<?xml version="1.0"encoding="US-ASCII"?>encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY RFC2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"> ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc strict="yes" ?> <?rfc toc="yes"?> <?rfc tocdepth="4"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes" ?> <?rfc compact="yes" ?> <?rfc subcompact="no" ?>"rfc2629-xhtml.ent"> <rfccategory="info"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-irtf-nwcrg-network-coding-satellites-15"ipr="trust200902"> <!-- category values: std, bcp, info, exp, and historic ipr values: full3667, noModification3667, noDerivatives3667 you can add the attributes updates="NNNN" and obsoletes="NNNN" they will automatically be output with "(if approved)" -->number="8975" ipr="trust200902" obsoletes="" updates="" submissionType="IRTF" category="info" consensus="true" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3"> <!--***** FRONT MATTER *****xml2rfc v2v3 conversion 3.5.0 --> <front><!-- The abbreviated title is used in the page header - it is only necessary if the full title is longer than 39 characters --><title abbrev="NetworkcodingCoding forsatellite systems">Network codingSatellite Systems">Network Coding forsatellite systems</title>Satellite Systems</title> <seriesInfo name="RFC" value="8975"/> <author role="editor" fullname="Nicolas Kuhn" initials="N" surname="Kuhn"> <organization>CNES</organization> <address> <postal> <street>18 avenue Edouard Belin</street> <city>Toulouse</city><region></region><region/> <code>31400</code> <country>France</country> </postal><phone></phone><phone/> <email>nicolas.kuhn@cnes.fr</email> </address> </author> <author role="editor" fullname="Emmanuel Lochin" initials="E" surname="Lochin"> <organization>ENAC</organization> <address> <postal> <street>7 avenue Edouard Belin</street> <city>Toulouse</city><region></region><region/> <code>31400</code> <country>France</country> </postal><phone></phone><phone/> <email>emmanuel.lochin@enac.fr</email> </address> </author> <dateyear="2020"year="2021" month="January" /><!-- If the month and year are both specified and are the current ones, xml2rfc will fill in the current day for you. If only the current year is specified, xml2rfc will fill in the current day and month for you. If the year is not the current one, it is necessary to specify at least a month (xml2rfc assumes day="1" if not specified for the purpose of calculating the expiry date). With drafts it is normally sufficient to specify just the year. --> <!-- Meta-data Declarations --><area>Transport</area><workgroup>NetWork Communications Research Group (NWCRG)</workgroup> <!-- WG name at the upperleft corner of the doc, IETF is fine<workgroup>Coding forindividual submissions. If this element is not present, the default is "Network Working Group", which is used by the RFC Editor as a nod to the history of the IETF. --> <keyword>SATCOM, codingEfficient Network Communications</workgroup> <keyword>SATCOM</keyword> <keyword>coding techniques</keyword><!-- Keywords will be incorporated into HTML output files in a meta tag but they have no effect on text or nroff output. If you submit your draft to the RFC Editor, the keywords will be used for the search engine. --> <!-- ######################################################--> <!-- ######################################################--> <!-- Head of the document --> <!-- ######################################################--> <!-- ######################################################--><abstract> <t>This document isonea product of the Coding for Efficient Network Communications Research Group (NWCRG). It conforms to the directions found in the NWCRGtaxonomy.</t>taxonomy (RFC 8406).</t> <t>The objective is to contribute to a larger deployment ofnetwork codingNetwork Coding techniques in and above the network layer in satellite communication systems.TheThis document also identifies open research issues related to the deployment ofnetwork codingNetwork Coding in satellite communication systems.</t> </abstract> </front> <middle> <sectionanchor="sec:introduction" title="Introduction">anchor="sec_introduction" numbered="true" toc="default"> <name>Introduction</name> <t>This document isonea product of and represents the collaborative work and consensus of the Coding for Efficient Network Communications Research Group (NWCRG); while it is not an IETF product and not astandardstandard, itintendsis intended to inform the SATellite COMmunication (SATCOM) and Internet research communities about recent developments in Network Coding. A glossary is included in <xreftarget="sec:glossary"></xref>target="sec_glossary" format="default"/> to clarify the terminologyuseused throughout the document.</t> <t>As will be shown in this document, the implementation ofnetwork codingNetwork Coding techniques above the network layer, at application or transport layers (as described in <xreftarget="RFC1122"></xref>),target="RFC1122" format="default"/>), offers an opportunity for improving the end-to-end performance of SATCOM systems.While physical-Physical- and link-layer coding error protection is usually enough to provideQuasi-Error Free transmissionquasi-error-free transmission, thus minimizing packetloss,loss. However, when residual errors at those layers cause packet losses, retransmissions add significant delays (inparticularparticular, in geostationary systems with over 0.7 second round-trip delays).HenceHence, the use ofnetwork codingNetwork Coding at the upper layers can improve the quality of service in SATCOM subnetworks and eventually favorably impact the experience of end users.</t> <t>While there is an active research community working onnetwork codingNetwork Coding techniques above the network layer in general and in SATCOM in particular, not much of this work has been deployed in commercial systems. In this context, this document identifies opportunities for further usage ofnetwork codingNetwork Coding in commercial SATCOM networks.</t> <t>The notation used in this document is based on the NWCRG taxonomy <xreftarget="RFC8406"> </xref>:<list style="symbols"> <t>Channeltarget="RFC8406" format="default"> </xref>:</t> <ul spacing="normal"> <li>Channel and linkerror correctingerror-correcting codes are considered part of the error protection for the PHYsical (PHY) layererror protectionand are out of the scope of thisdocument.