoing S-Label via configuration, i.e., via thecontroller planeController Plane discussed in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. F-Label(s) can also provide context for an S-Label. To allow for the omission of F-Label(s), an implementationSHOULD<bcp14>SHOULD</bcp14> also allow an outgoing interface to be configured per S-Label. </t> <t>Note,Note that when PRF is supported, the sameapp-flowApp-flow data will be sent over multiple outgoing DetNet member flows using forwarding sub-layer LSPs. This means that an implementation may be sending different sets of F-Labels per DetNet member flow, each with a different S-Label. </t> <t> When a single set of F-Labels is provisioned for a particular outgoing S-Label, that set ofF-labels MUSTF-Labels <bcp14>MUST</bcp14> be pushed after the S-Label is pushed. The outgoing packet is thenforwardedforwarded, as described below in <xreftarget="f-labels-all"/>.target="f-labels-all" format="default"/>. When a single outgoing interface is provisioned, the outgoing packet is thenforwardedforwarded, as described below in <xreftarget="f-labels-all"/>.target="f-labels-all" format="default"/>. </t> <t> When multiple sets of outgoing F-Labels or interfaces are provisioned for a particular DetNet service (i.e., for PRF), a copy of the outgoing packet, including the pushed member flow-specific S-Label,MUST<bcp14>MUST</bcp14> be made perF-labelF-Label set and outgoing interface. Each set of provisioned F-Labels are then pushed onto a copy of the packet. Each copy is thenforwardedforwarded, as described below in <xreftarget="f-labels-all"/>.target="f-labels-all" format="default"/>. </t> <t> As described in the previous section, when receiving a DetNet MPLS flow, an implementation identifies the DetNet service associated with the incoming packet based on the S-Label. When a node is using platform labels for S-Labels, any F-Labels can bepoppedpopped, and theS-labelS-Label uniquely identifies the DetNet service. In the case where platform labels are not used, incoming F-Label(s) and, optionally, the incoming interfaceMUST<bcp14>MUST</bcp14> also be provisioned for a DetNet service. </t> </section> <section anchor="f-labels-all"title="Commonnumbered="true" toc="default"> <name>Common F-LabelProcessing">Processing</name> <t> AllDetNet awareDetNet-aware MPLS nodes process F-Labels as needed to meet the service requirements of the DetNet flow or flows carried in the LSPs represented by the F-Labels. This includes normal push,poppop, and swap operations. Such processing is essentially the same type of processing provided for TE LSPs, although the specific service parameters, or traffic specification, can differ. When the DetNet service parameters of the DetNet flow or flows carried in an LSP represented by an F-Label can be met by an existing TE mechanism, the forwarding sub-layer processing nodeMAY<bcp14>MAY</bcp14> be aDetNet unaware,DetNet-unaware, i.e., standard, MPLS LSR. Such TE LSPs may provide LSP forwarding service as defined in, but notlimited to,limited, to the following: <xreftarget="RFC3209"/>,target="RFC3209" format="default"/>, <xreftarget="RFC3270"/>,target="RFC3270" format="default"/>, <xreftarget="RFC3272"/>,target="RFC3272" format="default"/>, <xreftarget="RFC3473"/>,target="RFC3473" format="default"/>, <xreftarget="RFC4875"/>,target="RFC4875" format="default"/>, <xreftarget="RFC5440"/>,target="RFC5440" format="default"/>, and <xreftarget="RFC8306"/>.target="RFC8306" format="default"/>. </t> <t> More specifically, as mentioned above, the DetNet forwarding sub-layer provides explicit routes and allocated resources, and F-Labels are used to map to each. Explicit routes are supported based on the topmost (outermost) F-Label that is pushed or swapped and the LSP that corresponds to this label. This topmost (outgoing) labelMUST<bcp14>MUST</bcp14> be associated with a provisioned outgoing interface and, for non-point-to-point outgoing interfaces, anext hopnext-hop LSR. Note that this informationMUST<bcp14>MUST</bcp14> be provisioned via configuration or thecontroller plane.Controller Plane. In the previously mentioned special case where there are no addedF-labelsF-Labels and the outgoing interface is not a point-to-point interface, the outgoing interfaceMUST<bcp14>MUST</bcp14> also be associated with anext hopnext-hop LSR. </t> <t> Resources may be allocated in a hierarchical fashion per each LSP that is represented by each F-Label. Each LSPMAY<bcp14>MAY</bcp14> be provisioned with a service parameter that dictates the specific traffic treatment to be received by the traffic carried over that LSP. Implementations of this documentMUST<bcp14>MUST</bcp14> ensure that traffic carried over each LSP represented by one or more F-Labels receives the traffic treatment provisioned for that LSP. Typical mechanisms used to provide different treatment to different flowsincludesinclude the allocation of system resources (such as queues and buffers) and provisioning of related parameters (such asshaping,shaping and policing) that may be found in implementations of<xref target="RFC2205">Resourcethe Resource ReSerVation Protocol(RSVP)</xref>(RSVP) <xref target="RFC2205" format="default"/> and RSVP-TE <xreftarget="RFC3209"/> andtarget="RFC3209" format="default"/> <xreftarget="RFC3473"/>.target="RFC3473" format="default"/>. Support can also be provided via an underlying networktechnologytechnology, suchIEEE802.1as IEEE 802.1 TSN <xreftarget="I-D.ietf-detnet-mpls-over-tsn"/>.target="I-D.ietf-detnet-mpls-over-tsn" format="default"/>. The specific mechanisms selected by a DetNet node to ensure DetNet service delivery requirements are met for supported DetNet flows is outside the scope of this document. </t> <t> Packets that are marked in a way that do not correspond to allocated resources, e.g., lack a provisioned F-Label, can disrupt the QoS offered to properly reserved DetNet flows by using resources allocated to the reserved flows. Therefore, the network nodes of a DetNet network:<list style="symbols"> <t> MUST</t> <ul spacing="normal"> <li> <bcp14>MUST</bcp14> defend the DetNet QoS by discarding or remarking (to an allocated DetNet flow ornon-competingnoncompeting non-DetNet flow) packets received that are not associated with a completed resource allocation.