<?xml version="1.0"encoding="US-ASCII"?>encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY NET_PGM_ILL PUBLIC "" "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.filsfils-spring-srv6-net-pgm-illustration.xml"> <!ENTITY TILFA PUBLIC "" "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-rtgwg-segment-routing-ti-lfa.xml"> <!ENTITY RFC2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"> <!ENTITY RFC8174 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY RFC8200 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8200.xml"> <!ENTITY RFC4364 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4364.xml"> <!ENTITY RFC6437 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.6437.xml"> <!ENTITY RFC2473 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2473.xml"> <!ENTITY RFC7432 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7432.xml"> <!ENTITY RFC8402 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8402.xml"> <!ENTITY RFC8214 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8214.xml"> <!ENTITY RFC8754 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8754.xml"> <!ENTITY RFC4664 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4664.xml"> <!ENTITY RFC4762 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4762.xml"> <!ENTITY RFC8126 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8126.xml"> <!ENTITY RFC4761 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4761.xml"> <!ENTITY RFC8317 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8317.xml"> <!ENTITY RFC4193 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4193.xml"> ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc strict="yes" ?> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="3"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes"?> <!-- use symbolic references tags, i.e, [RFC2119] instead of [1] --> <?rfc sortrefs="yes"?> <!-- sort the reference entries alphabetically --> <?rfc comments="yes"?> <?rfc inline="yes"?> <?rfc compact="yes"?> <!-- control vertical white space --> <?rfc subcompact="no"?> <!-- keep one blank line between list items --> <?rfc autobreaks="yes"?>"rfc2629-xhtml.ent"> <rfccategory="std"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-spring-srv6-network-programming-28"ipr="trust200902"> <!-- category values: std, bcp, info, exp, and historic ipr values: trust200902, noModificationTrust200902, noDerivativesTrust200902, or pre5378Trust200902 -->number="8986" ipr="trust200902" obsoletes="" updates="" submissionType="IETF" category="std" consensus="true" xml:lang="en" tocInclude="true" tocDepth="3" symRefs="true" sortRefs="true" version="3"> <front><!--title abbrev="Abbreviated Title">SRv6<title abbrev="SRv6 NetworkProgramming</title> --> <title>SRv6Programming">Segment Routing over IPv6 (SRv6) Network Programming</title> <seriesInfo name="RFC" value="8986"/> <author fullname="Clarence Filsfils" initials="C." surname="Filsfils" role="editor"> <organization>Cisco Systems, Inc.</organization> <address> <postal><street></street> <city></city> <region></region> <code></code><street/> <city/> <region/> <code/> <country>Belgium</country> </postal><phone></phone><phone/> <email>cf@cisco.com</email> </address> </author> <author fullname="Pablo Camarillo Garvia" initials="P." surname="Camarillo"role="editor" >role="editor"> <organization>Cisco Systems, Inc.</organization> <address> <postal><street></street> <city></city> <region></region> <code></code><street/> <city/> <region/> <code/> <country>Spain</country> </postal> <email>pcamaril@cisco.com</email> </address> </author> <author fullname="John Leddy" initials="J." surname="Leddy"><organization>Individual Contributor</organization><organization>Akamai Technologies</organization> <address> <postal><street></street> <city></city> <region></region> <code></code><street/> <city/> <region/> <code/> <country>United States of America</country> </postal> <email>john@leddy.net</email> </address> </author> <author fullname="Daniel Voyer" initials="D." surname="Voyer"> <organization>Bell Canada</organization> <address> <postal><street></street> <city></city> <region></region> <code></code><street/> <city/> <region/> <code/> <country>Canada</country> </postal> <email>daniel.voyer@bell.ca</email> </address> </author> <author fullname="Satoru Matsushima" initials="S." surname="Matsushima"> <organization abbrev="SoftBank">SoftBank</organization> <address> <postal><street>1-9-1,Higashi-Shimbashi,Minato-Ku</street> <city>Tokyo 105-7322</city> <region></region> <code></code><country>Japan</country> </postal><phone></phone><phone/> <email>satoru.matsushima@g.softbank.co.jp</email> </address> </author> <author fullname="Zhenbin Li" initials="Z." surname="Li"> <organization>Huawei Technologies</organization> <address> <postal><street></street> <city></city> <region></region> <code></code><street/> <city/> <region/> <code/> <country>China</country> </postal><phone></phone><phone/> <email>lizhenbin@huawei.com</email> </address> </author> <date year="2021" month="February" /> <area>General</area> <workgroup>SPRING</workgroup> <keyword>SRv6</keyword> <keyword>Segment Routing</keyword> <keyword>IPv6 Segment Routing</keyword><!-- Keywords will be incorporated into HTML output files in a meta tag but they have no effect on text or nroff output. If you submit your draft to the RFC Editor, the keywords will be used for the search engine. --><abstract> <t>TheSRv6Segment Routing over IPv6 (SRv6) Network Programming framework enables a network operator or an application to specify a packet processing program by encoding a sequence of instructions in the IPv6 packet header.</t> <t>Each instruction is implemented on one or several nodes in the network and identified by an SRv6 Segment Identifier in the packet.</t> <t>This document defines the SRv6 Network Programming concept and specifies the base set of SRv6 behaviors that enables the creation of interoperable overlays with underlay optimization.</t> </abstract> </front> <middle> <sectiontitle="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t>Segment Routing <xref target="RFC8402"/>format="default"/> leverages the source routing paradigm. An ingress node steers a packet through an ordered list of instructions, calledsegments."segments". Each one of these instructions represents a function to be called at a specific location in the network. A function is locally defined on the node where it is executed and may range from simply moving forward in theSegment Listsegment list to any complex user-defined behavior. NetworkprogrammingProgramming combinessegment routingSegment Routing functions, both simple and complex, to achieve a networking objective that goes beyond mere packet routing.</t> <t>This document defines the SRv6 Network Programming concept and specifies the mainsegment routingSegment Routing behaviors to enable the creation of interoperable overlays with underlay optimization.</t><t>The companion document <xref<t><xref target="I-D.filsfils-spring-srv6-net-pgm-illustration"/>format="default"/> illustrates the concepts defined in this document.</t> <t>Familiarity with the <xreftarget="RFC8754">Segmenttarget="RFC8754" format="default">Segment Routing Header</xref> is expected.</t> </section> <sectiontitle="Terminology">numbered="true" toc="default"> <name>Terminology</name> <t>The following terms used within this document are defined in <xref target="RFC8402"/>:format="default"/>: SegmentRouting,Routing (SR), SR Domain, Segment ID (SID), SRv6, SRv6 SID, SR Policy, Prefix-SID, and Adj-SID.</t> <t>The following terms used within this document are defined in <xref target="RFC8754"/>: SRH,format="default"/>: Segment Routing Header (SRH), SRSource Node, Transit Node,source node, transit node, SR Segment Endpoint Node, Reduced SRH, SegmentsLeftLeft, and Last Entry.</t><t>SL: The Segments Left field of the SRH</t> <t>FIB: Forwarding<t>The following terms are used in this document as defined below:</t> <dl> <dt>FIB: </dt> <dd>Forwarding Information Base. A FIB lookup is a lookup in the forwardingtable.</t> <t>SA: Source Address</t> <t>DA: Destination Address</t> <t>SRv6table. </dd> <dt>SA: </dt> <dd>Source Address </dd> <dt>DA: </dt> <dd>Destination Address </dd> <dt>L3: </dt> <dd>Layer 3 </dd> <dt>L2: </dt> <dd>Layer 2 </dd> <dt>MAC: </dt> <dd>Media Access Control </dd> <dt>EVPN: </dt> <dd>Ethernet VPN </dd> <dt>ESI: </dt> <dd>Ethernet Segment Identifier </dd> <dt>Per-CE VPN label: </dt> <dd>A single label for each attachment circuit that is shared by all routes with the same "outgoing attachment circuit" (<xref target="RFC4364" format="default" sectionFormat="of" section="4.3.2"/>) </dd> <dt>Per-VRF VPN label: </dt> <dd>A single label for the entire VPN Routing and Forwarding (VRF) table that is shared by all routes from that VRF (<xref target="RFC4364" format="default" sectionFormat="of" section="4.3.2"/>) </dd> <dt>SL: </dt> <dd>The Segments Left field of the SRH </dd> <dt>SRv6 SID function:The</dt> <dd>The function part of the SID is an opaque identification of a local behavior bound to the SID. It is formally defined in <xref target="sid_format"/>format="default"/> of thisdocument.</t> <t>SRv6 Segmentdocument. </dd> <dt>SRv6 Endpoint behavior:A</dt> <dd><t>A packet processing behavior executed at an SRv6 Segment Endpoint Node. <xref target="behaviors"/>format="default"/> of this document defines SRv6SegmentEndpoint behaviors related to traffic-engineering and overlayuse-cases.use cases. Other behaviors(e.g.(e.g., service programming) are outside the scope of thisdocument.</t>document. </t> </dd> </dl> <t>An SR Policy is resolved to a SID list. A SID list is represented as <S1, S2, S3> where S1 is the first SID to visit, S2 is the second SID tovisitvisit, and S3 is the last SID to visit along the SR path.</t> <t>(SA,DA) (S3, S2, S1; SL) represents an IPv6 packetwith:<list style="format - "> <t>Sourcewith:</t> <ul spacing="normal"><li>Source Addressis SA,(SA), Destination Addressis DA,(DA), andnext-header is SRH.</t> <t>SRHnext header (SRH).</li> <li><t>SRH with SID list <S1, S2, S3> with Segments Left = SL.</t> <t>Note the difference between the <> and () symbols: <S1, S2, S3> represents a SID list where S1 is the first SID and S3 is the last SID to traverse. (S3, S2, S1; SL) represents the same SID list but encoded in the SRH format where the rightmost SID in the SRH is the first SID and the leftmost SID in the SRH is the last SID. When referring to an SRpolicyPolicy in a high-leveluse-case,use case, it is simpler to use the <S1, S2, S3> notation. When referring to an illustration of the detailed packet behavior, the (S3, S2, S1; SL) notation is moreconvenient.</t> <t>Theconvenient.</t></li> <li>The payload of the packet isomitted.</t> </list></t> <t>Per-VRF VPN label: a single label for the entire VRF that is shared by all routes from that VRF (<xref target="RFC4364"/> Section 4.3.2)</t> <t>Per-CE VPN label: a single label for each attachment circuit that is shared by all routes with the same "outgoing attachment circuit" (<xref target="RFC4364"/> Section 4.3.2)</t>omitted.</li> </ul> <sectiontitle="Requirements Language"> <t>Thenumbered="true" toc="default"> <name>Requirements Language</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119" />target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere.</t>here. </t> </section> </section> <sectiontitle="SRv6 SID"> <t>RFC8402numbered="true" toc="default"> <name>SRv6 SID</name> <t><xref target="RFC8402"/> defines an SRv6 Segment Identifier as an IPv6 address explicitly associated with the segment.</t> <t>When an SRv6 SID is in the Destination Address field of an IPv6 header of a packet, it is routed throughTransit Nodestransit nodes in an IPv6 network as an IPv6 address.</t> <t>Its processing is defined in <xref target="RFC8754"/> section 4.3format="default" sectionFormat="of" section="4.3"/> and reproduced here as areminder. <list style="empty">reminder: </t> <blockquote> <t>Without constraining the details of an implementation, the SR segment endpoint node creates Forwarding Information Base (FIB) entries for its local SIDs.</t> <t>When an SRv6-capable node receives an IPv6 packet, it performs a longest-prefix-match lookup on the packet's destination address. This lookup can return any of the following:<list style="format * "> <t>A</t> <ul spacing="normal"><li>A FIB entry that represents a locally instantiated SRv6SID</t> <t>ASID</li> <li>A FIB entry that represents a local interface, not locally instantiated as an SRv6SID</t> <t>ASID</li> <li>A FIB entry that represents a nonlocalroute</t> <t>No Match</t> </list></t> </list></t>route</li> <li>No Match</li> </ul></blockquote> <t><xref target="behaviors"/>format="default"/> of this document defines a new set of SRv6 SID behaviors in addition to that defined in <xref target="RFC8754"/> Section 4.3.1.</t> <section title="SID Format" anchor="sid_format">format="default" sectionFormat="of" section="4.3.1"/>.