<?xml version='1.0' encoding='utf-8'?><!DOCTYPE rfc SYSTEM "rfc2629-xhtml.ent" [ <!ENTITY SigSection "9.1"> <!ENTITY MacSection "9.2"> <!ENTITY ContentSection "9.3"> <!ENTITY KDFSection "9.4"> <!ENTITY CKeyDistributeSection "9.5"> <!ENTITY DirectDistribute "9.5.1"> <!ENTITY KeyWrap "9.5.2"> ]> <?rfc compact="yes"?> <?rfc subcompact="no"?> <?rfc toc="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?><rfc xmlns:xi="http://www.w3.org/2001/XInclude"ipr="trust200902"version="3" category="info"docName="draft-ietf-cose-rfc8152bis-algs-11"consensus="true" docName="draft-ietf-cose-rfc8152bis-algs-12" indexInclude="true" ipr="trust200902" number="9053" obsoletes="8152" prepTime="2022-08-24T13:41:43" scripts="Common,Latin" sortRefs="true" submissionType="IETF"version="3" consensus="true"> <!-- xml2rfc v2v3 conversion 2.24.0 -->symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en"> <link href="https://datatracker.ietf.org/doc/draft-ietf-cose-rfc8152bis-algs-12" rel="prev"/> <link href="https://dx.doi.org/10.17487/rfc9053" rel="alternate"/> <link href="urn:issn:2070-1721" rel="alternate"/> <front> <title abbrev="COSEAlgorithms"> CBORAlgorithms">CBOR ObjectSigning and Encryption (COSE):Signing and Encryption (COSE): InitialAlgorithms </title>Algorithms</title> <seriesInfoname="Internet-Draft" value="draft-ietf-cose-rfc8152bis-algs-11"/>name="RFC" value="9053" stream="IETF"/> <author initials="J." surname="Schaad" fullname="Jim Schaad"><organization>August<organization showOnFrontPage="true">August Cellars</organization> <address><email>ietf@augustcellars.com</email></address> </author><date/><date month="08" year="2022"/> <area>Security</area> <workgroup>COSE Working Group</workgroup><abstract> <t><keyword>Object Security</keyword> <keyword>COSE</keyword> <keyword>Constrained Devices</keyword> <keyword>AES</keyword> <keyword>AES-GCM</keyword> <keyword>AES-CCM</keyword> <keyword>ECDSA</keyword> <keyword>EdDSA</keyword> <keyword>ECC</keyword> <keyword>HSS-LMS</keyword> <keyword>AES-KW</keyword> <keyword>ECDH</keyword> <keyword>HMAC</keyword> <keyword>CMAC</keyword> <keyword>Cryptography</keyword> <abstract pn="section-abstract"> <t indent="0" pn="section-abstract-1"> Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a needfor the abilitytohavebe able to define basic security servicesdefinedfor this data format.THisThis document defines a set of algorithms that can be used with the CBOR Object Signing and Encryption (COSE) protocol (RFC 9052). </t> <t indent="0" pn="section-abstract-2"> This document, along with RFCXXXX. <!-- <xref target="I-D.ietf-cose-rfc8152bis-struct"/>.-->9052, obsoletes RFC 8152. </t> </abstract><note removeInRFC="true"> <name>Contributing<boilerplate> <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1"> <name slugifiedName="name-status-of-this-memo">Status of This Memo</name> <t indent="0" pn="section-boilerplate.1-1"> This document is not an Internet Standards Track specification; it is published for informational purposes. </t> <t indent="0" pn="section-boilerplate.1-2"> This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841. </t> <t indent="0" pn="section-boilerplate.1-3"> Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <eref target="https://www.rfc-editor.org/info/rfc9053" brackets="none"/>. </t> </section> <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2"> <name slugifiedName="name-copyright-notice">Copyright Notice</name> <t indent="0" pn="section-boilerplate.2-1"> Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved. </t> <t indent="0" pn="section-boilerplate.2-2"> This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of publication of thisdocument</name> <!-- RFC EDITOR -document. Pleaseremovereview these documents carefully, as they describe your rights and restrictions with respect to thisnote before publishing --> <t> The source fordocument. Code Components extracted from thisdraft is being maintained in GitHub. Suggested changes should be submitteddocument must include Revised BSD License text aspull requests at <eref target="https://github.com/cose-wg/cose-rfc8152bis"/>. Instructionsdescribed in Section 4.e of the Trust Legal Provisions and areon that pageprovided without warranty aswell. Editorial changes can be manageddescribed inGitHub, but any substantial issues need to be discussed ontheCOSE mailing list.Revised BSD License. </t></note></section> </boilerplate> <toc> <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1"> <name slugifiedName="name-table-of-contents">Table of Contents</name> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1"> <li pn="section-toc.1-1.1"> <t indent="0" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.1.2"> <li pn="section-toc.1-1.1.2.1"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.2.1.1"><xref derivedContent="1.1" format="counter" sectionFormat="of" target="section-1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-requirements-terminology">Requirements Terminology</xref></t> </li> <li pn="section-toc.1-1.1.2.2"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.2.2.1"><xref derivedContent="1.2" format="counter" sectionFormat="of" target="section-1.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-changes-from-rfc-8152">Changes from RFC 8152</xref></t> </li> <li pn="section-toc.1-1.1.2.3"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.2.3.1"><xref derivedContent="1.3" format="counter" sectionFormat="of" target="section-1.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-document-terminology">Document Terminology</xref></t> </li> <li pn="section-toc.1-1.1.2.4"> <t indent="0" pn="section-toc.1-1.1.2.4.1"><xref derivedContent="1.4" format="counter" sectionFormat="of" target="section-1.4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-cddl-grammar-for-cbor-data-">CDDL Grammar for CBOR Data Structures</xref></t> </li> <li pn="section-toc.1-1.1.2.5"> <t indent="0" pn="section-toc.1-1.1.2.5.1"><xref derivedContent="1.5" format="counter" sectionFormat="of" target="section-1.5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-examples">Examples</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.2"> <t indent="0" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-signature-algorithms">Signature Algorithms</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.2.2"> <li pn="section-toc.1-1.2.2.1"> <t indent="0" pn="section-toc.1-1.2.2.1.1"><xref derivedContent="2.1" format="counter" sectionFormat="of" target="section-2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-ecdsa">ECDSA</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.2.2.1.2"> <li pn="section-toc.1-1.2.2.1.2.1"> <t indent="0" pn="section-toc.1-1.2.2.1.2.1.1"><xref derivedContent="2.1.1" format="counter" sectionFormat="of" target="section-2.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for">Security Considerations for ECDSA</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.2.2.2"> <t indent="0" pn="section-toc.1-1.2.2.2.1"><xref derivedContent="2.2" format="counter" sectionFormat="of" target="section-2.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-edwards-curve-digital-signa">Edwards-Curve Digital Signature Algorithm (EdDSA)</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.2.2.2.2"> <li pn="section-toc.1-1.2.2.2.2.1"> <t indent="0" pn="section-toc.1-1.2.2.2.2.1.1"><xref derivedContent="2.2.1" format="counter" sectionFormat="of" target="section-2.2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for-">Security Considerations for EdDSA</xref></t> </li> </ul> </li> </ul> </li> <li pn="section-toc.1-1.3"> <t indent="0" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-message-authentication-code">Message Authentication Code (MAC) Algorithms</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2"> <li pn="section-toc.1-1.3.2.1"> <t indent="0" pn="section-toc.1-1.3.2.1.1"><xref derivedContent="3.1" format="counter" sectionFormat="of" target="section-3.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-hash-based-message-authenti">Hash-Based Message Authentication Codes (HMACs)</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.1.2"> <li pn="section-toc.1-1.3.2.1.2.1"> <t indent="0" pn="section-toc.1-1.3.2.1.2.1.1"><xref derivedContent="3.1.1" format="counter" sectionFormat="of" target="section-3.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for-h">Security Considerations for HMAC</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.3.2.2"> <t indent="0" pn="section-toc.1-1.3.2.2.1"><xref derivedContent="3.2" format="counter" sectionFormat="of" target="section-3.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-aes-message-authentication-">AES Message Authentication Code (AES-CBC-MAC)</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.2.2"> <li pn="section-toc.1-1.3.2.2.2.1"> <t indent="0" pn="section-toc.1-1.3.2.2.2.1.1"><xref derivedContent="3.2.1" format="counter" sectionFormat="of" target="section-3.2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for-a">Security Considerations for AES-CBC-MAC </xref></t> </li> </ul> </li> </ul> </li> <li pn="section-toc.1-1.4"> <t indent="0" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-content-encryption-algorith">Content Encryption Algorithms</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2"> <li pn="section-toc.1-1.4.2.1"> <t indent="0" pn="section-toc.1-1.4.2.1.1"><xref derivedContent="4.1" format="counter" sectionFormat="of" target="section-4.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-aes-gcm">AES-GCM</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2.1.2"> <li pn="section-toc.1-1.4.2.1.2.1"> <t indent="0" pn="section-toc.1-1.4.2.1.2.1.1"><xref derivedContent="4.1.1" format="counter" sectionFormat="of" target="section-4.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for-ae">Security Considerations for AES-GCM</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.4.2.2"> <t indent="0" pn="section-toc.1-1.4.2.2.1"><xref derivedContent="4.2" format="counter" sectionFormat="of" target="section-4.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-aes-ccm">AES-CCM</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2.2.2"> <li pn="section-toc.1-1.4.2.2.2.1"> <t indent="0" pn="section-toc.1-1.4.2.2.2.1.1"><xref derivedContent="4.2.1" format="counter" sectionFormat="of" target="section-4.2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for-aes">Security Considerations for AES-CCM</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.4.2.3"> <t indent="0" pn="section-toc.1-1.4.2.3.1"><xref derivedContent="4.3" format="counter" sectionFormat="of" target="section-4.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-chacha20-and-poly1305">ChaCha20 and Poly1305</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2.3.2"> <li pn="section-toc.1-1.4.2.3.2.1"> <t indent="0" pn="section-toc.1-1.4.2.3.2.1.1"><xref derivedContent="4.3.1" format="counter" sectionFormat="of" target="section-4.3.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations-for-c">Security Considerations for ChaCha20/Poly1305</xref></t> </li> </ul> </li> </ul> </li> <li pn="section-toc.1-1.5"> <t indent="0" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-key-derivation-functions-kd">Key Derivation Functions (KDFs)</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.5.2"> <li pn="section-toc.1-1.5.2.1"> <t indent="0" pn="section-toc.1-1.5.2.1.1"><xref derivedContent="5.1" format="counter" sectionFormat="of" target="section-5.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-hmac-based-extract-and-expa">HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)</xref></t> </li> <li pn="section-toc.1-1.5.2.2"> <t indent="0" pn="section-toc.1-1.5.2.2.1"><xref derivedContent="5.2" format="counter" sectionFormat="of" target="section-5.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-context-information-structu">Context Information Structure</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.6"> <t indent="0" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-content-key-distribution-me">Content Key Distribution Methods</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2"> <li pn="section-toc.1-1.6.2.1"> <t indent="0" pn="section-toc.1-1.6.2.1.1"><xref derivedContent="6.1" format="counter" sectionFormat="of" target="section-6.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-direct-encryption">Direct Encryption</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2.1.2"> <li pn="section-toc.1-1.6.2.1.2.1"> <t indent="0" pn="section-toc.1-1.6.2.1.2.1.1"><xref derivedContent="6.1.1" format="counter" sectionFormat="of" target="section-6.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-direct-key">Direct Key</xref></t> </li> <li pn="section-toc.1-1.6.2.1.2.2"> <t indent="0" pn="section-toc.1-1.6.2.1.2.2.1"><xref derivedContent="6.1.2" format="counter" sectionFormat="of" target="section-6.1.