
RFC 9019
A Firmware Update Architecture for Internet of
Things

Abstract
Vulnerabilities in Internet of Things (IoT) devices have raised the need for a reliable and secure
firmware update mechanism suitable for devices with resource constraints. Incorporating such
an update mechanism is a fundamental requirement for fixing vulnerabilities, but it also enables
other important capabilities such as updating configuration settings and adding new
functionality.

In addition to the definition of terminology and an architecture, this document provides the
motivation for the standardization of a manifest format as a transport-agnostic means for
describing and protecting firmware updates.

Stream: Internet Engineering Task Force (IETF)
RFC: 9019
Category: Informational
Published: April 2021
ISSN: 2070-1721
Authors: B. Moran

Arm Limited
H. Tschofenig
Arm Limited

D. Brown
Linaro

M. Meriac
Consultant

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9019

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Moran, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9019
https://www.rfc-editor.org/info/rfc9019

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions and Terminology

2.1. Terms

2.2. Stakeholders

2.3. Functions

3. Architecture

4. Invoking the Firmware

4.1. The Bootloader

5. Types of IoT Devices

5.1. Single MCU

5.2. Single CPU with Partitioning between Secure Mode and Normal Mode

5.3. Symmetric Multiple CPUs

5.4. Dual CPU, Shared Memory

5.5. Dual CPU, Other Bus

6. Manifests

7. Securing Firmware Updates

8. Example

9. IANA Considerations

10. Security Considerations

11. Informative References

Acknowledgements

Authors' Addresses

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 2

https://trustee.ietf.org/license-info

1. Introduction
Firmware updates can help to fix security vulnerabilities, and performing updates is an
important building block in securing IoT devices. Due to rising concerns about insecure IoT
devices, the Internet Architecture Board (IAB) organized the Internet of Things Software Update
(IoTSU) Workshop to take a look at the bigger picture. The workshop revealed a
number of challenges for developers and led to the formation of the IETF Software Updates for
Internet of Things (SUIT) Working Group.

Developing secure IoT devices is not an easy task, and supporting a firmware update solution
requires skillful engineers. Once devices are deployed, firmware updates play a critical part in
their life-cycle management, particularly when devices have a long lifetime or are deployed in
remote or inaccessible areas where manual intervention is cost prohibitive or otherwise difficult.
Firmware updates for IoT devices are expected to work automatically, i.e., without user
involvement. Conversely, non-IoT devices are expected to account for user preferences and
consent when scheduling updates. Automatic updates that do not require human intervention
are key to a scalable solution for fixing software vulnerabilities.

Firmware updates are done not only to fix bugs but also to add new functionality and to
reconfigure the device to work in new environments or to behave differently in an already-
deployed context.

The manifest specification has to allow the following:

The firmware image is authenticated and integrity protected. Attempts to flash a maliciously
modified firmware image or an image from an unknown, untrusted source must be
prevented. This document uses asymmetric cryptography in examples because it is the
preferred approach by many IoT deployments. The use of symmetric credentials is also
supported and can be used by very constrained IoT devices.
The firmware image can be confidentiality protected so that attempts by an adversary to
recover the plaintext binary can be mitigated or at least made more difficult. Obtaining the
firmware is often one of the first steps to mounting an attack since it gives the adversary
valuable insights into the software libraries used, configuration settings, and generic
functionality. Even though reverse engineering the binary can be a tedious process, modern
reverse engineering frameworks have made this task a lot easier.

Authentication and integrity protection of firmware images must be used in a deployment, but
the confidential protection of firmware is optional.

While the standardization work has been informed by and optimized for firmware update use
cases of Class 1 devices (according to the device class definitions in RFC 7228), there is
nothing in the architecture that restricts its use to only these constrained IoT devices. Moreover,
this architecture is not limited to managing firmware and software updates but can also be
applied to managing the delivery of arbitrary data, such as configuration information and keys.
Unlike higher-end devices, like laptops and desktop PCs, many IoT devices do not have user

[RFC8240]

•

•

[RFC7228]

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 3

interfaces; therefore, support for unattended updates is essential for the design of a practical
solution. Constrained IoT devices often use a software engineering model where a developer is
responsible for creating and compiling all software running on the device into a single,
monolithic firmware image. On higher-end devices, application software is, on the other hand,
often downloaded separately and even obtained from developers different from the developers
of the lower-level software. The details for how to obtain those application-layer software
binaries then depend heavily on the platform, the programming language used, and the sandbox
in which the software is executed.

While the IETF standardization work has been focused on the manifest format, a fully
interoperable solution needs more than a standardized manifest. For example, protocols for
transferring firmware images and manifests to the device need to be available, as well as the
status tracker functionality. Devices also require a mechanism to discover the status tracker(s)
and/or firmware servers, for example, using preconfigured hostnames or DNS-based Service
Discovery (DNS-SD) . These building blocks have been developed by various
organizations under the umbrella of an IoT device management solution. The Lightweight
Machine-to-Machine (LwM2M) protocol is one IoT device management protocol.

