
RFC 8974
Extended Tokens and Stateless Clients
in the Constrained Application Protocol (CoAP)

Abstract
This document provides considerations for alleviating Constrained Application Protocol (CoAP)
clients and intermediaries of keeping per-request state. To facilitate this, this document
additionally introduces a new, optional CoAP protocol extension for extended token lengths.

This document updates RFCs 7252 and 8323 with an extended definition of the "TKL" field in the
CoAP message header.

Stream: Internet Engineering Task Force (IETF)
RFC: 8974
Updates: 7252, 8323
Category: Standards Track
Published: January 2021
ISSN: 2070-1721
Authors: K. Hartke

Ericsson
M. Richardson
Sandelman

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8974

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Hartke & Richardson Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8974
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc8323
https://www.rfc-editor.org/info/rfc8974
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

1.1. Terminology

2. Extended Tokens

2.1. Extended Token Length (TKL) Field

2.2. Discovering Support

2.2.1. Extended-Token-Length Capability Option

2.2.2. Trial and Error

2.3. Intermediaries

3. Stateless Clients

3.1. Serializing Client State

3.2. Using Extended Tokens

3.3. Transmitting Messages

4. Stateless Intermediaries

4.1. Observing Resources

4.2. Block-Wise Transfers

4.3. Gateway Timeouts

4.4. Extended Tokens

5. Security Considerations

5.1. Extended Tokens

5.2. Stateless Clients and Intermediaries

6. IANA Considerations

6.1. CoAP Signaling Option Number

7. References

7.1. Normative References

7.2. Informative References

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 2

Appendix A. Updated Message Formats

A.1. CoAP over UDP

A.2. CoAP over TCP/TLS

A.3. CoAP over WebSockets

Acknowledgements

Authors' Addresses

1. Introduction
The Constrained Application Protocol (CoAP) is a RESTful application-layer protocol
for . In CoAP, clients (or intermediaries in the client role)
make requests to servers (or intermediaries in the server role), which satisfy the requests by
returning responses.

While a request is ongoing, a client typically needs to keep some state that it requires for
processing the response when that arrives. Identification of this state is done in CoAP by means
of a token: an opaque sequence of bytes that is chosen by the client and included in the CoAP
request and that is returned by the server verbatim in any resulting CoAP response (Figure 1).

In some scenarios, it can be beneficial to reduce the amount of state that is stored at the client at
the cost of increased message sizes. A client can opt into this by serializing (parts of) its state into
the token itself and then recovering this state from the token in the response (Figure 2).

[RFC7252]
constrained environments [RFC7228]

Figure 1: Token as an Identifier for Request State

+-----------------+ request with +------------+
		state identifier		
		as token		
.-<-+->------	--------------------->	------.		
_	_			
/ \ stored				
___/ state				
'->-+-<------	<---------------------	------'		
		response with		
v	token echoed back			
+-----------------+ +------------+
 Client Server

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 3

Section 3 of this document provides considerations for clients becoming "stateless" in this way.
(The term "stateless" is in quotes here, because it's a bit oversimplified. Such clients still need to
maintain per-server state and other kinds of state. So it would be more accurate to just say that
the clients are avoiding per-request state.)

Section 4 of this document extends the considerations for clients to intermediaries, which may
want to avoid keeping state for not only the requests they send to servers but also the requests
they receive from clients.

The serialization of state into tokens is limited by the fact that both
and restrict the maximum token length to 8 bytes. To
overcome this limitation, Section 2 of this document introduces a CoAP protocol extension for
extended token lengths.

While the use case (avoiding per-request state) and the mechanism (extended token lengths)
presented in this document are closely related, each can be used independently of the other.
Some implementations may be able to fit their state in just 8 bytes; some implementations may
have other use cases for extended token lengths.

