<?xml version="1.0"encoding="US-ASCII"?>encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc toc="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc iprnotified="no"?> <?rfc strict="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?>"rfc2629-xhtml.ent"> <rfccategory="info"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-detnet-ip-over-tsn-07" number="9023" ipr="trust200902"submissionType="IETF">submissionType="IETF" category="info" consensus="true" obsoletes="" updates="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <front> <title abbrev="DetNet IP over TSN">DetNetDeterministic Networking (DetNet) Data Plane: IP over IEEE 802.1Time SensitiveTime-Sensitive Networking (TSN)</title> <seriesInfo name="RFC" value="9023"/> <author role="editor"fullname="Balázsfullname="Balázs Varga" initials="B." surname="Varga"> <organization>Ericsson</organization> <address> <postal> <street>Magyar Tudosok krt. 11.</street> <city>Budapest</city> <country>Hungary</country> <code>1117</code> </postal> <email>balazs.a.varga@ericsson.com</email> </address> </author> <authorfullname="Jánosfullname="János Farkas" initials="J." surname="Farkas"> <organization>Ericsson</organization> <address> <postal> <street>Magyar Tudosok krt. 11.</street> <city>Budapest</city> <country>Hungary</country> <code>1117</code> </postal> <email>janos.farkas@ericsson.com</email> </address> </author> <author fullname="Andrew G. Malis"initials="A.G."initials="A." surname="Malis"> <organization>Malis Consulting</organization> <address> <email>agmalis@gmail.com</email> </address> </author> <author fullname="Stewart Bryant" initials="S." surname="Bryant"> <organization>Futurewei Technologies</organization> <address><email>stewart.bryant@gmail.com</email><email>sb@stewartbryant.com</email> </address> </author> <date year="2021" month="June" /> <workgroup>DetNet</workgroup> <keyword>sub-network</keyword> <keyword>flow mapping</keyword> <abstract> <t> This document specifies the Deterministic Networking IP data plane when operating over aTSNTime-Sensitive Networking (TSN) sub-network. This document does not define new procedures or processes. Whenever this document makes statements or recommendations, these are taken from normative text in the referenced RFCs. </t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="sec_intro">anchor="sec_intro" numbered="true" toc="default"> <name>Introduction</name> <t> Deterministic Networking (DetNet) is a service that can be offered by a network to DetNet flows. DetNet provides these flows extremely lowpacket losspacket-loss rates and assured maximum end-to-end delivery latency. General background and concepts of DetNet can be found in the DetNet Architecture <xreftarget="RFC8655"/>.target="RFC8655" format="default"/>. </t> <t> <xreftarget="RFC8939"/>target="RFC8939" format="default"/> specifies the DetNet data plane operation for IP hosts and routers that provide DetNet service toIP encapsulatedIP-encapsulated data. This document focuses on the scenario where DetNet IP nodes are interconnected by aTSNTime-Sensitive Networking (TSN) sub-network. </t> <t> The DetNet Architecture decomposes theDetNet relatedDetNet-related data plane functions into two sub-layers: a service sub-layer and a forwarding sub-layer. The service sub-layer is used to provide DetNet service protection and reordering. The forwarding sub-layer is used toprovidesprovide congestion protection (low loss, assured latency, and limited reordering). As described in <xreftarget="RFC8939"/>target="RFC8939" format="default"/>, noDetNet specificDetNet-specific headers are added to support DetNet IP flows. So, only the forwarding sub-layer functions can be supported inside the DetNet IP domain. Service protection can be provided on aper sub-networkper-sub-network basis as shown here for theIEEE802.1IEEE 802.1 TSN sub-network scenario. </t> </section> <sectiontitle="Terminology">numbered="true" toc="default"> <name>Terminology</name> <sectiontitle="Termsnumbered="true" toc="default"> <name>Terms UsedInin ThisDocument">Document</name> <t> This document uses the terminology and concepts established in the DetNetarchitectureArchitecture <xreftarget="RFC8655"/>. TSN (Time-Sensitive Networking) specifictarget="RFC8655" format="default"/>. TSN-specific terms are definedinby the TSNTGTask Group of the IEEE 802.1 Working Group. The reader is assumed to be familiar with these documents and their terminology. </t> </section> <sectiontitle="Abbreviations">numbered="true" toc="default"> <name>Abbreviations</name> <t> The following abbreviations are used in this document:<list style="hanging" hangIndent="14"> <t hangText="DetNet">Deterministic Networking.