<?xml version="1.0"encoding="US-ASCII"?>encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY rfc2119 PUBLIC "" "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"> <!ENTITY rfc3031 PUBLIC "" "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3031.xml"> ]> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <?rfc toc="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc iprnotified="no"?> <?rfc strict="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?>"rfc2629-xhtml.ent"> <rfccategory="info"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-detnet-mpls-over-tsn-07" number="9037" ipr="trust200902"submissionType="IETF">submissionType="IETF" category="info" consensus="true" obsoletes="" updates="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 3.5.0 --> <front> <title abbrev="DetNet MPLS over TSN">DetNetDeterministic Networking (DetNet) Data Plane: MPLS over IEEE 802.1 Time-Sensitive Networking (TSN)</title> <seriesInfo name="RFC" value="9037"/> <author role="editor"fullname="Balázsfullname="Balázs Varga" initials="B." surname="Varga"> <organization>Ericsson</organization> <address> <postal> <street>Magyar Tudosok krt. 11.</street> <city>Budapest</city> <country>Hungary</country> <code>1117</code> </postal> <email>balazs.a.varga@ericsson.com</email> </address> </author> <authorfullname="Jánosfullname="János Farkas" initials="J." surname="Farkas"> <organization>Ericsson</organization> <address> <postal> <street>Magyar Tudosok krt. 11.</street> <city>Budapest</city> <country>Hungary</country> <code>1117</code> </postal> <email>janos.farkas@ericsson.com</email> </address> </author> <author fullname="Andrew G. Malis"initials="A.G."initials="A." surname="Malis"> <organization>Malis Consulting</organization> <address> <email>agmalis@gmail.com</email> </address> </author> <author fullname="Stewart Bryant" initials="S." surname="Bryant"> <organization>Futurewei Technologies</organization> <address><email>stewart.bryant@gmail.com</email><email>sb@stewartbryant.com</email> </address> </author> <date year="2021" month="June" /> <workgroup>DetNet</workgroup> <abstract> <t> This document specifies the Deterministic Networking (DetNet) MPLS data plane when operating over an IEEE 802.1 Time-Sensitive Networking (TSN) sub-network. This document does not define new procedures or processes. Whenever this document makes statements or recommendations,thesethey are taken from normative text in the referenced RFCs. </t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="sec_intro">anchor="sec_intro" numbered="true" toc="default"> <name>Introduction</name> <t> Deterministic Networking (DetNet) is a service that can be offered by a network to DetNet flows. DetNet provides these flows with low packet loss rate and assured maximum end-to-end delivery latency. General background and concepts of DetNet can be found in <xreftarget="RFC8655"/>.target="RFC8655" format="default"/>. </t> <t> The DetNetArchitecturearchitecture decomposesthe DetNet relatedDetNet-related data plane functions into two sub-layers: a service sub-layer and a forwarding sub-layer. The service sub-layer is used to provide DetNet service protection and reordering. The forwarding sub-layer is used to provide congestion protection (low loss, assured latency, and limited reordering) leveraging MPLS Traffic Engineering mechanisms. </t> <t> <xreftarget="RFC8964"/>target="RFC8964" format="default"/> specifies the DetNet data plane operation for an MPLS-basedPacket Switched Network (PSN). MPLS encapsulatedPSN. MPLS-encapsulated DetNet flows can be carried over network technologies that can provide theDetNet requiredDetNet-required level of service. This document focuses on the scenario where MPLS (DetNet) nodes are interconnected byaan IEEE 802.1 TSN sub-network. There is close cooperation between the IETF DetNetWGWorking Group and the IEEE 802.1TSN TG.Time-Sensitive Networking Task Group (TSN TG). </t> </section> <sectiontitle="Terminology">numbered="true" toc="default"> <name>Terminology</name> <sectiontitle="Termsnumbered="true" toc="default"> <name>Terms Used in ThisDocument">Document</name> <t> This document uses the terminology established in the DetNet architecture <xreftarget="RFC8655"/> andtarget="RFC8655" format="default"/> <xreftarget="RFC8964"/>. TSN specifictarget="RFC8964" format="default"/>. TSN-specific terms are defined in the TSN TG of the IEEE 802.1 Working Group. The reader is assumed to be familiar with these documents and their terminology. </t> </section> <sectiontitle="Abbreviations">numbered="true" toc="default"> <name>Abbreviations</name> <t> The following abbreviations are used in this document:<list style="hanging" hangIndent="14"> <t hangText="A-Label">Aggregation label,</t> <dl newline="false" spacing="normal" indent="14"> <dt>A-Label</dt> <dd>Aggregation label; a special case of anS-Label.