</t> <section anchor="sid_format" numbered="true" toc="default"> <name>SID Format</name> <t>This document defines an SRv6 SID as consisting of LOC:FUNCT:ARG, where a locator (LOC) is encoded in the L most significant bits of the SID, followed by F bits of function (FUNCT) and A bits of arguments (ARG). L, the locator length, is flexible, and an operator is free to use the locator length of their choice. F and A may be any value as long as L+F+A <= 128. When L+F+A is less than128128, then the remaining bits of the SIDMUST<bcp14>MUST</bcp14> be zero.</t> <t>A locator may be represented as B:N where B is the SRv6 SID block (IPv6 prefix allocated for SRv6 SIDs by the operator) and N is the identifier of the parent node instantiating the SID.</t> <t>When the LOC part of the SRv6 SIDs is routable, it leads to thenodenode, which instantiates the SID.</t> <t>The FUNCT is an opaque identification of a local behavior bound to the SID.</t> <t>The term"function""function" refers to thebit-stringbit string in the SRv6 SID. The term"behavior""behavior" identifies the behavior bound to the SID. Some behaviors are defined inSection 4<xref target="behaviors"/> of this document.</t> <t>An SRv6SegmentEndpointBehaviorbehavior may require additional information for its processing(e.g.(e.g., related to the flow or service). This information may be encoded in the ARG bits of the SID.</t> <t>In such a case, the semantics and format of the ARG bits are defined as part of the SRv6endpointEndpoint behavior specification.</t> <t>The ARG value of a routed SIDSHOULD<bcp14>SHOULD</bcp14> remain constant among packets in a given flow. Varying ARG values among packets in a flow may result in different ECMP hashing and causere-ordering.</t>reordering.</t> </section> <sectiontitle="SIDnumbered="true" toc="default"> <name>SID Allocation within an SRdomain">Domain</name> <t>Locators are assigned consistent with IPv6 infrastructure allocation. For example, a network operator may:<list style="symbols"> <t>Assign</t> <ul spacing="normal"> <li>Assign block B::/48 to the SRdomain</t> <t>Assigndomain</li> <li>Assign a unique B:N::/64 block to each SRv6-enabled node in thedomain</t> </list> </t>domain</li> </ul> <t>As an example, one mobile service provider has commercially deployed SRv6 across more than 1000 commercial routers and 1800 whitebox routers. All these devices are enabled for SRv6 and advertise SRv6 SIDs. The provider historically deployed IPv6 and assigned infrastructure addresses fromULAthe Unique Local Address (ULA) space <xref target="RFC4193"/>.format="default"/>. They specifically allocated three /48 prefixes (Country X, Country Y, Country Z) to support their SRv6 infrastructure. From those /48prefixesprefixes, each router was assigned a /64 prefix from which all SIDs of that router are allocated.</t> <t>In another example, a large mobile and fixed-line service provider has commercially deployed SRv6 in their country-wide network. This provider is assigned a /20 prefix byan RIR (Regionala Regional InternetRegistry).Registry (RIR). They sub-allocated a few /48 prefixes to their infrastructure to deploy SRv6. Each router is assigned a /64 prefix from which all SIDs of that router are allocated.</t> <t>IPv6 address consumption in both these examples is minimal, representing less than one billionth and one millionth of the available address space, respectively.</t> <t>A service provider receiving the current minimum allocation of a /32 prefix from an RIR may assign a /48 prefix to their infrastructure deployingSRv6,SRv6 and subsequently allocate /64 prefixes for SIDs at each SRv6 node. The /48 assignment is one sixty-five thousandth (1/2^16) of the usable IPv6 address space available for assignment by the provider.</t> <t>When an operator instantiates a SID at a node, they specify a SID value B:N:FUNCT and the behavior bound to the SID using one of the SRv6 Endpoint Behaviorcodepointcodepoints of the registry defined in this document (see <xref target="endpoint_cp_types"/>).</t>format="default"/>).</t> <t>The node advertises the SID, B:N:FUNCT, in thecontrol-planecontrol plane (see <xref target="cp"/>)format="default"/>) together with the SRv6 Endpoint Behavior codepoint identifying the behavior of the SID.</t> <t>An SRSource Nodesource node cannot infer the behavior by examination of the FUNCT value of a SID.</t> <t>Therefore, the SRv6 Endpoint Behavior codepoint is advertised along with the SID in the control plane.</t> <t>An SRSource Nodesource node uses the SRv6 Endpoint Behavior codepoint to map the received SID (B:N:FUNCT) to a behavior.</t> <t>An SRSource Nodesource node selects a desired behavior at an advertising node by selecting the SID (B:N:FUNCT) advertised with the desired behavior.</t> <t>As anexample, aexample: </t> <ul spacing="normal"> <li>A network operatormay: <list style="symbols"> <t>Assignmay assign an SRv6 SID block 2001:db8:bbbb::/48 from their in-house operation block for their SRv6infrastructure</t> <t>Assigninfrastructure.</li> <li>A network operator may assign an SRv6 Locator 2001:db8:bbbb:3::/64 to one particular router, for example Router 3, in their SRDomain</t>Domain.</li> <li> <t>At Router 3, within the locator 2001:db8:bbbb:3::/64, the network operator or the router performs dynamic assignment for:<list></t> <ul spacing="normal"> <li> <t>Function 0x0100 associated with the behavior End.X (Endpoint with L3 cross-connect) between router 3 and its connected neighborrouter, for examplerouter (e.g., Router4.4). This function is encoded as a 16-bit value and has no arguments (F=16,A=0).<vspace />A=0).</t> <t> This SID is advertised in the control plane as 2001:db8:bbbb:3:100:: with an SRv6 Endpoint Behavior codepoint value of 5.</t> </li> <li> <t>Function 0x0101 associated with the behavior End.X (Endpoint with L3 cross-connect) between router 3 and its connected neighborrouter, for examplerouter (e.g., Router2.2). This function is encoded as a 16-bit value and has no arguments (F=16,A=0).<vspace />A=0).</t> <t> This SID is advertised in the control plane as 2001:db8:bbbb:3:101:: with an SRv6 Endpoint Behavior codepoint value of 5.</t></list> </t> </list> </t></li> </ul> </li> </ul> <t>These examples do not preclude any other IPv6 addressing allocation scheme.</t> </section> <sectiontitle="SID Reachability">numbered="true" toc="default"> <name>SID Reachability</name> <t>Most often, the node N would advertise IPv6 prefix(es) matching the LOC parts covering its SIDs or shorter-mask prefix. The distribution of these advertisements and calculation of their reachability are specific to the routing protocol and are outside of the scope of this document.</t> <t>An SRv6 SID is said to be routed if its SID belongs to an IPv6 prefix advertised via a routing protocol. An SRv6 SID that does not fulfill this condition is non-routed.</t> <t>Let's provide a classic illustration:</t> <t>Node N is configured explicitly with two SIDs: 2001:db8:b:1:100:: and 2001:db8:b:2:101::.</t> <t>The network learns about a path to 2001:db8:b:1::/64 via theIGP and henceIGP; hence, a packet destined to 2001:db8:b:1:100:: would be routed up to N. The network does not learn about a path to 2001:db8:b:2::/64 via theIGP and henceIGP; hence, a packet destined to 2001:db8:b:2:101:: would not be routed up to N.</t> <t>A packet could be steered through a non-routed SID 2001:db8:b:2:101:: by using a SID list <...,2001:db8:b:1:100::,2001:db8:b:2:101::,...> where the non-routed SID is preceded by a routed SID to the same node. A packet could also be steered to a node instantiating a non-routed SID by preceding it in theSID-listSID list with anAdjacency SIDAdj-SID to that node. Routed and non-routed SRv6 SIDs are the SRv6 instantiation of global and local segments, respectively <xreftarget="RFC8402"/>.<vspace blankLines="25" /></t>target="RFC8402" format="default"/>.</t> </section> </section><?rfc needLines="40" ?><sectiontitle="SRanchor="behaviors" numbered="true" toc="default"> <name>SR EndpointBehaviors" anchor="behaviors"> <t>FollowingBehaviors</name> <t>The following is a set of well-known behaviors that can be associated with a SID.</t><figure> <artwork><![CDATA[ End Endpoint function The<table anchor="endpoint"> <name>Endpoint Behaviors</name> <tbody> <tr> <td>End</td> <td><t>Endpoint</t><t>The SRv6 instantiation of aPrefix SID [RFC8402] End.X EndpointPrefix-SID <xref target="RFC8402"/></t></td> </tr> <tr> <td>End.X</td> <td><t>Endpoint withLayer-3 cross-connect TheL3 cross-connect</t> <t>The SRv6 instantiation of anAdj SID [RFC8402] End.T EndpointAdj-SID <xref target="RFC8402"/> </t></td> </tr> <tr> <td>End.T</td> <td>Endpoint with specific IPv6 tablelookup End.DX6 Endpointlookup</td> </tr> <tr> <td>End.DX6</td> <td><t>Endpoint with decapsulation and IPv6cross-connect e.g.cross-connect</t> <t>e.g., IPv6-L3VPN (equivalent to per-CE VPN label)End.DX4 Endpoint</t> </td> </tr> <tr> <td>End.DX4</td> <td><t>Endpoint withdecapsdecapsulation and IPv4cross-connect e.g.cross-connect</t> <t>e.g., IPv4-L3VPN (equivalent to per-CE VPN label)End.DT6 Endpoint</t> </td> </tr> <tr> <td>End.DT6</td> <td><t>Endpoint with decapsulation and specific IPv6 table lookupe.g.</t> <t>e.g., IPv6-L3VPN (equivalent to per-VRF VPN label)End.DT4 Endpoint</t> </td> </tr> <tr> <td>End.DT4</td> <td><t>Endpoint with decapsulation and specific IPv4 tablelookup e.g.lookup</t> <t>e.g., IPv4-L3VPN (equivalent to per-VRF VPN label)End.DT46 Endpoint</t> </td> </tr> <tr> <td>End.DT46</td> <td><t>Endpoint with decapsulation and specific IP tablelookup e.g.lookup</t> <t>e.g., IP-L3VPN (equivalent to per-VRF VPN label)End.DX2 Endpoint</t> </td> </tr> <tr> <td>End.DX2</td> <td> <t>Endpoint with decapsulation and L2 cross-connecte.g.</t> <t>e.g., L2VPNuse-case End.DX2V Endpointuse case </t> </td> </tr> <tr> <td>End.DX2V</td> <td> <t>Endpoint withdecapsdecapsulation and VLAN L2 table lookupe.g.</t> <t>e.g., EVPN Flexiblecross-connect use-case End.DT2U EndpointCross-connect use case </t> </td> </tr> <tr> <td>End.DT2U</td> <td> <t>Endpoint withdecapsdecapsulation and unicast MAC L2 table lookupe.g.</t> <t>e.g., EVPN Bridgingunicast use-case End.DT2M EndpointUnicast use case </t> </td> </tr> <tr> <td>End.DT2M</td> <td><t>Endpoint with decapsulation and L2 tableflooding e.g.flooding</t> <t>e.g., EVPN BridgingBUM use-caseBroadcast, Unknown Unicast, and Multicast (BUM) use case withESIEthernet Segment Identifier (ESI) filteringEnd.B6.Encaps Endpoint</t> </td> </tr> <tr> <td>End.B6.Encaps</td> <td><t>Endpoint bound to an SRv6policyPolicy withencapsulation SRv6encapsulation</t> <t>SRv6 instantiation of a Binding SIDEnd.B6.Encaps.Red End.B6.Encaps</t> </td> </tr> <tr> <td>End.B6.Encaps.Red</td> <td> <t>End.B6.Encaps with reduced SRHSRv6</t> <t>SRv6 instantiation of a Binding SIDEnd.BM Endpoint</t> </td> </tr> <tr> <td>End.BM</td> <td> <t>Endpoint bound to an SR-MPLS PolicySRv6</t> <t>SRv6 instantiation of an SR-MPLS Binding SID]]></artwork> </figure></t> </td> </tr> </tbody> </table> <t>The list is not exhaustive. In practice, any behavior can be attached to a localSID: e.g.SID; for example, a node N can bind a SID to a localVMVirtual Machine (VM) or containerwhichthat can apply any complex processing on the packet, provided there isa behavioran SRv6 Endpoint Behavior codepoint allocated for the processing.</t> <t>When an SRv6-capable node (N) receives an IPv6 packet whose destination address matches a FIB entry that represents a locally instantiated SRv6 SID (S), the IPv6 header chain is processed as defined inSection 4 of<xref target="RFC8200"/>.sectionFormat="of" section="4" format="default"/>. For SRv6 SIDs associated with an EndpointBehaviorbehavior defined in this document, the SRH andUpper-layer HeaderUpper-Layer header are processed as defined in the following subsections.</t> <t>The pseudocode describing these behaviors details local processing at a node. An implementation of the pseudocode is compliant as long as the externally observable wire protocol is as described by the pseudocode.</t> <t><xref target="BehFlavors"/>format="default"/> defines flavors of some of these behaviors.</t> <t><xref target="iana_registry"/>format="default"/> of this document defines the IANARegistryregistry used to maintain all these behaviors as well as future ones defined in other documents.</t><?rfc needLines="40" ?><sectiontitle="End: Endpoint">numbered="true" toc="default"> <name>End: Endpoint</name> <t>The Endpoint behavior ("End" for short) is the most basic behavior. It is the instantiation of a Prefix-SID <xref target="RFC8402"/>.</t> <t><vspace blankLines="2" />Whenformat="default"/>.</t> <t>When N receives a packet whose IPv6 DA is S and S is a local End SID, Ndoes:</t> <figure> <artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left == 0) { S03. Stop processing the SRH, and proceed to process the next header in the packet, whose type is identified by the Next Header field in the routing header. S04. } S05. If (IPv6 Hop Limit<=<= 1) { S06. Send an ICMP Time Exceeded message to the SourceAddress,Address with Code 0 (Hop limit exceeded in transit), interrupt packetprocessingprocessing, and discard the packet. S07. } S08. max_LE = (Hdr Ext Len / 2) - 1 S09. If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) { S10. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S11. } S12. Decrement IPv6 Hop Limit by 1 S13. Decrement Segments Left by 1 S14. Update IPv6 DA with Segment List[Segments Left] S15. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S16. }]]></artwork> </figure> <t>Notes:<vspace blankLines="0" /> The</sourcecode> <aside> <t>Note:</t> <t>The End behavior operates on the same FIB table(i.e.(i.e., identified by VRF or L3 relayid)ID) associated to the packet.HenceHence, the FIB lookup on line S15 is done in the same FIB table as the ingressinterface.</t>interface. </t> </aside> <sectiontitle="Upper-Layer Header" anchor="upper">anchor="upper" numbered="true" toc="default"> <name>Upper-Layer Header</name> <t>When processing theUpper-layer HeaderUpper-Layer header of a packet matching a FIB entry locally instantiated as an End SID, Ndoes:</t> <figure> <artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type is allowed by local configuration) { S02. Proceed to process theUpper-layer HeaderUpper-Layer header S03. } Else { S04. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 4 (SR Upper-layer HeaderError),Error) and Pointer set to the offset of theUpper-layer Header, InterruptUpper-Layer header, interrupt packetprocessingprocessing, and discard the packet. S05 }]]></artwork> </figure></sourcecode> <t>Allowing the processing of specific Upper-LayerHeadersheader types is useful forOAM.Operations, Administration, and Maintenance (OAM). As an example, an operator might permit pinging of SIDs. To dothisthis, they may enable local configuration to allowUpper-layer HeaderUpper-Layer header type 58 (ICMPv6).</t> <t>It isRECOMMENDED<bcp14>RECOMMENDED</bcp14> that an implementation of local configuration only allowsUpper-layer HeaderUpper-Layer header processing of types that do not result in the packet being forwarded(e.g.(e.g., ICMPv6).</t> </section> </section><?rfc needLines="20" ?> <section title="End.X: Layer-3 Cross-Connect"><section numbered="true" toc="default"> <name>End.X: L3 Cross-Connect</name> <t>The "Endpoint withcross-connect to an array of layer-3 adjacencies"L3 cross-connect" behavior(End.X("End.X" for short) is a variant of the End behavior.</t> <t>It is the SRv6 instantiation of anAdjacency-SIDAdj-SID <xref target="RFC8402"/>format="default"/>, and its main use is for traffic-engineering policies.</t> <t>Any SID instance of this behavior is associated with a set, J, of one or moreLayer-3L3 adjacencies.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.X SID, the line S15 from the End processing is replaced by the following:</t><figure> <artwork><![CDATA[<sourcecode type="pseudocode"> S15. Submit the packet to the IPv6 module for transmission to the new destination via a member of J]]></artwork> </figure> <t>Notes:<vspace blankLines="0" /></sourcecode> <aside> <t>Note:</t> <t> S15. If the set J contains several L3 adjacencies, then one element of the set is selected based on a hash of the packet's header (see <xref target="OpsFlowLabel"/>).</t> <t><vspace blankLines="2" />Ifformat="default"/>).</t> </aside> <t>If a node N has 30 outgoing interfaces to 30 neighbors, usually the operator would explicitly instantiate 30 End.X SIDs at N: one perlayer-3L3 adjacency to a neighbor. Potentially, more End.X could be explicitly defined (groups oflayer-3L3 adjacencies to the same neighbor or to different neighbors).</t> <t>Note that if N has an outgoing interface bundle I to a neighbor Q made of 10 member links, N might allocate up to 11 End.X local SIDs: one for the bundle itself and then up to one for eachLayer-2L2 member link. The flows steered using the End.X SID corresponding to the bundle itself getload balancedload-balanced across the member links via hashing while the flows steered using the End.X SID corresponding to a member link get steered over that specific member link alone.</t><t><vspace blankLines="2" />When<t>When the End.X behavior is associated with a BGP Next-Hop, it is the SRv6 instantiation of the BGPPeering Segmentspeering segments <xref target="RFC8402"/>.<vspace blankLines="2" /></t>format="default"/>.</t> <t>When processing theUpper-layer HeaderUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.X SID, process the packet as per <xreftarget="upper"/>.</t>target="upper" format="default"/>.</t> </section><?rfc needLines="20" ?><sectiontitle="End.T:numbered="true" toc="default"> <name>End.T: Specific IPv6 TableLookup">Lookup</name> <t>The "Endpoint with specific IPv6 table lookup" behavior(End.T("End.T" for short) is a variant of the End behavior.</t> <t>The End.T behavior is used for multi-table operation in the core. For this reason, an instance of the End.T behavior is associated with an IPv6 FIB table T.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.T SID, the line S15 from the End processing is replaced by the following:</t><figure> <artwork><![CDATA[<sourcecode type="pseudocode"> S15.1. Set the packet's associated FIB table to T S15.2. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination]]></artwork> </figure></sourcecode> <t>When processing theUpper-layer HeaderUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.T SID, process the packet as per <xreftarget="upper"/>.</t>target="upper" format="default"/>.</t> </section> <sectiontitle="End.DX6:numbered="true" toc="default"> <name>End.DX6: Decapsulation and IPv6Cross-Connect">Cross-Connect</name> <t>The "Endpoint with decapsulation andcross-connect to an array ofIPv6adjacencies"cross-connect" behavior(End.DX6("End.DX6" for short) is a variant of the End.X behavior.</t> <t>One of the applications of the End.DX6 behavior is the L3VPNv6use-caseuse case where a FIB lookup in a specific tenant table at the egress Provider Edge (PE) is not required. This is equivalent to the per-CE VPN label in MPLS <xref target="RFC4364"/>.</t>format="default"/>.</t> <t>The End.DX6 SIDMUST<bcp14>MUST</bcp14> be the last segment inaan SR Policy, and it is associated with one or more L3 IPv6 adjacencies J.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.DX6 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.DX6 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 41(IPv6) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Forward the exposed IPv6 packet to the L3 adjacency J S04. } Else { S05. Process as per Section 4.1.1 S06. }]]></artwork></figure> <t>Notes:<vspace blankLines="0" /></sourcecode> <aside> <t>Note:</t> <t> S01.41"41" refers toIPv6 encapsulation"IPv6 encapsulation" as definedbyin the IANAallocation for"Assigned Internet ProtocolNumbers.<vspace blankLines="0" />Numbers" registry. </t> <t> S03. If the End.DX6 SID is bound to an array of L3 adjacencies, then one entry of the array is selected based on the hash of the packet's header (see <xref target="OpsFlowLabel"/>).</t>format="default"/>).</t> </aside> </section> <sectiontitle="End.DX4:numbered="true" toc="default"> <name>End.DX4: Decapsulation and IPv4Cross-Connect">Cross-Connect</name> <t>The "Endpoint with decapsulation andcross-connect to an array ofIPv4adjacencies"cross-connect" behavior(End.DX4("End.DX4" for short) is a variant of the End.X behavior.</t> <t>One of the applications of the End.DX4 behavior is the L3VPNv4use-caseuse case where a FIB lookup in a specific tenant table at the egress PE is not required. This is equivalent to the per-CE VPN label in MPLS <xref target="RFC4364"/>.</t>format="default"/>.</t> <t>The End.DX4 SIDMUST<bcp14>MUST</bcp14> be the last segment inaan SR Policy, and it is associated with one or more L3 IPv4 adjacencies J.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.DX4 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.DX4 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 4(IPv4) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Forward the exposed IPv4 packet to the L3 adjacency J S04. } Else { S05. Process as per Section 4.1.1 S06. }]]></artwork></figure> <t>Notes:<vspace blankLines="0" /></sourcecode> <aside> <t>Note:</t> <t> S01.4"4" refers toIPv4 encapsulation"IPv4 encapsulation" as definedbyin the IANAallocation for"Assigned Internet ProtocolNumbers<vspace blankLines="0" />Numbers" registry. </t> <t> S03. If the End.DX4 SID is bound to an array of L3 adjacencies, then one entry of the array is selected based on the hash of the packet's header (see <xref target="OpsFlowLabel"/>).</t>format="default"/>).</t> </aside> </section> <sectiontitle="End.DT6:numbered="true" toc="default"> <name>End.DT6: Decapsulation and Specific IPv6 TableLookup">Lookup</name> <t>The "Endpoint with decapsulation and specific IPv6 table lookup" behavior(End.DT6("End.DT6" for short) is a variant of the End.T behavior.</t> <t>One of the applications of the End.DT6 behavior is the L3VPNv6use-caseuse case where a FIB lookup in a specific tenant table at the egress PE is required. This is equivalent to the per-VRF VPN label in MPLS <xref target="RFC4364"/>.</t>format="default"/>.</t> <t>Note that an End.DT6 may be defined for the main IPv6tabletable, in which case an End.DT6 supports the equivalent of anIPv6inIPv6IPv6-in-IPv6 decapsulation (without VPN/tenant implication).</t> <t>The End.DT6 SIDMUST<bcp14>MUST</bcp14> be the last segment inaan SR Policy, and a SID instance is associated with an IPv6 FIB table T.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.DT6 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.DT6 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 41(IPv6) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Set the packet's associated FIB table to T S04. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S05. } Else { S06. Process as per Section 4.1.1 S07. }]]></artwork></figure></sourcecode> </section> <sectiontitle="End.DT4:numbered="true" toc="default"> <name>End.DT4: Decapsulation and Specific IPv4 TableLookup">Lookup</name> <t>The "Endpoint with decapsulation and specific IPv4 table lookup" behavior(End.DT4("End.DT4" for short) is a variant of the End.T behavior.</t> <t>One of the applications of the End.DT4 behavior is the L3VPNv4use-caseuse case where a FIB lookup in a specific tenant table at the egress PE is required. This is equivalent to the per-VRF VPN label in MPLS <xref target="RFC4364"/>.</t>format="default"/>.</t> <t>Note that an End.DT4 may be defined for the main IPv4tabletable, in which case an End.DT4 supports the equivalent of anIPv4inIPv6IPv4-in-IPv6 decapsulation (without VPN/tenant implication).</t> <t>The End.DT4 SIDMUST<bcp14>MUST</bcp14> be the last segment inaan SR Policy, and a SID instance is associated with an IPv4 FIB table T.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.DT4 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.DT4 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 4(IPv4) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Set the packet's associated FIB table to T S04. Submit the packet to the egress IPv4 FIB lookupandfor transmission to the new destination S05. } Else { S06. Process as per Section 4.1.1 S07. }]]></artwork></figure></sourcecode> </section> <sectiontitle="End.DT46:numbered="true" toc="default"> <name>End.DT46: Decapsulation and Specific IP TableLookup">Lookup</name> <t>The "Endpoint with decapsulation and specific IP table lookup" behavior(End.DT46("End.DT46" for short) is a variant of the End.DT4 and End.DT6 behavior.</t> <t>One of the applications of the End.DT46 behavior is the L3VPNuse-caseuse case where a FIB lookup in a specific IP tenant table at the egress PE is required. This is equivalent to the single per-VRF VPN label (for IPv4 and IPv6) inMPLS<xrefMPLS <xref target="RFC4364"/>.</t>format="default"/>.</t> <t>Note that an End.DT46 may be defined for the main IPtabletable, in which case an End.DT46 supports the equivalent of anIPinIPv6 decapsulation(withoutIP-in-IPv6 decapsulation (without VPN/tenant implication).</t> <t>The End.DT46 SIDMUST<bcp14>MUST</bcp14> be the last segment inaan SR Policy, and a SID instance is associated with an IPv4 FIB table T4 and an IPv6 FIB table T6.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.DT46 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.DT46 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If(Upper-layer Header(Upper-Layer header type == 4(IPv4) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Set the packet's associated FIB table to T4 S04. Submit the packet to the egress IPv4 FIB lookupandfor transmission to the new destination S05. } Else if(Upper-layer Header(Upper-Layer header type == 41(IPv6) ) { S06. Remove the outer IPv6Headerheader with all its extension headers S07. Set the packet's associated FIB table to T6 S08. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S09. } Else { S10. Process as per Section 4.1.1 S11. }]]></artwork></figure></sourcecode> </section> <sectiontitle="End.DX2:numbered="true" toc="default"> <name>End.DX2: Decapsulation and L2Cross-Connect">Cross-Connect</name> <t>The "Endpoint with decapsulation andLayer-2 cross-connect to an outgoingL2interface (OIF)" (End.DX2cross-connect" behavior ("End.DX2" for short) is a variant of theendpointEndpoint behavior.