</t> <t hangText="FRER">Frame</t> <dl newline="false" spacing="normal" indent="14"> <dt>DetNet</dt> <dd>Deterministic Networking</dd> <dt>FRER</dt> <dd>Frame Replication and Elimination for Redundancy (TSNfunction).</t> <t hangText="L2">Layer-2.</t> <t hangText="L3">Layer-3.</t> <t hangText="TSN">Time-Sensitive Networking,function)</dd> <dt>L2</dt> <dd>Layer 2</dd> <dt>L3</dt> <dd>Layer 3</dd> <dt>TSN</dt> <dd>Time-Sensitive Networking; TSN is a Task Group of the IEEE 802.1 WorkingGroup.</t> </list> </t> </section> <!-- <section title="Requirements Language"> <t> The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t>Group.</dd> </dl> </section>--></section> <sectiontitle="DetNetanchor="sec_dt_dp" numbered="true" toc="default"> <name>DetNet IP Data PlaneOverview" anchor="sec_dt_dp">Overview</name> <t> <xreftarget="RFC8939"/>target="RFC8939" format="default"/> describes how IP is used by DetNet nodes, i.e., hosts and routers, to identify DetNet flows and provide a DetNet service. From a data plane perspective, an end-to-end IP model is followed. DetNet uses"6-tuple" basedflowidentification,identification based on a "6-tuple", where "6-tuple" refers to information carried inIPIP- andhigher layerhigher-layer protocol headers as defined in <xreftarget="RFC8939"/>. .target="RFC8939" format="default"/>. </t> <t> DetNet flow aggregation may be enabled via the use of wildcards, masks,prefixesprefixes, and ranges. IP tunnels may also be used to support flow aggregation. In these cases, it is expected thatDetNet awareDetNet-aware intermediate nodes will provide DetNet service assurance on the aggregate through resource allocation and congestion control mechanisms. </t> <t> Congestion protection, latencycontrolcontrol, and the resource allocation (queuing, policing, and shaping) are supported using the underlying link /sub-net specificsub-net-specific mechanisms. Service protections(packet replication(packet-replication andpacket eliminationpacket-elimination functions) are not provided at the IP DetNet layerend-to-endend to end due to the lack ofaunified end-to-end sequencing information that would be available for intermediate nodes. However, such service protection can be providedon aper underlying L2 link andsub-network basis.per sub-network. </t> <t> DetNet routers ensure that DetNet service requirements are met per hop by allocating local resources, by bothreceivereceiving andtransmit,transmitting, and by mapping the service requirements of each flow to appropriate sub-network mechanisms. Such mappings are sub-network technology specific. DetNet nodes interconnected by a TSN sub-network are the primary focus of this document. The mapping of DetNet IP flows to TSNstreamsStreams and TSN protection mechanisms are covered in <xreftarget="mapping-tsn"/>.target="mapping-tsn" format="default"/>. </t> </section><!-- ===================================================================== --><section anchor="mapping-tsn"title="DetNetnumbered="true" toc="default"> <name>DetNet IP Flows over an IEEE 802.1 TSNsub-network">Sub-network</name> <t> This section covers how DetNet IP flows operate over an IEEE 802.1 TSN sub-network. <xreftarget="fig_ip_detnet_to_tsn"/>target="fig_ip_detnet_to_tsn" format="default"/> illustrates such ascenario,scenario where two IP (DetNet) nodes are interconnected by a TSN sub-network. Dotted lines around the Service components of the IP (DetNet)Nodesnodes indicate that they are DetNet service aware but do not perform any DetNet service sub-layer function. Node-1 is single homed and Node-2 isdual-homeddual homed to the TSNsub-networksub-network, and they are treated as Talker or Listener inside the TSN sub-network.Note,Note that from the TSNperspectiveperspective, dual-homed characteristics of Talker or Listener nodes are transparent to the IP Layer. </t> <figurealign="center" anchor="fig_ip_detnet_to_tsn" title="DetNet (DN) Enabledanchor="fig_ip_detnet_to_tsn"> <name>DetNet-Enabled IP Network over a TSNsub-network"> <artwork><![CDATA[Sub-network</name> <artwork name="" type="" align="left" alt=""><![CDATA[ IP (DetNet) IP (DetNet) Node-1 Node-2 ............ ............ <--: Service :-- DetNet flow ---: Service :--> +----------+ +----------+ |Forwarding| |Forwarding| +--------.-+ <-TSN Str-> +-.-----.--+ \ ,-------. / / +----[TSN-Sub ]---+TSN Sub-]---+ / [ Network ]--------+ `-------' <----------------- DetNet IP -----------------> ]]></artwork> </figure> <t> At the time of this writing, the Time-Sensitive Networking (TSN) Task Group of the IEEE 802.1 Working Group have defined (and are defining) a number of amendments to <xreftarget="IEEE8021Q"/>target="IEEE8021Q" format="default"/> that provide zero congestion loss and bounded latency in bridged networks. Furthermore, <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> defines frame replication and elimination functions for reliability that should prove both compatible with and useful to DetNet networks. All these functions have to identify flows that require TSN treatment. </t> <t> TSN capabilities of the TSN sub-network are made available for IP (DetNet) flows via the protocol interworking function described in Annex C.5 of <xreftarget="IEEE8021CB"/>.target="IEEE8021CB" format="default"/>. For example, applied on the TSN edge port it can convert an ingress unicast IP (DetNet) flow to use a specific L2 multicast destinationMACMedia Access Control (MAC) address and aVLAN,VLAN in order to forward the packet through a specific path inside the bridged network. A similar interworking function pair at the other end of the TSN sub-network would restore the packet to its original L2 destination MAC address and VLAN. </t> <t> Placement of TSN functions depends on the TSN capabilities of nodes. IP (DetNet)Nodesnodes may or may not support TSN functions. For a given TSN Stream (i.e., a mapped DetNetflow)flow), an IP (DetNet) node is treated as a Talker or a Listener inside the TSN sub-network. </t> <sectiontitle="Functionsnumbered="true" toc="default"> <name>Functions for DetNet Flow to TSN StreamMapping">Mapping</name> <t> Mapping of a DetNet IP flow to a TSN Stream is provided via the combination of a passive and an activestreamStream identification function that operate at the frame level(Layer-2).(Layer 2). The passivestreamStream identification function is used to catch the 6-tuple of a DetNet IPflowflow, and the activestreamStream identification function is used to modify the Ethernet header according to the ID of the mapped TSN Stream. </t> <t> Clause 6.7 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> defines an IP Stream identification function that can be used as a passive function for IP DetNet flows using UDP or TCP. Clause 6.8 of <xreftarget="IEEEP8021CBdb"/>target="IEEEP8021CBdb" format="default"/> defines a Mask-and-Match Stream identification function that can be used as a passive function for any IP DetNet flows. </t> <t> Clause 6.6 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> defines an Active Destination MAC and VLAN Stream identificationfunction, whatfunction that can replace some Ethernet headerfields namelyfields: (1) the destinationMAC-address,MAC address, (2) theVLAN-IDVLAN-ID, and (3) priority parameters with alternate values. Replacement is provided for the frame passed down the stack from the upper layers or up the stack from the lower layers. </t> <t> Active Destination MAC and VLAN Stream identification can be used within a Talker to set flow identity or within a Listener to recover the original addressing information. It can be used also in a TSN bridge that is providing translation as a proxy service for an End System. </t> </section> <sectiontitle="TSN requirementsnumbered="true" toc="default"> <name>TSN Requirements of IP DetNetnodes">Nodes</name> <t> This