</t> <t> MUST NOT</li> <li> <bcp14>MUST NOT</bcp14> use a DetNet allocated resource,e.g.e.g., a queue or shaper reserved for DetNet flows, for any packet that does match the corresponding DetNet flow.</t> <t> MUST</li> <li> <bcp14>MUST</bcp14> ensure a QoS flow does not exceed its allocated resources or provisioned servicelevel, </t> <t> MUSTlevel. </li> <li> <bcp14>MUST</bcp14> ensure a CoS flow or service class does not impact the service delivered to other flows. This requirement is similar to the requirement for MPLS LSRs that CoS LSPs do not impact the resources allocated to TE LSPs, e.g., via <xreftarget="RFC3473"/>. </t> </list> </t>target="RFC3473" format="default"/>. </li> </ul> <t> Subsequent sections provide additional considerations related to CoS (<xreftarget="CoS"/>),target="CoS" format="default"/>), QoS (<xreftarget="QoS"/>)target="QoS" format="default"/>), and aggregation (<xreftarget="FAG"/>).target="FAG" format="default"/>). </t> </section> </section> </section> <section anchor="oam-indication"title="OAM Indication"> <!-- LB: why only type 1, if keep it, need conformance language -->numbered="true" toc="default"> <name>OAM Indication</name> <t> OAM follows the procedures set out in <xreftarget="RFC5085"/>target="RFC5085" format="default"/> with the restriction that only Virtual Circuit Connectivity Verification (VCCV) type 1 is supported.</t> <t>As shown in Figure 3 of <xreftarget="RFC5085"/>target="RFC5085" format="default"/>, when the first nibble of the d-CW is0x00x0, the payload following the d-CW is normal user data. However, when the first nibble of the d-CW is 0x1, the payload that follows the d-CW is an OAM payload with the OAM type indicated by the value in the d-CW Channel Type field.</t> <t>The reader is referred to <xreftarget="RFC5085"/>target="RFC5085" format="default"/> for a more detailed description of the Associated Channelmechanism,mechanism and to the DetNet work on OAM <xref target="I-D.ietf-detnet-mpls-oam" format="default"/> for more information about DetNet OAM. </t> <t> Additional considerations on DetNet-specific OAM are subjects for further study. </t> </section> <section anchor="FAG"title="Flow Aggregation">numbered="true" toc="default"> <name>Flow Aggregation</name> <t> The ability to aggregate individualflows,flows and their associated resourcecontrol,control into a larger aggregate is an important technique for improving scaling of control in the data,managementmanagement, and control planes. The DetNet data plane allows for the aggregation of DetNetflows,flows to improved scaling. There are two methods of supporting flow aggregation covered in this section. </t> <t> The resource control and management aspects of aggregation (including the configuration of queuing, shaping, and policing) are the responsibility of the DetNetcontroller planeController Plane andisare out of scopeoffor thisdocuments.document. It is also the responsibility of thecontroller planeController Plane to ensure that consistent aggregation methods are used. </t> <section anchor="aggregation-at-the-lsp"title="Aggregation Vianumbered="true" toc="default"> <name>Aggregation via LSPHierarchy">Hierarchy</name> <t> DetNet flows forwarded via MPLS can leverage MPLS-TE's existing support for hierarchical LSPs(H-LSPs),(H-LSPs); see <xreftarget="RFC4206"/>.target="RFC4206" format="default"/>. H-LSPs are typically used to aggregate control andresources,resources; they may also be used to provide OAM or protection for the aggregated LSPs. Arbitrary levels of aggregation naturallyfallsfall out of the definition for hierarchy and the MPLS label stack <xreftarget="RFC3032"/>.target="RFC3032" format="default"/>. DetNet nodeswhichthat support aggregation (LSP hierarchy) map one or more LSPs (labels) into and from an H-LSP. Both carried LSPs and H-LSPs may or may not use theTCTraffic Class (TC) field, i.e., L-LSPs (Label-Only-Inferred-PSC LSPs) or E-LSPs (EXP-Inferred-PSC LSPs <xref target="RFC3270" format="default"/>, which were renamed to "Explicitly TC-encoded-PSC LSPs" in <xreftarget="RFC3270"/>.target="RFC5462" format="default" sectionFormat="of" section="2.2"/>). Such nodes will need to ensure that individual LSPs and H-LSPs receive the traffic treatment required to ensure the required DetNet service is preserved. </t> <t> Additional details of the traffic control capabilities needed at a DetNet-aware node may be covered in the new service definitions mentioned above or in separate future documents. ControllerplanePlane mechanisms will also need to ensure that the service required on the aggregate flow are provided, which may include the discarding or remarking mentioned in the previous sections. </t> </section> <section