1.1. Terminology
In this document, the term "stateless" refers to an implementation strategy for a client (or
intermediary in the client role) that does not require it to keep state for the individual requests it
sends to a server (or intermediary in the server role). The client still needs to keep state for each
server it communicates with (e.g., for token generation, message retransmission, and congestion
control).

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Figure 2: Token as Serialization of Request State

+-----------------+ request with +------------+
		serialized state	
		as token	
+--------	=====================>	------.	
look ma,			
no state!			
+--------	<=====================	------'	
		response with	
v	token echoed back		
+-----------------+ +------------+
 Client Server

CoAP over UDP [RFC7252]
CoAP over reliable transports [RFC8323]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 4

2. Extended Tokens
This document updates the message formats defined for and

 with a new definition of the "TKL" field.
CoAP over UDP [RFC7252] CoAP

over TCP, TLS, and WebSockets [RFC8323]

Token Length (TKL):

13:

14:

15:

2.1. Extended Token Length (TKL) Field
The definition of the "TKL" field is updated as follows:

4-bit unsigned integer. A value between 0 and 12, inclusive, indicates the
length of the variable-length "Token" field in bytes. The other three values are reserved for
special constructs:

An 8-bit unsigned integer directly precedes the "Token" field and indicates the length of
the "Token" field minus 13.

A 16-bit unsigned integer in network byte order directly precedes the "Token" field and
indicates the length of the "Token" field minus 269.

Reserved. This value be sent and be processed as a message-format
error.

All other fields retain their definitions.

The updated message formats are illustrated in Appendix A.

The new definition of the "TKL" field increases the maximum token length that can be
represented in a message to 65804 bytes. However, the maximum token length that sender and
recipient implementations support may be shorter. For example, a constrained node of

 might support extended token lengths only up to 32 bytes.

In CoAP over UDP, it is often beneficial to keep CoAP messages small enough to avoid IP
fragmentation. The maximum practical token length may therefore also be influenced by the
Path MTU (PMTU). See for details.

MUST NOT MUST

Class 1
[RFC7228]

Section 4.6 of [RFC7252]

2.2. Discovering Support
Extended token lengths require support from server implementations. Support can be
discovered by a client implementation in one of two ways:

Where Capabilities and Settings Messages (CSMs) are available, such as in CoAP over TCP,
support can be discovered using the Extended-Token-Length Capability Option defined in
Section 2.2.1.
Otherwise, such as in CoAP over UDP, support can only be discovered by trial and error, as
described in Section 2.2.2.

•

•

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc7252#section-4.6

2.2.1. Extended-Token-Length Capability Option

A server can use the elective Extended-Token-Length Capability Option to indicate the maximum
token length it can accept in requests.

C=Critical, R=Repeatable

As per , the base value (and the value used when this option is not
implemented) is 8.

The active value of the Extended-Token-Length Option is replaced each time the option is sent
with a modified value. Its starting value is its base value.

The option value be less than 8 or greater than 65804. If an option value less than 8 is
received, the option be ignored. If an option value greater than 65804 is received, the
option value be set to 65804.

Any option value greater than 8 implies support for the new definition of the "TKL" field
specified in Section 2.1. Indication of support by a server does not oblige a client to actually make
use of token lengths greater than 8.

If a server receives a request with a token of a length greater than what it indicated in its
Extended-Token-Length Option, it handle the request as a message-format error.

If a server receives a request with a token of a length less than, or equal to, what it indicated in
its Extended-Token-Length Option but is unwilling or unable to handle the token at that time, it

 handle the request as a message-format error. Instead, it return a 5.03
(Service Unavailable) response.

The Extended-Token-Length Capability Option does not apply to responses. The sender of a
request is simply expected not to use a token of a length greater than it is willing to accept in a
response.