However, there are several areas that (partially) fall outside the scope of the IETF and other
standards organizations but need to be considered by firmware authors as well as device and
network operators. Here are some of them, as highlighted during the IoTSU workshop:

Installing firmware updates in a robust fashion so that the update does not break the device
functionality of the environment in which this device operates. This requires proper testing
and offering of recovery strategies when a firmware update is unsuccessful.
Making firmware updates available in a timely fashion considering the complexity of the
decision-making process for updating devices, potential recertification requirements, the
length of a supply chain an update needs to go through before it reaches the end customer,
and the need for user consent to install updates.
Ensuring an energy-efficient design of a battery-powered IoT device; a firmware update,
particularly radio communication and writing the firmware image to flash, is an energy-
intensive task for a device.
Creating incentives for device operators to use a firmware update mechanism and to require
its integration from IoT device vendors.
Ensuring that firmware updates addressing critical flaws can be obtained even after a
product is discontinued or a vendor goes out of business.

This document starts with a terminology list followed by a description of the architecture. We
then explain the bootloader and how it integrates with the firmware update mechanism.
Subsequently, we offer a categorization of IoT devices in terms of their hardware capabilities
relevant for firmware updates. Next, we talk about the manifest structure and how to use it to
secure firmware updates. We conclude with a more detailed example of a message flow for
distributing a firmware image to a device.

[RFC6763]

[LwM2M]

•

•

•

•

•

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 4

2. Conventions and Terminology

2.1. Terms
This document uses the following terms:

Firmware Image:
The firmware image, or simply the "image", is a binary that may contain the complete
software of a device or a subset of it. The firmware image may consist of multiple images if
the device contains more than one microcontroller. Often, it is also a compressed archive that
contains code, configuration data, and even the entire file system. The image may consist of a
differential update for performance reasons.

The terms "firmware image", "firmware", and "image" are used in this document and are
interchangeable. We use the term "application firmware image" to differentiate it from a
firmware image that contains the bootloader. An application firmware image, as the name
indicates, contains the application program often including all the necessary code to run it
(such as protocol stacks and an embedded operating system (OS)).

Manifest:
The manifest contains metadata about the firmware image. The manifest is protected against
modification and provides information about the author.

Microcontroller:
A microcontroller unit (MCU) is a compact integrated circuit designed for use in embedded
systems. A typical microcontroller includes a processor, memory (RAM and flash), input/
output (I/O) ports, and other features connected via some bus on a single chip. The term
"system on chip" (SoC) is often used interchangeably with MCU, but MCU tends to imply more
limited peripheral functions.

Rich Execution Environment (REE):
An environment that is provided and governed by a typical OS (e.g., Linux, Windows,
Android, iOS), potentially in conjunction with other supporting operating systems and
hypervisors; it is outside of the Trusted Execution Environment (TEE). This environment and
the applications running on it are considered untrusted.

Software:
Similar to firmware but typically dynamically loaded by an OS. Used interchangeably with
firmware in this document.

System on Chip (SoC):
An SoC is an integrated circuit that contains all components of a computer, such as the CPU,
memory, I/O ports, secondary storage, a bus to connect the components, and other hardware
blocks of logic.

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 5

Trust Anchor:
A trust anchor, as defined in RFC 6024 , represents an authoritative entity via a
public key and associated data. The public key is used to verify digital signatures, and the
associated data is used to constrain the types of information for which the trust anchor is
authoritative.

Trust Anchor Store:
A trust anchor store, as defined in , is a set of one or more trust anchors stored in a
device. A device may have more than one trust anchor store, each of which may be used by
one or more applications. A trust anchor store must resist modification against unauthorized
insertion, deletion, and modification.

Trusted Applications (TAs):
An application component that runs in a TEE.

Trusted Execution Environments (TEEs):
An execution environment that runs alongside of, but is isolated from, an REE. For more
information about TEEs, see .

[RFC6024]

[RFC6024]

[TEEP-ARCH]

2.2. Stakeholders
The following stakeholders are used in this document:

Author:
The author is the entity that creates the firmware image. There may be multiple authors
involved in producing firmware running on an IoT device. Section 5 talks about those IoT
device deployment cases.

Device Operator:
The device operator is responsible for the day-to-day operation of a fleet of IoT devices.
Customers of IoT devices, as the owners of IoT devices (such as enterprise customers or end
users), interact with their IoT devices indirectly through the device operator via the Web or
smartphone apps.

Network Operator:
The network operator is responsible for the operation of a network to which IoT devices
connect.

Trust Provisioning Authority (TPA):
The TPA distributes trust anchors and authorization policies to devices and various
stakeholders. The TPA may also delegate rights to stakeholders. Typically, the original
equipment manufacturer (OEM) or original design manufacturer (ODM) will act as a TPA;
however, complex supply chains may require a different design. In some cases, the TPA may
decide to remain in full control over the firmware update process of their products.

User:
The end user of a device. The user may interact with devices via the Web or smartphone apps,
as well as through direct user interfaces.

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 6

2.3. Functions

(IoT) Device:
A device refers to the entire IoT product, which consists of one or many MCUs, sensors, and/or
actuators. Many IoT devices sold today contain multiple MCUs; therefore, a single device may
need to obtain more than one firmware image and manifest to successfully perform an
update.

Status Tracker:
The status tracker has a client and a server component and performs three tasks:

It communicates the availability of a new firmware version. This information will flow
from the server to the client.
It conveys information about the software and hardware characteristics of the device.
The information flow is from the client to the server.
It can remotely trigger the firmware update process. The information flow is from the
server to the client.