</t> <t>Forwarddocument.</li> <li>Forward Erasure Correction (FEC) (also calledApplication-Level FEC)"Application-Level FEC") operates above the link layer and targetspacket loss recovery.</t> <t>Thispacket-loss recovery.</li> <li>This document considers only coding (or coding techniques or coding schemes) thatuseuses a linear combination ofpackets and excludespackets; it excludes, forexampleexample, content coding (e.g., to compress a video flow) or other non-linearoperation.</t> </list></t> <!-- <t>Reliability is an inherent part of the physical-layer and usually achieved by using coding techniques. Basedoperations.</li> </ul> </section> <section anchor="sec_sat_topo" numbered="true" toc="default"> <name>A Note onpublic information, coding does not seem to be widely used at higher layers.</t> --> <!-- <t>This memo presents use-cases where network coding schemes could improvetheoverall performanceTopology ofa SATCOM system (e.g. considering a more efficient usage of the satellite resource, delivery delay, delivery ratio).</t> --> <!-- <section anchor="subsec:intro_requi" title="Requirements Language"> <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in <xref target="RFC2119">RFC 2119</xref>.</t> </section> --> </section> <!-- ######################################################--> <!-- ######################################################--> <!-- Body of the document --> <!-- ######################################################--> <!-- ######################################################--> <!-- ######################################################--> <!-- New section --> <!-- ######################################################--> <section anchor="sec:sat_topo" title="A Note on Satellite Networks Topology"> <t>There are multipleSatellite Networks</name> <t>There are multiple SATCOM systems, forexampleexample, broadcast TV,point to point communication or IoTpoint-to point-communication, and Internet of Things (IoT) monitoring. Therefore, depending on the purpose of the system, the associated ground segment architecture will be different. This section focuses on a satellite system that follows the European Telecommunications Standards Institute (ETSI) Digital Video Broadcasting (DVB) standards to provide broadband Internet access via ground-based gateways <xreftarget="ETSIEN2014"></xref>.target="ETSI-EN-2020" format="default"/>. One must note that the overall data capacity of one satellite may be higher than the capacity that one single gateway supports. Hence, there are usually multiple gateways for one unique satellite platform.</t> <t>In this context, <xreftarget="fig:sat_gateway"></xref>target="fig_sat_gateway" format="default"/> shows an example of amulti-gatewaymultigateway satellite system, where BBFRAME stands forBase-Band FRAME,"Base-Band FRAME", PLFRAME forPhysical"Physical LayerFRAMEFRAME", and PEP forPerformance"Performance EnhancingProxy.Proxy". More information on a generic SATCOM ground segment architecture for bidirectional Internet access can be found in <xreftarget="SAT2017"></xref>.</t> <figure anchor="fig:sat_gateway" title="Data plane functions in a generic satellite multi-gateway system. More details can be foundtarget="SAT2017" format="default"/> or in DVB standarddocuments."> <artwork>documents.</t> <figure anchor="fig_sat_gateway"> <name>Data-Plane Functions in a Generic Satellite Multigateway System</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +--------------------------+ | application servers | | (data, coding, multicast)| +--------------------------+ | ... | ----------------------------------- | | | | | |+--------------------+ +--------------------++---------------------+ +---------------------+ | network function | | network function | |(firewall, PEP,etc)|etc.)| |(firewall, PEP,etc)| +--------------------+ +--------------------+etc.)| +---------------------+ +---------------------+ | ... | IP packets | ... | --- +------------------+ +------------------+ | | access gateway | | access gateway | | +------------------+ +------------------+ | | BBFRAME | | gateway +------------------+ +------------------+ | | physical gateway | | physical gateway | | +------------------+ +------------------+ | --- | PLFRAME | +------------------+ +------------------+ | outdoor unit | | outdoor unit | +------------------+ +------------------+ | satellite link | +------------------+ +------------------+ | outdoor unit | | outdoor unit | +------------------+ +------------------+ | | +------------------+ +------------------+ | sat terminals | | sat terminals | +------------------+ +------------------+ | | | | +----------+ | +----------+ | |end user 1| | |end user 3| | +----------+ | +----------+ | +----------+ +----------+ |end user 2| |end user 4| +----------+ +----------+</artwork>]]></artwork> </figure> </section><!-- ######################################################--> <!-- New section --> <!-- ######################################################--><sectionanchor="sec:use_cases" title="Use-casesanchor="sec_use_cases" numbered="true" toc="default"> <name>Use Cases for Improving SATCOM System Performance Using NetworkCoding">Coding</name> <t>This section detailsuse-casesuse cases wherenetwork codingNetwork Coding techniques could improve SATCOM system performance.</t> <sectionanchor="subsec:two-way" title="Two-wayanchor="subsec_two-way" numbered="true" toc="default"> <name>Two-Way Relay ChannelMode">Mode</name> <t>Thisuse-caseuse case considers two-way communication betweenend-users,end users through a satellitelinklink, as seen in <xreftarget="fig:two_way"></xref>.</t>target="fig_two_way" format="default"/>.</t> <t>Satellite terminal A sends a packet flowAA, and satellite terminal B sends a packet flowBB, to a coding server. The coding server then sends a combination of both flows instead of each individualflows.flow. This results in non-negligible capacitysavings thatsavings, which has been demonstrated in the past <xreftarget="ASMS2010"></xref>.target="ASMS2010" format="default"/>. In the example, a dedicated coding server is introduced (note that its location could be different based on deploymentuse-case).use case). Thenetwork codingNetwork Coding operations could also be done at the satellite level, although this would require a lot of computational resourceson-boardonboard and may not be supported by today's satellites.