</t> <t hangText="d-CW">DetNetS-Label.</dd> <dt>d-CW</dt> <dd>DetNet ControlWord.</t> <t hangText="DetNet">Deterministic Networking.</t> <t hangText="F-Label">ForwardingWord</dd> <dt>DetNet</dt> <dd>Deterministic Networking</dd> <dt>F-Label</dt> <dd>Forwarding label that identifies the LSP used by a DetNetflow.</t> <t hangText="FRER">Frameflow.</dd> <dt>FRER</dt> <dd>Frame Replication and Elimination for Redundancy (TSNfunction).</t> <t hangText="L2">Layer 2.</t> <t hangText="L3">Layer 3.</t> <t hangText="MPLS">Multiprotocolfunction)</dd> <dt>L2</dt> <dd>Layer 2</dd> <dt>L3</dt> <dd>Layer 3</dd> <dt>LSP</dt><dd>Label Switched Path</dd> <dt>MPLS</dt> <dd>Multiprotocol LabelSwitching.</t> <t hangText="PREOF">PacketSwitching</dd> <dt>PREOF</dt> <dd>Packet Replication,EliminationElimination, and OrderingFunctions.</t> <t hangText="PSN">PacketFunctions</dd> <dt>PSN</dt> <dd>Packet SwitchedNetwork.</t> <t hangText="PW">PseudoWire.</t> <t hangText="RSVP-TE">ResourceNetwork</dd> <dt>PW</dt> <dd>Pseudowire</dd> <dt>RSVP-TE</dt> <dd>Resource Reservation Protocol - TrafficEngineering.</t> <t hangText="S-Label">Service label.</t> <t hangText="TSN">Time-Sensitive Network.</t> </list> </t> </section> <!-- <section title="Requirements Language"> <t> The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t>Engineering</dd> <dt>S-Label</dt> <dd>Service label</dd> <dt>TSN</dt> <dd>Time-Sensitive Networking</dd> </dl> </section>--></section><!-- end of terminology --><sectiontitle="DetNetanchor="sec_dt_dp" numbered="true" toc="default"> <name>DetNet MPLS Data PlaneOverview" anchor="sec_dt_dp">Overview</name> <t> The basic approach defined in <xreftarget="RFC8964"/>target="RFC8964" format="default"/> supports the DetNet service sub-layer based on existingpseudowire (PW)PW encapsulations andmechanisms,mechanisms and supports the DetNet forwarding sub-layer based on existing MPLS Traffic Engineering encapsulations and mechanisms. </t> <t> A nodeoperatingoperates on a DetNet flow in theDetnetDetNet service sub-layer,i.e.i.e., a node processing a DetNet packetwhichthat has theS-Labelservice label (S-Label) as the top of stack uses the local context associated with thatservice label (S-Label),S-Label, forexampleexample, a received forwarding label (F-Label), to determine what local DetNet operation(s)areis applied to that packet. An S-Label may be unique when taken from the platform label space <xreftarget="RFC3031"/>,target="RFC3031" format="default"/>, which would enable correct DetNet flow identification regardless of which input interface or LSP the packet arrives on. The service sub-layer functions (i.e., PREOF) use aDetNet control word (d-CW).d-CW. </t> <t> The DetNet MPLS data plane builds on MPLS Traffic Engineering encapsulations and mechanisms to provide a forwarding sub-layer that is responsible for providing resource allocation and explicit routes. The forwarding sub-layer is supported by one or more F-Labels. </t> <t> DetNet edge/relay nodes are DetNet servicesub-layer aware,sub-layer-aware, understand the particular needs of DetNetflowsflows, and provide both DetNet service and forwarding sub-layer functions. They add,removeremove, and process d-CWs,S-LabelsS-Labels, andF-labelsF-Labels as needed. MPLS DetNet nodes and transit nodes include DetNet forwarding sub-layer functions,notablynotable support for explicit routes, andresourcesresource allocation to eliminate (or reduce) congestion loss and jitter. Unlike other DetNet node types, transit nodes provide no service sub-layer processing. </t> <t> MPLS (DetNet) nodes and transit nodes interconnected by a TSN sub-network are the primary focus of this document. The mapping of DetNet MPLS flows to TSNstreamsStreams and TSN protection mechanisms are covered in <xreftarget="mpls-over-tsn"/>.target="mpls-over-tsn" format="default"/>. </t> </section><!-- end of data plane overview --> <!