C R Applies to Name Format Length Base Value

6 CSM Extended-Token-Length uint 0-3 8

Table 1: The Extended-Token-Length Capability Option

Section 3 of [RFC7252]

MUST NOT
MUST

MUST

MUST

MUST NOT SHOULD

2.2.2. Trial and Error

A server implementation that does not support the updated definition of the "TKL" field specified
in Section 2.1 will consider a request with a "TKL" field value outside the range 0 to 8 to be a
message-format error and reject it (). A client can therefore determine
support by sending a request with an extended token length and checking whether or not it is
rejected by the server.

Section 3 of [RFC7252]

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7252#section-3
https://www.rfc-editor.org/rfc/rfc7252#section-3

In CoAP over UDP, the way a request message is rejected depends on the message type. A
Confirmable message with a message-format error is rejected with a Reset message (

). A Non-confirmable message with a message-format error is either rejected with a
Reset message or just silently ignored (). To reliably get a Reset message,
it is therefore that clients use a Confirmable message for determining support.

As per RFC 7252, Reset messages are empty and do not contain a token; they only return the
Message ID (Figure 3). They also do not contain any indication of what caused a message-format
error. To avoid any ambiguity, it is therefore that clients use a request that has
no potential message-format error other than the extended token length.

An example of a suitable request is a GET request in a Confirmable message that includes only an
If-None-Match option and a token of the greatest length that the client intends to use. Any
response with the same token echoed back indicates that tokens up to that length are supported
by the server.

Since network addresses may change, a client assume that extended token lengths
are supported by a server for an unlimited duration. Unless additional information is available,
the client should assume that addresses (and therefore extended token lengths) are valid for a
minimum of 1800 s and a maximum of 86400 s (1 day). A client may use additional forms of input
into this determination. For instance, a client may assume a server that is in the same subnet as
the client has a similar address lifetime as the client. The client may use DHCP lease times or
Router Advertisements to set the limits. For servers that are not local, if the server was looked up
using DNS, then the DNS resource record will have a Time To Live (TTL), and the extended token
length should be kept for only that amount of time.

If a server supports extended token lengths but receives a request with a token of a length it is
unwilling or unable to handle, it reject the message, as that would imply that extended
token lengths are not supported at all. Instead, if the server cannot handle the request at the
time, it return a 5.03 (Service Unavailable) response; if the server will never be able to
handle the request (e.g., because the token is too large), it return a 4.00 (Bad Request)
response.

Section 4.2
of [RFC7252]

Section 4.3 of [RFC7252]
REQUIRED

RECOMMENDED

Figure 3: A Confirmable Request with an Extended Token Is Rejected with a Reset Message If the
Server Does Not Have Support

+-----------------+ request message +------------+
		with extended		
		token length		
.-<-+->------	--------------------->	------.		
_	_			
/ \ stored				
___/ state				
'->-+-<------	<---------------------	------'		
		Reset message		
v	with only message			
+-----------------+ ID echoed back +------------+
 Client Server

SHOULD NOT

MUST NOT

SHOULD
SHOULD

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc7252#section-4.2
https://www.rfc-editor.org/rfc/rfc7252#section-4.3

Design Note: The requirement to return an error response when a token cannot be
handled might seem somewhat contradictory, as returning the error response
requires the server also to return the token it cannot handle. However, processing a
request usually involves a number of steps from receiving the message to passing it
to application logic. The idea is that a server implementing this extension supports
large tokens at least in its first few processing steps, enough to return an error
response rather than a Reset message.

Design Note: To prevent the trial-and-error-based discovery from becoming too
complicated, no effort is made to indicate the maximum supported token length. A
client implementation would probably already choose the shortest token possible
for the task (such as being stateless, as described in Section 3), so it would probably
not be able to reduce the length any further anyway should a server indicate a
lower limit.

2.3. Intermediaries
Tokens are a hop-by-hop feature: if there are one or more intermediaries between a client and a
server, every token is scoped to the exchange between a node in the client role and the node in
the server role that it is immediately interacting with.