</t> <figureanchor="fig:two_way" title="Networkanchor="fig_two_way"> <name>Network Architecture forTwo-wayTwo-Way Relay Channelusing NC"> <artwork>Using Network Coding </name> <artwork name="" type="" align="left" alt=""><![CDATA[ -X}- : traffic from satellite terminal X to the server ={X+Y= : traffic from X and Y combined sent from the server to terminals X and Y +-----------+ +-----+ |Sat term A |--A}-+ | | +-----------+ | | | +---------+ +------+ ^^ +--| |--A}--| |--A}--|Coding| || | SAT |--B}--| Gateway |--B}--|Server| ===={A+B=========| |={A+B=| |={A+B=| | || | | +---------+ +------+ vv +--| | +-----------+ | | | |Sat term B |--B}-+ | | +-----------+ +-----+</artwork>]]></artwork> </figure> </section> <sectionanchor="subsec:rel-mul" title="Reliable Multicast">anchor="subsec_rel-mul" numbered="true" toc="default"> <name>Reliable Multicast</name> <t>The use of multicast servers is one way to better utilize satellite broadcast capabilities. As oneexampleexample, satellite-based multicast is proposed in theSHINE ESASecure Hybrid In Network caching Environment (SHINE) project of the European Space Agency (ESA) <xreftarget="I-D.vazquez-nfvrg-netcod-function-virtualization">target="I-D.vazquez-nfvrg-netcod-function-virtualization" format="default"> </xref> <xreftarget="SHINE">target="SHINE" format="default"> </xref>. Thisuse-caseuse case considers adding redundancy to a multicast flow depending on what has been received by differentend-users,end users, resulting in non-negligible savings of the scarce SATCOM resources. This scenario is shown in <xreftarget="fig:rel_multi"></xref>.</t>target="fig_rel_multi" format="default"/>.</t> <figureanchor="fig:rel_multi" title="Networkanchor="fig_rel_multi"> <name>Network Architecture for a Reliable Multicastusing NC"> <artwork>Using Network Coding</name> <artwork name="" type="" align="left" alt=""><![CDATA[ -Li}- : packet indicating the loss of packet i of a multicast flow M ={M== : multicast flow including the missing packets +-----------+ +-----+ |Terminal A |-Li}-+ | | +-----------+ | | | +---------+ +------+ ^^ +-| |-Li}--| | |Multi | || | SAT |-Lj}--| Gateway |--|Cast | ===={M==========| |={M===| | |Server| || | | +---------+ +------+ vv +-| | +-----------+ | | | |Terminal B |-Lj}-+ | | +-----------+ +-----+</artwork>]]></artwork> </figure> <t>A multicast flow (M) is forwarded to both satellite terminals A and B.However packetM is composed of packets Nk (not shown in <xref target="fig_rel_multi" format="default"/>). Packet Ni (respectively Nj) gets lost at terminal A (respectively B), and terminal A (respectively B) returns a negative acknowledgment Li (respectively Lj), indicating that the packet is missing. Using coding, either the access gateway or the multicast server can include a repair packet (rather than the individual Ni and Nj packets) in the multicast flow to let both terminals recover from losses.</t> <t>This could also be achieved by using other multicast or broadcast systems, such as NACK-Oriented Reliable Multicast (NORM) <xreftarget="RFC5740"></xref>target="RFC5740" format="default"/> or File Delivery over Unidirectional Transport (FLUTE) <xreftarget ="RFC6726"></xref>.target="RFC6726" format="default"/>. Both NORM and FLUTE are limited to block coding; neither of themsupportsupports more flexible sliding window encoding schemes that allow decoding before receiving the wholeblockblock, which is an added delay benefit <xreftarget="RFC8406"></xref><xref target="RFC8681"></xref>.</t>target="RFC8406" format="default"/> <xref target="RFC8681" format="default"/>.</t> </section> <sectionanchor="subsec:hybrid" title="Hybrid Access">anchor="subsec_hybrid" numbered="true" toc="default"> <name>Hybrid Access</name> <t>Thisuse-caseuse case considers improvingmultiple pathmultiple-path communications withnetwork codingNetwork Coding at the transport layer (see <xreftarget="fig:hyb_access"></xref>,target="fig_hyb_access" format="default"/>, where DSL stands forDigital"Digital SubscriberLine,Line", LTE forLong"Long TermEvolutionEvolution", and SAT forSATellite)."SATellite"). Thisuse-caseuse case is inspired by the Broadband Access via Integrated Terrestrial Satellite Systems (BATS) project and has been published as an ETSI Technical Report <xreftarget="ETSITR2017"></xref>.</t>target="ETSI-TR-2017" format="default"/>.</t> <t>To cope with packet loss (due to either end-user mobility or physical-layer residual errors),network codingNetwork Coding can be introduced. Depending on the protocol,network codingNetwork Coding could be applied ateach ofthe Customer Premises Equipment(CPE) and at(CPE), theconcentratorconcentrator, or both. Apart from coping with packetlosses,loss, othergains frombenefits of this approach include a better tolerancetofor out-of-order packetdeliverydelivery, whichoccuroccurs when exploited links exhibit high asymmetry in terms of Round-Trip Time (RTT). Depending on the ground architecture <xreftarget="I-D.chin-nfvrg-cloud-5g-core-structure-yang"></xref>target="I-D.chin-nfvrg-cloud-5g-core-structure-yang" format="default"/> <xreftarget="SAT2017"></xref>,target="SAT2017" format="default"/>, some ground equipment might be hosting both SATCOM and cellular network functionality.</t> <figureanchor="fig:hyb_access" title="Networkanchor="fig_hyb_access"> <name>Network Architecture foraHybrid Access Using NetworkCoding"> <artwork>Coding</name> <artwork name="" type="" align="left" alt=""><![CDATA[ -{}- : bidirectional link +---+ +--------------+ +-{}-|SAT|-{}-|BACKBONE | +----+ +---+ | +---+ |+------------+| |End |-{}-|CPE|-{}-| ||CONCENTRATOR|| |User| +---+ | +---+ |+------------+| +-----------+ +----+ |-{}-|DSL|-{}-| |-{}-|Application| | +---+ | | |Server | | | | +-----------+ | +---+ | | +-{}-|LTE|-{}-+--------------+ +---+</artwork>]]></artwork> </figure> </section> <sectionanchor="subsec:varying_wifi" title="LANanchor="subsec_varying_wifi" numbered="true" toc="default"> <name>LAN PacketLosses">Losses</name> <t>Thisuse-caseuse case considers usingnetwork codingNetwork Coding in the scenario where a lossyWIFIWiFi link is used to connect to the SATCOM network. When encrypted end-to-end applications based on UDP are used, a Performance Enhancing Proxy (PEP) cannotoperate henceoperate; hence, othermechanismmechanisms need to be used. TheWIFIWiFi packet losses will result in an end-to-end retransmission that will harm theend-userquality of the end user's experience and poorly utilize SATCOM bottleneckresourceresources fornon-revenue generating traffic.traffic that does not generate revenue. In thisuse-case,use case, addingnetwork codingNetwork Coding techniques will prevent the end-to-end retransmission from occurring since the packet losses would probably be recovered.