section covers the required behavior of a TSN-aware DetNet node using a TSN sub-network. The implementation of TSNpacket processingpacket-processing functions must be compliant with the relevant IEEE 802.1 standards. </t> <t> From the TSN sub-networkperspectiveperspective, DetNet IP nodes are treated as a Talker orListener,Listener that may be (1)TSN-unawareTSN unaware or (2)TSN-aware.TSN aware. </t> <t> In cases of TSN-unaware IP DetNetnodesnodes, the TSN relay nodes within the TSN sub-network must modify the Ethernet encapsulation of the DetNet IP flow (e.g., MAC translation, VLAN-ID setting,Sequencesequence number addition, etc.) to allow properTSN specificTSN-specific handling inside the sub-network. There are no requirements defined for TSN-unaware IP DetNet nodes in this document. </t> <t> IP (DetNet) nodes beingTSN-awareTSN aware can be treated as a combination of a TSN-unaware Talker/Listener and aTSN-Relay,TSN relay, as shown in <xreftarget="fig_ip_with_tsn"/>.target="fig_ip_with_tsn" format="default"/>. In suchcasescases, the IP (DetNet) node must provide the TSNsub-network specificsub-network-specific Ethernet encapsulation over the link(s) towards the sub-network. </t> <figurealign="center" anchor="fig_ip_with_tsn" title="IPanchor="fig_ip_with_tsn"> <name>IP (DetNet)nodeNode with TSNfunctions"> <artwork><![CDATA[Functions</name> <artwork name="" type="" align="left" alt=""><![CDATA[ IP (DetNet) Node <----------------------------------> ............ <--: Service :-- DetNet flow ------------------ +----------+ |Forwarding| +----------+ +---------------+ | L2 | | L2 Relay with |<--- TSN --- | | | TSN function | Stream +-----.----+ +--.------.---.-+ \__________/ \ \______ \_________ TSN-unaware Talker /TSN-BridgeTSN Bridge Listener Relay <----- TSN Sub-network ----- <------- TSN-aware Tlk/Lstn -------> ]]></artwork> </figure> <t> A TSN-aware IP (DetNet) nodeimpementationsimplementation must support the StreamIdentificationidentification TSN component for recognizing flows. </t> <t> A Stream identification component must be able to instantiate thefollowing functionsfollowing: (1) Active Destination MAC and VLAN Streamidentification function,identification, (2) IP Streamidentification function,identification, (3) Mask-and-Match Streamidentification functionidentification, and (4) the related managed objects in Clause 9 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> and <xreftarget="IEEEP8021CBdb"/>.target="IEEEP8021CBdb" format="default"/>. </t> <t> A TSN-aware IP (DetNet) node implementation must support the Sequencing function and the Sequence encode/decode function as defined inClauseClauses 7.4 and 7.6 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> if FRER is used inside the TSN sub-network. </t> <t> The Sequence encode/decode function must support the Redundancy tag (R-TAG) format as per Clause 7.8 of <xreftarget="IEEE8021CB"/>.target="IEEE8021CB" format="default"/>. </t> <t> A TSN-aware IP (DetNet) nodeimplementationsimplementation must support the Stream splitting function and the Individual recovery function as defined inClauseClauses 7.7 and 7.5 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> when the node is a replication or elimination point for FRER. </t> </section> <sectiontitle="Service protectionnumbered="true" toc="default"> <name>Service Protection within the TSNsub-network">Sub-network</name> <t> TSN Streams supporting DetNet flows may useFrame Replication and Elimination for Redundancy (FRER)FRER as defined in Clause8.8 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> based on the loss service requirements of the TSN Stream, which is derived from the DetNet service requirements of the DetNet mapped flow. The specific operation of FRER is not modified by the use of DetNet and follows <xreftarget="IEEE8021CB"/>.target="IEEE8021CB" format="default"/>. </t> <t> The FRER function and the provided service recoveryisare available only within the TSNsub-networksub-network, as the TSNStream-IDStream ID and the TSN sequence number are not valid outside the sub-network. An IP (DetNet) node representsaan L3 border and assuchsuch, it terminates all related