anchor="aggregating-detnet-flows-as-a-new-detnet-flow"title="Aggregatingnumbered="true" toc="default"> <name>Aggregating DetNet Flows as anewNew DetNetflow">Flow</name> <t> An aggregate can be built by layering DetNet flows, including both their S-Labeland, when present, F-Labelsand (when present) F-Labels, as shown below: </t> <figuretitle="DetNetanchor="fig_detnet_agg_flow"> <name>DetNet Aggregation as anewNew DetNetFlow" anchor="fig_detnet_agg_flow"> <artwork><![CDATA[Flow</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +---------------------------------+ | | | DetNet Flow | | Payload Packet | | | +---------------------------------+ <--\ | DetNet Control Word | | +=================================+ | | S-Label | | +---------------------------------+ | | [ F-Label(s) ] | +----DetNet data plane +---------------------------------+ | | DetNet Control Word | | +=================================+ | | A-Label | | +---------------------------------+ | | F-Label(s) | <--/ +---------------------------------+ | Data-Link | +---------------------------------+ | Physical | +---------------------------------+]]></artwork></figure>]]></artwork> </figure> <t> Both the aggregation label, which is referred to as an A-Label, and the individual flow's S-Label have their MPLS S bit set indicating the bottom of stack, and the d-CW allows the PREOF to work. An A-Label is a special case of an S-Label, whose properties are known only at the aggregation and deaggregationend-points.end points. </t> <t> It is a property of the A-Label that what follows is a d-CW followed by an MPLS label stack. A relay node processing the A-Label would not know the underlying payload type, and the A-Label would be processed as a normal S-Label. This would only be known to a node that was a peer of the node imposing the S-Label.HoweverHowever, there is no real need for it to know the payload type during aggregation processing. </t> <t> As in the previous section, nodes supporting this type of aggregation will need to ensure that individual and aggregated flows receive the traffic treatment required to ensure the required DetNet service is preserved. Also, it is thecontroller plane'sController Plane's responsibility to ensure that the service required on the aggregate flowareis properly provisioned. </t> </section> </section> <sectiontitle="Servicenumbered="true" toc="default"> <name>Service Sub-LayerConsiderations">Considerations</name> <t> The internal procedures for edge and relaynode internal proceduresnodes related to PREOF are implementation specific. The order of a packet elimination or replication is out of scopeinfor this specification. </t> <t> It is important that the DetNet layer is configured such that a DetNet node never receives its own replicated packets. If it were to receive suchpacketspackets, the replication function would make the loop more destructive of bandwidth than a conventional unicast loop.UltimatelyUltimately, the TTL in the S-Label will cause the packet to die during a transient loop, but given the sensitivity of applications to packetlatencylatency, the impact on the DetNet application would be severe. To avoid the problem of a transient forwarding loop, changes to an LSP supporting DetNetMUST<bcp14>MUST</bcp14> be loop-free. </t> <sectiontitle="Edgeanchor="sec_t_pe" numbered="true" toc="default"> <name>Edge NodeProcessing" anchor="sec_t_pe">Processing</name> <t> A DetNetEdgeedge node operates in the DetNet forwarding sub-layer and service sub-layer. An edge node is responsible for matching incoming packets to the service they require and encapsulating them accordingly. An edge node may perform PRF, PEF,and orand/or POF. Details on encapsulation can be found in <xreftarget="pwSolution"/>;target="pwSolution" format="default"/>; details on PRF can be found in <xreftarget="prf-requirements"/>;target="prf-requirements" format="default"/>; details on PEF can be found in <xreftarget="pef-requirements"/>;target="pef-requirements" format="default"/>; and details on POF can be found in <xreftarget="pof-requirements"/>.target="pof-requirements" format="default"/>. </t> </section> <sectiontitle="Relayanchor="sec_s_pe" numbered="true" toc="default"> <name>Relay NodeProcessing" anchor="sec_s_pe">Processing</name> <t> A DetNetRelayrelay node operates in the DetNet forwarding sub-layer and service sub-layer. For DetNet usingMPLS forwarding relatedMPLS, forwarding-related processing is performed on the F-Label. This processing is done within an extended forwarder function. Whether an incoming DetNet flow receivesDetNet specificDetNet-specific processing depends on how the forwarding is programmed. Some relay nodes may be DetNet service aware for certain DetNet services,whilewhile, for other DetNetservicesservices, these nodes may perform as unmodified LSRs that only understand how to switch MPLS-TE LSPs, i.e., as a transitnode,node; see <xreftarget="FAG"/>.target="FAG" format="default"/>. Again, this is entirely up to how the forwarding has been programmed. </t> <t> During the elimination and replicationprocessprocess, the sequence number of an incoming DetNet packetMUST<bcp14>MUST</bcp14> be preserved and carried in the corresponding outgoing DetNet packet. For example, a relay node that performs both PEF and PRF first performs PEF on incoming packets to create a compound flow. It then performs PRF and copies theapp-flowApp-flow data and the d-CW into packets for each outgoing DetNet member flow. </t> <t> The internal design of a relay node is out of scopeoffor this document.HoweverHowever, the reader's attention is drawn to the need to make any PREOF state available to the packet processor(s) dealing with packets to whichthePREOFfunctionsmust beapplied,applied and to maintain that stateisin such a way that it is available to the packet processor operation on the next packet in the DetNet flow (which may be a duplicate, a late packet, or the next packet in sequence). </t> </section> </section> <sectiontitle="Forwardingnumbered="true" toc="default"> <name>Forwarding Sub-LayerConsiderations"> <!