</t> <t>The architecture is shown in <xreftarget="fig:varying_wifi-loss"></xref>.</t>target="fig_varying_wifi-loss" format="default"/>.</t> <figureanchor="fig:varying_wifi-loss" title="Networkanchor="fig_varying_wifi-loss"> <name>Network Architecture fordealingDealing with LANLosses"> <artwork>Losses</name> <artwork name="" type="" align="left" alt=""><![CDATA[ -{}- : bidirectional link -''- :Wi-FiWiFi link C : wherenetwork codingNetwork Coding techniques could be introduced +----+ +--------+ +---+ +-------+ +-------+ +--------+ |End | |Sat. | |SAT| |Phy | |Access | |Network | |user|-''-|Terminal|-{}-| |-{}-|Gateway|-{}-|Gateway|-{}-|Function| +----+ +--------+ +---+ +-------+ +-------+ +--------+ C C C C</artwork>]]></artwork> </figure> </section> <sectionanchor="subsec:varying" title="Varyinganchor="subsec_varying" numbered="true" toc="default"> <name>Varying ChannelConditions">Conditions</name> <t>Thisuse-caseuse case considers the usage ofnetwork codingNetwork Coding to cope withsub secondsubsecond physical channel condition changes where the physical-layer mechanisms (Adaptive Coding and Modulation (ACM)) may not adapt the modulation and error-correction coding intime:time; the residual errors lead tohigher layerhigher-layer packet losses that can be recovered withnetwork coding.Network Coding. Thisuse-caseuse case is mostly relevant when mobile users are considered or when the satellite frequency band introduces quick changes in channel condition (Q/V bands, Ka band, etc.). Depending on theuse-caseuse case (e.g., bands with very highfrequency bands,frequency, mobile users), the relevance of addingnetwork codingNetwork Coding is different.</t> <t>The system architecture is shown in <xreftarget="fig:varying_capa"></xref>.</t>target="fig_varying_capa" format="default"/>.</t> <figureanchor="fig:varying_capa" title="Networkanchor="fig_varying_capa"> <name>Network Architecture fordealingDealing with Varying LinkCharacteristics"> <artwork>Characteristics</name> <artwork name="" type="" align="left" alt=""><![CDATA[ -{}- : bidirectional link C : wherenetwork codingNetwork Coding techniques could be introduced +---------+ +---+ +--------+ +-------+ +--------+ |Satellite| |SAT| |Physical| |Access | |Network | |Terminal |-{}-| |-{}-|Gateway |-{}-|Gateway|-{}-|Function| +---------+ +---+ +--------+ +-------+ +--------+ C C C C</artwork>]]></artwork> </figure> </section> <sectionanchor="subsec:gat_hand" title="Improvinganchor="subsec_gat_hand" numbered="true" toc="default"> <name>Improving GatewayHandover">Handover</name> <t>Thisuse-caseuse case considers the recovery of packets that may be lost during gateway handover. Whether for off-loading a given equipment or because the transmission quality differs from gateway to gateway, switching the transmission gateway may be beneficial. However, packet losses can occur if the gateways are not properly synchronized or if the algorithm used to trigger gateway handover is not properly tuned. During these critical phases,network codingNetwork Coding can be added to improve the reliability of the transmission and allow a seamless gateway handover.</t> <t><xreftarget="fig:gat_hand"></xref>target="fig_gat_hand" format="default"/> illustrates thisuse-case.</t>use case.</t> <figureanchor="fig:gat_hand" title="Networkanchor="fig_gat_hand"> <name>Network Architecture fordealingDealing with GatewayHandover"> <artwork>Handover</name> <artwork name="" type="" align="left" alt=""><![CDATA[ -{}- : bidirectional link ! : management interface C : wherenetwork codingNetwork Coding techniques could be introduced C C +--------+ +-------+ +--------+ |Physical| |Access | |Network | +-{}-|gateway |-{}-|gateway|-{}-|function| | +--------+ +-------+ +--------+ | ! ! +---------+ +---+ +---------------+ |Satellite| |SAT| |Control planeControl-plane | |Terminal |-{}-| | | manager | +---------+ +---+ +---------------+ | ! ! | +--------+ +-------+ +--------+ +-{}-|Physical|-{}-|Access |-{}-|Network | |gateway | |gateway| |function| +--------+ +-------+ +--------+ C C</artwork>]]></artwork> </figure> </section> </section><!-- ######################################################--> <!-- New section --> <!-- ######################################################--><sectionanchor="sec:deploy" title="Research Challenges">anchor="sec_deploy" numbered="true" toc="default"> <name>Research Challenges</name> <t>This section proposes a few potential approaches tointroduceintroducing anduse network codingusing Network Coding in SATCOM systems.</t> <sectionanchor="sec:deploy_pep" title="Joint-useanchor="sec_deploy_pep" numbered="true" toc="default"> <name>Joint Use of Network Coding and Congestion Control in SATCOMSystems">Systems</name> <t>Many SATCOM systems typically use Performance Enhancing Proxy (PEP) <xreftarget="RFC3135">RFC 3135</xref>.target="RFC3135" format="default" />. PEPs usually split end-to-end connections and forward transport orapplication layerapplication-layer packets to the satellite baseband gateway. PEPs contribute tomitigatemitigating congestion in a SATCOMsystemssystem by limiting the impact of long delays on Internet protocols. A PEP mechanism could also includenetwork codingNetwork Coding operation and thus support theuse-casesuse cases that have been discussed inthe<xreftarget="sec:use_cases"></xref>target="sec_use_cases" format="default"/> of this document.</t> <t>Deployingnetwork codingNetwork Coding in the PEP could be relevant andbeindependent from the specifics of a SATCOM link.This howeverThis, however, leads to research questions dealing with the potential interaction betweennetwork codingNetwork Coding and congestion control. This is discussed in <xreftarget="I-D.irtf-nwcrg-coding-and-congestion"></xref>.</t>target="I-D.irtf-nwcrg-coding-and-congestion" format="default"/>.