information elements encoded in the L2 frames. </t> </section> <sectiontitle="Aggregationnumbered="true" toc="default"> <name>Aggregation during DetNetflowFlow to TSN Streammapping">Mapping</name> <t> Implementations of this document shall use management and control information to map a DetNet flow to a TSN Stream. N:1 mapping (aggregating DetNet flows in a single TSN Stream) shall be supported. The management or control function that provisions flow mapping shall ensure that adequate resources are allocated and configured to provide proper service requirements of the mapped flows. </t> </section> </section> <sectiontitle="Managementnumbered="true" toc="default"> <name>Management and ControlImplications">Implications</name> <t> DetNetflowflows and TSNStream mapping relatedStream-mapping-related information are required only for TSN-aware IP (DetNet) nodes. From theData Plane perspectivedata plane perspective, there is no practical difference based on the origin offlow mapping relatedflow-mapping-related information (management plane or control plane). </t> <t> The following summarizes the set of information that is needed to configure DetNet IP over TSN:<list style="symbols"> <t>DetNet IP related</t> <ul spacing="normal"> <li>DetNet-IP-related configuration information according to the DetNet role of the DetNet IP node, as per <xreftarget="RFC8939"/>. </t> <t>TSN relatedtarget="RFC8939" format="default"/>. </li> <li>TSN-related configuration information according to the TSN role of the DetNet IP node, as per <xreftarget="IEEE8021Q"/>,target="IEEE8021Q" format="default"/>, <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/>, and <xreftarget="IEEEP8021CBdb"/>. </t> <t>Mappingtarget="IEEEP8021CBdb" format="default"/>. </li> <li>Mapping between DetNet IP flow(s) and TSN Stream(s). DetNet IP flow identification is summarized inSection 5.1 of<xreftarget="RFC8939"/>,target="RFC8939" sectionFormat="of" section="5.1"/> and includes all wildcards, portrangesranges, and the ability to ignore specific IPfields). Forfields. Information on TSNStreams streamStream identification informationareis defined in <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> and <xreftarget="IEEEP8021CBdb"/>). Note,target="IEEEP8021CBdb" format="default"/>. Note that managed objects for TSN Stream identification can be found in <xreftarget="IEEEP8021CBcv"/>. </t> </list>target="IEEEP8021CBcv" format="default"/>. </li> </ul> <t> This information must be provisioned per DetNet flow. </t> <t> Mappings between DetNet and TSN management and control planes are out of scope of this document. Some of the challenges arehighligthedhighlighted below. </t> <t> TSN-aware IP DetNet nodes are members of both the DetNet domain and the TSN sub-network. Within the TSNsub-networksub-network, the TSN-aware IP (DetNet) node has a TSN-aware Talker/Listener role, soTSN specificTSN-specific management and control plane functionalities must be implemented. There are many similarities in the management plane techniques used in DetNet and TSN, but that is not the case for the control plane protocols. For example, RSVP-TE andMSRP behavesthe Multiple Stream Registration Protocol (MSRP) of IEEE 802.1 behave differently.ThereforeTherefore, management and control plane design is an important aspect ofscenarios,scenarios where mapping between DetNet and TSN is required. </t> <t> In order to use a TSN sub-network between DetNet nodes,DetNet specificDetNet-specific information must be converted to TSNsub-network specific ones.sub-network-specific information. DetNet flow ID andflow relatedflow-related parameters/requirements must be converted to a TSN Stream ID andstream relatedstream-related parameters/requirements. Note that, as the TSN sub-network is just a portion of the end-to-end DetNet path (i.e., single hop from an IP perspective), some parameters (e.g., delay) may differ significantly. Other parameters (like bandwidth) also may have to be tuned due to the L2 encapsulation used within the TSN sub-network. </t> <t> In somecasescases, it may be challenging to determine some TSNStream relatedStream-related information. For example, on a TSN-aware