-- maybe move this to be under section 5? -->Considerations</name> <sectiontitle="Classanchor="CoS" numbered="true" toc="default"> <name>Class ofService" anchor="CoS">Service</name> <t> Classand qualityofservice, i.e., CoSService (CoS) andQoS,Quality of Service (QoS) are terms that are often used interchangeably and confused with each other. In the context of DetNet, CoS is used to refer to mechanisms that providetraffic forwardingtraffic-forwarding treatment based onaggregate group basisnon-flow-specific traffic classification, and QoS is used to refer to mechanisms that providetraffic forwardingtraffic-forwarding treatment based ona specificDetNetflow basis.flow-specific traffic classification. Examples of existingnetwork levelnetwork-level CoS mechanisms includeDiffServDifferentiated Services (Diffserv), which is enabled by the IP headerdifferentiated services code pointDifferentiated Services Code Point (DSCP) field <xreftarget="RFC2474"/>target="RFC2474" format="default"/> and MPLS labeltraffic classTraffic Class field <xreftarget="RFC5462"/>,target="RFC5462" format="default"/> and atLayer-2,Layer 2 by IEEE 802.1ppriority code pointPriority Code Point (PCP). </t> <t> CoS for DetNet flows carried in PWs and MPLS is provided using the existing MPLS Differentiated Services(DiffServ)(Diffserv) architecture <xreftarget="RFC3270"/>.target="RFC3270" format="default"/>. Both E-LSP and L-LSP MPLSDiffServDiffserv modesMAY<bcp14>MAY</bcp14> be used to support DetNet flows. The Traffic Class field (formerly the EXP field) of an MPLS label follows the definition of <xreftarget="RFC5462"/>target="RFC5462" format="default"/> and <xreftarget="RFC3270"/>.target="RFC3270" format="default"/>. The Uniform, Pipe, and Short PipeDiffServDiffserv tunneling and TTL processing models are described in <xreftarget="RFC3270"/>target="RFC3270" format="default"/> and <xreftarget="RFC3443"/>target="RFC3443" format="default"/> andMAY<bcp14>MAY</bcp14> be used for MPLS LSPs supporting DetNet flows. MPLS Explicit Congestion Notification (ECN)MAY<bcp14>MAY</bcp14> also beusedused, as defined in ECN <xreftarget="RFC5129"/>target="RFC5129" format="default"/> and updated by <xreftarget="RFC5462"/>.target="RFC5462" format="default"/>. </t> </section> <sectiontitle="Qualityanchor="QoS" numbered="true" toc="default"> <name>Quality ofService" anchor="QoS">Service</name> <t> In addition to explicitroutes,routes and packet replication andelimination, describedelimination (described in <xreftarget="dn-dt-solution"/> above,target="dn-dt-solution" format="default"/> above), DetNet provides zero congestion loss and bounded latency and jitter. As described in <xreftarget="RFC8655"/>,target="RFC8655" format="default"/>, there are different mechanisms that may be used separately or in combination to deliver a zero congestion loss service. This includesQuality of Service (QoS)QoS mechanisms at the MPLS layer,thatwhich may be combined with the mechanisms defined by the underlying networklayerlayer, such as802.1TSN.IEEE 802.1 TSN. </t> <t>Quality of Service (QoS)QoS mechanisms forflow specificflow-specific traffic treatment typicallyincludesinclude a guarantee/agreement for theservice,service and allocation of resources to support the service. Example QoS mechanisms include discrete resource allocation, admission control, flow identification and isolation, and sometimes path control, traffic protection, shaping,policingpolicing, and remarking. Example protocols that support QoS control include<xref target="RFC2205">Resourcethe Resource ReSerVation Protocol(RSVP)</xref>(RSVP) <xref target="RFC2205" format="default"/> and RSVP-TE <xreftarget="RFC3209"/> andtarget="RFC3209" format="default"/> <xreftarget="RFC3473"/>.target="RFC3473" format="default"/>. The existing MPLS mechanisms defined to support CoS <xreftarget="RFC3270"/>target="RFC3270" format="default"/> can also be used to reserve resources for specific traffic classes. </t> <t> A baseline set of QoS capabilities for DetNet flows carried in PWs and MPLS can be provided byMPLS with Traffic Engineering (MPLS-TE)MPLS-TE <xreftarget="RFC3209"/> andtarget="RFC3209" format="default"/> <xreftarget="RFC3473"/>.target="RFC3473" format="default"/>. TE LSPs can also support explicit routes (path pinning). Current service definitions for packet TE LSPs can be found in "Specification of theControlled Load Quality of Service",Controlled-Load Network Element Service" <xreftarget="RFC2211"/>,target="RFC2211" format="default"/>, "Specification of Guaranteed Quality ofService",Service" <xreftarget="RFC2212"/>,target="RFC2212" format="default"/>, and "Ethernet TrafficParameters",Parameters" <xreftarget="RFC6003"/>.target="RFC6003" format="default"/>. Additional service definitions are expected in future documents to support the full range of DetNet services. In all cases, the existing label-based marking mechanisms defined forTE-LSPsTE LSPs and even E-LSPs areuseused to support the identification of flows requiring DetNet QoS. </t> </section> </section> </section><!