</t> <t>One of the applications of the End.DX2 behavior is the L2VPN <xref target="RFC4664"/>format="default"/> / EVPNVPWSVirtual Private Wire Service (VPWS) <xref target="RFC7432"/>format="default"/> <xref target="RFC8214"/> use-case.</t>format="default"/> use case.</t> <t>The End.DX2 SIDMUST<bcp14>MUST</bcp14> be the last segment inaan SR Policy, and it is associated with one outgoing interface I.</t><t><vspace blankLines="2" />When<t>When N receives a packet destined to S and S is a local End.DX2 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.DX2 SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 143(Ethernet) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Forward the Ethernet frame to the OIF I S04. } Else { S05. Process as per Section 4.1.1 S06. }]]></artwork></figure> <t>Notes:<vspace blankLines="0" /> S01.</sourcecode> <aside> <t>Note:</t> <t>S01. IANA has allocated value "143" for "Ethernet" <xref target="IEEE.802.3_2018" format="default"/> in the "Assigned Internet Protocolnumber 143 to Ethernet <xref target="IEEE.802.3_2018"/>Numbers" registry (see <xref target="ianaethernet"/>).<vspace blankLines="0" />format="default"/>). </t> <t> S03. An End.DX2 behavior could be customized to expect a specific IEEE header(e.g.(e.g., VLAN tag) and rewrite the egress IEEE header before forwarding on the outgoing interface.</t><t><vspace blankLines="2" />Note</aside> <t>Note that an End.DX2 SID may also be associated with a bundle of outgoing interfaces.</t> </section> <sectiontitle="End.DX2V:numbered="true" toc="default"> <name>End.DX2V: Decapsulation and VLAN L2 TableLookup">Lookup</name> <t>The "Endpoint with decapsulation andspecificVLAN L2 table lookup" behavior(End.DX2V("End.DX2V" for short) is a variant of the End.DX2 behavior.</t> <t>One of the applications of the End.DX2V behavior is the EVPN Flexiblecross-connect use-case.Cross-connect use case. The End.DX2V behavior is used to perform a lookup of the Ethernet frame VLANs in a particular L2 table. Any SID instance of this behavior is associated with an L2Tabletable T.</t><t><vspace blankLines="2" />When<t>When N receives a packet whose IPv6 DA is S and S is a local End.DX2 SID, the processing is identical to the End.DX2 behavior except for theUpper-layerUpper-Layer headerprocessingprocessing, which is modified as follows:</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> S03.LookupLook up the exposed VLANs in L2 table T, and forward via the matched table entry.]]></artwork></figure> <t>Notes:<vspace blankLines="0" /></sourcecode> <aside> <t>Note:</t> <t> S03. An End.DX2V behavior could be customized to expect a specific VLAN format and rewrite the egress VLAN header before forwarding on the outgoing interface.</t> </aside> </section> <sectiontitle="End.DT2U:numbered="true" toc="default"> <name>End.DT2U: Decapsulation and Unicast MAC L2 TableLookup">Lookup</name> <t>The "Endpoint with decapsulation andspecificunicast MAC L2 table lookup" behavior(End.DT2U("End.DT2U" for short) is a variant of the End behavior.</t> <t>One of the applications of the End.DT2U behavior is the EVPN BridgingunicastUnicast <xref target="RFC7432"/>.format="default"/>. Any SID instance of the End.DT2U behavior is associated with an L2Tabletable T.</t><t><vspace blankLines="2" />When<t>When N receives a packet whose IPv6 DA is S and S is a local End.DT2U SID, the processing is identical to the End.DX2 behavior except for theUpper-layerUpper-Layer headerprocessingprocessing, which is as follows:</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 143(Ethernet) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Learn the exposed MAC Source Address in L2Tabletable T S04.LookupLook up the exposed MAC Destination Address in L2Tabletable T S05. If (matched entry in T) { S06. Forward via the matched table T entry S07. } Else { S08. Forward via all L2 OIFsentriesin table T S09. } S10. } Else { S11. Process as per Section 4.1.1 S12. }]]></artwork></figure> <t>Notes:<vspace blankLines="0" /> S01.</sourcecode> <aside> <t>Note:</t> <t>S01. IANA has allocated value "143" for "Ethernet" in the "Assigned Internet Protocolnumber 143 to EthernetNumbers" registry (see <xref target="ianaethernet"/>).<vspace blankLines="0" />format="default"/>). </t> <t> S03. In EVPN <xref target="RFC7432"/>,format="default"/>, the learning of the exposed MAC Source Address is done via the control plane. In L2VPNVPLSVirtual Private LAN Service (VPLS) <xref target="RFC4761"/>format="default"/> <xref target="RFC4762"/>format="default"/>, reachability is obtained by standard learning bridge functions in the data plane.</t> </aside> </section> <sectiontitle="End.DT2M:numbered="true" toc="default"> <name>End.DT2M: Decapsulation and L2 TableFlooding">Flooding</name> <t>The "Endpoint with decapsulation andspecificL2 table flooding" behavior(End.DT2M("End.DT2M" for short) is a variant of the End.DT2U behavior.</t> <t>Two of the applications of the End.DT2M behavior are the EVPN Bridging ofbroadcast, unknownBroadcast, Unknown Unicast, andmulticastMulticast (BUM) traffic with Ethernet Segment Identifier (ESI) filtering <xref target="RFC7432"/>format="default"/> and the EVPNETREEEthernet-Tree (E-Tree) <xreftarget="RFC8317"/>use-cases.</t>target="RFC8317" format="default"/> use cases.</t> <t>Any SID instance of this behavior is associated withaan L2 table T. The behavior also takes an argument: "Arg.FE2". This argument provides a local mapping to ESI for split-horizon filtering of the received traffic to exclude a specific OIF (or set of OIFs) from L2 table T flooding. The allocation of the argument values is local to the SR Segment Endpoint Node instantiating thisbehaviorbehavior, and the signaling of the argument to other nodes for the EVPN functionality occurs via the control plane.</t><t><vspace blankLines="2" />When<t>When N receives a packet whose IPv6 DA is S and S is a local End.DT2M SID, the processing is identical to the End.DX2 behavior except for theUpper-layerUpper-Layer headerprocessingprocessing, which is as follows:</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> S01. If (Upper-LayerHeaderheader type == 143(Ethernet) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Learn the exposed MAC Source Address in L2Tabletable T S04. Forward via allL2OIFsL2 OIFs excluding those associatedbywith the identifier Arg.FE2 S05. } Else { S06. Process as per Section 4.1.1 S07. }]]></artwork></figure> <t>Notes:<vspace blankLines="0" /> S01.</sourcecode> <aside> <t>Note:</t> <t>S01. IANA has allocated value "143" for "Ethernet" in the "Assigned Internet Protocolnumber 143 to EthernetNumbers" registry (see <xref target="ianaethernet"/>).<vspace blankLines="0" />format="default"/>). </t> <t> S03. In EVPN <xref target="RFC7432"/>,format="default"/>, the learning of the exposed MAC Source Address is done via the control plane. In L2VPN VPLS <xref target="RFC4761"/>format="default"/> <xref target="RFC4762"/>format="default"/>, reachability is obtained by standard learning bridge functions in the data plane.</t> </aside> </section> <sectiontitle="End.B6.Encaps:numbered="true" toc="default"> <name>End.B6.Encaps: Endpoint Bound to an SRv6 Policyw/ Encaps">with Encapsulation</name> <t>This is a variation of the End behavior.</t> <t>One of its applications is to express scalable traffic-engineering policies across multiple domains. It is one of the SRv6 instantiations of a Binding SID <xref target="RFC8402"/>.</t>format="default"/>.</t> <t>Any SID instance of this behavior is associated with an SR Policy B and a source address A.</t><t><vspace blankLines="2" />When<t>When N receives a packet whose IPv6 DA is S and S is a local End.B6.Encaps SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left == 0) { S03. Stop processing the SRH, and proceed to process the next header in the packet, whose type is identified by the Next Header field in the routing header. S04. } S05. If (IPv6 Hop Limit<=<= 1) { S06. Send an ICMP Time Exceeded message to the SourceAddress,Address with Code 0 (Hop limit exceeded in transit), interrupt packetprocessingprocessing, and discard the packet. S07. } S08. max_LE = (Hdr Ext Len / 2) - 1 S09. If ((Last Entry > max_LE) or (Segments Left >(LastLast Entry+1)) { S10. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S11. } S12. Decrement IPv6 Hop Limit by 1 S13. Decrement Segments Left by 1 S14. Update IPv6 DA with Segment List[Segments Left] S15. Push a new IPv6 header with its own SRH containing B S16. Set the outer IPv6 SA to A S17. Set the outer IPv6 DA to the first SID of B S18. Set the outer Payload Length, Traffic Class, Flow Label, HopLimitLimit, andNext-HeaderNext Header fields S19. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S20. }]]></artwork></figure> <t>Notes:<vspace blankLines="0" /></sourcecode> <aside> <t>Note:</t> <t> S15. The SRHMAY<bcp14>MAY</bcp14> be omitted when the SRv6 Policy B only contains one SID and there is no need to use any flag,tagtag, orTLV.<vspace blankLines="0" />TLV. </t> <t> S18. The Payload Length, Traffic Class, HopLimitLimit, andNext-HeaderNext Header fields are set as per <xref target="RFC2473"/>.format="default"/>. The Flow Label is computed as per <xref target="RFC6437"/>.</t> <t><vspace blankLines="2" />Whenformat="default"/>.</t> </aside> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.B6.Encaps SID, process the packet as per <xreftarget="upper"/>.<vspace blankLines="3" /></t>target="upper" format="default"/>.</t> </section> <sectiontitle="End.B6.Encaps.Red:numbered="true" toc="default"> <name>End.B6.Encaps.Red: End.B6.Encaps with ReducedSRH">SRH</name> <t>This is an optimization of the End.B6.Encaps behavior.</t> <t>End.B6.Encaps.Red reduces the size of the SRH by one SID by excluding the first SID in the SRH of the new IPv6 header. Thus, the first segment is only placed in the IPv6 Destination Address of the new IPv6headerheader, and the packet is forwarded according to it.</t> <t>The SRH Last Entry field is set as defined inSection 4.1.1 of<xref sectionFormat="of" section="4.1.1" target="RFC8754"/>.</t>format="default"/>.</t> <t>The SRHMAY<bcp14>MAY</bcp14> be omitted when the SRv6 Policy only contains one SID and there is no need to use any flag,tagtag, or TLV.</t> </section> <sectiontitle="End.BM:numbered="true" toc="default"> <name>End.BM: Endpoint Bound to an SR-MPLSPolicy">Policy</name> <t>The "Endpoint bound to an SR-MPLS Policy" behavior ("End.BM" for short) is a variant of the End behavior.</t> <t>The End.BM behavior is required to express scalable traffic-engineering policies across multiple domains where some domains support the MPLS instantiation of Segment Routing. This is an SRv6 instantiation of an SR-MPLS Binding SID <xref target="RFC8402"/>.</t>format="default"/>.</t> <t>Any SID instance of this behavior is associated with an SR-MPLS Policy B.</t><t><vspace blankLines="2" />When<t>When N receives a packet whose IPv6 DA is S and S is a local End.BM SID, Ndoes:</t> <figure><artwork><![CDATA[does the following:</t> <sourcecode type="pseudocode"> S01. When an SRH is processed { S02. If (Segments Left == 0) { S03. Stop processing the SRH, and proceed to process the next header in the packet, whose type is identified by the Next Header field in the routing header. S04. } S05. If (IPv6 Hop Limit<=<= 1) { S06. Send an ICMP Time Exceeded message to the SourceAddress,Address with Code 0 (Hop limit exceeded in transit), interrupt packetprocessingprocessing, and discard the packet. S07. } S08. max_LE = (Hdr Ext Len / 2) - 1 S09. If ((Last Entry > max_LE) or (Segments Left >(LastLast Entry+1)) { S10. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packetprocessingprocessing, and discard the packet. S11. } S12. Decrement IPv6 Hop Limit by 1 S13. Decrement Segments Left by 1 S14. Update IPv6 DA with Segment List[Segments Left] S15. Push the MPLS label stack for B S16. Submit the packet to the MPLS engine for transmission S17. }]]></artwork></figure> <t><vspace blankLines="2" />When</sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.BM SID, process the packet as per <xreftarget="upper"/>.</t>target="upper" format="default"/>.</t> </section> <sectiontitle="Flavors" anchor="BehFlavors">anchor="BehFlavors" numbered="true" toc="default"> <name>Flavors</name> <t>The Penultimate Segment Pop (PSP) of theSRH (PSP),SRH, Ultimate Segment Pop (USP) of theSRH (USP)SRH, and Ultimate Segment Decapsulation (USD) flavors are variants of the End,End.XEnd.X, and End.T behaviors. The End,End.XEnd.X, and End.T behaviors can support these flavors either individually or in combinations.</t> <sectiontitle="PSP:numbered="true" toc="default"> <name>PSP: Penultimate Segment Pop of theSRH">SRH</name> <sectiontitle="Guidelines">numbered="true" toc="default"> <name>Guidelines</name> <t>SR Segment Endpoint Nodes advertise the SIDs instantiated on them viacontrol planecontrol-plane protocols as described in <xref target="cp"/>.format="default"/>. Different behavioridsIDs are allocated for flavored and unflavored SIDs (see <xref target="endpoint_cp_types"/>).</t>format="default"/>).