For example, a device operator may want to read the installed firmware version number
running on the device and information about available flash memory. Once an update has
been triggered, the device operator may want to obtain information about the state of the
firmware update. If errors occurred, the device operator may want to troubleshoot problems
by first obtaining diagnostic information (typically using a device management protocol).

We make no assumptions about where the server-side component is deployed. The
deployment of status trackers is flexible: they may be found at cloud-based servers or on-
premise servers, or they may be embedded in edge computing devices. A status tracker server
component may even be deployed on an IoT device. For example, if the IoT device contains
multiple MCUs, then the main MCU may act as a status tracker towards the other MCUs. Such
deployment is useful when updates have to be synchronized across MCUs.

The status tracker may be operated by any suitable stakeholder, typically the author, device
operator, or network operator.

Firmware Consumer:
The firmware consumer is the recipient of the firmware image and the manifest. It is
responsible for parsing and verifying the received manifest and for storing the obtained
firmware image. The firmware consumer plays the role of the update component on the IoT
device, typically running in the application firmware. It interacts with the firmware server
and the status tracker client (locally).

1.

2.

3.

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 7

Firmware Server:
The firmware server stores firmware images and manifests and distributes them to IoT
devices. Some deployments may require a store-and-forward concept, which requires storing
the firmware images and/or manifests on more than one entity before they reach the device.
There is typically some interaction between the firmware server and the status tracker, and
these two entities are often physically separated on different devices for scalability reasons.

Bootloader:
A bootloader is a piece of software that is executed once a microcontroller has been reset. It is
responsible for deciding what code to execute.

3. Architecture
More devices than ever before are connected to the Internet, which drives the need for firmware
updates to be provided over the Internet rather than through traditional interfaces, such as USB
or RS-232. Sending updates over the Internet requires the device to fetch the new firmware
image as well as the manifest.

Hence, the following components are necessary on a device for a firmware update solution:

The Internet protocol stack for firmware downloads. Firmware images are often multiple
kilobytes, sometimes exceeding one hundred kilobytes, for low-end IoT devices and can even
be several megabytes for IoT devices running full-fledged operating systems like Linux. The
protocol mechanism for retrieving these images needs to offer features like congestion
control, flow control, fragmentation and reassembly, and mechanisms to resume interrupted
or corrupted transfers.
The capability to write the received firmware image to persistent storage (most likely flash
memory).
A manifest parser with code to verify a digital signature or a message authentication code
(MAC).
The ability to unpack, decompress, and/or decrypt the received firmware image.
A status tracker.

The features listed above are most likely provided by code in the application firmware image
running on the device rather than by the bootloader itself. Note that cryptographic algorithms
will likely run in a trusted execution environment on a separate MCU in a hardware security
module or in a secure element rather than in the same context as the application code.

Figure 1 shows the architecture where a firmware image is created by an author and made
available to a firmware server. For security reasons, the author will not have the permissions to
upload firmware images to the firmware server and to initiate an update directly. Instead,
authors will make firmware images available to the device operators. Note that there may be a
longer supply chain involved to pass software updates from the author all the way to the
authorizing party, which can then finally make a decision to deploy it with IoT devices.

•

•

•

•
•

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 8

As a first step in the firmware update process, the status tracker server needs to inform the status
tracker client that a new firmware update is available. This can be accomplished via polling
(client initiated), push notifications (server initiated), or more complex mechanisms (such as a
hybrid approach):

Client-initiated updates take the form of a status tracker client proactively checking (polling)
for updates.
With server-initiated updates, the server-side component of the status tracker learns about a
new firmware version and determines which devices qualify for a firmware update. Once
the relevant devices have been selected, the status tracker informs these devices, and the
firmware consumers obtain those images and manifests. Server-initiated updates are
important because they allow a quick response time. Note that in this mode, the client-side
status tracker needs to be reachable by the server-side component. This may require devices
to keep reachability information on the server side up to date and the state at NATs and
stateful packet filtering firewalls alive.
Using a hybrid approach, the server side of the status tracker pushes update availability
notifications to the client side and requests that the firmware consumer pull the manifest
and the firmware image from the firmware server.

Once the device operator triggers an update via the status tracker, it will keep track of the update
process on the device. This allows the device operator to know what devices have received an
update and which of them are still pending an update.

Firmware images can be conveyed to devices in a variety of ways, including USB, Universal
Asynchronous Receiver Transmitter (UART), WiFi, Bluetooth Low Energy (BLE), low-power WAN
technologies, mesh networks and many more. At the application layer, a variety of protocols are
also available: Message Queuing Telemetry Transport (MQTT), Constrained Application Protocol
(CoAP), and HTTP are the most popular application-layer protocols used by IoT devices. This
architecture does not make assumptions about how the firmware images are distributed to the
devices and therefore aims to support all these technologies.

In some cases, it may be desirable to distribute firmware images using a multicast or broadcast
protocol. This architecture does not make recommendations for any such protocol. However,
given that broadcast may be desirable for some networks, updates must cause the least
disruption possible both in the metadata and firmware transmission. For an update to be
broadcast friendly, it cannot rely on link-layer, network-layer, or transport-layer security. A
solution has to rely on security protection applied to the manifest and firmware image instead.
In addition, the same manifest must be deliverable to many devices, both those to which it
applies and those to which it does not, without a chance that the wrong device will accept the
update. Considerations that apply to network broadcasts apply equally to the use of third-party
content distribution networks for payload distribution.