</t> </section> <sectionanchor="sec:deploy_coding" title="Efficientanchor="sec_deploy_coding" numbered="true" toc="default"> <name>Efficient Use of SatelliteResources">Resources</name> <t>There is a recurrent trade-off in SATCOM systems: how much overhead from redundant reliability packets can be introduced to guarantee a better end-userQoEQuality of Experience (QoE) while optimizing capacity usage? At which layer should this supplementary redundancyshouldbe added?</t> <t>This problem has been tackled in the past by the deployment of physical-layer error-correction codes, butthere remainsquestions remain on adapting the coding overhead and added delay for, e.g., the quickly varying channel conditionsuse-caseuse case where ACM may not be reacting quicklyenoughenough, aswasdiscussed in <xreftarget="subsec:varying"></xref>. Thetarget="subsec_varying" format="default"/>. A higher layer withnetwork codingNetwork Coding does not react more quickly than the physical layer, but it may operate over a packet-based time window that is larger than the physical one.</t> </section> <sectionanchor="sec:deploy_nfv" title="Interactionanchor="sec_deploy_nfv" numbered="true" toc="default"> <name>Interaction with Virtualized Satellite Gateways andTerminals">Terminals</name> <t>In the emerging virtualized network infrastructure,network codingNetwork Coding could be easily deployed as Virtual Network Functions(VNF).(VNFs). The next generation of SATCOM ground segments will rely on a virtualized environment to integratetowith terrestrial networks. This trend towards Network Function Virtualization (NFV) is also central to 5G andnext generationnext-generation cellular networks, making this research applicable to other deployment scenarios <xreftarget="I-D.chin-nfvrg-cloud-5g-core-structure-yang">target="I-D.chin-nfvrg-cloud-5g-core-structure-yang" format="default"> </xref>. As one example,the network codingNetwork Coding VNF deployment in a virtualized environment has been presented in <xreftarget="I-D.vazquez-nfvrg-netcod-function-virtualization">target="I-D.vazquez-nfvrg-netcod-function-virtualization" format="default"> </xref>.</t> <t>A research challenge would be the optimization of the NFV service function chaining, considering a virtualized infrastructure and otherSATCOM specificSATCOM-specific functions, in order to guarantee efficient radio-link usage and provide easy-to-deploy SATCOM services. Moreover, another challenge related toavirtualized SATCOM equipment is the management of limited buffered capacities in large gateways.</t> </section> <sectionanchor="subsec:dtn" title="Delay/Disruption Tolerant Networking (DTN)"> <!-- <t>In the context of deep-space communications, establishing communications from terrestrial gateways to satellite platforms can be a challenge. Indeed, reliable end-to-end (E2E) communications over such links must cope with long delay and frequent link disruptions. Delay/Disruption Tolerantanchor="subsec_dtn" numbered="true" toc="default"> <name>Delay/Disruption-Tolerant Networking<xref target="RFC4838"></xref> is a solution to enable reliable internetworking space communications where both standard ad-hoc routing and E2E Internet protocols cannot be used. The transport of data over such networks requires the use of replication, erasure codes and multipath protocol schemes <xref target="WANG05"></xref> <xref target="ZHANG06"></xref> to improve the bundle delivery ratio and/or delivery delay. For instance, transport protocols such as LTP <xref target="RFC5326"></xref> for long delay links with connectivity disruptions, use Automatic Repeat-reQuest (ARQ) and unequal error protection to reduce the amount of non-mandatory re-transmissions. The work in <xref target="TOURNOUX10"></xref> proposed upon LTP a robust streaming method based on an on-the-fly coding scheme, where encoding and decoding procedures are done at the source and destination nodes, respectively. However, each link path loss rate may have various order of magnitude and re-encoding at an intermediate node to adapt the redundancy can be mandatory to prevent transmission wasting. This idea has been put forward in <xref target="I-D.zinky-dtnrg-random-binary-fec-scheme"></xref> and <xref target="I-D.zinky-dtnrg-erasure-coding-extension"></xref>, where the authors proposed an encoding process at intermediate DTN nodes to explore the possibilities of Forward Error Correction (FEC) schemes inside the bundle protocol <xref target="RFC5050"></xref>. In this context, the use of erasure coding inside a Consultative Committee for Space Data Systems (CCSDS) architecture has been specified in <xref target="CCSDS-131.5-O-1"></xref>.</t> -->(DTN)</name> <t>Communications among deep-space platforms and terrestrial gateways can be a challenge. Reliable end-to-end (E2E) communications over such paths must cope with very long delays and frequent link disruptions; indeed, E2E connectivity may only be available intermittently, if at all.Delay/Disruption TolerantDelay/Disruption-Tolerant Networking (DTN) <xreftarget="RFC4838"></xref>target="RFC4838" format="default"/> is a solution to enable reliable internetworking space communications wherebothneither standardad-hocad hoc routingandnor E2E Internet protocolscannotcan be used. Moreover, DTN can also be seen as an alternative solution to transfer data between a central PEP and a remote PEP.</t> <t>Network Coding enables E2E reliable communications over a DTN with potential adaptive re-encoding, as proposed in <xreftarget="THAI15"></xref>.target="THAI15" format="default"/>. Here, theuse-casesuse case proposed in <xreftarget="subsec:varying"></xref>target="subsec_varying" format="default"/> would encourage the usage ofnetwork codingNetwork Coding within the DTN stack to improve utilization of the physical channelutilizationand minimize the effects of the E2E transmission delays. In this context, the use of packet erasure coding techniques inside a Consultative Committee for Space Data Systems (CCSDS) architecture has been specified in <xreftarget="CCSDS-131.5-O-1"></xref>.target="CCSDS-131.5-O-1" format="default"/>. One research challengeremains onremains: how suchnetwork codingNetwork Coding can be integrated in the IETF DTN stack.</t><!-- The objective is to extend the CCSDS File Delivery Protocol (CFDP) <xref target="CCSDS-FDP"></xref> with erasure coding capabilities where a Low Density Parity Check (LDPC) <xref target="RFC6816"></xref> code with a large block size is chosen. Recently, on-the-fly erasure coding schemes <xref target="LACAN08"></xref> <xref target="SUNDARARAJAN08"></xref> <xref target="TOURNOUX11"></xref> have shown their benefits in terms of recovery capability and configuration complexity compared to traditional FEC schemes. Using a feedback path when available, on-the-fly schemes can be used to enable E2E reliable communication over DTN with adaptive re-encoding as proposed in <xref target="THAI15"></xref>. --> </section> </section> <!