</t> <t>An SR Segment Endpoint Node that offers bothPSPPSP- andnon-PSP flavorednon-PSP-flavored behavior advertises them as two different SIDs.</t> <t>The SR Segment Endpoint Node only advertises the PSP flavor if the operator enables this capability at the node.</t> <t>The PSP operation is deterministically controlled by the SRSource Node.</t>source node.</t> <t>A PSP-flavored SID is used by theSourceSRNodesource node when it needs to instruct the penultimate SR Segment Endpoint Node listed in the SRH to remove the SRH from the IPv6 header.</t> </section> <sectiontitle="Definition">numbered="true" toc="default"> <name>Definition</name> <t>SR Segment Endpoint Nodes receive the IPv6 packet with the Destination Address field of the IPv6Headerheader equal to its SID address.</t> <t>A penultimate SR Segment Endpoint Node is one that, as part of the SID processing, copies the last SID from the SRH into the IPv6 Destination Address and decrements the Segments Left value from one to zero.</t> <t>The PSP operation only takes place at a penultimate SR Segment Endpoint Node and does not happen at anyTransit Node.transit node. When a SID ofPSP-flavorPSP flavor is processed at a non-penultimate SR Segment Endpoint Node, the PSP behavior is not performed as described in the pseudocode below since Segments Left would not be zero.</t> <t>The SRH processing of the End,End.XEnd.X, and End.T behaviors are modified: after the instruction "S14. Update IPv6 DA with Segment List[Segments Left]" is executed, the following instructions must be executed as well:</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> S14.1. If (Segments Left == 0) { S14.2. Update the Next Header field in the preceding header to the Next Header value from the SRH S14.3. Decrease the IPv6 header Payload Length by 8*(Hdr Ext Len+1) S14.4. Remove the SRH from the IPv6 extension header chain S14.5. }]]></artwork></figure></sourcecode> <t>The usage of PSP does not increase the MTU of the IPv6 packet and hence does not have any impact on thePMTUPath MTU (PMTU) discovery mechanism.</t> <t>As a reminder, <xreftarget="RFC8754"/>target="RFC8754" sectionFormat="of" section="5" format="default"/> definesin section 5the SR Deployment Model within the SR Domain <xreftarget="RFC8402"/>.target="RFC8402" format="default"/>. Within this framework, the Authentication Header (AH) is not used to secure the SRH as described inSection 7.5 of<xreftarget="RFC8754"/>.target="RFC8754" sectionFormat="of" section="7.5" format="default"/>. Hence, the discussion of applicability of PSP along with AH usage is beyond the scope of this document.</t> <t>In the context of this specification, the End,End.XEnd.X, and End.T behaviors with PSP do not contraveneSection 4 of<xreftarget="RFC8200"/>target="RFC8200" sectionFormat="of" section="4" format="default"/> because the destination address of the incoming packet is the address of the node executing the behavior.</t> </section> <sectiontitle="Use-case">numbered="true" toc="default"> <name>Use Case</name> <t>Oneuse-caseuse case for the PSP functionality is streamlining the operation of an egress border router.</t> <figuretitle="PSP use-case topology" anchor="fig-psp"><artwork><![CDATA[anchor="fig-psp"> <name>PSP Use Case Topology</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +----------------------------------------------------+ | | +-+-+ +--+ +--+ +--+ +-+-+ |iPE+-------->+R2+-------->+R3+-------->+R4+-------->+ePE| | R1| +--+ +--+ +--+ |R5 | +-+-+ +-----+ +-----+ +-----+ +-----+ +-+-+ | |IPv6 | |IPv6 | |IPv6 | |IPv6 | | | |DA=R3| |DA=R3| |DA=R5| |DA=R5| | | +-----+ +-----+ +-----+ +-----+ | | | SRH | | SRH | | IP | | IP | | | |SL=1 | |SL=1 | +-----+ +-----+ | | | R5 | | R5 | | | +-----+ +-----+ | | | IP | | IP | | | +-----+ +-----+ | | | +----------------------------------------------------+]]></artwork></figure>]]></artwork> </figure> <t>In the above illustration, for a packet sent fromiPEthe ingress provider edge (iPE) toePE,the egress provider edge (ePE), node R3 is an intermediatetraffic engineeringtraffic-engineering waypoint and is the penultimate segment endpoint router;thethis nodethatcopies the last segment from the SRH into the IPv6 Destination Address and decrementssegments leftSegments Left to 0. TheSDNSoftware-Defined Networking (SDN) controller knows that no other node after R3 needs to inspect the SRH, and it instructs R3 to remove the exhausted SRH from the packet by using a PSP-flavored SID.</t> <t>The benefits for the egress PE are straightforward:<list style="format -"> <t>as</t> <ul spacing="normal"><li>As part of the decapsulationprocessprocess, the egress PE is required to parse and remove fewer bytes from thepacket.</t> <t>ifpacket.</li> <li>If a lookup on an upper-layer IP header is required(e.g.(e.g., per-VRF VPN), the header is more likely to be within the memory accessible to the lookup engine in the forwarding ASIC(Application-specific integrated circuit).</t> </list> </t>(Application-Specific Integrated Circuit).</li> </ul> </section> </section> <sectiontitle="USP:numbered="true" toc="default"> <name>USP: Ultimate Segment Pop of theSRH">SRH</name> <t>The SRH processing of the End,End.XEnd.X, and End.T behaviors aremodified:modified; the instructions S02-S04 are substituted by the following ones:</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> S02. If (Segments Left == 0) { S03.1. Update the Next Header field in the preceding header to the Next Header value of the SRH S03.2. Decrease the IPv6 header Payload Length by 8*(Hdr Ext Len+1) S03.3. Remove the SRH from the IPv6 extension header chain S03.4. Proceed to process the next header in the packet S04. }]]></artwork></figure></sourcecode> <t>One of the applications of the USP flavor is when a packet with an SRH is destined to an application on hosts with smartNICs ("Smart Network Interface Cards") implementing SRv6. The USP flavor is used to remove the consumed SRH from the extension header chain before sending the packet to the host.</t> </section> <sectiontitle="USD:numbered="true" toc="default"> <name>USD: Ultimate SegmentDecapsulation">Decapsulation</name> <t>TheUpper-layerUpper-Layer header processing of the End,End.XEnd.X, and End.T behaviors are modified as follows:</t><figure><artwork><![CDATA[ End:<t>End:</t> <sourcecode type="pseudocode"> S01. If(Upper-layer Header(Upper-Layer header type == 41(IPv6) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S04. } Else if(Upper-layer Header(Upper-Layer header type == 4(IPv4) ) { S05. Remove the outer IPv6Headerheader with all its extension headers S06. Submit the packet to the egress IPv4 FIB lookupandfor transmission to the new destination S07. Else { S08. Process as per Section 4.1.1 S09. }]]></artwork></figure> <figure><artwork><![CDATA[ End.T:</sourcecode> <t>End.T:</t> <sourcecode type="pseudocode"> S01. If(Upper-layer Header(Upper-Layer header type == 41(IPv6) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Set the packet's associated FIB table to T S04. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S05. } Else if(Upper-layer Header(Upper-Layer header type == 4(IPv4) ) { S06. Remove the outer IPv6Headerheader with all its extension headers S07. Set the packet's associated FIB table to T S08. Submit the packet to the egress IPv4 FIB lookupandfor transmission to the new destination S09. Else { S10. Process as per Section 4.1.1 S11. }]]></artwork></figure> <figure><artwork><![CDATA[ End.X:</sourcecode> <t>End.X:</t> <sourcecode type="pseudocode"> S01. If(Upper-layer Header(Upper-Layer header type == 41(IPv6) ||Upper-layer HeaderUpper-Layer header type == 4(IPv4) ) { S02. Remove the outer IPv6Headerheader with all its extension headers S03. Forward the exposed IP packet to the L3 adjacency J S04. } Else { S05. Process as per Section 4.1.1 S06. }]]></artwork></figure></sourcecode> <t>One of the applications of the USD flavor is the case ofTI-LFAa Topology Independent Loop-Free Alternate (TI-LFA) in P routers with encapsulation. The USD flavor allows the last SR Segment Endpoint Node in the repair path list to decapsulate the IPv6 header added at the TI-LFA Point of Local Repair and forward the inner packet.</t> </section> </section> </section> <sectiontitle="SRnumbered="true" toc="default"> <name>SR Policy HeadendBehaviors">Behaviors</name> <t>This section describes a set ofSRSRv6 Policy Headend <xref target="RFC8402"/>format="default"/> behaviors.</t><figure> <artwork><![CDATA[ H.Encaps SR<table anchor="headend"> <name>SR Policy Headend Behaviors</name> <tbody> <tr> <td>H.Encaps </td> <td>SR HeadendBehaviorwith Encapsulation in an SR PolicyH.Encaps.Red H.Encaps</td> </tr> <tr> <td>H.Encaps.Red </td> <td>H.Encaps with Reduced EncapsulationH.Encaps.L2 H.Encaps</td> </tr> <tr> <td>H.Encaps.L2 </td> <td>H.Encaps Applied to Received L2 FramesH.Encaps.L2.Red H.Encaps.Red</td> </tr> <tr> <td>H.Encaps.L2.Red </td> <td>H.Encaps.Red Applied to Received L2 Frames]]></artwork> </figure></td> </tr> </tbody> </table> <t>This list is notexhaustiveexhaustive, and future documents may define additional behaviors.</t><?rfc needLines="10" ?><sectiontitle="H.Encaps:numbered="true" toc="default"> <name>H.Encaps: SR Headend with Encapsulation in anSRv6 Policy">SR Policy</name> <t>Node N receives two packets P1=(A, B2) and P2=(A,B2)(B3, B2, B1; SL=1). B2 is neither a local address nor SID of N.</t> <t>Node N is configured with an IPv6Addressaddress T(e.g.(e.g., assigned to its loopback).</t> <t>N steers the transit packets P1 and P2 into anSRSRv6 Policy with a Source Address T and aSegmentsegment list <S1, S2, S3>.</t> <t>The H.Encaps encapsulation behavior is defined as follows:</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> S01. Push an IPv6 header with its own SRH S02. Set outer IPv6 SA = T and outer IPv6 DA to the first SID in the segment list S03. Set outer Payload Length, Traffic Class, HopLimitLimit, and Flow Label fields S04. Set the outerNext-HeaderNext Header value S05. Decrement inner IPv6 Hop Limit or IPv4 TTL S06. Submit the packet to the IPv6 module for transmission to S1]]></artwork></figure> <t>Note:<vspace blankLines="0" />S03:</sourcecode> <aside> <t>Note:</t> <t> S03: As described in <xref target="RFC2473"/>format="default"/> and <xreftarget="RFC6437"/>. <vspace blankLines="1" /></t>target="RFC6437" format="default"/>. </t> </aside> <t>After the H.Encaps behavior, P1' and P2' respectively look like:<list style="format - "> <t>(T,</t> <ul spacing="normal"><li>(T, S1) (S3, S2, S1; SL=2) (A,B2)</t> <t>(T,B2)</li> <li>(T, S1) (S3, S2, S1; SL=2) (A, B2) (B3, B2, B1;SL=1)</t> </list></t>SL=1)</li> </ul> <t>The received packet is encapsulated unmodified (with the exception of the IPv4 TTL or IPv6 Hop Limit that is decremented as described in <xreftarget="RFC2473"/>).</t>target="RFC2473" format="default"/>).</t> <t>The H.Encaps behavior is valid for any kind ofLayer-3L3 traffic. This behavior is commonly used for L3VPN with IPv4 and IPv6 deployments. It may be also used for TI-LFA <xreftarget="I-D.ietf-rtgwg-segment-routing-ti-lfa"/>target="I-D.ietf-rtgwg-segment-routing-ti-lfa" format="default"/> at thepointPoint oflocal repair.</t>Local Repair.</t> <t>The push of the SRHMAY<bcp14>MAY</bcp14> be omitted when the SRv6 Policy only contains one segment and there is no need to use any flag,tagtag, or TLV.</t> </section><?rfc needLines="10" ?><sectiontitle="H.Encaps.Red:numbered="true" toc="default"> <name>H.Encaps.Red: H.Encaps with ReducedEncapsulation">Encapsulation</name> <t>The H.Encaps.Red behavior is an optimization of the H.Encaps behavior.</t> <t>H.Encaps.Red reduces the length of the SRH by excluding the first SID in the SRH of the pushed IPv6 header. The first SID is only placed in the Destination Address field of the pushed IPv6 header.</t> <t>After the H.Encaps.Red behavior, P1' and P2' respectively look like:<list style="format - "> <t>(T,</t> <ul spacing="normal"><li>(T, S1) (S3, S2; SL=2) (A,B2)</t> <t>(T,B2)</li> <li>(T, S1) (S3, S2; SL=2) (A, B2) (B3, B2, B1;SL=1)</t> </list></t>SL=1)</li> </ul> <t>The push of the SRHMAY<bcp14>MAY</bcp14> be omitted when the SRv6 Policy only contains one segment and there is no need to use any flag,tagtag, or TLV.</t> </section><?rfc needLines="10" ?><sectiontitle="H.Encaps.L2:numbered="true" toc="default"> <name>H.Encaps.L2: H.Encaps Applied to Received L2Frames">Frames</name> <t>The H.Encaps.L2 behavior encapsulates a received Ethernet <xreftarget="IEEE.802.3_2018"/>target="IEEE.802.3_2018" format="default"/> frame and its attached VLAN header, if present, in an IPv6 packet with an SRH. The Ethernet frame becomes the payload of the new IPv6 packet.</t> <t>The Next Header field of the SRHMUST<bcp14>MUST</bcp14> be set to 143.</t> <t>The push of the SRHMAY<bcp14>MAY</bcp14> be omitted when the SRv6 Policy only contains one segment and there is no need to use any flag,tagtag, or TLV.</t> <t>The encapsulating nodeMUST<bcp14>MUST</bcp14> remove the preamble (if any) and frame check sequence (FCS) from the Ethernet frame uponencapsulationencapsulation, and the decapsulating nodeMUST<bcp14>MUST</bcp14> regenerate, as required, the preamble and FCS before forwarding the Ethernet frame.