•

•

•

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 9

Firmware images and manifests may be conveyed as a bundle or detached. The manifest format
must support both approaches.

For distribution as a bundle, the firmware image is embedded into the manifest. This is a useful
approach for deployments where devices are not connected to the Internet and cannot contact a
dedicated firmware server for the firmware download. It is also applicable when the firmware
update happens via USB sticks or short-range radio technologies (such as Bluetooth Smart).

Alternatively, the manifest is distributed detached from the firmware image. Using this
approach, the firmware consumer is presented with the manifest first and then needs to obtain
one or more firmware images as dictated in the manifest.

The pre-authorization step involves verifying whether the entity signing the manifest is indeed
authorized to perform an update. The firmware consumer must also determine whether it
should fetch and process a firmware image, which is referenced in a manifest.

Figure 1: Architecture

 +----------+
 | |
 | Author |
 | |
 +----------+
 Firmware + Manifest |
 +----------------------------------+ | Firmware +
 | | | Manifest
 | ---+------- |
 | ---- | --|-
 | //+----------+ | \\
 -+-- // | | | \
 ----/ | ---- |/ | Firmware |<-+ | \
 // | \\ | | Server | | | \
 / | \ / | | + + \
 / | \ / +----------+ \ / |
 / +--------+--------+ \ / | |
 / | v | \ / v |
	+------------+			+----------------+						
		Firmware					Device			
		Consumer					Management			
	+------------+									
	+------------+				+--------+					
		Status	<-+--------------------+->							
		Tracker						Status		
		Client						Tracker		
	+------------+					Server				
	Device				+--------+					
+-----------------+	\		/							
 \ / \ +----------------+ /
 \ Network / \ /
 \ Operator / \ Device Operator /
 \\ // \\ //
 ---- ---- ---- ----
 ----- -----------

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 10

A dependency resolution phase is needed when more than one component can be updated or
when a differential update is used. The necessary dependencies must be available prior to
installation.

The download step is the process of acquiring a local copy of the firmware image. When the
download is client initiated, this means that the firmware consumer chooses when a download
occurs and initiates the download process. When a download is server initiated, this means that
the status tracker tells the device when to download or that it initiates the transfer directly to the
firmware consumer. For example, a download from an HTTP/1.1-based firmware server is client
initiated. Pushing a manifest and firmware image to the Package Resource of the LwM2M
Firmware Update Object is a server-initiated update.

If the firmware consumer has downloaded a new firmware image and is ready to install it, to
initiate the installation, it may

need to wait for a trigger from the status tracker,
trigger the update automatically, or
go through a more complex decision-making process to determine the appropriate timing for
an update.

Sometimes the final decision may require confirmation of the user of the device for safety
reasons.

Installation is the act of processing the payload into a format that the IoT device can recognize,
and the bootloader is responsible for then booting from the newly installed firmware image. This
process is different when a bootloader is not involved. For example, when an application is
updated in a full-featured OS, the updater may halt and restart the application in isolation.
Devices must not fail when a disruption, such as a power failure or network interruption, occurs
during the update process.

[LwM2M]

•
•
•

4. Invoking the Firmware
Section 3 describes the steps for getting the firmware image and the manifest from the author to
the firmware consumer on the IoT device. Once the firmware consumer has retrieved and
successfully processed the manifest and the firmware image, it needs to invoke the new
firmware image. This is managed in many different ways depending on the type of device, but it
typically involves halting the current version of the firmware, handing over control to firmware
with a higher privilege or trust level (the firmware verifier), verifying the new firmware's
authenticity and integrity, and then invoking it.

In an execute-in-place microcontroller, this is often done by rebooting into a bootloader
(simultaneously halting the application and handing over control to the higher privilege level)
then executing a secure boot process (verifying and invoking the new image).

In a rich OS, this may be done by halting one or more processes and then invoking new
applications. In some OSes, this implicitly involves the kernel verifying the code signatures on
the new applications.

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 11

The invocation process is security sensitive. An attacker will typically try to retrieve a firmware
image from the device for reverse engineering or will try to get the firmware verifier to execute
an attacker-modified firmware image. Therefore, firmware verifier will have to perform security
checks on the firmware image before it can be invoked. These security checks by the firmware
verifier happen in addition to the security checks that took place when the firmware image and
the manifest were downloaded by the firmware consumer.

The overlap between the firmware consumer and the firmware verifier functionality comes in
two forms, namely:

A firmware verifier must verify the firmware image it boots as part of the secure boot
process. Doing so requires metadata to be stored alongside the firmware image so that the
firmware verifier can cryptographically verify the firmware image before booting it to
ensure it has not been tampered with or replaced. This metadata used by the firmware
verifier may well be the same manifest obtained with the firmware image during the update
process.
An IoT device needs a recovery strategy in case the firmware update/invocation process fails.
The recovery strategy may include storing two or more application firmware images on the
device or offering the ability to invoke a recovery image to perform the firmware update
process again using firmware updates over serial, USB, or even wireless connectivity like
Bluetooth Smart. In the latter case, the firmware consumer functionality is contained in the
recovery image and requires the necessary functionality for executing the firmware update
process, including manifest parsing.