When an intermediary receives a request, the only requirement is that it echoes the token back
in any resulting response. There is no requirement or expectation that an intermediary passes a
client's token on to a server or that an intermediary uses extended token lengths itself in its
request to satisfy a request with an extended token length. Discovery needs to be performed for
each hop where extended token lengths are to be used.

3. Stateless Clients
A client can be alleviated of keeping per-request state as follows:

The client serializes (parts of) its per-request state into a sequence of bytes and sends those
bytes as the token of its request to the server.
The server returns the token verbatim in the response to the client, which allows the client
to recover the state and process the response as if it had kept the state locally.

As servers are just expected to return any token verbatim to the client, this implementation
strategy for clients does not impact the interoperability of client and server implementations.
However, there are a number of significant, nonobvious implications (e.g., related to security and
other CoAP protocol features) that client implementations need take into consideration.

The following subsections discuss some of these considerations.

1.

2.

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 8

3.2. Using Extended Tokens
A client that depends on support for extended token lengths (Section 2) from the server to avoid
keeping request state needs to perform a discovery of support (Section 2.2) before it can be
stateless.

This discovery be performed in a stateful way, i.e., keeping state for the request (Figure 4).
If the client was stateless from the start, and the server does not support extended tokens, then
no error message could be processed, since the state would neither be present at the client nor
returned in the Reset message (Figure 5).

3.1. Serializing Client State
The format of the serialized state is generally an implementation detail of the client and opaque
to the server. However, serialized state information is an attractive target for both unwanted
nodes (e.g., on-path attackers) and wanted nodes (e.g., any configured forward proxy) on the
path. The serialization format therefore needs to include security measures such as the
following:

A client protect the integrity of the state information serialized in a token.
Even when the integrity of the serialized state is protected, an attacker may still replay a
response, making the client believe it sent the same request twice. For this reason, the client

 implement replay protection (e.g., by using sequence numbers and a replay
window). For replay protection, integrity protection is .
If processing a response without keeping request state is sensitive to the time elapsed since
sending the request, then the client include freshness information (e.g., a
timestamp) in the serialized state and reject any response where the freshness information
is insufficiently fresh.
Information in the serialized state may be privacy sensitive. A client encrypt the
serialized state if it contains privacy-sensitive information that an attacker would not get
otherwise.
When a client changes the format of the serialized state, it prevent false
interoperability with the previous format (e.g., by changing the key used for integrity
protection or changing a field in the serialized state).

• SHOULD
•

SHOULD
REQUIRED

•
SHOULD

• SHOULD

• SHOULD

MUST

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 9

In environments where support can be reliably discovered through some other means, the
discovery of support is . An example for this is the

, where support for extended tokens is required from all
relevant parties.

Figure 4: Depending on Extended Tokens for Being Stateless First Requires a Successful Stateful
Discovery of Support

+-----------------+ dummy request +------------+
		with extended		
		token		
.-<-+->------	=====================>	------.		
_	_			
/ \ stored				
___/ state				
'->-+-<------	<=====================	------'		
		response with		
		extended token		
		echoed back		
		request with		
		serialized state		
		as token		
+--------	=====================>	------.		
look ma,				
no state!				
+--------	<=====================	------'		
		response with		
v	token echoed back			
+-----------------+ +------------+
 Client Server

Figure 5: Stateless Discovery of Support Does Not Work

+-----------------+ dummy request +------------+
		with extended	
		token	
+--------	=====================>	------.	
???	<---------------------	------'	
	Reset message		
	with only message		
+-----------------+ ID echoed back +------------+
 Client Server

OPTIONAL Constrained Join Protocol (CoJP) in a
6TiSCH network [6TISCH-MIN-SEC]

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 10

3.3. Transmitting Messages
In , a client has the choice between Confirmable and Non-confirmable
messages for requests. When using Non-confirmable messages, a client does not have to keep any
message-exchange state, which can help in the goal of avoiding state. When using Confirmable
messages, a client needs to keep message-exchange state for performing retransmissions and
handling Acknowledgement and Reset messages, however. Non-confirmable messages are
therefore better suited for avoiding state. In any case, a client still needs to keep congestion-
control state, i.e., maintain state for each node it communicates with and enforce limits like
NSTART.