</t> </section><?rfc needLines="10" ?><sectiontitle="H.Encaps.L2.Red:numbered="true" toc="default"> <name>H.Encaps.L2.Red: H.Encaps.Red Applied to Received L2frames">Frames</name> <t>The H.Encaps.L2.Red behavior is an optimization of the H.Encaps.L2 behavior.</t> <t>H.Encaps.L2.Red reduces the length of the SRH by excluding the first SID in the SRH of the pushed IPv6 header. The first SID is onlyplacesplaced in the Destination Address field of the pushed IPv6 header.</t> <t>The push of the SRHMAY<bcp14>MAY</bcp14> be omitted when the SRv6 Policy only contains one segment and there is no need to use any flag,tagtag, or TLV.</t> </section> </section><?rfc needLines="10" ?><sectiontitle="Counters">numbered="true" toc="default"> <name>Counters</name> <t>A node supporting this documentSHOULD<bcp14>SHOULD</bcp14> implement a pair of traffic counters (one for packets and one for bytes) per local SID entry, for traffic that matched that SID and was processed successfully(i.e.(i.e., packetswhichthat generate ICMP Error Messages or are dropped are not counted). The retrieval of these counters from MIB,NETCONF/YANGNETCONF/YANG, or any other data structure is outside the scope of this document.</t> </section><?rfc needLines="5" ?><sectiontitle="Flow-based Hash Computation"anchor="OpsFlowLabel">numbered="true" toc="default"> <name>Flow-Based Hash Computation</name> <t>When a flow-based selection within a set needs to be performed, the IPv6 Source Address, the IPv6 DestinationAddressAddress, and the IPv6 Flow Label of the outer IPv6 headerMUST<bcp14>MUST</bcp14> be included in the flow-based hash.</t> <t>Thisoccurs when amay occur in any of the following scenarios:</t> <ul> <li> <t>A FIB lookup is performed and multiple ECMP paths exist to the updated destination address.</t><t>This occurs when End.X,</li> <li> <t>End.X, End.DX4, or End.DX6areis bound to an array ofadjacencies.</t> <t>This occurs when theadjacencies.</t></li> <li> <t>The packet is steered in an SRpolicyPolicy whose selected path has multiple SIDlists.</t>lists.</t></li> </ul> <t>Additionally, any transit router in an SRv6 domain includes the outer flow label in its ECMP flow-based hash <xref target="RFC6437"/>.</t>format="default"/>.</t> </section><?rfc needLines="8" ?> <section title="Control Plane" anchor="cp"><section anchor="cp" numbered="true" toc="default"> <name>Control Plane</name> <t>In an SDN environment, one expects the controller to explicitly provision the SIDs and/or discover them as part of a service discovery function. Applications residing on top of the controller could then discover the required SIDs and combine them to form a distributed network program.</t> <t>The concept of"SRv6 network programming""SRv6 Network Programming" refers to the capabilityforof an application to encode any complex program as a set of individual functions distributed through the network. Some functions relate to underlay SLA, others to overlay/tenant, and others to complex applications residing inVMVMs and containers.</t> <t>While not necessary for an SDN control plane, the remainder of this section provides a high-level illustrative overview of how control-plane protocols may be involved with SRv6. Their specification is outside the scope of this document.</t> <sectiontitle="IGP" anchor="igp">anchor="igp" numbered="true" toc="default"> <name>IGP</name> <t>The End,End.TEnd.T, and End.X SIDs express topological behaviors and hence are expected to be signaled in the IGP together with the flavors PSP,USPUSP, and USD. The IGP should also advertise themaximum SRv6Maximum SIDdepthDepth (MSD) capability of the node for each type of SRv6 operation--- in particular, the SR source(e.g.(e.g., H.Encaps), intermediate endpoint(e.g. End, End.X)(e.g., End and End.X), and final endpoint(e.g. End.DX4,(e.g., End.DX4 and End.DT6) behaviors. These capabilities are factored in by an SRSource Nodesource node (or a controller) during the SR Policy computation.</t> <t>The presence of SIDs in the IGP does not imply any routing semantics to the addresses represented by these SIDs. The routing reachability to an IPv6 address is solely governed by the non-SID-related IGP prefix reachability information that includes locators. Routing is neither governed nor influenced in any way by a SID advertisement in the IGP.</t> <t>These SIDs provide important topological behaviors for the IGP to buildFRRFast Reroute (FRR) solutions based on TI-LFA <xreftarget="I-D.ietf-rtgwg-segment-routing-ti-lfa"/>target="I-D.ietf-rtgwg-segment-routing-ti-lfa" format="default"/> and for TE processes relying on an IGP topology database to build SRpolicies.</t>Policies.</t> </section> <sectiontitle="BGP-LS">numbered="true" toc="default"> <name>BGP-LS</name> <t>BGP-LS provides the functionality for topology discovery that includes the SRv6 capabilities of the nodes, theirlocatorslocators, and locally instantiated SIDs. This enables controllers or applications to build an inter-domain topology that can be used for computation of SR Policies using the SRv6 SIDs.</t> </section> <sectiontitle="BGP IP/VPN/EVPN">numbered="true" toc="default"> <name>BGP IP/VPN/EVPN</name> <t>The End.DX4, End.DX6, End.DT4, End.DT6, End.DT46, End.DX2, End.DX2V,End.DT2UEnd.DT2U, and End.DT2M SIDs can be signaled in BGP.</t> <t>In somescenariosscenarios, an egress PE advertising a VPN route might wish to abstract the specific behavior bound to the SID from the ingress PE and other routers in the network. In such case, the SID may be advertised using the Opaque SRv6 Endpoint Behavior codepoint defined in <xreftarget="endpoint_cp_types"/>.target="endpoint_cp_types" format="default"/>. The details of suchcontrol planecontrol-plane signaling mechanisms are out of the scope of this document.</t> </section> <sectiontitle="Summary">numbered="true" toc="default"> <name>Summary</name> <t>The following table summarizes which SID behaviorsfor SIDs that canmay be signaled in whicheach respective control planecontrol-plane protocol.</t><texttable<table anchor="localsid_signaling"title="SRv6 locally instantiatedalign="center"> <name>SRv6 Locally Instantiated SIDssignaling"> <ttcol align="left"></ttcol> <ttcol align="center">IGP</ttcol> <ttcol align="center">BGP-LS</ttcol> <ttcolSignaling</name> <thead> <tr> <th align="left"/> <th align="center">IGP</th> <th align="center">BGP-LS</th> <th align="center">BGPIP/VPN/EVPN</ttcol> <c>EndIP/VPN/EVPN</th> </tr> </thead> <tbody> <tr> <td align="left">End (PSP, USP,USD)</c> <c>X</c> <c>X</c> <c></c> <c>End.XUSD)</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">End.X (PSP, USP,USD)</c> <c>X</c> <c>X</c> <c></c> <c>End.TUSD)</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">End.T (PSP, USP,USD)</c> <c>X</c> <c>X</c> <c></c> <c>End.DX6</c> <c>X</c> <c>X</c> <c>X</c> <c>End.DX4</c> <c>X</c> <c>X</c> <c>X</c> <c>End.DT6</c> <c>X</c> <c>X</c> <c>X</c> <c>End.DT4</c> <c>X</c> <c>X</c> <c>X</c> <c>End.DT46</c> <c>X</c> <c>X</c> <c>X</c> <c>End.DX2</c> <c></c> <c>X</c> <c>X</c> <c>End.DX2V</c> <c></c> <c>X</c> <c>X</c> <c>End.DT2U</c> <c></c> <c>X</c> <c>X</c> <c>End.DT2M</c> <c></c> <c>X</c> <c>X</c> <c>End.B6.Encaps</c> <c></c> <c>X</c> <c></c> <c>End.B6.Encaps.Red</c> <c></c> <c>X</c> <c></c> <c>End.B6.BM</c> <c></c> <c>X</c> <c></c> </texttable>USD)</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">End.DX6</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DX4</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DT6</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DT4</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DT46</td> <td align="center">X</td> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DX2</td> <td align="center"/> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DX2V</td> <td align="center"/> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DT2U</td> <td align="center"/> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.DT2M</td> <td align="center"/> <td align="center">X</td> <td align="center">X</td> </tr> <tr> <td align="left">End.B6.Encaps</td> <td align="center"/> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">End.B6.Encaps.Red</td> <td align="center"/> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">End.B6.BM</td> <td align="center"/> <td align="center">X</td> <td align="center"/> </tr> </tbody> </table> <t>The following table summarizes which SR Policy Headend capabilitiesaremay be signaled in whichsignalingcontrol-plane protocol.</t><texttable<table anchor="transit_signaling"title="SRv6align="center"> <name>SRv6 Policy Headendbehaviors signaling"> <ttcol align="left"></ttcol> <ttcol align="center">IGP</ttcol> <ttcol align="center">BGP-LS</ttcol> <ttcolBehaviors Signaling</name> <thead> <tr> <th align="left"/> <th align="center">IGP</th> <th align="center">BGP-LS</th> <th align="center">BGPIP/VPN/EVPN</ttcol> <c>H.Encaps</c> <c>X</c> <c>X</c> <c></c> <c>H.Encaps.Red</c> <c>X</c> <c>X</c> <c></c> <c>H.Encaps.L2</c> <c></c> <c>X</c> <c></c> <c>H.Encaps.L2.Red</c> <c></c> <c>X</c> <c></c> </texttable>IP/VPN/EVPN</th> </tr> </thead> <tbody> <tr> <td align="left">H.Encaps</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">H.Encaps.Red</td> <td align="center">X</td> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">H.Encaps.L2</td> <td align="center"/> <td align="center">X</td> <td align="center"/> </tr> <tr> <td align="left">H.Encaps.L2.Red</td> <td align="center"/> <td align="center">X</td> <td align="center"/> </tr> </tbody> </table> <t>The previous table describes generic capabilities. It does not describe specific instantiated SRpolicies.</t>Policies.</t> <t>For example, a BGP-LS advertisement of H.Encaps behavior would describe the capability of node N to performaH.Encaps behavior. Specifically, it would describe how many SIDs could be pushed by N without significant performance degradation.</t><t><vspace blankLines="1" /></t><t/> <t>As a reminder, an SRpolicyPolicy is always assigned a Binding SID <xref target="RFC8402"/>. BSIDsformat="default"/>. Binding SIDs are also advertised in BGP-LS as shown in <xref target="localsid_signaling"/>.format="default"/>. Hence,the<xref target="transit_signaling"/>format="default"/> only focuses on the generic capabilities related to H.Encaps.</t> </section> </section><?rfc needLines="10" ?><sectiontitle="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>The security considerations for Segment Routing are discussed in <xreftarget="RFC8402"/>. Section 5 oftarget="RFC8402" format="default"/>. <xreftarget="RFC8754"/>target="RFC8754" sectionFormat="of" section="5" format="default"/> describes the SR Deployment Model and the requirements for securing the SR Domain. The security considerations of[RFC8754]<xref target="RFC8754"/> also cover topics such as attack vectors and their mitigation mechanisms that also apply the behaviors introduced in this document. Together, they describe the required security mechanisms that allow establishment of an SR domain of trust. Having such a well-defined trust boundary is necessary in order to operate SRv6-based services for internal traffic while preventing any external traffic from accessing or exploiting the SRv6-based services. Care and rigor in IPv6 address allocation for use for SRv6 SID allocations and network infrastructure addresses, as distinct from IPv6 addresses allocated forend-users/systemsend users and systems (as illustrated inSection 5.1 of<xreftarget="RFC8754"/>),target="RFC8754" sectionFormat="of" section="5.1" format="default"/>), can provide the clear distinction between internal and external address space that is required to maintain the integrity and security of the SRv6 Domain. Additionally, <xreftarget="RFC8754"/>target="RFC8754" format="default"/> definesan HMACa Hashed Message Authentication Code (HMAC) TLV permitting SR Segment Endpoint Nodes in the SR domain to verify that the SRH applied to a packet was selected by an authorized party and to ensure that the segment list is not modified after generation, regardless of the number of segments in the segment list. When enabled by local configuration, HMAC processing occurs at the beginning of SRH processing as defined in <xreftarget="RFC8754"/> Section 2.1.2.1 .</t>target="RFC8754" sectionFormat="of" section="2.1.2.1" format="default"/>.</t> <t>This document introduces SRv6 Endpoint and SR Policy Headend behaviors for implementation onSRv6 capableSRv6-capable nodes in the network. Theheadend policydefinition of the SR Policy Headend should be consistent with the specific behavior used and any local configuration (as specified inSection 4.1.1).<xref target="upper"/>). As such, this document does not introduce any new security considerations.</t> <t>The SIDBehaviorsbehaviors specified in this document have the same HMAC TLV handling and mutability propertiesofwith regard to the Flags, Tag, and Segment List field as the SIDBehaviorbehavior specified in <xreftarget="RFC8754"/>.</t>target="RFC8754" format="default"/>.