-- ===================================================================== --><section anchor="mpls-over-tsn"title="DetNetnumbered="true" toc="default"> <name>DetNet MPLS OperationOverover IEEE 802.1 TSNSub-Networks">Sub-networks</name> <t> The DetNet WG collaborates with IEEE 802.1 TSN in order to define a common architecture for both Layer 2 and Layer3,3 that maintains consistency across diverse networks. Both DetNet MPLS and TSN use the same techniques to provide their deterministic service:<list style="symbols"> <t></t> <ul spacing="normal"> <li> Serviceprotection. </t><t>protection </li> <li> Resourceallocation. </t><t>allocation </li> <li> Explicitroutes. </t> </list>routes </li> </ul> <t> As described in the DetNet architecture <xreftarget="RFC8655"/>target="RFC8655" format="default"/>, from the MPLS perspective, a sub-network providesfrom MPLS perspectiveasingle hopsingle-hop connection between MPLS (DetNet) nodes. Functions used for resource allocation and explicit routes are treated as domain internal functions and do not require function interworking across the DetNet MPLS network and the TSN sub-network. </t> <t> In the case of the service protectionfunctionfunction, due to the similarities of the DetNet PREOF and TSN FRERfunctionsfunctions, some level of interworking is possible. However, such interworking isout-of-scope inout of scope of this document and left for further study. </t> <t> <xreftarget="fig_mpls_detnet_to_tsn"/>target="fig_mpls_detnet_to_tsn" format="default"/> illustrates ascenario,scenario where two MPLS (DetNet) nodes are interconnected by a TSN sub-network. Node-1 issingle homedsingle-homed, and Node-2 is dual-homed to the TSN sub-network. </t> <figurealign="center" anchor="fig_mpls_detnet_to_tsn" title="DetNet Enabledanchor="fig_mpls_detnet_to_tsn"> <name>DetNet-Enabled MPLS NetworkOverover a TSNSub-Network"> <artwork><![CDATA[Sub-network</name> <artwork name="" type="" align="left" alt=""><![CDATA[ MPLS (DetNet) MPLS (DetNet) Node-1 Node-2 +----------+ +----------+ <--| Service* |-- DetNet flow ---| Service* |--> +----------+ +----------+ |Forwarding| |Forwarding| +--------.-+ <-TSN Str-> +-.-----.--+ \ ,-------. / / +----[TSN-Sub ]---+TSN Sub-]---+ / [Networknetwork ]--------+ `-------' <---------------- DetNet MPLS ---------------> Note: * no service sub-layer required for transit nodes ]]></artwork> </figure> <t> At the time of this writing, theTime-Sensitive Networking (TSN) Task GroupTSN TG of the IEEE 802.1 Working Group have defined (and are defining) a number of amendments to <xreftarget="IEEE8021Q"/>target="IEEE8021Q" format="default"/> that provide zero congestion loss and bounded latency in bridged networks.FurthermoreFurthermore, <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> defines frame replication and elimination functions for reliability that should prove both compatible with and usefulto,to DetNet networks. All these functions have to identify flowsthosethat require TSN treatment (i.e., applying TSN functions during forwarding). </t> <t> TSN capabilities of the TSN sub-network are made available for MPLS (DetNet) flows via the protocol interworking function defined in Annex C.5 of <xreftarget="IEEE8021CB"/>.target="IEEE8021CB" format="default"/>. For example, when applied on the TSN edgeportport, it can convert an ingress unicast MPLS (DetNet) flow to use a specificLayer-2Layer 2 multicast destinationMACMedia Access Control (MAC) address and a VLAN, in order to direct the packet through a specific path inside the bridged network. A similar interworking function pair at the other end of the TSN sub-network would restore the packet to its originalLayer-2Layer 2 destination MAC address and VLAN. </t> <t>PlacementThe placement of TSN functions depends on the TSN capabilities of the nodes along the path. MPLS (DetNet)Nodesnodes may or may not support TSN functions. For a given TSN Stream (i.e., DetNetflow)flow), an MPLS (DetNet) node is treated as a Talker or a Listener inside the TSN sub-network. </t> <sectiontitle="Functionsnumbered="true" toc="default"> <name>Functions for DetNet Flow to TSN StreamMapping">Mapping</name> <t> Mapping of a DetNet MPLS flow to a TSN Stream is provided via the combination of a passive and an activestreamStream identification function that operate at the frame level. The passivestreamStream identification function is used to catch the MPLS label(s) of a DetNet MPLSflowflow, and the activestreamStream identification function is used to modify the Ethernet header according