-- ######################################################--> <!-- New section --> <!-- ######################################################--> <section anchor="sec:conclu" title="Conclusion"> <t>This document introduces some wide-scale network coding technique opportunities in satellite telecommunications systems.</t> <t>Even though this document focuses on satellite systems, it</section> </section> <section anchor="sec_conclu" numbered="true" toc="default"> <name>Conclusion</name> <t>This document introduces some wide-scale Network Coding technique opportunities in satellite telecommunications systems.</t> <t>Even though this document focuses on satellite systems, it is worth pointing out that some scenarios proposed here may be relevant to other wireless telecommunication systems. As one example, the generic architecture proposed in <xreftarget="fig:sat_gateway"></xref>target="fig_sat_gateway" format="default"/> may be mapped onto cellular networks as follows: the 'network function' block gathers some of the functions of the Evolved Packet Core subsystem, while the 'access gateway' and 'physical gateway' blocks gather the same type of functions as the Universal Mobile Terrestrial Radio Access Network. This mapping extends the opportunities identified in thisdocumentdocument, since they may also be relevant for cellular networks.</t> </section><!-- ######################################################--> <!-- ######################################################--> <!-- Tail of the document --> <!-- ######################################################--> <!-- ######################################################--><sectionanchor="sec:glossary" title="Glossary">anchor="sec_glossary" numbered="true" toc="default"> <name>Glossary</name> <t>The glossary of this memo extends theglossarydefinitions of the taxonomy document <xreftarget="RFC8406">target="RFC8406" format="default"> </xref> asfollows:<list style="symbols"> <t>ACM : Adaptivefollows:</t> <dl newline="false" indent="12"> <dt>ACM:</dt><dd>Adaptive Coding andModulation;</t> <t>BBFRAME: Base-BandModulation</dd> <dt>BBFRAME:</dt><dd>Base-Band FRAME--- satellite communicationlayerLayer 2 encapsulationworkworks as follows: (1) eachlayerLayer 3 packet is encapsulated with a Generic Stream Encapsulation (GSE) mechanism, (2) GSE packets are gathered to create BBFRAMEs, (3) BBFRAMEs contain information related to how they have to bemodulatedmodulated, and (4) BBFRAMEs are forwarded to thephysical-layer;</t> <t>CPE: Customerphysical layer.</dd> <dt>COM:</dt><dd>COMmunication</dd> <dt>CPE:</dt><dd>Customer PremisesEquipment;</t> <t>COM: COMmunication;</t> <t>DSL: DigitalEquipment</dd> <dt>DSL:</dt><dd>Digital SubscriberLine;</t> <t>DTN: Delay/Disruption Tolerant Networking;</t> <t>DVB: DigitalLine</dd> <dt>DTN:</dt><dd>Delay/Disruption-Tolerant Networking</dd> <dt>DVB:</dt><dd>Digital VideoBroadcasting;</t> <t>E2E: End-to-end;</t> <t>ETSI: EuropeanBroadcasting</dd> <dt>E2E:</dt><dd>End-to-End</dd> <dt>ETSI:</dt><dd>European Telecommunications StandardsInstitute;</t> <t>FEC: ForwardInstitute</dd> <dt>FEC:</dt><dd>Forward ErasureCorrection;</t> <t>FLUTE: FileCorrection</dd> <dt>FLUTE:</dt><dd>File Delivery over Unidirectional Transport <xreftarget="RFC6726"></xref>;</t> <t>IntraF: Intra-Flow Coding;</t> <t>InterF: Inter-Flow Coding;</t> <t>IoT: Internettarget="RFC6726" format="default"/></dd> <dt>IntraF:</dt><dd>Intra-Flow Coding</dd> <dt>InterF:</dt><dd>Inter-Flow Coding</dd> <dt>IoT:</dt><dd>Internet ofThings;</t> <t>LTE: LongThings</dd> <dt>LTE:</dt><dd>Long TermEvolution;</t> <t>MPC: Multi-Path Coding;</t> <t>NC: Network Coding;</t> <t>NFV: NetworkEvolution</dd> <dt>MPC:</dt><dd>Multi-Path Coding</dd> <dt>NC:</dt><dd>Network Coding</dd> <dt>NFV:</dt><dd>Network Function Virtualization--- concept of running software-defined networkfunctions;</t> <t>NORM: NACK-Orientedfunctions</dd> <dt>NORM:</dt><dd>NACK-Oriented Reliable Multicast <xreftarget="RFC5740"></xref>;</t> <t>PEP: Performancetarget="RFC5740" format="default"/></dd> <dt>PEP:</dt><dd>Performance Enhancing Proxy <xreftarget="RFC3135"></xref> -target="RFC3135" format="default"/> -- a typical PEP for satellite communicationsincludeincludes compression,caching andcaching, TCP ACKspoofingspoofing, and specificcongestion control tuning;</t> <t>PLFRAME: Physicalcongestion-control tuning.</dd> <dt>PLFRAME:</dt><dd>Physical Layer FRAME--- modulated version of a BBFRAME with additional information (e.g., related tosynchronization);</t> <t>QEF: Quasi-Error-Free;</t> <t>QoE: Quality-of-Experience;</t> <t>QoS: Quality-of-Service;</t> <t>RTT: Round-Trip Time;</t> <t>SAT: SATellite; </t> <!--<t>EPC: Evolved Packet Core;</t>--> <t>SATCOM: genericsynchronization)</dd> <dt>QEF:</dt><dd>Quasi-Error-Free</dd> <dt>QoE:</dt><dd>Quality of Experience</dd> <dt>QoS:</dt><dd>Quality of Service</dd> <dt>RTT:</dt><dd>Round-Trip Time</dd> <dt>SAT:</dt><dd>SATellite</dd> <dt>SATCOM:</dt><dd>Generic term related to all kinds ofSATellite COMmunication systems;</t> <t>SPC: Single-Path Coding;</t> <t>VNF: VirtualSATellite-COMmunication systems</dd> <dt>SPC:</dt><dd>Single-Path Coding</dd> <dt>VNF:</dt><dd>Virtual Network Function--- implementation of a network function usingsoftware.</t> </list></t> </section> <section anchor="sec:acknowledgements" title="Acknowledgements"> <t>Many thanks to John Border, Stuart Card, Tomaso de Cola, Vincent Roca, Lloyd Wood and Marie-Jose Montpetit for their help in writing this document.</t>software.</dd> </dl> </section> <sectionanchor="sec:IANA" title="IANA Considerations">anchor="sec_IANA" numbered="true" toc="default"> <name>IANA Considerations</name> <t>Thismemo includesdocument has norequest to IANA.</t>IANA actions.