-- ===================================================================== --><section anchor="mc_summary"title="Managementnumbered="true" toc="default"> <name>Management and Control InformationSummary">Summary</name> <t> The specific information needed for the processing of each DetNet service depends on the DetNet node type and the functions being provided on the node. This section summarizes this information based on the DetNet sub-layer and if the DetNet traffic is being sent or received. All DetNet node types are DetNet forwarding sub-layer aware, while all but transit nodes are service sub-layer aware. This is shown in <xreftarget="fig_dn_mpls_detnet"/>.target="fig_dn_mpls_detnet" format="default"/>. </t><!-- LB: this seems duplicative<t>For DetNet management there are a number of approaches that could be used to provide explicit routes and resource allocation in the MPLS forwarding sub-layer: <list style="symbols"> <t> The path could be explicitly set up by a controller which calculates the path and explicitly configures each node along that path with the appropriate forwarding and resource allocation information. </t> <t> The path could be set up using RSVP-TE signaling. </t> <t> The path could be implemented using MPLS-based segment routing when extended to support resource allocation. </t> </list> </t> --> <t> Much like other MPLS labels,Much like other MPLS labels, there are a number of alternatives available for DetNet S-Label and F-Label advertisement to an upstream peer node. These include distributed signaling protocolssuch(such asRSVP-TE,RSVP-TE), centralized label distribution via a controller that manages both the sender and the receiver usingNETCONF/YANG,the Network Configuration Protocol (NETCONF) and YANG, BGP,PCEP,the Path Computation Element Communication Protocol (PCEP), etc., and hybrid combinations of the two. The details of thecontroller planeController Plane solution required for the label distribution and the management of the label number space are out of scopeoffor this document.There are particularParticular DetNet considerations and requirementsthatare discussed in <xreftarget="I-D.ietf-detnet-data-plane-framework"/>.target="RFC8938" format="default"/>. Conformance language is not used in thesummarysummary, since it applies to futuremechanismsmechanisms, such as those that may be provided in signaling and YANG models, e.g., <xreftarget="I-D.ietf-detnet-yang"/>.target="I-D.ietf-detnet-yang" format="default"/>. </t> <section anchor="mc_summary_ssl"title="Servicenumbered="true" toc="default"> <name>Service Sub-Layer InformationSummary">Summary</name> <t> The following summarizes the information that is needed (on a per-service basis) on nodes that are service sub-layer awarenodes thatand transmit DetNet MPLStraffic, on a per service basis: <list style="symbols"> <t> App-Flowtraffic: </t> <ul spacing="normal"> <li>App-flow identification information, e.g., IP information as defined in <xreftarget="I-D.ietf-detnet-ip-over-mpls"/>. Note,target="I-D.ietf-detnet-ip-over-mpls" format="default"/>. Note that this information is not needed on DetNet relaynodes. </t> <t> Thenodes.</li> <li>The sequence number length to be used for the service. Valid values include 0,1616, and 28 bits. 0 bits cannot be used when PEF or POF is configured for theservice. </t> <t> Ifservice.</li> <li>If PRF is to be provided for theservice. </t> <t> Theservice.</li> <li>The outgoing S-Label for each of the service's outgoing DetNet (member)flows. </t> <t> Theflows.</li> <li>The forwarding sub-layer information associated with the output of the service sub-layer. Note that whenthePRFfunctionis provisioned, this information is per DetNet member flow.LogicallyLogically, the forwarding sub-layer information is a pointer to further details of transmission ofDetnetDetNet flows at the forwardingsub-layer. </t> </list> </t>sub-layer.</li> </ul> <t> The following summarizes the information that is needed (on a per-service basis) on nodes that are service sub-layer awarenodes thatand receive DetNet MPLStraffic, on a per service basis: <list style="symbols"> <t> Thetraffic: </t> <ul spacing="normal"> <li>The forwarding sub-layer information associated with the input of the service sub-layer. Note that whenthePEFfunctionis provisioned, this information is per DetNet member flow.LogicallyLogically, the forwarding sub-layer information is a pointer to further details of the reception ofDetnetDetNet flows at the forwarding sub-layer orA-Label. </t> <t> TheA-Label.</li> <li>The incoming S-Label for theservice. </t> <t> Ifservice.</li> <li>If PEF or POF is to be provided for theservice. </t> <t> Theservice.</li> <li>The sequence number length to be used for the service. Valid values included 0,1616, and 28 bits. 0 bits cannot be used when PEF or POF are configured for theservice. </t> <t> App-Flowservice.</li> <li>App-flow identification information, e.g., IP information as defined in <xreftarget="I-D.ietf-detnet-ip-over-mpls"/>. Note,target="I-D.ietf-detnet-ip-over-mpls" format="default"/>. Note that this information is not needed on DetNet relaynodes. </t> </list> </t>nodes.