As per , a client must be prepared to receive a response as a piggybacked
response, a separate response, or a Non-confirmable response, regardless of the message type
used for the request. A stateless client handle these response types as follows:

If a piggybacked response passes the checks for token integrity and freshness (Section 3.1),
the client processes the message as specified in RFC 7252; otherwise, it processes the
acknowledgement portion of the message as specified in RFC 7252 and silently discards the
response portion.
If a separate response passes the checks for token integrity and freshness, the client
processes the message as specified in RFC 7252; otherwise, it rejects the message as specified
in .
If a Non-confirmable response passes the checks for token integrity and freshness, the client
processes the message as specified in RFC 7252; otherwise, it rejects the message as specified
in .

CoAP over UDP [RFC7252]

Section 5.2 of [RFC7252]

MUST

•

•

Section 4.2 of [RFC7252]
•

Section 4.3 of [RFC7252]

4. Stateless Intermediaries
Tokens are a hop-by-hop feature. If a client makes a request to an intermediary, that
intermediary needs to store the client's token (along with the client's transport address) while it
makes its own request towards the origin server and waits for the response. When the
intermediary receives the response, it looks up the client's token and transport address for the
received request and sends an appropriate response to the client.

An intermediary might want to be "stateless" not only in its role as a client but also in its role as a
server, i.e., be alleviated of storing the client information for the requests it receives.

Such an intermediary can be implemented by serializing the client information along with the
request state into the token towards the origin server. When the intermediary receives the
response, it can recover the client information from the token and use it to satisfy the client's
request; therefore, the intermediary doesn't need to store the information itself.

The following subsections discuss some considerations for this approach.

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc7252#section-5.2
https://www.rfc-editor.org/rfc/rfc7252#section-4.2
https://www.rfc-editor.org/rfc/rfc7252#section-4.3

4.1. Observing Resources
One drawback of the approach is that an intermediary, without keeping request state, is unable
to aggregate multiple requests for the same target resource, which can significantly reduce
efficiency. In particular, when clients observe the same resource, aggregating requests
is (). This requirement cannot be satisfied without keeping
request state.

Furthermore, an intermediary that does not keep track of the clients observing a resource is not
able to determine whether these clients are still interested in receiving further notifications
() or want to cancel an observation ().

Therefore, an intermediary include an Observe Option in requests it sends without
keeping both the request state for the requests it sends and the client information for the
requests it receives.

4.2. Block-Wise Transfers
When using , a server might not be able to distinguish blocks
originating from different clients once they have been forwarded by an intermediary.
Intermediaries need to ensure that this does not lead to inconsistent resource state by keeping
distinct block-wise request operations on the same resource apart, e.g., utilizing the

.

4.3. Gateway Timeouts
As per , an intermediary is to return a 5.04 (Gateway
Timeout) response if it cannot obtain a response within a timeout. However, if an intermediary
does not keep the client information for the requests it receives, it cannot return such a response.
Therefore, in this case, the gateway cannot return such a response and as such cannot implement
such a timeout.

4.4. Extended Tokens
A client may make use of extended token lengths in a request to an intermediary that wants to be
"stateless". This means that such an intermediary may have to serialize potentially very large
client information into its token towards the origin server. The tokens can grow even further
when it progresses along a chain of intermediaries that all want to be "stateless".

Intermediaries limit the size of client information they are serializing into their own
tokens. An intermediary can do this, for example, by limiting the extended token lengths it
accepts from its clients (see Section 2.2) or by keeping the client information locally when the
client information exceeds the limit (i.e., not being "stateless").