to the ID of the mapped TSN Stream. </t> <t> Clause 6.8 of <xreftarget="IEEEP8021CBdb"/>target="IEEEP8021CBdb" format="default"/> defines a Mask-and-Match Stream identification function that can be used as a passive function for MPLS DetNet flows. </t> <t> Clause 6.6 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> defines an Active Destination MAC and a VLAN Stream identificationfunction, whatfunction that can replace some Ethernet headerfieldsfields, namely (1) the destinationMAC-address,MAC address, (2) theVLAN-IDVLAN-ID, and (3) priority parameters with alternate values. Replacement is provided for the frame that is passed either down the stack from the upper layers or up the stack from the lower layers. </t> <t> Active Destination MAC and VLAN Stream identification can be used within a Talker to set flow identity or a Listener to recover the original addressing information. It can also be usedalsoin a TSN bridge that is providing translation as a proxy service for anEnd System.end system. </t> </section> <sectiontitle="TSN requirementsnumbered="true" toc="default"> <name>TSN Requirements of MPLS DetNetnodes">Nodes</name> <t> This section covers required behavior of a TSN-aware MPLS (DetNet) node using a TSN sub-network. The implementation of TSNpacket processingpacket-processing functions must be compliant with the relevant IEEE 802.1 standards. </t> <t> From the TSN sub-networkperspectiveperspective, MPLS (DetNet) nodes are treated as a Talker or Listener,thatwhich may be (1) TSN-unaware or (2) TSN-aware. </t> <t> In cases of TSN-unaware MPLS DetNetnodesnodes, the TSN relay nodes within the TSN sub-network must modify the Ethernet encapsulation of the DetNet MPLS flow (e.g., MAC translation, VLAN-ID setting,Sequencesequence number addition, etc.) to allow properTSN specificTSN-specific handling inside the sub-network. There are no requirements defined for TSN-unaware MPLS DetNet nodes in this document. </t> <t> MPLS (DetNet) nodesbeingthat are TSN-aware can be treated as a combination of a TSN-unaware Talker/Listener and a TSN-Relay, as shown in <xreftarget="fig_mpls_with_tsn"/>.target="fig_mpls_with_tsn" format="default"/>. In suchcasescases, the MPLS (DetNet) node must provide the TSNsub-network specificsub-network-specific Ethernet encapsulation over the link(s) towards the sub-network. </t> <figurealign="center" anchor="fig_mpls_with_tsn" title="MPLSanchor="fig_mpls_with_tsn"> <name>MPLS (DetNet) Node with TSNFunctions"> <artwork><![CDATA[Functions</name> <artwork name="" type="" align="left" alt=""><![CDATA[ MPLS (DetNet) Node <----------------------------------> +----------+ <--| Service* |-- DetNet flow ------------------ +----------+ |Forwarding| +----------+ +---------------+ | L2 | | L2 Relay with |<--- TSN --- | | | TSN function | Stream +-----.----+ +--.------.---.-+ \__________/ \ \______ \_________ TSN-unaware Talker / TSN-Bridge Listener Relay <----- TSN Sub-network ----- <------- TSN-aware Tlk/Lstn -------> Note: * no service sub-layer required for transit nodes ]]></artwork> </figure> <t> A TSN-aware MPLS (DetNet) node implementation must support the StreamIdentificationidentification TSN component for recognizing flows. </t> <t> A Stream identification component must be able to instantiate the followingfunctionsfunctions: (1) Active Destination MAC and VLAN Stream identification function, (2) Mask-and-Match Stream identificationfunctionfunction, and (3) the related managed objects in Clause 9 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> and <xreftarget="IEEEP8021CBdb"/>.target="IEEEP8021CBdb" format="default"/>. </t> <t> A TSN-aware MPLS (DetNet) node implementation must support the Sequencing function and the Sequence encode/decode function as defined inClauseClauses 7.4 and 7.6 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> in order for FRER to be used inside the TSN sub-network. </t> <t> The Sequence encode/decode function must support the Redundancy tag (R-TAG) format as per Clause 7.8 of <xreftarget="IEEE8021CB"/>.target="IEEE8021CB" format="default"/>. </t> <t> A TSN-aware MPLS (DetNet) node implementation must support the Stream splitting function and the Individual recovery function as defined inClause 7.7 andClauses 7.5 and 7.7 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> in order for that node to be a replication or elimination point for FRER. </t> </section> <sectiontitle="Service