While this document assumes that the firmware verifier itself is distinct from the role of the
firmware consumer and therefore does not manage the firmware update process, this is not a
requirement, and these roles may be combined in practice.

Using a bootloader as the firmware verifier requires some special considerations, particularly
when the bootloader implements the robustness requirements identified by the IoTSU workshop

.

•

•

[RFC8240]

4.1. The Bootloader
In most cases, the MCU must restart in order to hand over control to the bootloader. Once the
MCU has initiated a restart, the bootloader determines whether a newly available firmware
image should be executed. If the bootloader concludes that the newly available firmware image
is invalid, a recovery strategy is necessary. There are only two approaches for recovering from
invalid firmware: either the bootloader must be able to select different, valid firmware or it must
be able to obtain new, valid firmware. Both of these approaches have implications for the
architecture of the update system.

Assuming the first approach, there are (at least) three firmware images available on the device:

First, the bootloader is also firmware. If a bootloader is updatable, then its firmware image is
treated like any other application firmware image.

•

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 12

Second, the firmware image that has to be replaced is still available on the device as a
backup in case the freshly downloaded firmware image does not boot or operate correctly.
Third, there is the newly downloaded firmware image.

Therefore, the firmware consumer must know where to store the new firmware. In some cases,
this may be implicit (for example, replacing the least recently used firmware image). In other
cases, the storage location of the new firmware must be explicit, for example, when a device has
one or more application firmware images and a recovery image with limited functionality,
sufficient only to perform an update.

Since many low-end IoT devices do not use position-independent code, either the bootloader
needs to copy the newly downloaded application firmware image into the location of the old
application firmware image and vice versa or multiple versions of the firmware need to be
prepared for different locations.

In general, it is assumed that the bootloader itself, or a minimal part of it, will not be updated
since a failed update of the bootloader poses a reliability risk.

For a bootloader to offer a secure boot functionality, it needs to implement the following
functionality:

The bootloader needs to fetch the manifest from nonvolatile storage and parse its contents
for subsequent cryptographic verification.
Cryptographic libraries with hash functions, digital signatures (for asymmetric crypto), and
message authentication codes (for symmetric crypto) need to be accessible.
The device needs to have a trust anchor store to verify the digital signature. Alternatively,
access to a key store for use with the message authentication code may be used.
There must be an ability to expose boot-process-related data to the application firmware
(such as the status tracker). This allows information sharing about the current firmware
version and the status of the firmware update process and whether errors have occurred.
Produce boot measurements as part of an attestation solution; see for more
information (optional).
The bootloader must be able to decrypt firmware images in case confidentiality protection
was applied. This requires a solution for key management (optional).

•

•

•

•

•

•

• [RATS-ARCH]

•

5. Types of IoT Devices
Today, there are billions of MCUs used in devices produced by a large number of silicon
manufacturers. While MCUs can vary significantly in their characteristics, there are a number of
similarities that allow us to categorize them into groups.

The firmware update architecture, and the manifest format in particular, needs to offer enough
flexibility to cover these common deployment cases.

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 13

5.1. Single MCU
The simplest and currently most common architecture consists of a single MCU along with its
own peripherals. These SoCs generally contain some amount of flash memory for code and fixed
data, as well as RAM for working storage. A notable characteristic of these SoCs is that the
primary code is generally execute in place (XIP). Due to the non-relocatable nature of the code,
the firmware image needs to be placed in a specific location in flash memory since the code
cannot be executed from an arbitrary location therein. Hence, when the firmware image is
updated, it is necessary to swap the old and the new image.

5.2. Single CPU with Partitioning between Secure Mode and Normal Mode
Another configuration consists of a similar architecture to the one previously discussed: it
contains a single CPU. However, this CPU supports a security partitioning scheme that allows
memory and other system components to be divided into secure and normal mode. There will
generally be two images: one for secure mode and one for normal mode. In this configuration,
firmware upgrades will generally be done by the CPU in secure mode, which is able to write to
both areas of the flash device. In addition, there are requirements to be able to update either
image independently as well as to update them together atomically, as specified in the associated
manifests.

5.3. Symmetric Multiple CPUs
In more complex SoCs with symmetric multiprocessing support, advanced operating systems,
such as Linux, are often used. These SoCs frequently use an external storage medium, such as
raw NAND flash or an embedded Multimedia Card (eMMC). Due to the higher quantity of
resources, these devices are often capable of storing multiple copies of their firmware images
and selecting the most appropriate one to boot. Many SoCs also support bootloaders that are
capable of updating the firmware image; however, this is typically a last resort because it
requires the device to be held in the bootloader while the new firmware is downloaded and
installed, which results in downtime for the device. Firmware updates in this class of device are
typically not done in place.

5.4. Dual CPU, Shared Memory
This configuration has two or more heterogeneous CPUs in a single SoC that share memory (flash
and RAM). Generally, there will be a mechanism to prevent one CPU from unintentionally
accessing memory currently allocated to the other. Upgrades in this case will typically be done by
one of the CPUs and is similar to the single CPU with secure mode.