[RFC7641]
REQUIRED Section 3.1 of [RFC7641]

Section 3.5 of [RFC7641] Section 3.6 of [RFC7641]

MUST NOT

block-wise transfers [RFC7959]

Request-Tag
Option [ECHO-REQUEST-TAG]

Section 5.7.1 of [RFC7252] REQUIRED

SHOULD

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc7641#section-3.1
https://www.rfc-editor.org/rfc/rfc7641#section-3.5
https://www.rfc-editor.org/rfc/rfc7641#section-3.6
https://www.rfc-editor.org/rfc/rfc7252#section-5.7.1

5. Security Considerations

5.1. Extended Tokens
Tokens significantly larger than the 8 bytes specified in RFC 7252 have implications -- in
particular, for nodes with constrained memory size -- that need to be mitigated. A node in the
server role supporting extended token lengths may be vulnerable to a denial of service when an
attacker (either on-path or a malicious client) sends large tokens to fill up the memory of the
node. Implementations need to be prepared to handle such messages.

5.2. Stateless Clients and Intermediaries
Transporting the state needed by a client to process a response as serialized state information in
the token has several significant and nonobvious security and privacy implications that need to
be mitigated; see Section 3.1 for recommendations.

In addition to the format requirements outlined there, implementations need to ensure that they
are not vulnerable to maliciously crafted, delayed, or replayed tokens.

It is generally expected that the use of encryption, integrity protection, and replay protection for
serialized state is appropriate.

In the absence of integrity and replay protection, an on-path attacker or rogue server/
intermediary could return a state (either one modified in a reply, or an unsolicited one) that
could alter the internal state of the client.

It is for this reason that at least the use of integrity protection on the token is always
recommended.

It may be that in some very specific cases, as a result of a careful and detailed analysis of any
potential attacks, it is decided that such cryptographic protections do not add value. The authors
of this document have not found such a use case as yet, but this is a local decision.

It should further be emphasized that the encrypted state is created by the sending node and
decrypted by the same node when receiving a response. The key is not shared with any other
system. Therefore, the choice of encryption scheme and the generation of the key for this system
is purely a local matter.

When encryption is used, the use of with a 64-bit tag is recommended,
combined with a sequence number and a replay window. This choice is informed by available
hardware acceleration of on many constrained systems. If a different algorithm is available
accelerated on the sender, with similar or stronger strength, then it be preferred. Where
privacy of the state is not required, and encryption is not needed, ,
combined with a sequence number and a replay window, may be used.

AES-CCM [RFC3610]

SHOULD
HMAC-SHA-256 [RFC6234]

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 13

[RFC2119]

6. IANA Considerations

6.1. CoAP Signaling Option Number
The following entry has been added to the "CoAP Signaling Option Numbers" registry within the
"CoRE Parameters" registry.

Applies to Number Name Reference

7.01 6 Extended-Token-Length RFC 8974

Table 2: CoAP Signalling Option Number

7. References

7.1. Normative References

This size of the replay window depends upon the number of requests that need to be
outstanding. This can be determined from the rate at which new ones are made and the expected
time period during which responses are expected.

For instance, given a CoAP MAX_TRANSMIT_WAIT of 93 s (), any
request that is not answered within 93 s will be considered to have failed. At a request rate of
one request per 10 s, at most 10 (ceil(9.3)) requests can be outstanding at a time, and any
convenient replay window larger than 20 will work. As replay windows are often implemented
with a sliding window and a bit, the use of a 32-bit window would be sufficient.

For use cases where requests are being relayed from another node, the request rate may be
estimated by the total link capacity allocated for that kind of traffic. An alternate view would
consider how many IPv6 Neighbor Cache Entries (NCEs) the system can afford to allocate for this
use.

When using an encryption mode that depends on a nonce, such as AES-CCM, repeated use of the
same nonce under the same key causes the cipher to fail catastrophically.