</t> </section> <sectiontitle="IANA Considerations"> <section title="Ethernetnumbered="true" toc="default"> <name>IANA Considerations</name> <section anchor="ianaethernet" numbered="true" toc="default"> <name>Ethernet Next HeaderType" anchor="ianaethernet"> <t>This document requests IANA to allocate,Type</name> <t>IANA has allocated "Ethernet" (value 143) in the"Protocol Numbers""Assigned Internet Protocol Numbers" registry(https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml), a new value for "Ethernet" with the following definition: The value(see <eref brackets="angle" target="https://www.iana.org/assignments/protocol-numbers/"/>). Value 143 in the Next Header field of an IPv6 header or any extension header indicates that the payload is an Ethernet frame <xref target="IEEE.802.3_2018"/>.</t> <t>IANA has done a temporary allocation of Protocol Number 143.</t>format="default"/>.</t> </section> <sectiontitle="SRv6anchor="iana_registry" numbered="true" toc="default"> <name>SRv6 Endpoint BehaviorsRegistry" anchor="iana_registry"> <t>This document requests IANA to createRegistry</name> <t>IANA has created a new top-level registry called"Segment Routing Parameters"."Segment Routing" (see <eref brackets="angle" target="https://www.iana.org/assignments/segment-routing/"/>). This registryis being defined to serveserves as a top-level registry forkeepingallotherSegment Routingsub-registries.</t>subregistries.</t> <t>Additionally, IANA has created a newsub-registry "SRv6subregistry called "SRv6 EndpointBehaviors" is to be createdBehaviors" under the top-level"Segment Routing Parameters""Segment Routing" registry. Thissub-registrysubregistry maintains 16-bit identifiers for the SRv6 Endpoint behaviors. This registry is established to provide consistency forcontrol planecontrol-plane protocolswhichthat need to refer to these behaviors. These values are not encoded in the function bits within a SID.</t> <section anchor="iana_policy" numbered="true" toc="default"> <name>Registration Procedures</name> <t>The range of the registry is 0-65535(0x0000 - 0xFFFF) and has(0x0000-0xFFFF). The table below contains thefollowing registration rules andallocationpolicies:</t> <texttableranges and registration policies <xref target="RFC8126" format="default"/> for each:</t> <table anchor="endpoint_cp_codepoint_ranges"title="SRv6 Endpoint Behaviors Registry"> <ttcol align="left">Range</ttcol> <ttcol align="center">Hex</ttcol> <ttcolalign="center"> <name>Registration Procedures</name> <thead> <tr> <th align="left">Range</th> <th align="center">Range (Hex)</th> <th align="center">Registrationprocedure</ttcol> <ttcol align="center">Notes</ttcol> <c>0</c> <c>0x0000</c> <c>Reserved</c> <c>Not to be allocated</c> <c>1-32767</c> <c>0x0001-0x7FFF</c> <c>FirstProcedures</th> <th align="center">Note</th> </tr> </thead> <tbody> <tr> <td align="left">0</td> <td align="center">0x0000</td> <td align="center">Reserved</td> <td align="center">Not to be allocated</td> </tr> <tr> <td align="left">1-32767</td> <td align="center">0x0001-0x7FFF</td> <td align="center">First Come FirstServed <xref target="RFC8126" /></c> <c></c> <c>32768-34815</c> <c>0x8000-0x87FF</c> <c>Private Use <xref target="RFC8126" /></c> <c></c> <c>34816-65534</c> <c>0x8800-0xFFFE</c> <c>Reserved</c> <c></c> <c>65535</c> <c>0xFFFF</c> <c>Reserved</c> <c>Opaque</c> </texttable> <section title="Initial Registrations">Served</td> <td align="center"/> </tr> <tr> <td align="left">32768-34815</td> <td align="center">0x8000-0x87FF</td> <td align="center">Private Use</td> <td align="center"/> </tr> <tr> <td align="left">34816-65534</td> <td align="center">0x8800-0xFFFE</td> <td align="center">Reserved</td> <td align="center"/> </tr> <tr> <td align="left">65535</td> <td align="center">0xFFFF</td> <td align="center">Reserved</td> <td align="center">Opaque</td> </tr> </tbody> </table> </section> <section numbered="true" toc="default"> <name>Initial Registrations</name> <t>The initial registrations for thesub-registrysubregistry are as follows:</t><texttable<table anchor="endpoint_cp_types"title="IETF - SRv6 Endpoint Behaviors"> <ttcol align="left">Value</ttcol> <ttcol align="center">Hex</ttcol> <ttcolalign="center"> <name>Initial Registrations</name> <thead> <tr> <th align="left">Value</th> <th align="center">Hex</th> <th align="center">Endpointbehavior</ttcol> <ttcol align="center">Reference</ttcol> <c>0</c> <c>0x0000</c> <c>Reserved</c> <c>Not to be allocated</c> <c>1</c> <c>0x0001</c> <c>End</c> <c>[This.ID]</c> <c>2</c> <c>0x0002</c> <c>End with PSP</c> <c>[This.ID]</c> <c>3</c> <c>0x0003</c> <c>End with USP</c> <c>[This.ID]</c> <c>4</c> <c>0x0004</c> <c>End with PSP&USP</c> <c>[This.ID]</c> <c>5</c> <c>0x0005</c> <c>End.X</c> <c>[This.ID]</c> <c>6</c> <c>0x0006</c> <c>End.X with PSP</c> <c>[This.ID]</c> <c>7</c> <c>0x0007</c> <c>End.X with USP</c> <c>[This.ID]</c> <c>8</c> <c>0x0008</c> <c>End.X with PSP&USP</c> <c>[This.ID]</c> <c>9</c> <c>0x0009</c> <c>End.T</c> <c>[This.ID]</c> <c>10</c> <c>0x000A</c> <c>End.T with PSP</c> <c>[This.ID]</c> <c>11</c> <c>0x000B</c> <c>End.T with USP</c> <c>[This.ID]</c> <c>12</c> <c>0x000C</c> <c>End.T with PSP&USP</c> <c>[This.ID]</c> <c>14</c> <c>0x000E</c> <c>End.B6.Encaps</c> <c>[This.ID]</c> <c>15</c> <c>0x000F</c> <c>End.BM</c> <c>[This.ID]</c> <c>16</c> <c>0x0010</c> <c>End.DX6</c> <c>[This.ID]</c> <c>17</c> <c>0x0011</c> <c>End.DX4</c> <c>[This.ID]</c> <c>18</c> <c>0x0012</c> <c>End.DT6</c> <c>[This.ID]</c> <c>19</c> <c>0x0013</c> <c>End.DT4</c> <c>[This.ID]</c> <c>20</c> <c>0x0014</c> <c>End.DT46</c> <c>[This.ID]</c> <c>21</c> <c>0x0015</c> <c>End.DX2</c> <c>[This.ID]</c> <c>22</c> <c>0x0016</c> <c>End.DX2V</c> <c>[This.ID]</c> <c>23</c> <c>0x0017</c> <c>End.DT2U</c> <c>[This.ID]</c> <c>24</c> <c>0x0018</c> <c>End.DT2M</c> <c>[This.ID]</c> <c>25</c> <c>0x0019</c> <c>Reserved</c> <c>[This.ID]</c> <c>27</c> <c>0x001B</c> <c>End.B6.Encaps.Red</c> <c>[This.ID]</c> <c>28</c> <c>0x001C</c> <c>End with USD</c> <c>[This.ID]</c> <c>29</c> <c>0x001D</c> <c>End with PSP&USD</c> <c>[This.ID]</c> <c>30</c> <c>0x001E</c> <c>End with USP&USD</c> <c>[This.ID]</c> <c>31</c> <c>0x001F</c> <c>EndBehavior</th> <th align="center">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">0</td> <td align="center">0x0000</td> <td align="center">Reserved</td> <td align="center"></td> </tr> <tr> <td align="left">1</td> <td align="center">0x0001</td> <td align="center">End</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">2</td> <td align="center">0x0002</td> <td align="center">End with PSP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">3</td> <td align="center">0x0003</td> <td align="center">End with USP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">4</td> <td align="center">0x0004</td> <td align="center">End with PSP & USP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">5</td> <td align="center">0x0005</td> <td align="center">End.X</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">6</td> <td align="center">0x0006</td> <td align="center">End.X with PSP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">7</td> <td align="center">0x0007</td> <td align="center">End.X with USP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">8</td> <td align="center">0x0008</td> <td align="center">End.X with PSP & USP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">9</td> <td align="center">0x0009</td> <td align="center">End.T</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">10</td> <td align="center">0x000A</td> <td align="center">End.T with PSP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">11</td> <td align="center">0x000B</td> <td align="center">End.T with USP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">12</td> <td align="center">0x000C</td> <td align="center">End.T with PSP & USP</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">13</td> <td align="center">0x000D</td> <td align="center">Unassigned</td> <td align="center"></td> </tr> <tr> <td align="left">14</td> <td align="center">0x000E</td> <td align="center">End.B6.Encaps</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">15</td> <td align="center">0x000F</td> <td align="center">End.BM</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">16</td> <td align="center">0x0010</td> <td align="center">End.DX6</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">17</td> <td align="center">0x0011</td> <td align="center">End.DX4</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">18</td> <td align="center">0x0012</td> <td align="center">End.DT6</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">19</td> <td align="center">0x0013</td> <td align="center">End.DT4</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">20</td> <td align="center">0x0014</td> <td align="center">End.DT46</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">21</td> <td align="center">0x0015</td> <td align="center">End.DX2</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">22</td> <td align="center">0x0016</td> <td align="center">End.DX2V</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">23</td> <td align="center">0x0017</td> <td align="center">End.DT2U</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">24</td> <td align="center">0x0018</td> <td align="center">End.DT2M</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">25</td> <td align="center">0x0019</td> <td align="center">Reserved</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">26</td> <td align="center">0x001A</td> <td align="center">Unassigned</td> <td align="center"></td> </tr> <tr> <td align="left">27</td> <td align="center">0x001B</td> <td align="center">End.B6.Encaps.Red</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">28</td> <td align="center">0x001C</td> <td align="center">End with USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">29</td> <td align="center">0x001D</td> <td align="center">End with PSP & USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">30</td> <td align="center">0x001E</td> <td align="center">End with USP & USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">31</td> <td align="center">0x001F</td> <td align="center">End with PSP, USP &USD</c> <c>[This.ID]</c> <c>32</c> <c>0x0020</c> <c>End.X with USD</c> <c>[This.ID]</c> <c>33</c> <c>0x0021</c> <c>End.X with PSP&USD</c> <c>[This.ID]</c> <c>34</c> <c>0x0022</c> <c>End.X with USP&USD</c> <c>[This.ID]</c> <c>35</c> <c>0x0023</c> <c>End.XUSD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">32</td> <td align="center">0x0020</td> <td align="center">End.X with USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">33</td> <td align="center">0x0021</td> <td align="center">End.X with PSP & USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">34</td> <td align="center">0x0022</td> <td align="center">End.X with USP & USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">35</td> <td align="center">0x0023</td> <td align="center">End.X with PSP, USP &USD</c> <c>[This.ID]</c> <c>36</c> <c>0x0024</c> <c>End.T with USD</c> <c>[This.ID]</c> <c>37</c> <c>0x0025</c> <c>End.T with PSP&USD</c> <c>[This.ID]</c> <c>38</c> <c>0x0026</c> <c>End.T with USP&USD</c> <c>[This.ID]</c> <c>39</c> <c>0x0027</c> <c>End.TUSD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">36</td> <td align="center">0x0024</td> <td align="center">End.T with USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">37</td> <td align="center">0x0025</td> <td align="center">End.T with PSP & USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">38</td> <td align="center">0x0026</td> <td align="center">End.T with USP & USD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">39</td> <td align="center">0x0027</td> <td align="center">End.T with PSP, USP &USD</c> <c>[This.ID]</c> <c>40-32766</c> <c></c> <c>Unassigned</c> <c></c> <c>32767</c> <c>0x7FFF</c> <c>TheUSD</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">40-32766</td> <td align="center">0x0028-0x7FFE</td> <td align="center">Unassigned</td> <td align="center"/> </tr> <tr> <td align="left">32767</td> <td align="center">0x7FFF</td> <td align="center">The SID defined inRFC8754</c> <c>[This.ID] <xref target="RFC8754" /></c> <c>32768-65534</c> <c></c> <c>Reserved</c> <c></c> <c>65535</c> <c>0xFFFF</c> <c>Opaque</c> <c>[This.ID]</c> </texttable>RFC 8754</td> <td align="center">RFC 8986, RFC 8754</td> </tr> <tr> <td align="left">32768-34815</td> <td align="center">0x8000-0x87FF</td> <td align="center">Reserved for Private Use</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">34816-65534</td> <td align="center">0x8800-0xFFFE</td> <td align="center">Reserved</td> <td align="center">RFC 8986</td> </tr> <tr> <td align="left">65535</td> <td align="center">0xFFFF</td> <td align="center">Opaque</td> <td align="center">RFC 8986</td> </tr> </tbody> </table> </section> </section> </section><?rfc needLines="1" ?></middle> <back> <displayreference target="I-D.filsfils-spring-srv6-net-pgm-illustration" to="SRV6-NET-PGM-ILLUST"/> <displayreference target="I-D.ietf-rtgwg-segment-routing-ti-lfa" to="SR-TI-LFA"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8754.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2473.