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-direct-key-with-kdf">Direct Key with KDF</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.6.2.2"> <t indent="0" pn="section-toc.1-1.6.2.2.1"><xref derivedContent="6.2" format="counter" sectionFormat="of" target="section-6.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-key-wrap">Key Wrap</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2.2.2"> <li pn="section-toc.1-1.6.2.2.2.1"> <t indent="0" pn="section-toc.1-1.6.2.2.2.1.1"><xref derivedContent="6.2.1" format="counter" sectionFormat="of" target="section-6.2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-aes-key-wrap">AES Key Wrap</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.6.2.3"> <t indent="0" pn="section-toc.1-1.6.2.3.1"><xref derivedContent="6.3" format="counter" sectionFormat="of" target="section-6.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-direct-key-agreement">Direct Key Agreement</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2.3.2"> <li pn="section-toc.1-1.6.2.3.2.1"> <t indent="0" pn="section-toc.1-1.6.2.3.2.1.1"><xref derivedContent="6.3.1" format="counter" sectionFormat="of" target="section-6.3.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-direct-ecdh">Direct ECDH</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.6.2.4"> <t indent="0" pn="section-toc.1-1.6.2.4.1"><xref derivedContent="6.4" format="counter" sectionFormat="of" target="section-6.4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-key-agreement-with-key-wrap">Key Agreement with Key Wrap</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2.4.2"> <li pn="section-toc.1-1.6.2.4.2.1"> <t indent="0" pn="section-toc.1-1.6.2.4.2.1.1"><xref derivedContent="6.4.1" format="counter" sectionFormat="of" target="section-6.4.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-ecdh-with-key-wrap">ECDH with Key Wrap</xref></t> </li> </ul> </li> </ul> </li> <li pn="section-toc.1-1.7"> <t indent="0" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-key-object-parameters">Key Object Parameters</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.7.2"> <li pn="section-toc.1-1.7.2.1"> <t indent="0" pn="section-toc.1-1.7.2.1.1"><xref derivedContent="7.1" format="counter" sectionFormat="of" target="section-7.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-elliptic-curve-keys">Elliptic Curve Keys</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.7.2.1.2"> <li pn="section-toc.1-1.7.2.1.2.1"> <t indent="0" pn="section-toc.1-1.7.2.1.2.1.1"><xref derivedContent="7.1.1" format="counter" sectionFormat="of" target="section-7.1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-double-coordinate-curves">Double Coordinate Curves</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.7.2.2"> <t indent="0" pn="section-toc.1-1.7.2.2.1"><xref derivedContent="7.2" format="counter" sectionFormat="of" target="section-7.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-octet-key-pair">Octet Key Pair</xref></t> </li> <li pn="section-toc.1-1.7.2.3"> <t indent="0" pn="section-toc.1-1.7.2.3.1"><xref derivedContent="7.3" format="counter" sectionFormat="of" target="section-7.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-symmetric-keys">Symmetric Keys</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.8"> <t indent="0" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-cose-capabilities">COSE Capabilities</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.8.2"> <li pn="section-toc.1-1.8.2.1"> <t indent="0" pn="section-toc.1-1.8.2.1.1"><xref derivedContent="8.1" format="counter" sectionFormat="of" target="section-8.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-assignments-for-existing-al">Assignments for Existing Algorithms</xref></t> </li> <li pn="section-toc.1-1.8.2.2"> <t indent="0" pn="section-toc.1-1.8.2.2.1"><xref derivedContent="8.2" format="counter" sectionFormat="of" target="section-8.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-assignments-for-existing-ke">Assignments for Existing Key Types</xref></t> </li> <li pn="section-toc.1-1.8.2.3"> <t indent="0" pn="section-toc.1-1.8.2.3.1"><xref derivedContent="8.3" format="counter" sectionFormat="of" target="section-8.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-examples-2">Examples</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.9"> <t indent="0" pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-cbor-encoding-restrictions">CBOR Encoding Restrictions</xref></t> </li> <li pn="section-toc.1-1.10"> <t indent="0" pn="section-toc.1-1.10.1"><xref derivedContent="10" format="counter" sectionFormat="of" target="section-10"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.10.2"> <li pn="section-toc.1-1.10.2.1"> <t indent="0" pn="section-toc.1-1.10.2.1.1"><xref derivedContent="10.1" format="counter" sectionFormat="of" target="section-10.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-changes-to-the-cose-key-typ">Changes to the "COSE Key Types" Registry</xref></t> </li> <li pn="section-toc.1-1.10.2.2"> <t indent="0" pn="section-toc.1-1.10.2.2.1"><xref derivedContent="10.2" format="counter" sectionFormat="of" target="section-10.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-changes-to-the-cose-algorit">Changes to the "COSE Algorithms" Registry</xref></t> </li> <li pn="section-toc.1-1.10.2.3"> <t indent="0" pn="section-toc.1-1.10.2.3.1"><xref derivedContent="10.3" format="counter" sectionFormat="of" target="section-10.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-changes-to-the-cose-key-type">Changes to the "COSE Key Type Parameters" Registry</xref></t> </li> <li pn="section-toc.1-1.10.2.4"> <t indent="0" pn="section-toc.1-1.10.2.4.1"><xref derivedContent="10.4" format="counter" sectionFormat="of" target="section-10.4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-expert-review-instructions">Expert Review Instructions</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.11"> <t indent="0" pn="section-toc.1-1.11.1"><xref derivedContent="11" format="counter" sectionFormat="of" target="section-11"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t> </li> <li pn="section-toc.1-1.12"> <t indent="0" pn="section-toc.1-1.12.1"><xref derivedContent="12" format="counter" sectionFormat="of" target="section-12"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.12.2"> <li pn="section-toc.1-1.12.2.1"> <t indent="0" pn="section-toc.1-1.12.2.1.1"><xref derivedContent="12.1" format="counter" sectionFormat="of" target="section-12.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t> </li> <li pn="section-toc.1-1.12.2.2"> <t indent="0" pn="section-toc.1-1.12.2.2.1"><xref derivedContent="12.2" format="counter" sectionFormat="of" target="section-12.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.13"> <t indent="0" pn="section-toc.1-1.13.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgments">Acknowledgments</xref></t> </li> <li pn="section-toc.1-1.14"> <t indent="0" pn="section-toc.1-1.14.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-address">Author's Address</xref></t> </li> </ul> </section> </toc> </front> <middle> <sectionanchor="introduction"> <name>Introduction</name> <t>anchor="introduction" numbered="true" removeInRFC="false" toc="include" pn="section-1"> <name slugifiedName="name-introduction">Introduction</name> <t indent="0" pn="section-1-1"> There has been an increased focus on small, constrained devices that make up the Internet of Things (IoT). One of the standards that has come out of this process is "Concise Binary Object Representation (CBOR)" <xreftarget="RFC7049"/>.target="STD94" format="default" sectionFormat="of" derivedContent="STD94"/>. CBOR extended the data model of JavaScript Object Notation (JSON) <xreftarget="STD90"/>target="STD90" format="default" sectionFormat="of" derivedContent="STD90"/> by allowing for binary data, among other changes. CBORis beinghas been adopted by several of the IETF working groups dealing with the IoT world as theirencodingmethod of encoding data structures. CBOR was designed specifically to bebothsmall in terms of both messages transported and implementation size andbeto have a schema-free decoder. A need exists to provide message security services for IoT, and using CBOR as the message-encoding format makes sense. </t><t><t indent="0" pn="section-1-2"> The core COSE specification consists of two documents. <xreftarget="I-D.ietf-cose-rfc8152bis-struct"/>target="RFC9052" format="default" sectionFormat="of" derivedContent="RFC9052"/> contains the serialization structures and the procedures for using the different cryptographic algorithms. This document provides an initial set of algorithms for use with those structures. </t> <sectionanchor="requirements-terminology"> <name>Requirementsanchor="requirements-terminology" numbered="true" removeInRFC="false" toc="include" pn="section-1.1"> <name slugifiedName="name-requirements-terminology">Requirements Terminology</name><t><t indent="0" pn="section-1.1-1"> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14 <xref target="RFC2119"/>BCP 14 <xreftarget="RFC8174"/>target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xref target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section><section> <name>Changes<section numbered="true" removeInRFC="false" toc="include" pn="section-1.2"> <name slugifiedName="name-changes-from-rfc-8152">Changes fromRFC8152</name> <ul> <li> ExtractRFC 8152</name> <ul bare="false" empty="false" indent="3" spacing="normal" pn="section-1.2-1"> <li pn="section-1.2-1.1"> Extracted the sections dealing with specific algorithms and placed them into this document. The sections dealing with structure and general processing rules are placed in <xreftarget="I-D.ietf-cose-rfc8152bis-struct"/>.target="RFC9052" format="default" sectionFormat="of" derivedContent="RFC9052"/>. </li><li>Text<li pn="section-1.2-1.2">Made text clarifications and changes in terminology.</li> <li pn="section-1.2-1.3">Removed all of the details relating to countersignatures and placed them in <xref target="I-D.ietf-cose-countersign" format="default" sectionFormat="of" derivedContent="COUNTERSIGN"/>.</li> </ul> </section><section> <name>Document<section numbered="true" removeInRFC="false" toc="include" pn="section-1.3"> <name slugifiedName="name-document-terminology">Document Terminology</name><t>In<t indent="0" pn="section-1.3-1">In this document, we use the following terminology: </t><t>Byte is a<dl indent="3" newline="false" spacing="normal" pn="section-1.3-2"> <dt pn="section-1.3-2.1">Byte:</dt> <dd pn="section-1.3-2.2">A synonym foroctet.</t> <t>Constrainedoctet.</dd> <dt pn="section-1.3-2.3">Constrained Application Protocol(CoAP) is a(CoAP):</dt> <dd pn="section-1.3-2.4">A specialized web transfer protocol for use in constrained systems. It is defined in <xreftarget="RFC7252"/>. </t> <t> Authenticatedtarget="RFC7252" format="default" sectionFormat="of" derivedContent="RFC7252"/>.</dd> <dt pn="section-1.3-2.5">Authenticated Encryption (AE)<xref target="RFC5116"/>algorithmsare encryption<xref target="RFC5116" format="default" sectionFormat="of" derivedContent="RFC5116"/>: </dt> <dd pn="section-1.3-2.6">Encryption algorithms that provide an authentication check of the contents along with the encryption service. An example of an AE algorithm used in COSE is AES Key Wrap <xreftarget="RFC3394"/>.target="RFC3394" format="default" sectionFormat="of" derivedContent="RFC3394"/>. These algorithms are used for keyencryption algorithms,encryption, butAEAD algorithms would be preferred. </t> <t>Authenticated Encryption with Associated Data (AEAD) algorithms would be preferred. </dd> <dt pn="section-1.3-2.7">AEAD algorithms <xreftarget="RFC5116"/>target="RFC5116" format="default" sectionFormat="of" derivedContent="RFC5116"/>:</dt> <dd pn="section-1.3-2.8">Encryption algorithms that provide the same authentication service of the content as AE algorithmsdo. Theydo, and also allowforassociated datato be included in the authentication service, but whichthat is not part of the encryptedbody.body to be included in the authentication service. An example of an AEAD algorithm used in COSE is AES-GCM <xreftarget="RFC5116"/>.target="RFC5116" format="default" sectionFormat="of" derivedContent="RFC5116"/>. These algorithms are used for content encryption and can be used for key encryption as well.</t> <t>The</dd> </dl> <t indent="0" pn="section-1.3-3">The term'byte string'"byte string" is used for sequences of bytes, while the term'text string'"text string" is used for sequences of characters.</t><t><t indent="0" pn="section-1.3-4"> The tables for algorithms contain the following columns: </t><ul> <li>A<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-1.3-5"> <li pn="section-1.3-5.1">A name for the algorithm for use indocuments for the algorithms.