5.5. Dual CPU, Other Bus
This configuration has two or more heterogeneous CPUs, each having their own memory. There
will be a communication channel between them, but it will be used as a peripheral, not via
shared memory. In this case, each CPU will have to be responsible for its own firmware upgrade.
It is likely that one of the CPUs will be considered the primary CPU and will direct the other CPU

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 14

to do the upgrade. This configuration is commonly used to offload specific work to other CPUs.
Firmware dependencies are similar to the other solutions above: sometimes allowing only one
image to be upgraded, other times requiring several to be upgraded atomically. Because the
updates are happening on multiple CPUs, upgrading the two images atomically is challenging.

(1):

6. Manifests
In order for a firmware consumer to apply an update, it has to make several decisions using
manifest-provided information and data available on the device itself. For more detailed
information and a longer list of information elements in the manifest, consult the information
model specification , which offers justifications for each element, and the
manifest specification for details about how this information is included in the
manifest.

A device presented with an old but valid manifest and firmware must not be tricked into
installing such firmware since a vulnerability in the old firmware image may allow an
attacker to gain control of the device.

[SUIT-INFO-MODEL]
[SUIT-MANIFEST]

Decision Information Elements

Should I trust the author of the
firmware?

Trust anchors and authorization policies on the device

Has the firmware been corrupted? Digital signature and MAC covering the firmware
image

Does the firmware update apply to
this device?

Conditions with Vendor ID, Class ID, and Device ID

Is the update older than the active
firmware?

Sequence number in the manifest (1)

When should the device apply the
update?

Wait directive

How should the device apply the
update?

Manifest commands

What kind of firmware binary is it? Unpack algorithms to interpret a format

Where should the update be
obtained?

Dependencies on other manifests and firmware image
URI in the manifest

Where should the firmware be
stored?

Storage location and component identifier

Table 1: Example Firmware Update Decisions

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 15

Keeping the code size and complexity of a manifest parser small is important for constrained IoT
devices. Since the manifest parsing code may also be used by the bootloader, it can be part of the
trusted computing base.

A manifest may be used to protect not only firmware images but also configuration data such as
network credentials or personalization data related to the firmware or software. Personalization
data demonstrates the need for confidentiality to be maintained between two or more
stakeholders that deliver images to the same device. Personalization data is used with TEEs,
which benefit from a protocol for managing the life cycle of TAs running inside a TEE. TEEs may
obtain TAs from different authors, and those TAs may require personalization data, such as
payment information, to be securely conveyed to the TEE. The TA's author does not want to
expose the TA's code to any other stakeholder or third party. The user does not want to expose
the payment information to any other stakeholder or third party.

7. Securing Firmware Updates
Using firmware updates to fix vulnerabilities in devices is important, but securing this update
mechanism is equally important since security problems are exacerbated by the update
mechanism. An update is essentially authorized remote code execution, so any security problems
in the update process expose that remote code execution system. Failure to secure the firmware
update process will help attackers take control of devices.

End-to-end security mechanisms are used to protect the firmware image and the manifest. The
following assumptions are made to allow the firmware consumer to verify the received firmware
image and manifest before updating the software:

Authentication ensures that the device can cryptographically identify the author(s) creating
firmware images and manifests. Authenticated identities may be used as input to the
authorization process. Not all entities creating and signing manifests have the same
permissions. A device needs to determine whether the requested action is indeed covered by
the permission of the party that signed the manifest. Informing the device about the
permissions of the different parties also happens in an out-of-band fashion and is a duty of
the Trust Provisioning Authority.
Integrity protection ensures that no third party can modify the manifest or the firmware
image. To accept an update, a device needs to verify the signature covering the manifest.
There may be one or multiple manifests that need to be validated, potentially signed by
different parties. The device needs to be in possession of the trust anchors to verify those
signatures. Installing trust anchors to devices via the Trust Provisioning Authority happens
in an out-of-band fashion prior to the firmware update process.
Confidentiality protection of the firmware image must be done in such a way that no one
aside from the intended firmware consumer(s) and other authorized parties can decrypt it.
The information that is encrypted individually for each device/recipient must be done in a
way that is usable with Content Distribution Networks (CDNs), bulk storage, and broadcast
protocols. For confidentiality protection of firmware images, the author needs to be in
possession of the certificate/public key or a pre-shared key of a device. The use of
confidentiality protection of firmware images is optional.

•

•

•

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 16

A manifest specification must support different cryptographic algorithms and algorithm
extensibility. Moreover, since signature schemes based on RSA and Elliptic Curve Cryptography
(ECC) may become vulnerable to quantum-accelerated key extraction in the future,
unchangeable bootloader code in ROM is recommended to use post-quantum secure signature
schemes such as hash-based signatures . A bootloader author must carefully consider
the service lifetime of their product and the time horizon for quantum-accelerated key
extraction. At the time of writing, the worst-case estimate for the time horizon to key extraction
with quantum acceleration is approximately 2030, based on current research

.

When a device obtains a monolithic firmware image from a single author without any additional
approval steps, the authorization flow is relatively simple. However, there are other cases where
more complex policy decisions need to be made before updating a device.

In this architecture, the authorization policy is separated from the underlying communication
architecture. This is accomplished by separating the entities from their permissions. For
example, an author may not have the authority to install a firmware image on a device in critical
infrastructure without the authorization of a device operator. In this case, the device may be
programmed to reject firmware updates unless they are signed both by the firmware author and
by the device operator.

Alternatively, a device may trust precisely one entity that does all permission management and
coordination. This entity allows the device to offload complex permissions calculations for the
device.