</t> </section> <sectionanchor="sec:ecurity" title="Security Considerations">anchor="sec_ecurity" numbered="true" toc="default"> <name>Security Considerations</name> <t>Security considerations are inherent to any access network,andin particular SATCOM systems.Such as it is done inAs with cellular networks, over-the-air data can be encryptedusing e.g.using, e.g., the algorithms in <xreftarget="ETSITS2011"></xref>.target="ETSI-TS-2011" format="default"/>. Because the operator may not enable this <xreftarget="SSP-2020"></xref>,target="SSP-2020" format="default"/>, the applications should apply cryptographic protection. The use of FEC or Network Coding in SATCOM comes with risks (e.g., a single corrupted redundant packet may propagate to several flows when they are protected together in anInter-Flowinterflow codingapproach,approach; seesection<xreftarget="sec:use_cases"></xref>).target="sec_use_cases" format="default"/>). While this document does not further elaborate on this, the security considerations discussed in <xreftarget="RFC6363"></xref>target="RFC6363" format="default"/> apply.</t> </section> </middle><!-- *****BACK MATTER ***** --><back><!-- References split into informative and normative --> <!-- There are 2 ways to insert reference entries from the citation libraries: 1. define an ENTITY at the top, and use "ampersand character"RFC2629; here (as shown) 2. simply use a PI "less than character"?rfc include="reference.RFC.2119.xml"?> here (for I-Ds: include="reference.I-D.narten-iana-considerations-rfc2434bis.xml") Both are cited textually in the same manner: by using xref elements. If you use the PI option, xml2rfc will, by default, try to find included files in the same directory as the including file. You can also define the XML_LIBRARY environment variable with a value containing a set of directories to search. These can be either in the local filing system or remote ones accessed by http (http://domain/dir/... ).--> <!-- <references title="Normative References"> &RFC2119; </references> --> <references title="Informative References"> <?rfc include="reference.RFC.1122.xml"?> <?rfc include="reference.RFC.3135.xml"?> <?rfc include="reference.RFC.4838.xml"?> <!-- <?rfc include="reference.RFC.5050.xml"?> --> <!-- <?rfc include="reference.RFC.5326.xml"?> --> <?rfc include="reference.RFC.5740.xml"?> <!-- <?rfc include="reference.RFC.5865.xml"?> --> <!-- <?rfc include="reference.RFC.6816.xml"?> --> <?rfc include="reference.RFC.6363.xml"?> <?rfc include="reference.RFC.6726.xml"?> <!-- <?rfc include="reference.I-D.ietf-tcpm-converters"?> --> <?rfc include="reference.I-D.chin-nfvrg-cloud-5g-core-structure-yang.xml"?> <?rfc include="reference.I-D.irtf-nwcrg-coding-and-congestion.xml"?> <?rfc include="reference.RFC.8406.xml"?> <?rfc include="reference.RFC.8681.xml"?> <?rfc include="reference.I-D.vazquez-nfvrg-netcod-function-virtualization.xml"?> <!-- <?rfc include="reference.I-D.zinky-dtnrg-random-binary-fec-scheme.xml"?> --> <!-- <?rfc include="reference.I-D.zinky-dtnrg-erasure-coding-extension.xml"?> --><displayreference target="I-D.chin-nfvrg-cloud-5g-core-structure-yang" to="5G-CORE-YANG"/> <displayreference target="I-D.irtf-nwcrg-coding-and-congestion" to="NWCRG-CODING"/> <displayreference target="I-D.vazquez-nfvrg-netcod-function-virtualization" to="NETCOD-FUNCTION-VIRT"/> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.1122.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3135.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4838.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5740.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6363.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6726.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.chin-nfvrg-cloud-5g-core-structure-yang.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.irtf-nwcrg-coding-and-congestion.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8406.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8681.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.vazquez-nfvrg-netcod-function-virtualization.xml"/> <reference anchor="SSP-2020"> <front> <title>A Tale of Sea andSkyOnSky On the Security of Maritime VSAT Communications</title> <author initials="J"surname="Pavur (et al.)"> </author> <date year="2020"surname="Pavur" /> <author initials="D" surname="Moser" /> <author initials="M" surname="Strohmeier" /> <author initials="V" surname="Lenders" /> <author initials="I" surname="Martinovic" /> <date year="2020"/> </front><seriesInfo name="IEEE<refcontent>IEEE Symposium on Security andPrivacy" value="10.1109/SP40000.2020.00056" />Privacy</refcontent> <seriesInfo name="DOI" value="10.1109/SP40000.2020.00056"/> </reference> <referenceanchor="ETSITS2011">anchor="ETSI-TS-2011"> <front> <title>Digital Video Broadcasting(DVB);Content(DVB); Content Protection and Copy Management(DVB-CPCM);Part(DVB-CPCM); Part 5: CPCM Security Toolbox</title> <author initials="" surname=""> <organization>ETSI</organization> </author> <date year="2011"/>month="February"/> </front> <seriesInfo name="ETSI TS" value="102825-5" />825-5 V1.2.1"/> </reference> <referenceanchor="ETSITR2017">anchor="ETSI-TR-2017"> <front> <title>Satellite Earth Stations and Systems (SES); Multi-link routing scheme in hybrid access network with heterogeneous links </title> <author initials="" surname=""> <organization>ETSI</organization> </author> <date year="2017"/>month="July"/> </front> <seriesInfo name="ETSI TR" value="103351" />351 V1.1.1"/> </reference> <referenceanchor="ETSIEN2014">anchor="ETSI-EN-2020"> <front> <title> Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellitestandard </title>standard</title> <author initials="" surname=""> <organization>ETSI</organization> </author> <dateyear="2014" />year="2020" month="July"/> </front> <seriesInfo name="ETSI EN" value="301545-2" />545-2 V1.3.1"/> </reference> <referenceanchor="SHINE">anchor="SHINE" target="https://ieeexplore.ieee.org/document/8530996"> <front><title>Secure<title>SHINE: Secure Hybrid In Network caching Environment(SHINE) ESA project</title></title> <authorinitials="S" surname="Pietro Romano"> </author>initials="S." surname="Romano" /> <authorinitials="et" surname="al."> </author> <date year="2017 on-going"initials="C." surname="Roseti" /> <author initials="A" surname="Tulino" /> <date month="June" year="2018"></date> </front> <refcontent>International Symposium on Networks, Computers and Communications (ISNCC)</refcontent> <seriesInfoname="ESA project" value=""name='DOI' value='10.1109/ISNCC.2018.8530996' /> </reference> <reference anchor="ASMS2010"> <front> <title>Demonstration at opening session of ASMS 2010</title> <authorinitials="T" surname="De Cola"> </author> <author initials="et" surname="al."