</li> <li>documents.</li> <li pn="section-1.3-5.2"> The value used on the wire for the algorithm. One place this is used is the algorithm header parameter of a message. </li><li>A<li pn="section-1.3-5.3">A short description so that the algorithm can be easily identified when scanning the IANA registry.</li> </ul><t><t indent="0" pn="section-1.3-6"> Additional columns may be present inthea table depending on the algorithms. </t> </section><section> <name>CBOR Grammar</name> <t> At the time that <xref target="RFC8152"/><section numbered="true" removeInRFC="false" toc="include" pn="section-1.4"> <name slugifiedName="name-cddl-grammar-for-cbor-data-">CDDL Grammar for CBOR Data Structures</name> <t indent="0" pn="section-1.4-1"> When COSE wasinitially published,originally written, theCBORConcise Data Definition Language (CDDL) <xreftarget="RFC8610"/>target="RFC8610" format="default" sectionFormat="of" derivedContent="RFC8610"/> had not yet beenpublished. This document usespublished in an RFC, so it could not be used as the data description language to normatively describe the CBOR data structures employed by COSE. For that reason, the CBOR data objects defined here are described in prose. Additional (non-normative) descriptions of the COSE data objects are provided in avariantsubset ofCDDL which isCDDL, described in <xreftarget="I-D.ietf-cose-rfc8152bis-struct"/>.target="RFC9052" format="default" sectionFormat="of" derivedContent="RFC9052"/>. </t> </section> <sectionanchor="examples"> <name>Examples</name> <t>anchor="examples" numbered="true" removeInRFC="false" toc="include" pn="section-1.5"> <name slugifiedName="name-examples">Examples</name> <t indent="0" pn="section-1.5-1"> A GitHub project has been created at <xreftarget="GitHub-Examples"/>target="GitHub-Examples" format="default" sectionFormat="of" derivedContent="GitHub-Examples"/> that contains a set of testingexamples as well.examples. Each example is found in a JSON file that contains the inputs used to create the example, some of the intermediate values that can be used for debugging, and the output of the example. The results are encoded using both hexadecimal and CBOR diagnostic notation format. </t><t><t indent="0" pn="section-1.5-2"> Some of the examples are designed totest failure case;be failure-testing cases; these are clearly marked as such in the JSON file.If errors in the examples in this document are found, the examples on GitHub will be updated, and a note to that effect will be placed in the JSON file.</t> </section> </section> <sectionanchor="SigAlgs"> <name>Signatureanchor="SigAlgs" numbered="true" removeInRFC="false" toc="include" pn="section-2"> <name slugifiedName="name-signature-algorithms">Signature Algorithms</name><t> <relref section="&SigSection;" target="I-D.ietf-cose-rfc8152bis-struct"/><t indent="0" pn="section-2-1"> <xref section="8.1" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.1" derivedContent="RFC9052"/> contains a generic description of signature algorithms.TheThis document defines signature algorithm identifiers for two signature algorithms. </t> <sectionanchor="ECDSA"> <name>ECDSA</name> <t>ECDSAanchor="ECDSA" numbered="true" removeInRFC="false" toc="include" pn="section-2.1"> <name slugifiedName="name-ecdsa">ECDSA</name> <t indent="0" pn="section-2.1-1">The Elliptic Curve Digital Signature Algorithm (ECDSA) <xreftarget="DSS"/>target="DSS" format="default" sectionFormat="of" derivedContent="DSS"/> defines a signature algorithm usingECC.Elliptic Curve Cryptography (ECC). Implementations <bcp14>SHOULD</bcp14> use a deterministic version of ECDSA such as the one defined in <xreftarget="RFC6979"/>.target="RFC6979" format="default" sectionFormat="of" derivedContent="RFC6979"/>. The use of a deterministic signature algorithm allowsforsystems to avoid relying on random number generators in order to avoid generating the same value of'k'"k" (the per-message random value). Biased generation of the value'k'"k" can be attacked, and collisions of this valueleadslead to leaked keys. It additionally allowsfor doingperforming deterministic tests for the signature algorithm. The use of deterministic ECDSA does not lessen the need to have good random number generation when creating the private key. </t><t>The<t indent="0" pn="section-2.1-2">The ECDSA signature algorithm is parameterized with a hash function (h). In the event that the length of the hash function output is greater than the group of the key, the leftmost bytes of the hash output are used. </t><t>The<t indent="0" pn="section-2.1-3">The algorithms defined in this document can be found in <xreftarget="x-table_ecdsa"/>.target="x-table_ecdsa" format="default" sectionFormat="of" derivedContent="Table 1"/>. </t> <table anchor="x-table_ecdsa"align="center"> <name>ECDSAalign="center" pn="table-1"> <name slugifiedName="name-ecdsa-algorithm-values">ECDSA Algorithm Values</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Hash</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Hash</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>ES256</td> <td>-7</td> <td>SHA-256</td> <td>ECDSA<td align="left" colspan="1" rowspan="1">ES256</td> <td align="center" colspan="1" rowspan="1">-7</td> <td align="left" colspan="1" rowspan="1">SHA-256</td> <td align="left" colspan="1" rowspan="1">ECDSA w/ SHA-256</td> </tr> <tr><td>ES384</td> <td>-35</td> <td>SHA-384</td> <td>ECDSA<td align="left" colspan="1" rowspan="1">ES384</td> <td align="center" colspan="1" rowspan="1">-35</td> <td align="left" colspan="1" rowspan="1">SHA-384</td> <td align="left" colspan="1" rowspan="1">ECDSA w/ SHA-384</td> </tr> <tr><td>ES512</td> <td>-36</td> <td>SHA-512</td> <td>ECDSA<td align="left" colspan="1" rowspan="1">ES512</td> <td align="center" colspan="1" rowspan="1">-36</td> <td align="left" colspan="1" rowspan="1">SHA-512</td> <td align="left" colspan="1" rowspan="1">ECDSA w/ SHA-512</td> </tr> </tbody> </table><t>This<t indent="0" pn="section-2.1-5">This document defines ECDSAto workas working only with the curves P-256, P-384, and P-521. This document requires that the curves be encoded using the'EC2'"EC2" (two coordinate elliptic curve) key type. Implementations need to check that the key type and curve are correct when creating and verifying a signature. Future documents may define it to work with other curves andpointskey types in the future. </t><t>In<t indent="0" pn="section-2.1-6">In order to promote interoperability, it is suggested that SHA-256 be used only with curve P-256, SHA-384 be used only with curve P-384, and SHA-512 be used only with curve P-521. This is aligned with the recommendation inSection 4 of<xreftarget="RFC5480"/>. </t> <t>target="RFC5480" section="4" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc5480#section-4" derivedContent="RFC5480"/>. </t> <t indent="0" pn="section-2.1-7"> The signature algorithm results in a pair of integers (R, S). These integers will be the same length as the length of the key used for the signature process. The signature is encoded by converting the integers into byte strings of the same length as the key size. The length is rounded up to the nearest byte and is left padded with zero bits to get to the correct length. The two integers are then concatenated together to form a byte string that is the resulting signature. </t><t><t indent="0" pn="section-2.1-8"> Using the function defined in <xreftarget="RFC8017"/>,target="RFC8017" format="default" sectionFormat="of" derivedContent="RFC8017"/>, the signature is: </t><t><t indent="0" pn="section-2.1-9"> Signature = I2OSP(R, n) | I2OSP(S, n) </t><t><t indent="0" pn="section-2.1-10"> where n = ceiling(key_length / 8) </t><t>When<t indent="0" pn="section-2.1-11">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-2.1-12"> <li pn="section-2.1-12.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'EC2'.</li> <li>If"EC2".</li> <li pn="section-2.1-12.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the ECDSA signature algorithm being used.</li><li>If<li pn="section-2.1-12.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'sign'"sign" when creating an ECDSA signature.</li><li>If<li pn="section-2.1-12.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'verify'"verify" when verifying an ECDSA signature.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-2.1.1"> <name slugifiedName="name-security-considerations-for">Security Considerations for ECDSA</name><t>The<t indent="0" pn="section-2.1.1-1">The security strength of the signature is no greater than the minimum of the security strength associated with the bit length of the key and the security strength of the hash function. </t><t><t indent="0" pn="section-2.1.1-2"> Note: Use of a deterministic signature technique is a good idea even when good random number generation exists. Doing so both reduces the possibility of having the same value of'k'"k" in two signature operations and allows for reproducible signature values, which helps testing. There have been recent attacks involving faulting the device in order to extract the key. This can be addressed by combining both randomness and determinism <xreftarget="I-D.mattsson-cfrg-det-sigs-with-noise"/>. </t> <t>Theretarget="I-D.mattsson-cfrg-det-sigs-with-noise" format="default" sectionFormat="of" derivedContent="CFRG-DET-SIGS"/>. </t> <t indent="0" pn="section-2.1.1-3">There are two substitution attacks that can theoretically be mounted against the ECDSA signature algorithm. </t><ul> <li>Changing<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-2.1.1-4"> <li pn="section-2.1.1-4.1">Changing the curve used to validate the signature: If one changes the curve used to validate the signature, then potentially one could have two messages with the same signature, each computed under a different curve. The onlyrequirementrequirements on the new curveisare that its order be the same as the old one and that it be acceptable to the client. An example would be to change from using the curve secp256r1 (aka P-256) to using secp256k1. (Both are 256-bit curves.) We currently do not have any way to deal with this version of the attack except to restrict the overall set of curves that can be used. </li><li>Change<li pn="section-2.1.1-4.2">Changing the hash function used to validate the signature: If one either has two different hash functions of the same length or can truncate a hash function, then one could potentially find collisions between the hash functions rather than within a single hashfunction (forfunction. For example, truncating SHA-512 to 256 bits might collide with a SHA-256 bit hashvalue).value. As the hash algorithm is part of the signature algorithm identifier, this attack is mitigated by including a signature algorithm identifier in theprotected headerprotected-header bucket. </li> </ul> </section> </section><section> <name>Edwards-Curve<section numbered="true" removeInRFC="false" toc="include" pn="section-2.2"> <name slugifiedName="name-edwards-curve-digital-signa">Edwards-Curve Digital SignatureAlgorithms (EdDSAs)</name> <t><xref target="RFC8032"/>Algorithm (EdDSA)</name> <t indent="0" pn="section-2.2-1"><xref target="RFC8032" format="default" sectionFormat="of" derivedContent="RFC8032"/> describes the elliptic curve signature scheme Edwards-curve Digital Signature Algorithm (EdDSA). In that document, the signature algorithm is instantiated using parameters for the edwards25519 and edwards448 curves. The document additionally describes two variants of the EdDSA algorithm: Pure EdDSA, where no hash function is applied to the content before signing, and HashEdDSA, where a hash function is applied to the content before signing and the result of that hash function is signed. For EdDSA, the content to be signed (either the message or thepre-hashprehash value) is processed twice inside of the signature algorithm. For use with COSE, only the pure EdDSA version is used. This is because it is not expected that extremely large contents are going to be needed and, based on the arrangement of the message structure, the entire message is going to need to be held in memory in order to create or verify a signature.This means thatTherefore, there does not appear to be a need to be able to do block updates of the hash, followed by eliminating the message from memory. Applications can provide the same features by defining the content of the message as a hash value and transporting the COSE object (with the hash value) and the content as separate items. </t><t>The algorithms<t indent="0" pn="section-2.2-2">The algorithm defined in this document can be found in <xreftarget="x-table-eddsa-algs"/>.target="x-table-eddsa-algs" format="default" sectionFormat="of" derivedContent="Table 2"/>. A single signature algorithm is defined, which can be used for multiple curves. </t> <table anchor="x-table-eddsa-algs"align="center"> <name>EdDSAalign="center" pn="table-2"> <name slugifiedName="name-eddsa-algorithm-value">EdDSA AlgorithmValues</name>Value</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>EdDSA</td> <td>-8</td> <td>EdDSA</td><td align="left" colspan="1" rowspan="1">EdDSA</td> <td align="center" colspan="1" rowspan="1">-8</td> <td align="left" colspan="1" rowspan="1">EdDSA</td> </tr> </tbody> </table><t><xref target="RFC8032"/><t indent="0" pn="section-2.2-4"><xref target="RFC8032" format="default" sectionFormat="of" derivedContent="RFC8032"/> describes the method of encoding the signature value. </t><t>When<t indent="0" pn="section-2.2-5">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-2.2-6"> <li pn="section-2.2-6.