[RFC8778]

[quantum-
factorization]

8. Example
Figure 2 illustrates an example message flow for distributing a firmware image to a device. The
firmware and manifest are stored on the same firmware server and distributed in a detached
manner.

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 17

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 18

+--------+ +-----------------+ +-----------------------------+
| | | Firmware Server | | IoT Device |
| Author | | Status Tracker | | +------------+ +----------+ |
+--------+ | Server | | | Firmware | |Bootloader| |
+-----------------+		Consumer			
		+------------+ +----------+			
		+-----------------------+			
Create Firmware			Status Tracker Client		
--------------+		+-----------------------+			
		`''''''''''''''''''''''''''''			
<-------------+					
Upload Firmware					
------------------>					
Create Manifest					
---------------+					
<--------------+					
Sign Manifest					
-------------+					
<------------+					
Upload Manifest					
------------------>	Notification of				
	new firmware image				
	----------------------------->				
		Initiate			
		Update			
		<-------			
	Query Manifest				
	<--------------------	.			
		.			
	Send Manifest	.			
	-------------------->	.			
		Validate			
		Manifest			
		--------+			
		<-------+			
		.			
	Request Firmware	.			
	<--------------------	.			
		.			
	Send Firmware	.			
	-------------------->	.			
		Verify .			
		Firmware			
		--------+			
		<-------+			
		.			
		Store .			

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 19

Figure 3 shows an exchange that starts with the status tracker querying the device for its current
firmware version. Later, a new firmware version becomes available, and since this device is
running an older version, the status tracker server interacts with the device to initiate an update.

The manifest and the firmware are stored on different servers in this example. When the device
processes the manifest, it learns where to download the new firmware version. The firmware
consumer downloads the firmware image with the newer version X.Y.Z after successful
validation of the manifest. Subsequently, a reboot is initiated, and the secure boot process starts.
Finally, the device reports the successful boot of the new firmware version.

Figure 2: First Example Flow for a Firmware Update

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 20

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 21

 +---------+ +-----------------+ +-----------------------------+
Status		Firmware Server		+------------+ +----------+				
Tracker		Status Tracker			Firmware		Bootloader	
Server		Server			Consumer			
 +---------+ +-----------------+ | | +Status | +----------+ |
 | | | | Tracker | | |
 | | | | Client | | |
 | | | +------------+ | |
 | | | | IoT Device | |
 | | `''''''''''''''''''''''''''''
 | | | |
 | Query Firmware Version | |
 |------------------------------------->| |
 | Firmware Version A.B.C | |
 |<-------------------------------------| |
 | | | |
 | <<some time later>> | |
 | | | |
 ,.... _,...._ | |
 ,' `. ,' `. | |
 | New | | New | | |
 \ Manifest / \ Firmware / | |
 `.._ _,,' `.._ _,,' | |
 `'' `'' | |
 | Push manifest | | |
 |----------------+-------------------->| |
 | | | |
 | ' | '
 | | | Validate | |
 | | | Manifest |
 | | |---------+ |
 | | | | |
 | | |<--------+ |
 | | Request firmware | |
 | | X.Y.Z | |
 | |<--------------------| |
 | | | |
 | | Firmware X.Y.Z | |
 | |-------------------->| |
 | | | |
 | | | Verify |
 | | | Firmware |
 | | |--------------+ |
 | | | | |
 | | |<-------------+ |
 | | | |
 | | | Store |
 | | | Firmware |
 | | |-------------+ |
 | | | | |
 | | |<------------+ |
 | | | |
 | | | |
 | | | Trigger Reboot |
 | | |--------------->|
 | | | |
 | | | |
 | | | __..-------..._'

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 22

[LwM2M]

[quantum-factorization]

[RATS-ARCH]

[RFC6024]

[RFC6763]

[RFC7228]

[RFC8240]

11. Informative References
,

, , February 2018,

.

, , , , and ,
, , December

2018, .

, , , , and ,
, ,

, 23 April 2021,
.

 and , , ,
, October 2010, .

 and , , ,
, February 2013, .

, , and ,
, , , May 2014,

.

 and ,
, , , September

2017, .

Figure 3: Second Example Flow for a Firmware Update

9. IANA Considerations
This document has no IANA actions.

10. Security Considerations
This document describes the terminology, requirements, and an architecture for firmware
updates of IoT devices. The content of the document is thereby focused on improving the security
of IoT devices via firmware update mechanisms and informs the standardization of a manifest
format.

An in-depth examination of the security considerations of the architecture is presented in
.