</li> </ul> <section anchor="mc_summary_ssl_agg"title="Servicenumbered="true" toc="default"> <name>Service Aggregation InformationSummary">Summary</name> <t> Nodes performing aggregation using A-Labels, perSection<xreftarget="aggregating-detnet-flows-as-a-new-detnet-flow"/>,target="aggregating-detnet-flows-as-a-new-detnet-flow" format="default"/>, require the additional information summarized in this section. </t> <t> The following summarizes the additional information that is needed on a node that sends aggregated flows using A-Labels:<list style="symbols"> <t> The</t> <ul spacing="normal"> <li>The S-Labels or F-Labels that are to be carried over each aggregatedservice. </t> <t>Theservice.</li> <li>The A-Label associated with each aggregatedservice.</t> <t>Theservice.</li> <li>The other S-Label information summarizedabove.</t> </list> </t>above.</li> </ul> <t> On the receiving node, the A-Label provides the forwarding context of an incoming interface or an F-Label and is used in subsequent service or forwarding sub-layer receive processing, asappropriated.appropriate. The related additional configuration that may be provided is discussed elsewhere in this section. </t> </section> </section> <section anchor="mc_summary_fsl"title="Forwardingnumbered="true" toc="default"> <name>Forwarding Sub-Layer InformationSummary">Summary</name> <t> The following summarizes the information that is needed (on a per-forwarding-sub-layer-flow basis) on nodes that are forwarding sub-layer awarenodes thatand send DetNet MPLStraffic, on a per forwarding sub-layer flow basis: <list style="symbols"> <t>traffic: </t> <ul spacing="normal"> <li> The outgoing F-Label stack to be pushed. The stack may include H-LSPlabels. </t> <t>labels.</li> <li> The traffic parameters associated with a specific label in the stack. Note that there may be multiple sets of traffic parameters associated with specific labels in the stack, e.g., when H-LSPs areused. </t> <t>used.</li> <li> Outgoing interface and, for unicast traffic, thenext hop information. </t> <t> Sub-network specificnext-hop information.</li> <li> Sub-network-specific parameters on atechnology specifictechnology-specific basis. For example, see <xreftarget="I-D.ietf-detnet-mpls-over-tsn"/>. </t> </list> </t>target="I-D.ietf-detnet-mpls-over-tsn" format="default"/>.</li> </ul> <t> The following summarizes the information that is needed (on a per-forwarding-sub-layer-flow basis) on nodes that are forwarding sub-layer awarenodes thatand receive DetNet MPLStraffic, on a per forwarding sub-layer flow basis: <list style="symbols"> <t>traffic: </t> <ul spacing="normal"> <li> The incoming interface. For some implementations and deployment scenarios, this information may not beneeded. </t> <t>needed.</li> <li> The incoming F-Label stack to be popped. The stack may include H-LSPlabels. </t> <t>labels.</li> <li> How the incoming forwarding sub-layer flow is to be handled, i.e., forwarded as a transitnode,node or provided to the servicesub-layer. </t> </list> </t>sub-layer.</li> </ul> <t> It is the responsibility of the DetNetcontroller planeController Plane to properly provision both flow identification information and the flow-specific resources needed toprovidedprovide the traffic treatment needed to meet each flow's service requirements. This applies for aggregated and individual flows. </t> </section> </section><!-- ===================================================================== --><sectiontitle="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t> Detailed security considerations for DetNet are cataloged in <xreftarget="I-D.ietf-detnet-security"/>,target="I-D.ietf-detnet-security" format="default"/>, and more general security considerations are described in <xreftarget="RFC8655"/>.target="RFC8655" format="default"/>. This sectionconsidersexclusively considers security considerationswhichthat are specific to the DetNet MPLS data plane. The considerations raised related to MPLS networks in general in <xreftarget="RFC5920"/>target="RFC5920" format="default"/> are equally applicable to thetheDetNet MPLS data plane. </t> <t> Security aspectswhichthat are unique to DetNet are those whose aim is to protect the support of specificquality of serviceQoS aspects of DetNet, which are primarily to deliver data flows with extremely low packet loss rates and bounded end-to-end delivery latency. Achieving such loss rates and bounded latency may not be possible in the face of a highly capable adversary, such as the one envisioned by the Internet Threat Model of BCP 72 <xref target="RFC3552"/> that can arbitrarily drop or delay any or all traffic. In order to present meaningful security considerations, we consider a somewhat weaker attacker who does not control the physical links of the DetNetdomain,domain but may have the ability to control a network node within the boundary of the DetNet domain. </t> <t> An additional consideration for the DetNet data plane is to maintain integrity of data and delivery of the associated DetNet service traversing the DetNet network. Application flows can be protected through whatever means are provided by the underlying technology. For example, encryption may be used, such as that provided by IPsec <xreftarget="RFC4301"/>target="RFC4301" format="default"/> for IP flows and/or by an underlyingsub-netsub-network usingMACSecMACsec <xreftarget="IEEE802.1AE-2018"/>target="IEEE802.1AE-2018" format="default"/> for IP over Ethernet(Layer-2)(Layer 2) flows. MPLS doesn't provide any native security services to account for confidentiality and integrity. </t> <t> From a data planeperspectiveperspective, this document does not add or modify any application header