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'OKP'"OKP" (Octet Key Pair). </li><li>The 'crv'<li pn="section-2.2-6.2">The "crv" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be a curve defined for this signature algorithm.</li><li>If<li pn="section-2.2-6.3">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match'EdDSA'.</li> <li>If"EdDSA".</li> <li pn="section-2.2-6.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'sign'"sign" when creating an EdDSA signature.</li><li>If<li pn="section-2.2-6.5">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'verify'"verify" when verifying an EdDSA signature.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-2.2.1"> <name slugifiedName="name-security-considerations-for-">Security Considerations for EdDSA</name><t>How public<t indent="0" pn="section-2.2.1-1">Public values are computedis not the same when looking atdifferently in EdDSA and Elliptic Curve Diffie-Hellman (ECDH); for this reason, the public key from one should not be used with the otheralgorithm. </t> <t>Ifalgorithm.</t> <t indent="0" pn="section-2.2.1-2">If batch signature verification is performed, a well-seeded cryptographic random number generator is <bcp14>REQUIRED</bcp14>(<relref(<xref target="RFC8032"section="8.2"/>).section="8.2" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8032#section-8.2" derivedContent="RFC8032"/>). Signing andnon-batchnonbatch signature verification are deterministic operations and do not need random numbers of any kind. </t> </section> </section> </section><section> <name>Message<section numbered="true" removeInRFC="false" toc="include" pn="section-3"> <name slugifiedName="name-message-authentication-code">Message Authentication Code (MAC) Algorithms</name><t> <relref section="&MacSection;" target="I-D.ietf-cose-rfc8152bis-struct"/><t indent="0" pn="section-3-1"> <xref section="8.2" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.2" derivedContent="RFC9052"/> contains a generic description of MAC algorithms. This section defines the conventions for two MAC algorithms. </t><section> <name>Hash-Based<section numbered="true" removeInRFC="false" toc="include" pn="section-3.1"> <name slugifiedName="name-hash-based-message-authenti">Hash-Based Message Authentication Codes (HMACs)</name><t>HMAC <xref target="RFC2104"/> <xref target="RFC4231"/><t indent="0" pn="section-3.1-1">HMAC <xref target="RFC2104" format="default" sectionFormat="of" derivedContent="RFC2104"/> <xref target="RFC4231" format="default" sectionFormat="of" derivedContent="RFC4231"/> was designed to deal with length extension attacks. The HMAC algorithm was also designed to allowfornew hashalgorithmsfunctions to be directly plugged in without changes to the hash function. The HMAC design process has been shownas solid since, whileto be solid; although the security of hashalgorithmsfunctions such as MD5 has decreased overtime;time, the security of HMAC combined with MD5 has not yet been shown to be compromised <xreftarget="RFC6151"/>. </t> <t>Thetarget="RFC6151" format="default" sectionFormat="of" derivedContent="RFC6151"/>. </t> <t indent="0" pn="section-3.1-2">The HMAC algorithm is parameterized by an inner and outer padding, a hash function (h), and an authentication tag value length. For this specification, the inner and outer padding are fixed to the values set in <xreftarget="RFC2104"/>.target="RFC2104" format="default" sectionFormat="of" derivedContent="RFC2104"/>. The length of the authentication tag corresponds to the difficulty of producing a forgery. For use in constrained environments, we define one HMAC algorithm that is truncated. There are currently no known issues with truncation; however, the security strength of the message tag is correspondingly reduced in strength. When truncating, the leftmosttag lengthtag-length bits are kept and transmitted. </t><t>The<t indent="0" pn="section-3.1-3">The algorithms defined in this document can be found in <xreftarget="x-table-hmac"/>.target="x-table-hmac" format="default" sectionFormat="of" derivedContent="Table 3"/>. </t> <table anchor="x-table-hmac"align="center"> <name>HMACalign="center" pn="table-3"> <name slugifiedName="name-hmac-algorithm-values">HMAC Algorithm Values</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Hash</th> <th>Tag<th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Hash</th> <th align="center" colspan="1" rowspan="1">Tag Length</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>HMAC<td align="left" colspan="1" rowspan="1">HMAC 256/64</td><td>4</td> <td>SHA-256</td> <td>64</td> <td>HMAC<td align="center" colspan="1" rowspan="1">4</td> <td align="left" colspan="1" rowspan="1">SHA-256</td> <td align="center" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">HMAC w/ SHA-256 truncated to 64 bits</td> </tr> <tr><td>HMAC<td align="left" colspan="1" rowspan="1">HMAC 256/256</td><td>5</td> <td>SHA-256</td> <td>256</td> <td>HMAC<td align="center" colspan="1" rowspan="1">5</td> <td align="left" colspan="1" rowspan="1">SHA-256</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="left" colspan="1" rowspan="1">HMAC w/ SHA-256</td> </tr> <tr><td>HMAC<td align="left" colspan="1" rowspan="1">HMAC 384/384</td><td>6</td> <td>SHA-384</td> <td>384</td> <td>HMAC<td align="center" colspan="1" rowspan="1">6</td> <td align="left" colspan="1" rowspan="1">SHA-384</td> <td align="center" colspan="1" rowspan="1">384</td> <td align="left" colspan="1" rowspan="1">HMAC w/ SHA-384</td> </tr> <tr><td>HMAC<td align="left" colspan="1" rowspan="1">HMAC 512/512</td><td>7</td> <td>SHA-512</td> <td>512</td> <td>HMAC<td align="center" colspan="1" rowspan="1">7</td> <td align="left" colspan="1" rowspan="1">SHA-512</td> <td align="center" colspan="1" rowspan="1">512</td> <td align="left" colspan="1" rowspan="1">HMAC w/ SHA-512</td> </tr> </tbody> </table><t>Some<t indent="0" pn="section-3.1-5">Some recipient algorithms transport the key, while others derive a key from secret data. For those algorithms that transport the key (such as AES Key Wrap), the size of the HMAC key <bcp14>SHOULD</bcp14> be the same size as the output of the underlying hash function. For those algorithms that derive the key (such as ECDH), the derived key <bcp14>MUST</bcp14> be the same size as the output of the underlying hash function. </t><t>When<t indent="0" pn="section-3.1-6">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-3.1-7"> <li pn="section-3.1-7.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-3.1-7.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the HMAC algorithm being used.</li><li>If<li pn="section-3.1-7.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'MAC create'"MAC create" when creating an HMAC authentication tag.</li><li>If<li pn="section-3.1-7.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'MAC verify'"MAC verify" when verifying an HMAC authentication tag.</li> </ul><t>Implementations<t indent="0" pn="section-3.1-8">Implementations creating and validating MAC values <bcp14>MUST</bcp14> validate that the key type, key length, and algorithm are correct and appropriate for the entities involved. </t><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-3.1.1"> <name slugifiedName="name-security-considerations-for-h">Security Considerations for HMAC</name><t>HMAC<t indent="0" pn="section-3.1.1-1">HMAC has proved to be resistant to attack even when used with weakened hash algorithms. The current best known attack is to brute force the key. This means that key size is going to be directly related to the security of an HMAC operation. </t> </section> </section><section> <name>AES<section numbered="true" removeInRFC="false" toc="include" pn="section-3.2"> <name slugifiedName="name-aes-message-authentication-">AES Message Authentication Code (AES-CBC-MAC)</name><t>AES-CBC-MAC<t indent="0" pn="section-3.2-1">AES-CBC-MAC isdefinedthe instantiation of the CBC-MAC construction (defined in <xreftarget="MAC"/>.target="MAC" format="default" sectionFormat="of" derivedContent="MAC"/>) using AES as the block cipher. For brevity, we also use "AES-MAC" to refer to AES-CBC-MAC. (Note that this is not the same algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC) <xreftarget="RFC4493"/>.) </t> <t>AES-CBC-MACtarget="RFC4493" format="default" sectionFormat="of" derivedContent="RFC4493"/>.) </t> <t indent="0" pn="section-3.2-2">AES-CBC-MAC is parameterized by the key length, the authentication tag length, and the Initialization Vector (IV) used. For all of these algorithms, the IV is fixed to all zeros. We provide an array of algorithms for various keylengthsand tag lengths. The algorithms defined in this document are found in <xreftarget="x-table-aes-mac"/>.target="x-table-aes-mac" format="default" sectionFormat="of" derivedContent="Table 4"/>. </t> <table anchor="x-table-aes-mac"align="center"> <name>AES-MACalign="center" pn="table-4"> <name slugifiedName="name-aes-mac-algorithm-values">AES-MAC Algorithm Values</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="center" colspan="1" rowspan="1">Key Length</th><th>Tag<th align="center" colspan="1" rowspan="1">Tag Length</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>AES-MAC<td align="left" colspan="1" rowspan="1">AES-MAC 128/64</td><td>14</td> <td>128</td> <td>64</td> <td>AES-MAC<td align="center" colspan="1" rowspan="1">14</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="center" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">AES-MAC 128-bit key, 64-bit tag</td> </tr> <tr><td>AES-MAC<td align="left" colspan="1" rowspan="1">AES-MAC 256/64</td><td>15</td> <td>256</td> <td>64</td> <td>AES-MAC<td align="center" colspan="1" rowspan="1">15</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="center" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">AES-MAC 256-bit key, 64-bit tag</td> </tr> <tr><td>AES-MAC<td align="left" colspan="1" rowspan="1">AES-MAC 128/128</td><td>25</td> <td>128</td> <td>128</td> <td>AES-MAC<td align="center" colspan="1" rowspan="1">25</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES-MAC 128-bit key, 128-bit tag</td> </tr> <tr><td>AES-MAC<td align="left" colspan="1" rowspan="1">AES-MAC 256/128</td><td>26</td> <td>256</td> <td>128</td> <td>AES-MAC<td align="center" colspan="1" rowspan="1">26</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES-MAC 256-bit key, 128-bit tag</td> </tr> </tbody> </table><t>Keys<t indent="0" pn="section-3.2-4">Keys may be obtainedeitherfrom either a key structure orfroma recipient structure. Implementations creating and validating MAC values <bcp14>MUST</bcp14> validate that the key type, key length, and algorithm are correct and appropriate for the entities involved. </t><t>When<t indent="0" pn="section-3.2-5">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-3.2-6"> <li pn="section-3.2-6.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-3.2-6.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the AES-MAC algorithm being used.</li><li>If<li pn="section-3.2-6.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'MAC create'"MAC create" when creating an AES-MAC authentication tag.</li><li>If<li pn="section-3.2-6.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'MAC verify'"MAC verify" when verifying an AES-MAC authentication tag.