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8402.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6437.xml"/> <reference anchor="IEEE.802.3_2018" target="https://ieeexplore.ieee.org/document/8457469"> <front> <title>IEEE Standard for Ethernet</title> <author> <organization>IEEE</organization> </author> <date day="31" month="August" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8457469"/> <refcontent>IEEE 802.3-2018</refcontent> </reference> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4364.xml"/> <reference anchor='I-D.filsfils-spring-srv6-net-pgm-illustration'> <front> <title>Illustrations for SRv6 Network Programming</title> <author initials='C' surname='Filsfils' fullname='Clarence Filsfils'> <organization /> </author> <author initials='P' surname='Camarillo' fullname='Pablo Camarillo' role="editor"> <organization /> </author> <author initials='Z' surname='Li' fullname='Zhenbin Li'> <organization /> </author> <author initials='S' surname='Matsushima' fullname='Satoru Matsushima'> <organization /> </author> <author initials='B' surname='Decraene' fullname='Bruno Decraene'> <organization /> </author> <author initials='D' surname='Steinberg' fullname='Dirk Steinberg'> <organization /> </author> <author initials='D' surname='Lebrun' fullname='David Lebrun'> <organization /> </author> <author initials='R' surname='Raszuk' fullname='Robert Raszuk'> <organization /> </author> <author initials='J' surname='Leddy' fullname='John Leddy'> <organization /> </author> <date month='September' day='25' year='2020' /> </front> <seriesInfo name='Internet-Draft' value='draft-filsfils-spring-srv6-net-pgm-illustration-03' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-filsfils-spring-srv6-net-pgm-illustration-03.txt' /> </reference> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-rtgwg-segment-routing-ti-lfa.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8214.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7432.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4664.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4762.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4761.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8317.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4193.xml"/> </references> </references> <section anchor="Acknowledgements"title="Acknowledgements">numbered="false" toc="default"> <name>Acknowledgements</name> <t>The authors would like to acknowledgeStefano Previdi, Dave Barach, Mark Townsley, Peter Psenak, Thierry Couture, Kris Michielsen, Paul Wells, Robert Hanzl, Dan Ye, Gaurav Dawra, Faisal Iqbal, Jaganbabu Rajamanickam, David Toscano, Asif Islam, Jianda Liu, Yunpeng Zhang, Jiaoming Li, Narendra A.K, Mike<contact fullname="Stefano Previdi"/>, <contact fullname="Dave Barach"/>, <contact fullname="Mark Townsley"/>, <contact fullname="Peter Psenak"/>, <contact fullname="Thierry Couture"/>, <contact fullname="Kris Michielsen"/>, <contact fullname="Paul Wells"/>, <contact fullname="Robert Hanzl"/>, <contact fullname="Dan Ye"/>, <contact fullname="Gaurav Dawra"/>, <contact fullname="Faisal Iqbal"/>, <contact fullname="Jaganbabu Rajamanickam"/>, <contact fullname="David Toscano"/>, <contact fullname="Asif Islam"/>, <contact fullname="Jianda Liu"/>, <contact fullname="Yunpeng Zhang"/>, <contact fullname="Jiaoming Li"/>, <contact fullname="Narendra A.K"/>, <contact fullname="Mike McGourty, Bhupendra Yadav, Sherif Toulan, Satish Damodaran, John Bettink, KishoreGourty"/>, <contact fullname="Bhupendra Yadav"/>, <contact fullname="Sherif Toulan"/>, <contact fullname="Satish Damodaran"/>, <contact fullname="John Bettink"/>, <contact fullname="Kishore Nandyala VeeraVenk, Jisu Bhattacharya, Saleem Hafeez and Brian Carpenter.</t> </section> <?rfc needLines="1" ?> <section title="Contributors"> <t>Daniel Bernier<vspace blankLines="0" /> Bell Canada<vspace blankLines="0" /> Canada</t> <t>Email: daniel.bernier@bell.ca<vspace blankLines="0" /></t> <t>Dirk Steinberg<vspace blankLines="0" /> LapishillsVenk"/>, <contact fullname="Jisu Bhattacharya"/>, <contact fullname="Saleem Hafeez"/>, and <contact fullname="Brian Carpenter"/>.</t> </section> <section numbered="false" toc="default"> <name>Contributors</name> <contact fullname="Daniel Bernier" > <organization>Bell Canada</organization> <address> <postal> <country>Canada</country> </postal> <email>daniel.bernier@bell.ca</email> </address> </contact> <contact fullname="Dirk Steinberg" > <organization>Lapishills ConsultingLimited<vspace blankLines="0" /> Cyprus</t> <t>Email: dirk@lapishills.com<vspace blankLines="0" /></t> <t>Robert Raszuk<vspace blankLines="0" /> Bloomberg LP<vspace blankLines="0" /> UnitedLimited</organization> <address> <postal> <city></city> <country>Cyprus</country> </postal> <email>dirk@lapishills.com</email> </address> </contact> <contact fullname="Robert Raszuk" > <organization>Bloomberg LP</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: robert@raszuk.net<vspace blankLines="0" /></t> <t>Bruno Decraene<vspace blankLines="0" /> Orange<vspace blankLines="0" /> France</t> <t>Email: bruno.decraene@orange.com<vspace blankLines="0" /></t> <t>Bart Peirens<vspace blankLines="0" /> Proximus<vspace blankLines="0" /> Belgium</t> <t>Email: bart.peirens@proximus.com<vspace blankLines="0" /></t> <t>Hani Elmalky<vspace blankLines="0" /> Google<vspace blankLines="0" /> UnitedAmerica</country> </postal> <email>robert@raszuk.net</email> </address> </contact> <contact fullname="Bruno Decraene" > <organization>Orange</organization> <address> <postal> <city></city> <country>France</country> </postal> <email>bruno.decraene@orange.com</email> </address> </contact> <contact fullname="Bart Peirens" > <organization>Proximus</organization> <address> <postal> <city></city> <country>Belgium</country> </postal> <email>bart.peirens@proximus.com</email> </address> </contact> <contact fullname="Hani Elmalky" > <organization>Google</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: helmalky@google.com<vspace blankLines="0" /></t> <t>Prem Jonnalagadda<vspace blankLines="0" /> Barefoot Networks<vspace blankLines="0" /> UnitedAmerica</country> </postal> <email>helmalky@google.com</email> </address> </contact> <contact fullname="Prem Jonnalagadda" > <organization>Barefoot Networks</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: prem@barefootnetworks.com<vspace blankLines="0" /></t> <t>Milad Sharif<vspace blankLines="0" /> SambaNova Systems<vspace blankLines="0" /> UnitedAmerica</country> </postal> <email>prem@barefootnetworks.com</email> </address> </contact> <contact fullname="Milad Sharif" > <organization>SambaNova Systems</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: milad.sharif@sambanova.ai<vspace blankLines="0" /></t> <t>David Lebrun<vspace blankLines="0" /> Google<vspace blankLines="0" /> Belgium</t> <t>Email: dlebrun@google.com<vspace blankLines="0" /></t> <t>Stefano Salsano<vspace blankLines="0" /> UniversitaAmerica</country> </postal> <email>milad.sharif@sambanova.ai</email> </address> </contact> <contact fullname="David Lebrun" > <organization>Google</organization> <address> <postal> <city></city> <country>Belgium</country> </postal> <email>dlebrun@google.com</email> </address> </contact> <contact fullname="Stefano Salsano" > <organization>Universita di Roma "TorVergata"<vspace blankLines="0" /> Italy</t> <t>Email: stefano.salsano@uniroma2.it<vspace blankLines="0" /></t> <t>Ahmed AbdelSalam<vspace blankLines="0" /> GranVergata"</organization> <address> <postal> <city></city> <country>Italy</country> </postal> <email>stefano.salsano@uniroma2.it</email> </address> </contact> <contact fullname="Ahmed AbdelSalam" > <organization>Gran Sasso ScienceInstitute<vspace blankLines="0" /> Italy</t> <t>Email: ahmed.abdelsalam@gssi.it</t> <t>Gaurav Naik<vspace blankLines="0" /> Drexel University<vspace blankLines="0" /> UnitedInstitute</organization> <address> <postal> <city></city> <country>Italy</country> </postal> <email>ahmed.abdelsalam@gssi.it</email> </address> </contact> <contact fullname="Gaurav Naik" > <organization>Drexel University</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: gn@drexel.edu<vspace blankLines="0" /></t> <t>Arthi Ayyangar<vspace blankLines="0" /> Arrcus, Inc<vspace blankLines="0" /> UnitedAmerica</country> </postal> <email>gn@drexel.edu</email> </address> </contact> <contact fullname="Arthi Ayyangar" > <organization>Arrcus, Inc</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: arthi@arrcus.com<vspace blankLines="0" /></t> <t>Satish Mynam<vspace blankLines="0" /> Arrcus, Inc<vspace blankLines="0" /> UnitedAmerica</country> </postal> <email>arthi@arrcus.com</email> </address> </contact> <contact fullname="Satish Mynam" > <organization>Arrcus, Inc</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: satishm@arrcus.com<vspace blankLines="0" /></t> <t>Wim Henderickx<vspace blankLines="0" /> Nokia<vspace blankLines="0" /> Belgium</t> <t>Email: wim.henderickx@nokia.com<vspace blankLines="0" /></t> <t>Shaowen Ma<vspace blankLines="0" /> Juniper<vspace blankLines="0" /> Singapore</t> <t>Email: mashao@juniper.net<vspace blankLines="0" /></t> <t>Ahmed Bashandy<vspace blankLines="0" /> Individual<vspace blankLines="0" /> UnitedAmerica</country> </postal> <email>satishm@arrcus.com</email> </address> </contact> <contact fullname="Wim Henderickx" > <organization>Nokia</organization> <address> <postal> <city></city> <country>Belgium</country> </postal> <email>wim.henderickx@nokia.com</email> </address> </contact> <contact fullname="Shaowen Ma" > <organization>Juniper</organization> <address> <postal> <city></city> <country>Singapore</country> </postal> <email>mashao@juniper.net</email> </address> </contact> <contact fullname="Ahmed Bashandy"> <organization>Individual</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: abashandy.ietf@gmail.com<vspace blankLines="0" /></t> <t>Francois Clad<vspace blankLines="0" /> CiscoAmerica</country> </postal> <email>abashandy.ietf@gmail.com</email> </address> </contact> <contact fullname="Francois Clad"> <organization>Cisco Systems,Inc.<vspace blankLines="0" /> France</t> <t>Email: fclad@cisco.com<vspace blankLines="0" /></t> <t>Kamran Raza<vspace blankLines="0" /> CiscoInc.</organization> <address> <postal> <city></city> <country>France</country> </postal> <email>fclad@cisco.com</email> </address> </contact> <contact fullname="Kamran Raza"> <organization>Cisco Systems,Inc.<vspace blankLines="0" /> Canada</t> <t>Email: skraza@cisco.com<vspace blankLines="0" /></t> <t>Darren Dukes<vspace blankLines="0" /> CiscoInc.</organization> <address> <postal> <city></city> <country>Canada</country> </postal> <email>skraza@cisco.com</email> </address> </contact> <contact fullname="Darren Dukes"> <organization>Cisco Systems,Inc.<vspace blankLines="0" /> Canada</t> <t>Email: ddukes@cisco.com<vspace blankLines="0" /></t> <t>Patrice Brissete <vspace blankLines="0" /> CiscoInc.</organization> <address> <postal> <city></city> <country>Canada</country> </postal> <email>ddukes@cisco.com</email> </address> </contact> <contact fullname="Patrice Brissete" > <organization>Cisco Systems,Inc.<vspace blankLines="0" /> Canada</t> <t>Email: pbrisset@cisco.com<vspace blankLines="0" /></t> <t>Zafar Ali<vspace blankLines="0" /> CiscoInc.</organization> <address> <postal> <city></city> <country>Canada</country> </postal> <email>pbrisset@cisco.com</email> </address> </contact> <contact fullname="Zafar Ali" > <organization>Cisco Systems,Inc.<vspace blankLines="0" /> UnitedInc.</organization> <address> <postal> <city></city> <country>United States ofAmerica</t> <t>Email: zali@cisco.com</t> <t>Ketan Talaulikar<vspace blankLines="0" /> CiscoAmerica</country> </postal> <email>zali@cisco.com</email> </address> </contact> <contact fullname="Ketan Talaulikar" > <organization>Cisco Systems,Inc.<vspace blankLines="0" /> India</t> <t>Email: ketant@cisco.com</t>Inc.</organization> <address> <postal> <city></city> <country>India</country> </postal> <email>ketant@cisco.com</email> </address> </contact> </section></middle> <back> <references title="Normative References"> <!--?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"?--> &RFC2119; &RFC8174; &RFC8754; &RFC2473; &RFC8200; &RFC8402; &RFC6437; <reference anchor="IEEE.802.3_2018" target="https://ieeexplore.ieee.org/document/8457469"> <front> <title>802.3-2018</title> <author> <organization>IEEE</organization> </author> <date day="31" month="August" year="2018"/> <abstract> <t>Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 400 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted pair or fiber optic cables, or electrical backplanes. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include: various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted pair PHY types.</t> </abstract> </front> <seriesInfo name="IEEE" value="802.3-2018"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8457469"/> </reference> </references> <references title="Informative References"> &RFC4364; &NET_PGM_ILL; &TILFA; &RFC8214; &RFC7432; &RFC4664; &RFC4762; &RFC8126; &RFC4761; &RFC8317; &RFC4193; </references></back> </rfc>