protectionnumbered="true" toc="default"> <name>Service Protection within the TSNsub-network">Sub-network</name> <t> TSN Streams supporting DetNet flows may useFrame Replication and Elimination for Redundancy (FRER)FRER as defined in Clause8.8 of <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/> based on the loss service requirements of the TSN Stream, which is derived from the DetNet service requirements of the DetNet mapped flow. The specific operation of FRER is not modified by the use of DetNet and follows <xreftarget="IEEE8021CB"/>.target="IEEE8021CB" format="default"/>. </t> <t> FRER function and the provided service recovery is available only within the TSN sub-network as the TSN Stream-ID and the TSN sequence number are not valid outside the sub-network. An MPLS (DetNet) node representsaan L3borderborder, and assuchsuch, it terminates all related information elements encoded in the L2 frames. </t> <t> As the Stream-ID and the TSN sequence number are paired withthesimilar MPLS flow parameters, FRER can be combined with PREOF functions. Such service protection interworking scenarios may requireto movemoving sequence number fields among TSN (L2) and PW (MPLS)encapsulationsencapsulations, and they are left for further study. </t> </section> <sectiontitle="Aggregationnumbered="true" toc="default"> <name>Aggregation during DetNetflowFlow to TSN Streammapping">Mapping</name> <t> Implementation of this document shall use management and control information to map a DetNet flow to a TSN Stream. N:1 mapping (aggregating DetNet flows in a single TSN Stream) shall be supported. The management or control function that provisions flow mapping shall ensure that adequate resources are allocated and configured to provide proper service requirements of the mapped flows. </t> </section> </section><!-- ============================================================= --><sectiontitle="Managementnumbered="true" toc="default"> <name>Management and ControlImplications">Implications</name> <t> Information related to DetNet flow and TSN Stream mappingrelated information areis required only for TSN-aware MPLS (DetNet) nodes. From theData Plane perspectivedata plane perspective, there is no practical difference based on the origin offlow mapping relatedflow-mapping-related information (management plane or control plane). </t> <t> The following summarizes the set of information that is needed to configure DetNet MPLS over TSN:<list style="symbols"> <t>DetNet MPLS related</t> <ul spacing="normal"> <li>DetNet MPLS-related configuration information according to the DetNet role of the DetNet MPLS node, as per <xreftarget="RFC8964"/>. </t> <t>TSN relatedtarget="RFC8964" format="default"/>. </li> <li>TSN-related configuration information according to the TSN role of the DetNet MPLS node, as per <xreftarget="IEEE8021Q"/>,target="IEEE8021Q" format="default"/>, <xreftarget="IEEE8021CB"/>target="IEEE8021CB" format="default"/>, and <xreftarget="IEEEP8021CBdb"/>. </t> <t>Mappingtarget="IEEEP8021CBdb" format="default"/>. </li> <li>Mapping between a DetNet MPLS flow(s) (label information:A-labels, S-labelsA-Labels, S-Labels, andF-labelsF-Labels as defined in <xreftarget="RFC8964"/>)target="RFC8964" format="default"/>) and a TSN Stream(s) (asstreamStream identification information defined in <xreftarget="IEEEP8021CBdb"/>). Note,target="IEEEP8021CBdb" format="default"/>). Note that managed objects for TSN Stream identification can be found in <xreftarget="IEEEP8021CBcv"/>. </t> </list>target="IEEEP8021CBcv" format="default"/>. </li> </ul> <t> This information must be provisioned per DetNet flow. </t> <t> Mappings between DetNet and TSN management and control planes are out of scope ofthethis document. Some of the challenges are highlighted below. </t> <t> TSN-aware MPLS DetNet nodes are members of both the DetNet domain and the TSN sub-network. Within the TSNsub-networksub-network, the TSN-aware MPLS (DetNet) node has a TSN-aware Talker/Listener role, soTSN specificTSN-specific management and control plane functionalities must be implemented. There are many similarities in the management plane techniques used in DetNet and TSN, but that is not the case for the control plane protocols. For example, RSVP-TE andMSRP (Multiplethe Multiple Stream RegistrationProtocol) behavesProtocol (MSRP) behave differently.ThereforeTherefore, management and control plane designis anare importantaspectaspects