If a nonce is ever used for more than one encryption operation with the same key, then the same
key stream gets used to encrypt both plaintexts, and the confidentiality guarantees are voided.
Devices with low-quality entropy sources -- as is typical with constrained devices, which
incidentally happen to be a natural candidate for the stateless mechanism described in this
document -- need to carefully pick a nonce-generation mechanism that provides the above
uniqueness guarantee.

, Appendix B.1.1 ("Sender Sequence Number") provides a model for how to maintain
nonrepeating nonces without causing excessive wear of flash memory.

Section 4.8.2 of [RFC7252]

[RFC8613]

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc7252#section-4.8.2

[RFC7252]

[RFC7641]

[RFC7959]

[RFC8174]

[RFC8323]

[6TISCH-MIN-SEC]

[ECHO-REQUEST-TAG]

[RFC3610]

[RFC6234]

[RFC7228]

, , ,
, , March 1997,
.

,
, , , June 2014,

.

,
, , , September 2015,

.

,
, , , August 2016,

.

, ,
, , , May 2017,

.

, ,
, , February 2018,

.

7.2. Informative References

,
, ,

, 10 December 2019,
.

,
, ,

, 2 November 2020,
.

, ,
, , September 2003,

.

,
, , , May 2011,

.

,
, , , May 2014,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Shelby, Z., Hartke, K., and C. Bormann "The Constrained Application Protocol
(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-
editor.org/info/rfc7252>

Hartke, K. "Observing Resources in the Constrained Application Protocol
(CoAP)" RFC 7641 DOI 10.17487/RFC7641 <https://www.rfc-
editor.org/info/rfc7641>

Bormann, C. and Z. Shelby, Ed. "Block-Wise Transfers in the Constrained
Application Protocol (CoAP)" RFC 7959 DOI 10.17487/RFC7959
<https://www.rfc-editor.org/info/rfc7959>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B., and B. Raymor,
Ed. "CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets"
RFC 8323 DOI 10.17487/RFC8323 <https://www.rfc-editor.org/
info/rfc8323>

Vucinic, M., Simon, J., Pister, K., and M. Richardson "Constrained Join
Protocol (CoJP) for 6TiSCH" Work in Progress Internet-Draft, draft-ietf-6tisch-
minimal-security-15 <https://tools.ietf.org/html/draft-
ietf-6tisch-minimal-security-15>

Amsüss, C., Mattsson, J. P., and G. Selander "CoAP: Echo, Request-Tag,
and Token Processing" Work in Progress Internet-Draft, draft-ietf-core-echo-
request-tag-11 <https://tools.ietf.org/html/draft-ietf-core-echo-
request-tag-11>

Whiting, D., Housley, R., and N. Ferguson "Counter with CBC-MAC (CCM)" RFC
3610 DOI 10.17487/RFC3610 <https://www.rfc-editor.org/info/
rfc3610>

Eastlake 3rd, D. and T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Bormann, C., Ersue, M., and A. Keranen "Terminology for Constrained-Node
Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-
editor.org/info/rfc7228>

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 15

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://tools.ietf.org/html/draft-ietf-6tisch-minimal-security-15
https://tools.ietf.org/html/draft-ietf-6tisch-minimal-security-15
https://tools.ietf.org/html/draft-ietf-core-echo-request-tag-11
https://tools.ietf.org/html/draft-ietf-core-echo-request-tag-11
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228

[RFC8613] ,
, ,

, July 2019, .