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-3.2.1"> <name slugifiedName="name-security-considerations-for-a">Security ConsiderationsAES-CBC_MACfor AES-CBC-MAC </name><t>A<t indent="0" pn="section-3.2.1-1">A number of attacks exist against Cipher Block Chaining Message Authentication Code (CBC-MAC) that need to be considered. </t><ul> <li>A<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-3.2.1-2"> <li pn="section-3.2.1-2.1">A single key must only be used for messages of a fixed or known length. If this is not the case, an attacker will be able to generate a message with a valid tag given two message and tag pairs. This can be addressed by using different keys for messages of different lengths. The current structure mitigates this problem, as a specific encoding structure that includes lengths is built and signed. (CMAC also addresses this issue.) </li><li>In cipher<li pn="section-3.2.1-2.2">In Cipher Block Chaining (CBC) mode, if the same key is used for both encryption and authentication operations, an attacker can produce messages with a valid authentication code. </li><li>If<li pn="section-3.2.1-2.3">If the IV can be modified, then messages can be forged. This is addressed by fixing the IV to all zeros. </li> </ul> </section> </section> </section><section> <name>Content<section numbered="true" removeInRFC="false" toc="include" pn="section-4"> <name slugifiedName="name-content-encryption-algorith">Content Encryption Algorithms</name><t> <relref section="&ContentSection;" target="I-D.ietf-cose-rfc8152bis-struct"/><t indent="0" pn="section-4-1"> <xref section="8.3" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.3" derivedContent="RFC9052"/> contains a generic description ofContent Encryptioncontent encryption algorithms. This document defines the identifier and usages for three content encryption algorithms. </t><section> <name>AES GCM</name> <t>The<section numbered="true" removeInRFC="false" toc="include" pn="section-4.1"> <name slugifiedName="name-aes-gcm">AES-GCM</name> <t indent="0" pn="section-4.1-1">The Galois/Counter Mode (GCM) mode is a generic AEAD block cipher mode defined in <xreftarget="AES-GCM"/>.target="AES-GCM" format="default" sectionFormat="of" derivedContent="AES-GCM"/>. The GCM mode is combined with the AES block encryption algorithm to define an AEAD cipher. </t><t>The<t indent="0" pn="section-4.1-2">The GCM mode is parameterized by the size of the authentication tag and the size of the nonce. This document fixes the size of the nonce at 96 bits. The size of the authentication tag is limited to a small set of values. For thisdocumentdocument, however, the size of the authentication tag is fixed at 128 bits. </t><t>The<t indent="0" pn="section-4.1-3">The set of algorithms defined in this documentareis in <xreftarget="x-table-AES-GCM"/>.target="x-table-AES-GCM" format="default" sectionFormat="of" derivedContent="Table 5"/>. </t> <table anchor="x-table-AES-GCM"align="center"> <name>Algorithm Valuealign="center" pn="table-5"> <name slugifiedName="name-algorithm-values-for-aes-gc">Algorithm Values for AES-GCM</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>A128GCM</td> <td>1</td> <td>AES-GCM<td align="left" colspan="1" rowspan="1">A128GCM</td> <td align="center" colspan="1" rowspan="1">1</td> <td align="left" colspan="1" rowspan="1">AES-GCM mode w/ 128-bit key, 128-bit tag</td> </tr> <tr><td>A192GCM</td> <td>2</td> <td>AES-GCM<td align="left" colspan="1" rowspan="1">A192GCM</td> <td align="center" colspan="1" rowspan="1">2</td> <td align="left" colspan="1" rowspan="1">AES-GCM mode w/ 192-bit key, 128-bit tag</td> </tr> <tr><td>A256GCM</td> <td>3</td> <td>AES-GCM<td align="left" colspan="1" rowspan="1">A256GCM</td> <td align="center" colspan="1" rowspan="1">3</td> <td align="left" colspan="1" rowspan="1">AES-GCM mode w/ 256-bit key, 128-bit tag</td> </tr> </tbody> </table><t>Keys<t indent="0" pn="section-4.1-5">Keys may be obtainedeitherfrom either a key structure orfroma recipient structure. Implementations that are encryptingandor decrypting <bcp14>MUST</bcp14> validate that the key type, key length, and algorithm are correct and appropriate for the entities involved. </t><t>When<t indent="0" pn="section-4.1-6">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-4.1-7"> <li pn="section-4.1-7.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-4.1-7.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the AES-GCM algorithm being used.</li><li>If<li pn="section-4.1-7.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'encrypt'"encrypt" or'wrap key'"wrap key" when encrypting.</li><li>If<li pn="section-4.1-7.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'decrypt'"decrypt" or'unwrap key'"unwrap key" when decrypting.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-4.1.1"> <name slugifiedName="name-security-considerations-for-ae">Security Considerations for AES-GCM</name><t>When<t indent="0" pn="section-4.1.1-1">When using AES-GCM, the following restrictions <bcp14>MUST</bcp14> be enforced: </t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-4.1.1-2"> <li pn="section-4.1.1-2.1">The key and nonce pair <bcp14>MUST</bcp14> be unique for every message encrypted. </li><li>The<li pn="section-4.1.1-2.2">The total number of messages encrypted for a single key <bcp14>MUST NOT</bcp14> exceed2^322<sup>32</sup> <xreftarget="SP800-38d"/>.target="SP800-38D" format="default" sectionFormat="of" derivedContent="SP800-38D"/>. An explicit check is required only in environments where it is expected thatitthis limit might be exceeded. </li><li><li pn="section-4.1.1-2.3"> <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> contains an analysis on the use of AES-CGM for its environment. Based on that recommendation, one should restrict the number of messages encrypted to 2<sup>24.5</sup>.</li> <li pn="section-4.1.1-2.4"> A more recent analysis in <xreftarget="ROBUST"/>target="ROBUST" format="default" sectionFormat="of" derivedContent="ROBUST"/> indicates that thethenumber of failed decryptions needs to be taken into account as part of determining when a keyroll-overrollover is to be done. Following the recommendationof for DTLS,in DTLS (<xref target="RFC9147" section="4.5.3" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9147#section-4.5.3" derivedContent="RFC9147"/>), the number of failed message decryptions should be limited to2^36.2<sup>36</sup>. </li> </ul><t>Consideration<t indent="0" pn="section-4.1.1-3">Consideration was given to supporting smaller tag values; the constrained community would desire tag sizes in the 64-bit range.Doing soSuch use drastically changes both the maximummessagesmessage size (generally not an issue) and the number of times that a key can be used. Given that Counter with CBC-MAC (CCM) is the usual mode for constrained environments, restricted modes are not supported. </t> </section> </section><section> <name>AES CCM</name> <t>CCM<section numbered="true" removeInRFC="false" toc="include" pn="section-4.2"> <name slugifiedName="name-aes-ccm">AES-CCM</name> <t indent="0" pn="section-4.2-1">CCM is a generic authentication encryption block cipher mode defined in <xreftarget="RFC3610"/>.target="RFC3610" format="default" sectionFormat="of" derivedContent="RFC3610"/>. The CCM mode is combined with the AES block encryption algorithm to defineaan AEAD cipher that is commonly usedcontent encryption algorithm usedin constrained devices. </t><t>The<t indent="0" pn="section-4.2-2">The CCM mode has two parameter choices. The first choice is M, the size of the authentication field. The choice of the value for M involves a trade-off between message growth (from the tag) and the probability that an attacker can undetectably modify a message. The second choice is L, the size of the length field. This value requires a trade-off between the maximum message size and the size of theNonce.nonce. </t><t>It<t indent="0" pn="section-4.2-3">It is unfortunate that the specification for CCM specified L and M as a count of bytes rather than a count of bits. This leads to possible misunderstandings where AES-CCM-8 is frequently used to refer to a version of CCM mode where the size of the authentication is 64 bits and not 8 bits.TheseIn most cryptographic algorithm specifications, these values have traditionally been specified as bit counts rather than byte counts. This document will follow the convention of using bit counts so that it is easier to compare the different algorithms presented in this document. </t><t>We<t indent="0" pn="section-4.2-4">We define a matrix of algorithms in this document over the values of L and M. Constrained devices are usually operating in situations where they use short messages and want to avoid doing recipient-specific cryptographic operations. This favors smaller values of both L and M. Less-constrained devices will want to be able to use larger messages and are more willing to generate new keys for every operation. This favors larger values of L and M. </t><t>The<t indent="0" pn="section-4.2-5">The following values are used for L: </t> <dlnewline="false"> <dt>16newline="false" indent="3" spacing="normal" pn="section-4.2-6"> <dt pn="section-4.2-6.1">16 bits (2):</dt><dd>This<dd pn="section-4.2-6.2">This limits messages to2^162<sup>16</sup> bytes (64 KiB) in length. This is sufficiently long for messages in the constrained world. The nonce length is 13 bytes allowing for2^1042<sup>104</sup> possible values of the nonce without repeating. </dd><dt>64<dt pn="section-4.2-6.3">64 bits (8):</dt><dd>This<dd pn="section-4.2-6.4">This limits messages to2^642<sup>64</sup> bytes in length. The nonce length is 7bytesbytes, allowing for2^562<sup>56</sup> possible values of the nonce without repeating. </dd> </dl><t>The<t indent="0" pn="section-4.2-7">The following values are used for M: </t> <dlnewline="false"> <dt>64newline="false" indent="3" spacing="normal" pn="section-4.2-8"> <dt pn="section-4.2-8.1">64 bits (8):</dt><dd>This<dd pn="section-4.2-8.2">This produces a 64-bit authentication tag. This implies that there is a 1 in2^642<sup>64</sup> chance that a modified message willauthenticate. </dd> <dt>128authenticate.</dd> <dt pn="section-4.2-8.3">128 bits (16):</dt><dd>This<dd pn="section-4.2-8.4">This produces a 128-bit authentication tag. This implies that there is a 1 in2^1282<sup>128</sup> chance that a modified message willauthenticate. </dd>authenticate.</dd> </dl> <table anchor="x-table-AES-CCM"align="center"> <name>Algorithmalign="center" pn="table-6"> <name slugifiedName="name-algorithm-values-for-aes-cc">Algorithm Values for AES-CCM</name> <thead> <tr><th>Name</th> <th>Value</th> <th>L</th> <th>M</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">L</th> <th align="left" colspan="1" rowspan="1">M</th> <th align="center" colspan="1" rowspan="1">Key Length</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>AES-CCM-16-64-128</td> <td>10</td> <td>16</td> <td>64</td> <td>128</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-16-64-128</td> <td align="center" colspan="1" rowspan="1">10</td> <td align="left" colspan="1" rowspan="1">16</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 128-bit key, 64-bit tag, 13-byte nonce</td> </tr> <tr><td>AES-CCM-16-64-256</td> <td>11</td> <td>16</td> <td>64</td> <td>256</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-16-64-256</td> <td align="center" colspan="1" rowspan="1">11</td> <td align="left" colspan="1" rowspan="1">16</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 256-bit key, 64-bit tag, 13-byte nonce</td> </tr> <tr><td>AES-CCM-64-64-128</td> <td>12</td> <td>64</td> <td>64</td> <td>128</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-64-64-128</td> <td align="center" colspan="1" rowspan="1">12</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 128-bit key, 64-bit tag, 7-byte nonce</td> </tr> <tr><td>AES-CCM-64-64-256</td> <td>13</td> <td>64</td> <td>64</td> <td>256</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-64-64-256</td> <td align="center" colspan="1" rowspan="1">13</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 256-bit key, 64-bit tag, 7-byte nonce</td> </tr> <tr><td>AES-CCM-16-128-128</td> <td>30</td> <td>16</td> <td>128</td> <td>128</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-16-128-128</td> <td align="center" colspan="1" rowspan="1">30</td> <td align="left" colspan="1" rowspan="1">16</td> <td align="left" colspan="1" rowspan="1">128</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 128-bit key, 128-bit tag, 13-byte nonce</td> </tr> <tr><td>AES-CCM-16-128-256</td> <td>31</td> <td>16</td> <td>128</td> <td>256</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-16-128-256</td> <td align="center" colspan="1" rowspan="1">31</td> <td align="left" colspan="1" rowspan="1">16</td> <td align="left" colspan="1" rowspan="1">128</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 256-bit key, 128-bit tag, 13-byte nonce</td> </tr> <tr><td>AES-CCM-64-128-128</td> <td>32</td> <td>64</td> <td>128</td> <td>128</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-64-128-128</td> <td align="center" colspan="1" rowspan="1">32</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">128</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 128-bit key, 128-bit tag, 7-byte nonce</td> </tr> <tr><td>AES-CCM-64-128-256</td> <td>33</td> <td>64</td> <td>128</td> <td>256</td> <td>AES-CCM<td align="left" colspan="1" rowspan="1">AES-CCM-64-128-256</td> <td align="center" colspan="1" rowspan="1">33</td> <td align="left" colspan="1" rowspan="1">64</td> <td align="left" colspan="1" rowspan="1">128</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="left" colspan="1" rowspan="1">AES-CCM mode 256-bit key, 128-bit tag, 7-byte nonce</td> </tr> </tbody> </table><t>Keys<t indent="0" pn="section-4.2-10">Keys may be obtainedeitherfrom either a key structure orfroma recipient structure. Implementations that are encryptingandor decrypting <bcp14>MUST</bcp14> validate that the key type, key length, and algorithm are correct and appropriate for the entities involved. </t><t>When<t indent="0" pn="section-4.2-11">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-4.2-12"> <li pn="section-4.2-12.