[SUIT-
INFO-MODEL]

Open Mobile Alliance "Lightweight Machine to Machine Technical
Specification" Version 1.0.2 <http://
www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/
OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf>

Jiang, S. Britt, K.A. McCaskey, A.J. Humble, T.S. S. Kais
"Quantum Annealing for Prime Factorization" Scientific Reports 8

<https://www.nature.com/articles/s41598-018-36058-z>

Birkholz, H. Thaler, D. Richardson, M. Smith, N. W. Pan "Remote
Attestation Procedures Architecture" Work in Progress Internet-Draft, draft-
ietf-rats-architecture-12 <https://tools.ietf.org/html/draft-ietf-rats-
architecture-12>

Reddy, R. C. Wallace "Trust Anchor Management Requirements" RFC 6024
DOI 10.17487/RFC6024 <https://www.rfc-editor.org/info/rfc6024>

Cheshire, S. M. Krochmal "DNS-Based Service Discovery" RFC 6763 DOI
10.17487/RFC6763 <https://www.rfc-editor.org/info/rfc6763>

Bormann, C. Ersue, M. A. Keranen "Terminology for Constrained-Node
Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-
editor.org/info/rfc7228>

Tschofenig, H. S. Farrell "Report from the Internet of Things Software
Update (IoTSU) Workshop 2016" RFC 8240 DOI 10.17487/RFC8240

<https://www.rfc-editor.org/info/rfc8240>

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 23

http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
https://www.nature.com/articles/s41598-018-36058-z
https://tools.ietf.org/html/draft-ietf-rats-architecture-12
https://tools.ietf.org/html/draft-ietf-rats-architecture-12
https://www.rfc-editor.org/info/rfc6024
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc8240

[RFC8778]

[SUIT-INFO-MODEL]

[SUIT-MANIFEST]

[TEEP-ARCH]

,
, , , April

2020, .

, , and ,
, ,

, 6 April 2021,
.

, , , and ,

, ,
, 22 February 2021,

.

, , , and ,
, ,

, 22 February 2021,
.

Housley, R. "Use of the HSS/LMS Hash-Based Signature Algorithm with CBOR
Object Signing and Encryption (COSE)" RFC 8778 DOI 10.17487/RFC8778

<https://www.rfc-editor.org/info/rfc8778>

Moran, B. Tschofenig, H. H. Birkholz "A Manifest Information Model
for Firmware Updates in IoT Devices" Work in Progress Internet-Draft, draft-
ietf-suit-information-model-11 <https://tools.ietf.org/html/draft-ietf-
suit-information-model-11>

Moran, B. Tschofenig, H. Birkholz, H. K. Zandberg "A Concise Binary
Object Representation (CBOR)-based Serialization Format for the Software
Updates for Internet of Things (SUIT) Manifest" Work in Progress Internet-
Draft, draft-ietf-suit-manifest-12 <https://tools.ietf.org/html/
draft-ietf-suit-manifest-12>

Pei, M. Tschofenig, H. Thaler, D. D. Wheeler "Trusted Execution
Environment Provisioning (TEEP) Architecture" Work in Progress Internet-
Draft, draft-ietf-teep-architecture-14 <https://tools.ietf.org/
html/draft-ietf-teep-architecture-14>

Acknowledgements
We would like to thank the following individuals for their feedback:

• Geraint Luff
• Amyas Phillips
• Dan Ros
• Thomas Eichinger
• Michael Richardson
• Emmanuel Baccelli
• Ned Smith
• Jim Schaad
• Carsten Bormann
• Cullen Jennings
• Olaf Bergmann
• Suhas Nandakumar
• Phillip Hallam-Baker
• Marti Bolivar
• Andrzej Puzdrowski
• Markus Gueller
• Henk Birkholz
• Jintao Zhu
• Takeshi Takahashi

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 24

https://www.rfc-editor.org/info/rfc8778
https://tools.ietf.org/html/draft-ietf-suit-information-model-11
https://tools.ietf.org/html/draft-ietf-suit-information-model-11
https://tools.ietf.org/html/draft-ietf-suit-manifest-12
https://tools.ietf.org/html/draft-ietf-suit-manifest-12
https://tools.ietf.org/html/draft-ietf-teep-architecture-14
https://tools.ietf.org/html/draft-ietf-teep-architecture-14

We would also like to thank the WG chairs, , , and for
their support and review.

• Jacob Beningo
• Kathleen Moriarty
• Bob Briscoe
• Roman Danyliw
• Brian Carpenter
• Theresa Enghardt
• Rich Salz
• Mohit Sethi
• Éric Vyncke
• Alvaro Retana
• Barry Leiba
• Benjamin Kaduk
• Martin Duke
• Robert Wilton

Russ Housley David Waltermire Dave Thaler

Authors' Addresses
Brendan Moran
Arm Limited

 Brendan.Moran@arm.com Email:

Hannes Tschofenig
Arm Limited

 hannes.tschofenig@arm.com Email:

David Brown
Linaro

 david.brown@linaro.org Email:

Milosch Meriac
Consultant

 milosch@meriac.com Email:

RFC 9019 IoT Firmware Update Architecture April 2021

Moran, et al. Informational Page 25

mailto:Brendan.Moran@arm.com
mailto:hannes.tschofenig@arm.com
mailto:david.brown@linaro.org
mailto:milosch@meriac.com

	RFC 9019
	A Firmware Update Architecture for Internet of Things
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	2.1. Terms
	2.2. Stakeholders
	2.3. Functions

	3. Architecture
	4. Invoking the Firmware
	4.1. The Bootloader

	5. Types of IoT Devices
	5.1. Single MCU
	5.2. Single CPU with Partitioning between Secure Mode and Normal Mode
	5.3. Symmetric Multiple CPUs
	5.4. Dual CPU, Shared Memory
	5.5. Dual CPU, Other Bus

	6. Manifests
	7. Securing Firmware Updates
	8. Example
	9. IANA Considerations
	10. Security Considerations
	11. Informative References
	Acknowledgements
	Authors' Addresses