IP (DetNet) node that acts as a Talker, it is quite obvious which DetNet node is the Listener of the mapped TSNstreamStream (i.e., the IPNext-Hop). Howevernext-hop). However, it maybenot be trivial to locate the point/interface where that Listener is connected to the TSN sub-network. Such attributes may require interaction between control and management plane functions and between DetNet and TSN domains. </t> <t> Mapping between DetNet flow identifiers and TSN Stream identifiers, if not provided explicitly, can be done by a TSN-aware IP (DetNet) node locally based on information provided for configuration of the TSN Stream identification functions (IP Stream identification,Mask-and-matchMask-and-Match Streamidentificationidentification, and the active Stream identification function). </t> <t> Triggering the setup/modification of a TSN Stream in the TSN sub-network is an example where management and/or control plane interactions are required between the DetNet and TSN sub-network. TSN-unaware IP (DetNet) nodes make such a triggering even morecomplicatedcomplicated, as they are fully unaware of the sub-network and run independently. </t> <t> Configuration ofTSN specificTSN-specific functions (e.g., FRER) inside the TSN sub-network is aTSN domain specificTSN-domain-specific decision and may not be visible in the DetNet domain. </t> </section><!-- ===================================================================== --><sectiontitle="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t> Security considerations for DetNet are described in detail in <xreftarget="I-D.ietf-detnet-security"/>.target="I-D.ietf-detnet-security" format="default"/>. General security considerations are described in <xreftarget="RFC8655"/>.target="RFC8655" format="default"/>. Considerations specific to the DetNet IP data planespecific considerationsare summarized in <xreftarget="RFC8939"/>.target="RFC8939" format="default"/>. This sectionconsiders exclusivelydiscusses security considerationswhichthat are specific to the DetNetIP over TSNIP-over-TSN sub-network scenario. </t> <t> The sub-network between DetNet nodes needs to be subject to appropriate confidentiality. Additionally, knowledge of what DetNet/TSN services are provided by a sub-network may supply information that can be used in a variety of security attacks. The ability to modify information exchanges between connected DetNet nodes may result in bogus operations. Therefore, it is important that the interface between DetNet nodes and the TSN sub-network are subject to authorization, authentication, and encryption. </t> <t> The TSN sub-network operates atLayer-2Layer 2, so various security mechanisms defined by IEEE can be used to secure the connection between the DetNet nodes (e.g., encryption may be provided usingMACSecMACsec <xreftarget="IEEE802.1AE-2018"/>).target="IEEE802.1AE-2018" format="default"/>). </t> </section> <section anchor="iana"title="IANA Considerations"> <t> None. </t> </section> <section anchor="acks" title="Acknowledgements">numbered="true" toc="default"> <name>IANA Considerations</name> <t>The authors wish to thank Norman Finn, Lou Berger, Craig Gunther, Christophe Mangin and Jouni Korhonen for their various contributions to this work.This document has no IANA actions. </t> </section> </middle> <back><references title="Normative references"> <!-- <?rfc include="reference.RFC.2119"?> <?rfc include="reference.RFC.8174"?> --> <?rfc include="reference.RFC.8655"?> <?rfc include="reference.RFC.8939"?><displayreference target="I-D.ietf-detnet-security" to="DETNET-SECURITY"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8655.