information. </t> <t> At the management and controllevellevel, DetNet flows are identified on a per-flow basis, which may providecontroller planeController Plane attackers with additional information about the data flows (when compared tocontroller planesController Planes that do not include per-flow identification). This is an inherent property of DetNetwhichthat has security implications that should be considered when determining if DetNet is a suitable technology for any given use case. </t> <t> To provide uninterrupted availability of the DetNet service, provisions can be made againstDOSDoS attacks and delay attacks. To protect againstDOSDoS attacks, excess traffic due to malicious or malfunctioning devices is prevented or mitigated through the use of existing mechanisms, forexampleexample, by policing and shaping incoming traffic. To prevent DetNet packets from having their delay manipulated by an external entity, precautions need to be taken to ensure that all devices on an LSP are those intended to be there by the network operator and that they are well behaved. In addition to physical security, technicalmethodsmethods, such as authentication and authorization of network equipment and the instrumentation and monitoring of the LSP packetdelaydelay, may be used. If a delay attack is suspected, traffic may be moved to an alternate path, forexampleexample, through changing the LSP or management of the PREOF configuration. </t> </section> <section anchor="iana"title="IANA Considerations"> <t> Thisnumbered="true" toc="default"> <name>IANA Considerations</name> <t>This documentmakeshas no IANArequests. </t>actions.</t> </section> </middle> <back> <displayreference target="I-D.ietf-detnet-ip-over-mpls" to="DetNet-IP-over-MPLS"/> <displayreference target="I-D.ietf-detnet-mpls-over-tsn" to="DetNet-MPLS-over-TSN"/> <displayreference target="I-D.ietf-detnet-security" to="DetNet-Security"/> <displayreference target="I-D.ietf-detnet-yang" to="DetNet-YANG"/> <displayreference target="I-D.ietf-detnet-mpls-oam" to="DetNet-MPLS-OAM"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2211.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2212.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3031.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3032.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3209.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3270.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3443.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3473.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4206.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5129.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5085.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5462.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5586.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4385.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6790.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8655.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8938.xml"/> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2205.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2474.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3272.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3552.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3985.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4448.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4875.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4301.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5440.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5920.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5921.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6073.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6003.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8306.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8660.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8939.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.draft-ietf-detnet-mpls-oam.xml"/> <reference anchor='I-D.ietf-detnet-ip-over-mpls'> <front> <title>DetNet Data Plane: IP over MPLS</title> <author initials='B' surname='Varga' fullname='Balazs Varga' role='editor'> <organization /> </author> <author initials='L' surname='Berger' fullname='Lou Berger'> <organization /> </author> <author initials='D' surname='Fedyk' fullname='Don Fedyk'> <organization /> </author> <author initials='S' surname='Bryant' fullname='Stewart Bryant'> <organization /> </author> <author initials='J' surname='Korhonen' fullname='Jouni Korhonen'> <organization /> </author> <date month='October' day='11' year='2020' /> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-detnet-ip-over-mpls-09' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-ietf-detnet-ip-over-mpls-09.txt' /> </reference> <reference anchor='I-D.ietf-detnet-mpls-over-tsn'> <front> <title>DetNet Data Plane: MPLS over IEEE 802.1 Time Sensitive Networking (TSN)</title> <author initials='B' surname='Varga' fullname='Balazs Varga' role='editor'> <organization /> </author> <author initials='J' surname='Farkas' fullname='Janos Farkas'> <organization /> </author> <author initials='A' surname='Malis' fullname='Andrew Malis'> <organization /> </author> <author initials='S' surname='Bryant' fullname='Stewart Bryant'> <organization /> </author> <date month='December' day="13" year='2020' /> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-detnet-mpls-over-tsn-05' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-ietf-detnet-mpls-over-tsn-05.txt' /> </reference> <reference