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-4.2-12.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the AES-CCM algorithm being used.</li><li>If<li pn="section-4.2-12.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'encrypt'"encrypt" or'wrap key'"wrap key" when encrypting.</li><li>If<li pn="section-4.2-12.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'decrypt'"decrypt" or'unwrap key'"unwrap key" when decrypting.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-4.2.1"> <name slugifiedName="name-security-considerations-for-aes">Security Considerations for AES-CCM</name><t>When<t indent="0" pn="section-4.2.1-1">When using AES-CCM, the following restrictions <bcp14>MUST</bcp14> be enforced: </t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-4.2.1-2"> <li pn="section-4.2.1-2.1">The key and nonce pair <bcp14>MUST</bcp14> be unique for every message encrypted. Note that the value of L influences the number of unique nonces. </li><li>The<li pn="section-4.2.1-2.2">The total number of times the AES block cipher is used <bcp14>MUST NOT</bcp14> exceed2^612<sup>61</sup> operations. Thislimitationlimit is the sum of times the block cipher is used in computing the MAC value andinperforming stream encryption operations. An explicit check is required only in environments where it is expected thatitthis limit might be exceeded. </li><li><li pn="section-4.2.1-2.3"> <xreftarget="I-D.ietf-quic-tls"/>target="RFC9147" format="default" sectionFormat="of" derivedContent="RFC9147"/> contains an analysis on the use of AES-CCMin thatfor its environment. Based on thatreommendation,recommendation, one should restrict the number of messages encrypted to2^23.2<sup>23</sup>. </li> <li pn="section-4.2.1-2.4"> In addition to the number of messages successfully decrypted, the number of failed decryptions needs to be tracked as well. Following the recommendation in DTLS (<xref target="RFC9147" section="4.5.3" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9147#section-4.5.3" derivedContent="RFC9147"/>), the number of failed message decryptions should be limited to 2<sup>23.5</sup>. If one is using the 64-bit tag, then the limits aresignficantlysignificantly smaller if one wants to keep the same integrity limits. A protocol recommending this needs toanalysisanalyze what level of integrity is acceptable for the smaller tag size. It may bethatthat, to keep the desiredintegritylevel of integrity, one needs tore-keyrekey as often as every2^72<sup>7</sup> messages. </li><li> In addition to the number of messages successfully decrypted, the number of failed decryptions needs to be kept as well. If the number of failed decryptions exceeds 2^23 then a rekeying operation should occur. </li></ul><t><xref target="RFC3610"/><t indent="0" pn="section-4.2.1-3"><xref target="RFC3610" format="default" sectionFormat="of" derivedContent="RFC3610"/> additionally calls out one other consideration of note. It is possible to do apre-computationprecomputation attack against the algorithm in cases where portions of the plaintext are highly predictable. This reduces the security of the key size by half. Ways to deal with this attack include adding a random portion to the nonce value and/or increasing the key size used. Using a portion of the nonce for a random value will decrease the number of messages that a single key can be used for. Increasing the key size may require more resources in the constrained device. See Sections5 and 10 of<xreftarget="RFC3610"/>target="RFC3610" section="5" sectionFormat="bare" format="default" derivedLink="https://rfc-editor.org/rfc/rfc3610#section-5" derivedContent="RFC3610"/> and <xref target="RFC3610" section="10" sectionFormat="bare" format="default" derivedLink="https://rfc-editor.org/rfc/rfc3610#section-10" derivedContent="RFC3610"/> of <xref target="RFC3610" format="default" sectionFormat="of" derivedContent="RFC3610"/> for more information. </t> </section> </section><section> <name>ChaCha20<section numbered="true" removeInRFC="false" toc="include" pn="section-4.3"> <name slugifiedName="name-chacha20-and-poly1305">ChaCha20 and Poly1305</name><t>ChaCha20<t indent="0" pn="section-4.3-1">ChaCha20 and Poly1305 combined together is an AEAD mode that is defined in <xreftarget="RFC8439"/>.target="RFC8439" format="default" sectionFormat="of" derivedContent="RFC8439"/>. This is an algorithm definedto beusing a cipher that is not AES and thus would not suffer from any future weaknesses found in AES. These cryptographic functions are designed to be fast in software-only implementations. </t><t>The<t indent="0" pn="section-4.3-2">The ChaCha20/Poly1305 AEAD construction defined in <xreftarget="RFC8439"/>target="RFC8439" format="default" sectionFormat="of" derivedContent="RFC8439"/> has no parameterization. It takes as inputs a 256-bit key and a 96-bit nonce, as well as the plaintext and additionaldata as inputsdata, and produces the ciphertext as anoption.output. We define one algorithm identifier for this algorithm in <xreftarget="x-table-CHACHA"/>.target="x-table-CHACHA" format="default" sectionFormat="of" derivedContent="Table 7"/>. </t> <table anchor="x-table-CHACHA"align="center"> <name>Algorithmalign="center" pn="table-7"> <name slugifiedName="name-algorithm-value-for-chacha2">Algorithm Value for ChaCha20/Poly1305</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>ChaCha20/Poly1305</td> <td>24</td> <td>ChaCha20/Poly1305<td align="left" colspan="1" rowspan="1">ChaCha20/Poly1305</td> <td align="center" colspan="1" rowspan="1">24</td> <td align="left" colspan="1" rowspan="1">ChaCha20/Poly1305 w/ 256-bit key, 128-bit tag</td> </tr> </tbody> </table><t>Keys<t indent="0" pn="section-4.3-4">Keys may be obtainedeitherfrom either a key structure orfroma recipient structure. Implementations that are encryptingandor decrypting <bcp14>MUST</bcp14> validate that the key type, key length, and algorithm are correct and appropriate for the entities involved. </t><t>When<t indent="0" pn="section-4.3-5">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-4.3-6"> <li pn="section-4.3-6.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-4.3-6.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the ChaCha20/Poly1305 algorithm being used.</li><li>If<li pn="section-4.3-6.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'encrypt'"encrypt" or'wrap key'"wrap key" when encrypting.</li><li>If<li pn="section-4.3-6.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'decrypt'"decrypt" or'unwrap key'"unwrap key" when decrypting.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="include" pn="section-4.3.1"> <name slugifiedName="name-security-considerations-for-c">Security Considerations for ChaCha20/Poly1305</name><t>The<t indent="0" pn="section-4.3.1-1">The key and nonce values <bcp14>MUST</bcp14> be a unique pair for every invocation of the algorithm. Nonce counters are considered to be an acceptable way of ensuring that they are unique. </t><t> A<t indent="0" pn="section-4.3.1-2">A more recent analysis in <xreftarget="ROBUST"/>target="ROBUST" format="default" sectionFormat="of" derivedContent="ROBUST"/> indicates that thethenumber of failed decryptions needs to be taken into account as part of determining when a keyroll-overrollover is to be done. Following the recommendationof for DTLS,in DTLS (<xref target="RFC9147" section="4.5.3" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9147#section-4.5.3" derivedContent="RFC9147"/>), the number of failed message decryptions should be limited to2^36.2<sup>36</sup>. </t><t> <xref target="I-D.ietf-quic-tls"/> recommends that no<t indent="0" pn="section-4.3.1-3"> <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> notes that the (64-bit) record sequence number would wrap before the safety limit is reached for ChaCha20/Poly1305. COSE implementations should not send more than2^24.52<sup>64</sup> messagesbeencryptedunderusing a single ChaCha20/Poly1305 key. </t> </section> </section> </section><section> <name>Key<section numbered="true" removeInRFC="false" toc="include" pn="section-5"> <name slugifiedName="name-key-derivation-functions-kd">Key Derivation Functions (KDFs)</name><t> <relref section="&KDFSection;" target="I-D.ietf-cose-rfc8152bis-struct"/><t indent="0" pn="section-5-1"> <xref section="8.4" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.4" derivedContent="RFC9052"/> contains a generic description ofKey Derivation Functions.key derivation functions. This document defines a single context structure and a single KDF. These elements are used for all of the recipient algorithms defined in this document that require a KDF process. These algorithms are defined in Sections <xref target="direct-kdf"format="counter"/>,format="counter" sectionFormat="of" derivedContent="6.1.2"/>, <xref target="ECDH"format="counter"/>,format="counter" sectionFormat="of" derivedContent="6.3.1"/>, and <xref target="ECDH-wrap"format="counter"/>.format="counter" sectionFormat="of" derivedContent="6.4.1"/>. </t> <sectionanchor="HKDF-section"> <name>HMAC-Basedanchor="HKDF-section" numbered="true" removeInRFC="false" toc="include" pn="section-5.1"> <name slugifiedName="name-hmac-based-extract-and-expa">HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)</name><t>The<t indent="0" pn="section-5.1-1">The HKDF key derivation algorithm is defined in <xreftarget="RFC5869"/><xref target="HKDF"/>. </t> <t>Thetarget="RFC5869" format="default" sectionFormat="of" derivedContent="RFC5869"/> and <xref target="HKDF" format="default" sectionFormat="of" derivedContent="HKDF"/>. </t> <t indent="0" pn="section-5.1-2">The HKDF algorithm takes theseinputs: </t> <ul empty="true"> <li>secret -- ainputs:</t> <dl indent="3" newline="false" spacing="normal" pn="section-5.1-3"> <dt pn="section-5.1-3.1">secret:</dt> <dd pn="section-5.1-3.2"> A shared value that is secret. Secrets may be either previously shared or derived from operations like a Diffie-Hellman (DH) key agreement.</li> <li>salt -- an</dd> <dt pn="section-5.1-3.3">salt:</dt> <dd pn="section-5.1-3.4"> An optional value that is used to change the generation process. The salt value can be either public or private. If the salt is public and carried in the message, then the'salt'"salt" algorithm header parameter defined in <xreftarget="HKDF_Alg_Params"/>target="HKDF_Alg_Params" format="default" sectionFormat="of" derivedContent="Table 9"/> is used. While <xreftarget="RFC5869"/>target="RFC5869" format="default" sectionFormat="of" derivedContent="RFC5869"/> suggests that the length of the salt be the same as the length of the underlying hash value, any positive salt length will improve thesecuritysecurity, as different key values will be generated. This parameter is protected by being included in the key computation and does not need to be separately authenticated. The salt value does not need to be unique for every message sent.</li> <li>length -- the</dd> <dt pn="section-5.1-3.5">length:</dt> <dd pn="section-5.1-3.6">The number of bytes of output that need to be generated.</li> <li>context information -- Information</dd> <dt pn="section-5.1-3.7">context information:</dt> <dd pn="section-5.1-3.8">Information that describes the context in which the resulting value will be used. Making this information specific to the context in which the material is going to be used ensures that the resulting material will always be tied to that usage. The context structure defined in <xreftarget="context"/>target="context" format="default" sectionFormat="of" derivedContent="Section 5.2"/> is used by the KDFs in this document.</li> <li>PRF --</dd> <dt pn="section-5.1-3.9">PRF:</dt> <dd pn="section-5.1-3.10"> The underlying pseudorandom function to be used in the HKDF algorithm. The PRF is encoded into the HKDF algorithm selection.