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8939.xml"/> <reference anchor="IEEE8021CB"target="http://standards.ieee.org/about/get/">target="https://standards.ieee.org/standard/802_1CB-2017.html"> <front><title>Standard<title>IEEE Standard for Local and metropolitan areanetworks - Framenetworks--Frame Replication and Elimination for Reliability(IEEE Std 802.1CB-2017)</title></title> <author><organization>IEEE 802.1</organization><organization>IEEE</organization> </author> <date month="October" year="2017"/> </front><format type="PDF" target="http://standards.ieee.org/about/get/"/><seriesInfo name="DOI" value="10.1109/IEEESTD.2017.8091139" /> <refcontent>IEEE 802.1CB-2017</refcontent> </reference> <reference anchor="IEEEP8021CBdb"target="http://www.ieee802.org/1/files/private/db-drafts/d1/802-1CBdb-d1-0.pdf">target="https://1.ieee802.org/tsn/802-1cbdb/"> <front><title>Extended<title>Draft Standard for Local and metropolitan area networks -- Frame Replication and Elimination for Reliability -- Amendment: Extended Streamidentification functions</title> <author initials="C. M." surname="Mangin" fullname="Christophe Mangin"> <organization>IEEE 802.1</organization>Identification Functions</title> <author> <organization>IEEE</organization> </author> <datemonth="September" year="2020"/>month="April" year="2021"/> </front><seriesInfo name="IEEE<refcontent>IEEE P802.1CBdb/D1.0" value="P802.1CBdb"/> <format type="PDF" target="http://www.ieee802.org/1/files/private/db-drafts/d1/802-1CBdb-d1-0.pdf"/>/ D1.3</refcontent> </reference> </references><references title="Informative references"> <!-- <?rfc include="reference.I-D.ietf-detnet-flow-information-model"?> --> <?rfc include="reference.I-D.ietf-detnet-security"?><references> <name>Informative References</name> <reference anchor='I-D.ietf-detnet-security'> <front> <title>Deterministic Networking (DetNet) Security Considerations</title> <author initials='E' surname='Grossman' fullname='Ethan Grossman' role="editor"> <organization /> </author> <author initials='T' surname='Mizrahi' fullname='Tal Mizrahi'> <organization /> </author> <author initials='A' surname='Hacker' fullname='Andrew Hacker'> <organization /> </author> <date month='March' year='2021' /> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-detnet-security-16' /> </reference> <reference anchor="IEEE802.1AE-2018" target="https://ieeexplore.ieee.org/document/8585421"> <front> <title>IEEEStd 802.1AE-2018 MAC Security (MACsec)</title>Standard for Local and metropolitan area networks--Media Access Control (MAC) Security</title> <author><organization>IEEE Standards Association</organization><organization>IEEE</organization> </author> <dateyear="2018" />month="December" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8585421" /> <refcontent>IEEE 802.1AE-2018</refcontent> </reference> <reference anchor="IEEE8021Q"target="http://standards.ieee.org/about/get/">target="https://ieeexplore.ieee.org/document/8403927"> <front><title>Standard<title>IEEE Standard for Local andmetropolitan area networks--BridgesMetropolitan Area Network--Bridges and Bridged Networks(IEEE Std 802.1Q-2018)</title></title> <author><organization>IEEE 802.1</organization><organization>IEEE</organization> </author> <date month="July" year="2018"/> </front><format type="PDF" target="http://standards.ieee.org/about/get/"/><refcontent>IEEE Std 802.1Q-2018</refcontent> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8403927"/> </reference> <reference anchor="IEEEP8021CBcv"target="https://www.ieee802.org/1/files/private/cv-drafts/d0/802-1CBcv-d0-4.pdf">target="https://1.ieee802.org/tsn/802-1cbcv/"> <front><title>FRER<title>Draft Standard for Local and metropolitan area networks--Frame Replication and Elimination for Reliability--Amendment: Information Model, YANG Data Model and Management Information Base Module</title><author initials="S." surname="Kehrer" fullname="Stephan Kehrer"><author> <organization>IEEE 802.1</organization> </author> <datemonth="August" year="2020"/>month="February" year="2021"/> </front><seriesInfo name="IEEE P802.1CBcv /D0.4" value="P802.1CBcv"/> <format type="PDF" target="https://www.ieee802.org/1/files/private/cv-drafts/d0/802-1CBcv-d0-4.pdf"/><refcontent>IEEE P802.1CBcv, Draft 1.1</refcontent> </reference> </references> </references> <section anchor="acks" numbered="false" toc="default"> <name>Acknowledgements</name> <t> The authors wish to thank <contact fullname="Norman Finn"/>, <contact fullname="Lou Berger"/>, <contact fullname="Craig Gunther"/>, <contact fullname="Christophe Mangin"/>, and <contact fullname="Jouni Korhonen"/> for their various contributions to this work. </t> </section> </back> </rfc>