ofscenarios,scenarios where mapping between DetNet and TSN is required. </t> <t> In order to use a TSN sub-network between DetNet nodes,DetNet specificDetNet-specific information must be converted toTSN sub-networkinformation specificones.to the TSN sub-network. DetNet flow ID andflow relatedflow-related parameters/requirements must be converted to a TSN Stream ID andstream relatedstream-related parameters/requirements. Note that, as the TSN sub-network is just a portion of theend-2-endend-to-end DetNet path (i.e., a single hop from the MPLS perspective), some parameters (e.g., delay) may differ significantly. Other parameters (like bandwidth) also may have to be tuned due to the L2 encapsulation used within the TSN sub-network. </t> <t> In somecasescases, it may be challenging to determine someTSN Stream relatedTSN-Stream-related information. For example, on a TSN-aware MPLS (DetNet) node that acts as a Talker, it is quite obvious which DetNet node is the Listener of the mapped TSNstreamStream (i.e., the MPLSNext-Hop). Howevernext hop). However, it may be not trivial to locate the point/interface where that Listener is connected to the TSN sub-network. Such attributes may require interaction between control and management plane functions and between DetNet and TSN domains. </t> <t> Mapping between DetNet flow identifiers and TSN Stream identifiers, if not provided explicitly, can be done by a TSN-aware MPLS (DetNet) node locally based on information provided for configuration of the TSN Stream identification functions(Mask-and-match(Mask-and-Match Stream identification andActiveactive Streamidentification function).identification). </t> <t> Triggering the setup/modification of a TSN Stream in the TSN sub-network is an example where management and/or control plane interactions are required between the DetNet and TSN sub-network. TSN-unaware MPLS (DetNet) nodes make such a triggering even more complicated as they are fully unaware of the sub-network and run independently. </t> <t> Configuration ofTSN specificTSN-specific functions (e.g., FRER) inside the TSN sub-network is aTSN domain specificTSN-domain-specific decision and may not be visible in the DetNet domain. Service protection interworking scenarios are left for further study. </t> </section><!-- ===================================================================== --><sectiontitle="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t> Security considerations for DetNet are described in detail in <xreftarget="I-D.ietf-detnet-security"/>.target="I-D.ietf-detnet-security" format="default"/>. General security considerations are described in <xreftarget="RFC8655"/>.target="RFC8655" format="default"/>. Considerations specific to the DetNet MPLS data planespecific considerationsare summarized in <xreftarget="RFC8964"/>.target="RFC8964" format="default"/>. This section considers exclusively security considerationswhichthat are specific to the DetNet MPLS over TSN sub-network scenario. </t> <t> The sub-network between DetNet nodes needs to be subject to appropriate confidentiality. Additionally, knowledge of what DetNet/TSN services are provided by a sub-network may supply information that can be used in a variety of security attacks. The ability to modify information exchanges between connected DetNet nodes may result in bogus operations. Therefore, it is important that the interface between DetNet nodes and the TSN sub-network are subject to authorization, authentication, and encryption. </t> <t> The TSN sub-network operates atLayer-2Layer 2, so various security mechanisms defined by IEEE can be used to secure the connection between the DetNet nodes (e.g., encryption may be provided usingMACSecMACsec <xreftarget="IEEE802.1AE-2018"/>).target="IEEE802.1AE-2018" format="default"/>). </t> </section> <section anchor="iana"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <t> This documentmakeshas no IANArequests. </t> </section> <section anchor="acks" title="Acknowledgements"> <t> The authors wish to thank Norman Finn, Lou Berger, Craig Gunther, Christophe Mangin and Jouni Korhonen for their various contributions to this work.actions. </t> </section> </middle> <back><references title="Normative References"> <!-- &rfc2119; --> <?rfc include="reference.RFC.3031"?> <!-- <?rfc include="reference.RFC.8174"?> --> <?rfc include="reference.RFC.8655"?> <?rfc include="reference.RFC.8964"?