</li> </ul> <t>HKDF</dd> </dl> <t indent="0" pn="section-5.1-4">HKDF is defined to use HMAC as the underlying PRF. However, it is possible to use other functions in the same construct to provide a different KDF that is more appropriate in the constrained world. Specifically, one can use AES-CBC-MAC as the PRF for the expand step, but not for the extract step. When using a good random shared secret of the correct length, the extract step can be skipped. For the AES algorithm versions, the extract step is always skipped. </t><t>The<t indent="0" pn="section-5.1-5">The extract step cannot be skipped if the secret is not uniformlyrandom,random -- for example, if it is the result of an ECDH key agreement step. This implies that the AES HKDF version cannot be used with ECDH. If the extract step is skipped, the'salt'"salt" value is not used as part of the HKDF functionality. </t><t>The<t indent="0" pn="section-5.1-6">The algorithms defined in this document are found in <xreftarget="x-table-hkdf"/>.target="x-table-hkdf" format="default" sectionFormat="of" derivedContent="Table 8"/>. </t> <table anchor="x-table-hkdf"align="center"> <name>HKDFalign="center" pn="table-8"> <name slugifiedName="name-hkdf-algorithms">HKDF Algorithms</name> <thead> <tr><th>Name</th> <th>PRF</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">PRF</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>HKDF<td align="left" colspan="1" rowspan="1">HKDF SHA-256</td><td>HMAC<td align="left" colspan="1" rowspan="1">HMAC with SHA-256</td><td>HKDF<td align="left" colspan="1" rowspan="1">HKDF using HMAC SHA-256 as the PRF</td> </tr> <tr><td>HKDF<td align="left" colspan="1" rowspan="1">HKDF SHA-512</td><td>HMAC<td align="left" colspan="1" rowspan="1">HMAC with SHA-512</td><td>HKDF<td align="left" colspan="1" rowspan="1">HKDF using HMAC SHA-512 as the PRF</td> </tr> <tr><td>HKDF<td align="left" colspan="1" rowspan="1">HKDF AES-MAC-128</td><td>AES-CBC-MAC-128</td> <td>HKDF<td align="left" colspan="1" rowspan="1">AES-CBC-MAC-128</td> <td align="left" colspan="1" rowspan="1">HKDF using AES-MAC as the PRF w/ 128-bit key</td> </tr> <tr><td>HKDF<td align="left" colspan="1" rowspan="1">HKDF AES-MAC-256</td><td>AES-CBC-MAC-256</td> <td>HKDF<td align="left" colspan="1" rowspan="1">AES-CBC-MAC-256</td> <td align="left" colspan="1" rowspan="1">HKDF using AES-MAC as the PRF w/ 256-bit key</td> </tr> </tbody> </table> <table anchor="HKDF_Alg_Params"align="center"> <name>HKDFalign="center" pn="table-9"> <name slugifiedName="name-hkdf-algorithm-parameters">HKDF Algorithm Parameters</name> <thead> <tr><th>Name</th> <th>Label</th> <th>Type</th> <th>Algorithm</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Label</th> <th align="left" colspan="1" rowspan="1">Type</th> <th align="left" colspan="1" rowspan="1">Algorithm</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>salt</td> <td>-20</td> <td>bstr</td> <td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">salt</td> <td align="left" colspan="1" rowspan="1">-20</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Random<td align="left" colspan="1" rowspan="1">Random salt</td> </tr> </tbody> </table> </section> <sectionanchor="context"> <name>Contextanchor="context" numbered="true" removeInRFC="false" toc="include" pn="section-5.2"> <name slugifiedName="name-context-information-structu">Context Information Structure</name><t>The<t indent="0" pn="section-5.2-1">The context information structure is used to ensure that the derived keying material is "bound" to the context of the transaction. The context information structure used here is based on that defined in <xreftarget="SP800-56A"/>.target="SP800-56A" format="default" sectionFormat="of" derivedContent="SP800-56A"/>. By using CBOR for the encoding of the context information structure, we automatically get the same type and length separation of fields that is obtained by the use of ASN.1. This means that there is no need to encode the lengths for the base elements, as it is done by the encoding used inJOSE (Section 4.6.2 of <xref target="RFC7518"/>). </t> <t>TheJSON Object Signing and Encryption (JOSE) (<xref target="RFC7518" section="4.6.2" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc7518#section-4.6.2" derivedContent="RFC7518"/>).</t> <t indent="0" pn="section-5.2-2">The context information structure refers to PartyU and PartyV as the two parties that are doing the key derivation. Unless the application protocol defines differently, we assign PartyU to the entity that is creating the message and PartyV to the entity that is receiving the message. Bydoingdefining this association, different keys will be derived for eachdirectiondirection, as the context information is different in eachdirection. </t> <t>Thedirection.</t> <t indent="0" pn="section-5.2-3">The context structure is built from information that is known to both entities. This information can be obtained from a variety of sources: </t><ul> <li>Fields<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-5.2-4"> <li pn="section-5.2-4.1">Fields can be defined by the application. This is commonly used to assign fixed names to parties, but it can be used for other items such as nonces. </li><li>Fields<li pn="section-5.2-4.2">Fields can be defined by usage of the output. Examples of this are the algorithm and key size that are being generated. </li><li>Fields<li pn="section-5.2-4.3">Fields can be defined by parameters from the message. We define a set of header parameters in <xreftarget="KDF_Context_Alg_Params"/>target="KDF_Context_Alg_Params" format="default" sectionFormat="of" derivedContent="Table 10"/> that can be used to carry the values associated with the context structure. Examples of this are identities and nonce values. These header parameters are designed to be placed in the unprotected bucket of the recipient structure; they do not need to be in the protectedbucketbucket, since theyalreadyare already included in the cryptographic computation by virtue of being included in the context structure. </li> </ul> <table anchor="KDF_Context_Alg_Params"align="center"> <name>Contextalign="center" pn="table-10"> <name slugifiedName="name-context-algorithm-parameter">Context Algorithm Parameters</name> <thead> <tr><th>Name</th> <th>Label</th> <th>Type</th> <th>Algorithm</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Label</th> <th align="left" colspan="1" rowspan="1">Type</th> <th align="left" colspan="1" rowspan="1">Algorithm</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>PartyU<td align="left" colspan="1" rowspan="1">PartyU identity</td><td>-21</td> <td>bstr</td> <td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">-21</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Party U<td align="left" colspan="1" rowspan="1">PartyU identity information</td> </tr> <tr><td>PartyU<td align="left" colspan="1" rowspan="1">PartyU nonce</td><td>-22</td> <td>bstr<td align="left" colspan="1" rowspan="1">-22</td> <td align="left" colspan="1" rowspan="1">bstr / int</td><td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Party U<td align="left" colspan="1" rowspan="1">PartyU provided nonce</td> </tr> <tr><td>PartyU<td align="left" colspan="1" rowspan="1">PartyU other</td><td>-23</td> <td>bstr</td> <td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">-23</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Party U<td align="left" colspan="1" rowspan="1">PartyU other provided information</td> </tr> <tr><td>PartyV<td align="left" colspan="1" rowspan="1">PartyV identity</td><td>-24</td> <td>bstr</td> <td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">-24</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Party V<td align="left" colspan="1" rowspan="1">PartyV identity information</td> </tr> <tr><td>PartyV<td align="left" colspan="1" rowspan="1">PartyV nonce</td><td>-25</td> <td>bstr<td align="left" colspan="1" rowspan="1">-25</td> <td align="left" colspan="1" rowspan="1">bstr / int</td><td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Party V<td align="left" colspan="1" rowspan="1">PartyV provided nonce</td> </tr> <tr><td>PartyV<td align="left" colspan="1" rowspan="1">PartyV other</td><td>-26</td> <td>bstr</td> <td>direct+HKDF-SHA-256,<td align="left" colspan="1" rowspan="1">-26</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Party V<td align="left" colspan="1" rowspan="1">PartyV other provided information</td> </tr> </tbody> </table><t>We<t indent="0" pn="section-5.2-6">We define a CBOR object to hold the context information. This object is referred to as COSE_KDF_Context. The object is based on a CBOR array type. The fields in the array are: </t> <dlnewline="false"> <dt>AlgorithmID:</dt> <dd>newline="false" indent="3" spacing="normal" pn="section-5.2-7"> <dt pn="section-5.2-7.1">AlgorithmID:</dt> <dd pn="section-5.2-7.2"> This field indicates the algorithm for which the key material will be used. This normally is either a key wrap algorithm identifier or a content encryption algorithm identifier. The values are from the "COSE Algorithms" registry. This field is required to be present. The field exists in the context information so that a different key is generated for each algorithm evenofif all of the other context information is the same. In practice, this means if algorithm A is broken and thus finding the key is relatively easy, the key derived for algorithm B will not be the same as the key derived for algorithm A. </dd><dt>PartyUInfo:</dt> <dd> <t>This<dt pn="section-5.2-7.3">PartyUInfo:</dt> <dd pn="section-5.2-7.4"> <t indent="0" pn="section-5.2-7.4.1">This field holds information aboutparty U.PartyU. The PartyUInfo is encoded as a CBOR array. The elements of PartyUInfo are encoded in the order presented below. The elements of the PartyUInfo array are: </t> <dlnewline="false"> <dt>identity:</dt> <dd> <t>Thisnewline="false" indent="3" spacing="normal" pn="section-5.2-7.4.2"> <dt pn="section-5.2-7.4.2.1">identity:</dt> <dd pn="section-5.2-7.4.2.2"> <t indent="0" pn="section-5.2-7.4.2.2.1">This contains the identity information forparty U.PartyU. The identities can be assigned in one of two manners. First, a protocol can assign identities based on roles. For example, the roles of "client" and "server" may be assigned to different entities in the protocol. Each entity would then use the correct label for the datathey sendit sends orreceive.receives. The second way for a protocol to assign identities is to use a name based on a naming system (i.e.,DNS,DNS or X.509 names). </t><t><t indent="0" pn="section-5.2-7.4.2.2.2"> We define an algorithmparameter 'PartyU identity'parameter, "PartyU identity", that can be used to carry identity information in the message. However, identity information is often known as part of the protocol and can thus be inferred rather than made explicit. If identity information is carried in the message, applications <bcp14>SHOULD</bcp14> have a way of validating the supplied identity information. The identity information does not need to be specified and is set to nil in that case. </t> </dd><dt>nonce:</dt> <dd> <t>This<dt pn="section-5.2-7.4.2.3">nonce:</dt> <dd pn="section-5.2-7.4.2.4"> <t indent="0" pn="section-5.2-7.4.2.4.1">This contains a nonce value. The nonce caneitherbe either implicit from the protocol orbecarried as a value in the unprotected header bucket. </t><t><t indent="0" pn="section-5.2-7.4.2.4.2"> We define an algorithmparameter 'PartyU nonce'parameter, "PartyU nonce", that can be used to carry this value in the message; however, the nonce value could be determined by the application andtheits valuedetermined from elsewhere.obtained in a different manner. </t><t><t indent="0" pn="section-5.2-7.4.2.4.3"> This option does not need to bespecified andspecified; if not needed, it is set tonil in that case.nil. </t> </dd><dt>other:</dt> <dd>This<dt pn="section-5.2-7.4.2.5">other:</dt> <dd pn="section-5.2-7.4.2.6">This contains other information that is defined by the protocol. This option does not need to bespecified andspecified; if not needed, it is set tonil in that case.nil. </dd> </dl> </dd><dt>PartyVInfo:</dt> <dd>This<dt pn="section-5.2-7.5">PartyVInfo:</dt> <dd pn="section-5.2-7.6">This field holds information aboutparty V.PartyV. The content of the structure is the same as for the PartyUInfo but forparty V.PartyV. </dd><dt>SuppPubInfo:</dt> <dd> <t>This<dt pn="section-5.2-7.7">SuppPubInfo:</dt> <dd pn="section-5.2-7.8"> <t indent="0" pn="section-5.2-7.8.1">This field contains public information that is mutually known to bothparties.parties, and is encoded as a CBOR array. </t> <dlnewline="false"> <dt>keyDataLength:</dt> <dd>Thisnewline="false" indent="3" spacing="normal" pn="section-5.2-7.8.2"> <dt pn="section-5.2-7.8.2.1">keyDataLength:</dt> <dd pn="section-5.2-7.8.2.2">This is set to the number of bits of the desired output value. This practice means if algorithm A can use two different key lengths, the key derived for the longer key size will