> </author> <date year="2010"/> <date year="2010"/> </front><seriesInfo name="Advanced<refcontent>5th Advanced Satellite Multimedia Systems (ASMS)Conference" value="" />Conference</refcontent> </reference><!-- <reference anchor="IEEEVT2001"> <front> <title>Statistical modeling of the LMS channel</title> <author initials="F.P" surname="Fontan"> </author> <author initials="M" surname="Vazquez-Castro"> </author> <author initials="C.E" surname="Cabado"> </author> <author initials="J.P" surname="Garcia"> </author> <author initials="E" surname="Kubista"> </author> <date year="2001" /> </front> <seriesInfo name="BEER Transactions on Vehicular Technology" value="vol. 50 issue 6" /> </reference> --><reference anchor="CCSDS-131.5-O-1"> <front> <title>Erasurecorrecting codesCorrecting Codes foruseUse innear-earthNear-Earth anddeep-space communications</title> <author surname="CCSDS">Deep-Space Communications</title> <author> <organization>The Consultative Committee for Space Data Systems </organization> </author> <date year="2014"/>month="November"/> </front> <seriesInfoname="CCSDS Experimental specification" value="131.5-0-1" />name="Experimental Specification CCSDS" value="131.5-0-1"/> </reference> <reference anchor="SAT2017"> <front> <title>Software-defined satellite cloud RAN</title> <author initials="T" surname="Ahmed"> </author> <author initials="E" surname="Dubois"> </author> <author initials="JB"surname="Dupe">surname="Dupé"> </author> <author initials="R"surname="Ferrus">surname="Ferrús"> </author> <author initials="P"surname="Gelard">surname="Gélard"> </author> <author initials="N" surname="Kuhn"> </author> <date year="2017"/>month="February" day="2"/> </front><seriesInfo name="International<refcontent>International Journalon Satellite Communnications and Networking" value="vol. 36 - https://doi.org/10.1002/sat.1206" /> </reference> <!-- <reference anchor="WANG05"> <front> <title>Erasure-coding based routing for opportunistic networks</title> <author initials="Y" surname="Wang"> </author> <author initials="et" surname="al."> </author> <date year="2005" /> </front> <seriesInfo name="Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking" value=""/> </reference> --> <!-- <reference anchor="ZHANG06"> <front> <title>On the benefits of random linear coding for unicast applications in disruption tolerant networks</title> <author initials="X" surname="Zhang"> </author> <author initials="et" surname="al."> </author> <date year="2006" /> </front> <seriesInfo name="Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks" value=""/> </reference> --> <!-- <reference anchor="TOURNOUX10"> <front> <title>On the benefits of random linear coding for unicast applications in disruption tolerant networks</title> <author initials="P" surname="Tournoux"> </author> <author initials="E" surname="Lochin"> </author> <author initials="J" surname="Leguay"> </author> <author initials="J" surname="Lacan"> </author> <date year="2010" /> </front> <seriesInfo name="Proceedingsofthe IEEE International Conference on Communications" value=""/> </reference> --> <!-- <reference anchor="COLA11"> <front> <title>Reliability options for data communications in the future deep-space missions</title> <author initials="T" surname="De Cola"> </author> <author initials="E" surname="Paolini"> </author> <author initials="G" surname="Liva"> </author> <author initials="G" surname="Calzolari"> </author> <date year="2011" /> </front> <seriesInfo name="Proceedings of the IEEE" value="vol. 99 issue 11"/> </reference> --> <!-- <reference anchor="CCSDS-FDP"> <front> <title>CCSDS File Delivery Protocol, Recommendation for Space Data System Standards</title> <author initials="" surname=""> </author> <date year="2007" /> </front> <seriesInfo name="CCSDS 727.0-B-4, Blue Book" value="num. 3" /> </reference> --> <!-- <reference anchor="LACAN08"> <front> <title>Rethinking reliability for long-delay networks</title> <author initials="J." surname="Lacan"> </author> <author initials="E." surname="Lochin"> </author> <date month="October" year="2008"/> </front> <seriesInfo name="International Workshop onSatellite Communications andSpace Communications" value=""/> </reference> --> <!-- <reference anchor="SUNDARARAJAN08"> <front> <title>ARQ for network coding</title> <author initials="J." surname="Sundararajan"> </author> <author initials="D." surname="Shah"> </author> <author initials="M." surname="Medard"> </author> <date month="July" year="2008"/> </front>Networking, Vol. 36</refcontent> <seriesInfoname="IEEE Int. Symp. on Information Theory" value=""/>name="DOI" value="10.1002/sat.1206"/> </reference>--> <!-- <reference anchor="TOURNOUX11"> <front> <title>On-the-fly erasure coding for real-time video applications</title> <author initials="P" surname="Tournoux"> </author> <author initials="E." surname="Lochin"> </author> <author initials="J." surname="Lacan"> </author> <author initials="A." surname="Bouabdallah"> </author> <author initials="V." surname="Roca"> </author> <date month="August" year="2011"/> </front> <seriesInfo name="IEEE Trans. on Multimedia" value="vol. 13 issue 4"/> </reference> --><reference anchor="THAI15"> <front> <title>Enabling E2E reliable communications with adaptive re-encoding overdelay tolerant networks</title>Delay Tolerant Networks</title> <author initials="T" surname="Thai"> </author> <author initials="V." surname="Chaganti"> </author> <author initials="E." surname="Lochin"> </author> <author initials="J." surname="Lacan"> </author> <author initials="E." surname="Dubois"> </author> <author initials="P." surname="Gelard"> </author> <date month="June" year="2015"/> </front><seriesInfo name="Proceedings of the IEEE<refcontent>IEEE International Conference onCommunications" value="http://dx.doi.org/10.1109/ICC.2015.7248441"/>Communications</refcontent> <seriesInfo name="DOI" value="10.1109/ICC.2015.7248441"/> </reference> </references> <section anchor="sec_acknowledgements" numbered="false" toc="default"> <name>Acknowledgements</name> <t>Many thanks to <contact fullname="John Border"/>, <contact fullname="Stuart Card"/>, <contact fullname="Tomaso de Cola"/>, <contact fullname="Marie-Jose Montpetit"/>, <contact fullname="Vincent Roca"/>, and <contact fullname="Lloyd Wood"/> for their help in writing this document.</t> </section> </back> </rfc>