><displayreference target="I-D.ietf-detnet-security" to="DETNET-SECURITY"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3031.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8655.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8964.xml"/> <reference anchor="IEEE8021CB"target="http://standards.ieee.org/about/get/">target="https://ieeexplore.ieee.org/document/8091139"> <front><title>Standard<title>IEEE Standard for Local and metropolitan areanetworks - Framenetworks--Frame Replication and Elimination forReliability (IEEE Std 802.1CB-2017)</title>Reliability</title> <author><organization>IEEE 802.1</organization><organization>IEEE</organization> </author> <date month="October" year="2017"/> </front><format type="PDF" target="http://standards.ieee.org/about/get/"/><seriesInfo name="DOI" value="10.1109/IEEESTD.2017.8091139"/> <refcontent>IEEE Std 802.1CB-2017</refcontent> </reference> <reference anchor="IEEEP8021CBdb"target="http://www.ieee802.org/1/files/private/db-drafts/d1/802-1CBdb-d1-0.pdf">target="https://1.ieee802.org/tsn/802-1cbdb/"> <front><title>Extended<title>Draft Standard for Local and metropolitan area networks -— Frame Replication and Elimination for Reliability -— Amendment: Extended Streamidentification functions</title> <author initials="C. M." surname="Mangin" fullname="Christophe Mangin"> <organization>IEEE 802.1</organization>Identification Functions</title> <author> <organization>IEEE</organization> </author> <datemonth="September" year="2020"/>month="April" year="2021"/> </front><seriesInfo name="IEEE<refcontent>IEEE P802.1CBdb/D1.0" value="P802.1CBdb"/> <format type="PDF" target="http://www.ieee802.org/1/files/private/db-drafts/d1/802-1CBdb-d1-0.pdf"/>/ D1.3</refcontent> </reference> </references><references title="Informative References"><references> <name>Informative References</name> <!--<?rfc include="reference.I-D.ietf-detnet-ip"?>[I-D.ietf-detnet-security-15] RFC-EDITOR --><?rfc include="reference.I-D.ietf-detnet-security"?><xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-detnet-security.xml"/> <reference anchor="IEEE802.1AE-2018" target="https://ieeexplore.ieee.org/document/8585421"> <front> <title>IEEEStd 802.1AE-2018 MAC Security (MACsec)</title>Standard for Local and metropolitan area networks-Media Access Control (MAC) Security</title> <author><organization>IEEE Standards Association</organization><organization>IEEE</organization> </author> <dateyear="2018" />month="December" year="2018"/> </front> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8585421"/> <refcontent>IEEE Std 802.1AE-2018</refcontent> </reference> <reference anchor="IEEE8021Q"target="http://standards.ieee.org/about/get/">target="https://ieeexplore.ieee.org/document/8403927/"> <front><title>Standard<title>IEEE Standard for Local and metropolitan area networks--Bridges and BridgedNetworks (IEEE Std 802.1Q-2018)</title>Networks</title> <author><organization>IEEE 802.1</organization><organization>IEEE</organization> </author> <date month="July" year="2018"/> </front><format type="PDF" target="http://standards.ieee.org/about/get/"/><seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8403927"/> <refcontent>IEEE Std 802.1Q-2018</refcontent> </reference> <reference anchor="IEEEP8021CBcv"target="https://www.ieee802.org/1/files/private/cv-drafts/d0/802-1CBcv-d0-4.pdf">target="https://1.ieee802.org/tsn/802-1cbcv/"> <front><title>FRER<title>Draft Standard for Local and metropolitan area networks -- Frame Replication and Elimination for Reliability -- Amendment: Information Model, YANG Data Model and Management Information Base Module</title><author initials="S." surname="Kehrer" fullname="Stephan Kehrer"><author> <organization>IEEE 802.1</organization> </author> <datemonth="August" year="2020"/>month="February" year="2021"/> </front><seriesInfo name="IEEE P802.1CBcv /D0.4" value="P802.1CBcv"/> <format type="PDF" target="https://www.ieee802.org/1/files/private/cv-drafts/d0/802-1CBcv-d0-4.pdf"/><refcontent>IEEE P802.1CBcv, Draft 1.1</refcontent> </reference> </references> </references> <section anchor="acks" numbered="false" toc="default"> <name>Acknowledgements</name> <t> The authors wish to thank <contact fullname="Norman Finn"/>, <contact fullname="Lou Berger"/>, <contact fullname="Craig Gunther"/>, <contact fullname="Christophe Mangin"/>, and <contact fullname="Jouni Korhonen"/> for their various contributions to this work. </t> </section> </back> </rfc>