anchor='I-D.ietf-detnet-security'> <front> <title>Deterministic Networking (DetNet) Security Considerations</title> <author initials='E' surname='Grossman' fullname='Ethan Grossman' role='editor'> <organization /> </author> <author initials='T' surname='Mizrahi' fullname='Tal Mizrahi'> <organization /> </author> <author initials='A' surname='Hacker' fullname='Andrew Hacker'> <organization /> </author> <date month='December' day="11" year='2020' /> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-detnet-security-13' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-ietf-detnet-security-13.txt' /> </reference> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-detnet-yang.xml"/> <reference anchor="IEEE802.1AE-2018" target="https://ieeexplore.ieee.org/document/8585421"> <front> <title>IEEE Standard for Local and metropolitan area networks-Media Access Control (MAC) Security</title> <author> <organization>IEEE</organization> </author> <date month="December" year="2018"/> </front> <seriesInfo name="IEEE" value="802.1AE-2018"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8585421"/> </reference> <reference anchor="IEEE802.1CB-2017" target="https://ieeexplore.ieee.org/document/8091139"> <front> <title>IEEE Standard for Local and metropolitan area networks-- Frame Replication and Elimination for Reliability</title> <author> <organization>IEEE</organization> </author> <date month="October" year="2017"/> </front> <seriesInfo name="IEEE" value="802.1CB-2017"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2017.8091139"/> </reference> </references> </references> <section anchor="acks"title="Acknowledgements">numbered="false" toc="default"> <name>Acknowledgements</name> <t> The authors wish to thankPat Thaler, Norman Finn, Loa Anderson, David Black, Rodney Cummings, Ethan Grossman, Tal Mizrahi, David Mozes, Craig Gunther, George Swallow, Yuanlong Jiang, Jeong-dong Ryoo<contact fullname="Pat Thaler"/>, <contact fullname="Norman Finn"/>, <contact fullname="Loa Anderson"/>, <contact fullname="David Black"/>, <contact fullname="Rodney Cummings"/>, <contact fullname="Ethan Grossman"/>, <contact fullname="Tal Mizrahi"/>, <contact fullname="David Mozes"/>, <contact fullname="Craig Gunther"/>, <contact fullname="George Swallow"/>, <contact fullname="Yuanlong Jiang"/>, <contact fullname="Jeong-dong Ryoo"/>, andCarlos<contact fullname="Carlos J.BernardosBernardos"/> for their various contributions to this work. </t> </section> <section anchor="Contributors"title="Contributors">numbered="false" toc="default"> <name>Contributors</name> <t>RFC7322 limits the number of authors listed on the front page of a draft to a maximum of 5.The editor of this document wishes to thank and acknowledge the followingauthor for contributing textperson who contributed substantially to the content of thisdraft.document and should be considered a coauthor: </t><figure> <artwork><![CDATA[ Don Fedyk LabN<contact fullname="Don Fedyk"> <organization>LabN Consulting,L.L.C. Email: dfedyk@labn.net ]]></artwork> </figure>L.L.C.</organization> <address> <postal/> <email>dfedyk@labn.net</email> </address> </contact> </section></middle> <back> <references title="Normative References"> <?rfc include="reference.RFC.2119"?> <?rfc include="reference.RFC.2211"?> <?rfc include="reference.RFC.2212"?> <?rfc include="reference.RFC.3031"?> <?rfc include="reference.RFC.3032"?> <?rfc include="reference.RFC.3209"?> <?rfc include="reference.RFC.3270"?> <?rfc include="reference.RFC.3443"?> <?rfc include="reference.RFC.3473"?> <?rfc include="reference.RFC.4206"?> <?rfc include="reference.RFC.5129"?> <?rfc include="reference.RFC.5085"?> <?rfc include="reference.RFC.5462"?> <?rfc include="reference.RFC.5586"?> <?rfc include="reference.RFC.4385"?> <?rfc include="reference.RFC.6790"?> <?rfc include="reference.RFC.8174"?> <?rfc include="reference.RFC.8655"?> <?rfc include="reference.I-D.ietf-detnet-data-plane-framework"?> </references> <references title="Informative References"> <?rfc include="reference.RFC.2205"?> <?rfc include="reference.RFC.2474"?> <?rfc include="reference.RFC.3272"?> <?rfc include="reference.RFC.3985"?> <?rfc include="reference.RFC.4448"?> <?rfc include="reference.RFC.4875"?> <?rfc include="reference.RFC.4301"?> <?rfc include="reference.RFC.5440"?> <?rfc include="reference.RFC.5920"?> <?rfc include="reference.RFC.5921"?> <?rfc include="reference.RFC.6073"?> <?rfc include="reference.RFC.6003"?> <?rfc include="reference.RFC.8306"?> <?rfc include="reference.RFC.8660"?> <?rfc include="reference.I-D.ietf-detnet-ip"?> <?rfc include="reference.I-D.ietf-detnet-ip-over-mpls"?> <?rfc include="reference.I-D.ietf-detnet-mpls-over-tsn"?> <?rfc include="reference.I-D.ietf-detnet-security"?> <?rfc include="reference.I-D.ietf-detnet-yang"?> <reference anchor="IEEE802.1AE-2018" target="https://ieeexplore.ieee.org/document/8585421"> <front> <title>IEEE Std 802.1AE-2018 MAC Security (MACsec)</title> <author> <organization>IEEE Standards Association</organization> </author> <date year="2018" /> </front> </reference> <reference anchor="IEEE802.1CB-2017" target="https://ieeexplore.ieee.org/document/8091139"> <front> <title>IEEE Std 802.1CB-2017 Frame Replication and Elimination for Reliability</title> <author> <organization>IEEE Standards Association</organization> </author> <date year="2017" /> </front> </reference> </references></back> </rfc>