Selander, G., Mattsson, J., Palombini, F., and L. Seitz "Object Security for
Constrained RESTful Environments (OSCORE)" RFC 8613 DOI 10.17487/
RFC8613 <https://www.rfc-editor.org/info/rfc8613>

Appendix A. Updated Message Formats
In Section 2, this document updates the CoAP message formats by specifying a new definition of
the "TKL" field in the message header. As an alternative presentation of this update, this
appendix shows the CoAP message formats for and

 with the new definition applied.
CoAP over UDP [RFC7252] CoAP over TCP,

TLS, and WebSockets [RFC8323]

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 16

https://www.rfc-editor.org/info/rfc8613

A.1. CoAP over UDP

 0 1 2 3 4 5 6 7
 +-------+-------+---------------+
 | | | |
 | Ver | T | TKL | 1 byte
 | | | |
 +-------+-------+---------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 | |
 | |
 | |
 +- Message ID -+ 2 bytes
 | |
 | |
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0-65804 bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 17

A.2. CoAP over TCP/TLS

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | Len | TKL | 1 byte
 | | |
 +---------------+---------------+
 \ \
 / Len / 0-4 bytes
 \ (extended) \
 +-------------------------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0-65804 bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 18

Acknowledgements
This document is based on the requirements of, and work on, "Constrained Join Protocol (CoJP)
for 6TiSCH" (January 2020) by , , , and

.

Thanks to , , , ,
, , , , , ,

, , , , , , and
 for helpful comments and discussions that have shaped the document.

A.3. CoAP over WebSockets

 0 1 2 3 4 5 6 7
 +---------------+---------------+
 | | |
 | 0 | TKL | 1 byte
 | | |
 +---------------+---------------+
 | |
 | Code | 1 byte
 | |
 +-------------------------------+
 \ \
 / TKL / 0-2 bytes
 \ (extended) \
 +-------------------------------+
 \ \
 / Token / 0-65804 bytes
 \ \
 +-------------------------------+
 \ \
 / /
 \ \
 / Options / 0 or more bytes
 \ \
 / /
 \ \
 +---------------+---------------+
 | | |
 | 15 | 15 | 1 byte (if payload)
 | | |
 +---------------+---------------+
 \ \
 / /
 \ \
 / Payload / 0 or more bytes
 \ \
 / /
 \ \
 +-------------------------------+

Mališa Vučinić Jonathan Simon Kris Pister Michael
Richardson

Christian Amsüss Carsten Bormann Roman Danyliw Christer Holmberg Benjamin
Kaduk Ari Keränen Erik Kline Murray Kucherawy Warren Kumari Barry Leiba David
Mandelberg Dan Romascanu Jim Schaad Göran Selander Mališa Vučinić Éric Vyncke
Robert Wilton

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 19

Special thanks to for his contributions to the security considerations of the
document, and to for his in-depth review, copious comments, and suggested text.

John Mattsson
Thomas Fossati

Authors' Addresses
Klaus Hartke
Ericsson
Torshamnsgatan 23
SE- 16483 Stockholm
Sweden

 klaus.hartke@ericsson.com Email:

Michael C. Richardson
Sandelman Software Works

 mcr+ietf@sandelman.ca Email:
 http://www.sandelman.ca/ URI:

RFC 8974 Extended Tokens in CoAP January 2021

Hartke & Richardson Standards Track Page 20

mailto:klaus.hartke@ericsson.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/

	RFC 8974
	Extended Tokens and Stateless Clients in the Constrained Application Protocol (CoAP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Extended Tokens
	2.1. Extended Token Length (TKL) Field
	2.2. Discovering Support
	2.2.1. Extended-Token-Length Capability Option
	2.2.2. Trial and Error

	2.3. Intermediaries

	3. Stateless Clients
	3.1. Serializing Client State
	3.2. Using Extended Tokens
	3.3. Transmitting Messages

	4. Stateless Intermediaries
	4.1. Observing Resources
	4.2. Block-Wise Transfers
	4.3. Gateway Timeouts
	4.4. Extended Tokens

	5. Security Considerations
	5.1. Extended Tokens
	5.2. Stateless Clients and Intermediaries

	6. IANA Considerations
	6.1. CoAP Signaling Option Number

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Updated Message Formats
	A.1. CoAP over UDP
	A.2. CoAP over TCP/TLS
	A.3. CoAP over WebSockets
	Acknowledgements
	Authors' Addresses