not contain the key for the shorter key size as a prefix. </dd><dt>protected:</dt> <dd>This<dt pn="section-5.2-7.8.2.3">protected:</dt> <dd pn="section-5.2-7.8.2.4">This field contains the protected parameter field. If there are no elements in theprotected"protected" field, then use a zero-length bstr. </dd><dt>other:</dt> <dd>This<dt pn="section-5.2-7.8.2.5">other:</dt> <dd pn="section-5.2-7.8.2.6">This field is forfree formfree-form data defined by the application.An example is thatFor example, an application could define two different byte strings to be placed here to generate different keys for a data stream versus a control stream. This field is optional and will only be present if the application defines a structure for this information. Applications that define this <bcp14>SHOULD</bcp14> use CBOR to encode the data so that types and lengths are correctly included. </dd> </dl> </dd><dt>SuppPrivInfo:</dt> <dd>This<dt pn="section-5.2-7.9">SuppPrivInfo:</dt> <dd pn="section-5.2-7.10">This field contains private information that is mutually known private information. An example of this information would be apreexistingpre-existing shared secret. (This could, for example, be used in combination with an ECDH key agreement to provide a secondary proof of identity.) The field is optional and will only be present if the application defines a structure for this information. Applications that define this <bcp14>SHOULD</bcp14> use CBOR to encode the data so that types and lengths are correctly included. </dd> </dl><t>The<t indent="0" pn="section-5.2-8">The following CDDL fragment corresponds to the text above. </t><artwork type="CDDL" name="" alt=""><![CDATA[<sourcecode type="cddl" markers="false" pn="section-5.2-9"> PartyInfo = ( identity : bstr / nil, nonce : bstr / int / nil, other : bstr / nil ) COSE_KDF_Context = [ AlgorithmID : int / tstr, PartyUInfo : [ PartyInfo ], PartyVInfo : [ PartyInfo ], SuppPubInfo : [ keyDataLength : uint, protected : empty_or_serialized_map, ? other : bstr ], ? SuppPrivInfo : bstr ]]]></artwork></sourcecode> </section> </section> <sectionanchor="key-management-algs"> <name>Contentanchor="key-management-algs" numbered="true" removeInRFC="false" toc="include" pn="section-6"> <name slugifiedName="name-content-key-distribution-me">Content Key Distribution Methods</name><t> <relref section="&CKeyDistributeSection;" target="I-D.ietf-cose-rfc8152bis-struct"/><t indent="0" pn="section-6-1"> <xref section="8.5" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.5" derivedContent="RFC9052"/> contains a generic description of content key distribution methods. This document defines the identifiers and usage for a number of content key distribution methods. </t><section> <name>Direct<section numbered="true" removeInRFC="false" toc="include" pn="section-6.1"> <name slugifiedName="name-direct-encryption">Direct Encryption</name><t> Direct<t indent="0" pn="section-6.1-1"> A direct encryption algorithm is defined in<relref section="&DirectDistribute;" target="I-D.ietf-cose-rfc8152bis-struct"/>.<xref section="8.5.1" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.5.1" derivedContent="RFC9052"/>. Information about how to fill in the COSE_Recipient structureareis detailed there. </t><section> <name>Direct<section numbered="true" removeInRFC="false" toc="include" pn="section-6.1.1"> <name slugifiedName="name-direct-key">Direct Key</name><t><t indent="0" pn="section-6.1.1-1"> This recipient algorithm is the simplest; the identified key is directly used as the key for the next layer down in the message. There are no algorithm parameters defined for this algorithm. The algorithm identifier value is assigned in <xreftarget="x-table-direct"/>. </t> <t>target="x-table-direct" format="default" sectionFormat="of" derivedContent="Table 11"/>. </t> <t indent="0" pn="section-6.1.1-2"> When this algorithm is used, theprotected"protected" field <bcp14>MUST</bcp14> be zero length. The key type <bcp14>MUST</bcp14> be'Symmetric'."Symmetric". </t> <table anchor="x-table-direct"align="center"> <name>Directalign="center" pn="table-11"> <name slugifiedName="name-direct-key-2">Direct Key</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>direct</td> <td>-6</td> <td>Direct<td align="left" colspan="1" rowspan="1">direct</td> <td align="center" colspan="1" rowspan="1">-6</td> <td align="left" colspan="1" rowspan="1">Direct use ofCEK</td>content encryption key (CEK)</td> </tr> </tbody> </table><section> <name>Security<section numbered="true" removeInRFC="false" toc="exclude" pn="section-6.1.1.1"> <name slugifiedName="name-security-considerations-for-d">Security Considerations for Direct Key</name><t>This<t indent="0" pn="section-6.1.1.1-1">This recipient algorithm has several potential problems that need to be considered: </t><ul> <li>These<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-6.1.1.1-2"> <li pn="section-6.1.1.1-2.1">These keys need to have some methodto beof being regularly updated over time. All of the content encryption algorithms specified in this document have limits on how many times a key can be used without significant loss of security. </li><li>These<li pn="section-6.1.1.1-2.2">These keys need to be dedicated to a single algorithm. There have been a number of attacks developed over time when a single key is used for multiple different algorithms. One example of this is the use of a single key for both the CBC encryption mode and the CBC-MAC authentication mode. </li><li>Breaking<li pn="section-6.1.1.1-2.3">Breaking one message means all messages are broken. If an adversary succeeds in determining the key for a single message, then the key for all messages is also determined. </li> </ul> </section> </section> <sectionanchor="direct-kdf"> <name>Directanchor="direct-kdf" numbered="true" removeInRFC="false" toc="include" pn="section-6.1.2"> <name slugifiedName="name-direct-key-with-kdf">Direct Key with KDF</name><t>These<t indent="0" pn="section-6.1.2-1">These recipient algorithms take a common shared secret between the two parties andappliesapply the HKDF function (<xreftarget="HKDF-section"/>),target="HKDF-section" format="default" sectionFormat="of" derivedContent="Section 5.1"/>), using the context structure defined in <xreftarget="context"/>target="context" format="default" sectionFormat="of" derivedContent="Section 5.2"/> to transform the shared secret into the CEK. The'protected'"protected" field can be ofnon-zerononzero length. Either the'salt'"salt" parameteroffor HKDF (<xref target="HKDF_Alg_Params" format="default" sectionFormat="of" derivedContent="Table 9"/>) or the'PartyU nonce'"PartyU nonce" parameteroffor the context structure (<xref target="KDF_Context_Alg_Params" format="default" sectionFormat="of" derivedContent="Table 10"/>) <bcp14>MUST</bcp14> bepresent.present (both can be present if desired). Thesalt/noncevalue in the "salt"/"nonce" parameter can be generated either randomly or deterministically. The requirement is that it be a unique value for the shared secret in question. </t><t>If<t indent="0" pn="section-6.1.2-2">If the salt/nonce value is generated randomly, then it is suggested that the length of the random value be the same length as the output of the hash function underlying HKDF. While there is no way to guarantee that it will be unique, there is a high probability that it will be unique. If the salt/nonce value is generated deterministically, it can be guaranteed to be unique, and thus there is no length requirement. </t><t>A<t indent="0" pn="section-6.1.2-3">A new IV must be used for each message if the same key is used. The IV can be modified in a predictable manner, a random manner, or an unpredictable manner(i.e.,(e.g., encrypting a counter). </t><t>The<t indent="0" pn="section-6.1.2-4">The IV used for a key can also be generatedfromusing the same HKDF functionalityasused to generate thekey is generated.key. If HKDF is used for generating the IV, the algorithm identifier is set to"IV-GENERATION".34 ("IV-GENERATION"). </t><t>The<t indent="0" pn="section-6.1.2-5">The set of algorithms defined in this document can be found in <xreftarget="x-table-direct-kdf"/>.target="x-table-direct-kdf" format="default" sectionFormat="of" derivedContent="Table 12"/>. </t> <table anchor="x-table-direct-kdf"align="center"> <name>Directalign="center" pn="table-12"> <name slugifiedName="name-direct-key-with-kdf-2">Direct Key with KDF</name> <thead> <tr><th>Name</th> <th>Value</th> <th>KDF</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">KDF</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>direct+HKDF-SHA-256</td> <td>-10</td> <td>HKDF<td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-256</td> <td align="center" colspan="1" rowspan="1">-10</td> <td align="left" colspan="1" rowspan="1">HKDF SHA-256</td><td>Shared<td align="left" colspan="1" rowspan="1">Shared secret w/ HKDF and SHA-256</td> </tr> <tr><td>direct+HKDF-SHA-512</td> <td>-11</td> <td>HKDF<td align="left" colspan="1" rowspan="1">direct+HKDF-SHA-512</td> <td align="center" colspan="1" rowspan="1">-11</td> <td align="left" colspan="1" rowspan="1">HKDF SHA-512</td><td>Shared<td align="left" colspan="1" rowspan="1">Shared secret w/ HKDF and SHA-512</td> </tr> <tr><td>direct+HKDF-AES-128</td> <td>-12</td> <td>HKDF<td align="left" colspan="1" rowspan="1">direct+HKDF-AES-128</td> <td align="center" colspan="1" rowspan="1">-12</td> <td align="left" colspan="1" rowspan="1">HKDF AES-MAC-128</td><td>Shared<td align="left" colspan="1" rowspan="1">Shared secret w/ AES-MAC 128-bit key</td> </tr> <tr><td>direct+HKDF-AES-256</td> <td>-13</td> <td>HKDF<td align="left" colspan="1" rowspan="1">direct+HKDF-AES-256</td> <td align="center" colspan="1" rowspan="1">-13</td> <td align="left" colspan="1" rowspan="1">HKDF AES-MAC-256</td><td>Shared<td align="left" colspan="1" rowspan="1">Shared secret w/ AES-MAC 256-bit key</td> </tr> </tbody> </table><t>When<t indent="0" pn="section-6.1.2-7">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-6.1.2-8"> <li pn="section-6.1.2-8.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-6.1.2-8.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the algorithm being used.</li><li>If<li pn="section-6.1.2-8.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'deriveKey'"derive key" or'deriveBits'.</li>"derive bits".</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="exclude" pn="section-6.1.2.1"> <name slugifiedName="name-security-considerations-for-di">Security Considerations for Direct Key with KDF</name><t>The<t indent="0" pn="section-6.1.2.1-1">The shared secret needs to have some methodto beof being regularly updated over time. The shared secret forms the basis of trust. Although not used directly, it should still be subject to scheduled rotation. </t><t>While these<t indent="0" pn="section-6.1.2.1-2">These methods do not provide for perfect forward secrecy, as the same shared secret is used for all of the keysgenerated,generated; however, if the key for any single message is discovered, only the message(oror series ofmessages)messages using that derived key are compromised. A new key derivation step will generate a new key that requires the same amount of work to get the key. </t> </section> </section> </section> <sectionanchor="key_wrap_algs"> <name>Keyanchor="key_wrap_algs" numbered="true" removeInRFC="false" toc="include" pn="section-6.2"> <name slugifiedName="name-key-wrap">Key Wrap</name><t><t indent="0" pn="section-6.2-1"> Key wrap is defined in<relref section="&DirectDistribute;" target="I-D.ietf-cose-rfc8152bis-struct"/>.<xref section="8.5.2" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.5.2" derivedContent="RFC9052"/>. Information about how to fill in the COSE_Recipient structure is detailed there. </t><section> <name>AES<section numbered="true" removeInRFC="false" toc="include" pn="section-6.2.1"> <name slugifiedName="name-aes-key-wrap">AES Key Wrap</name><t>The<t indent="0" pn="section-6.2.1-1">The AES Key Wrap algorithm is defined in <xreftarget="RFC3394"/>.target="RFC3394" format="default" sectionFormat="of" derivedContent="RFC3394"/>. This algorithm uses an AES key to wrap a value that is a multiple of 64 bits. As such, it can be used to wrap a key for any of the content encryption algorithms defined in this document. The algorithm requires a single fixed parameter, the initial value. This is fixed to the value specified inSection 2.2.3.1 of<xreftarget="RFC3394"/>.target="RFC3394" section="2.2.3.1" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc3394#section-2.2.3.1" derivedContent="RFC3394"/>. There are no public key parameters that vary on a per-invocation basis. The protected header bucket <bcp14>MUST</bcp14> be empty. </t><t>Keys<t indent="0" pn="section-6.2.1-2">Keys may be obtainedeitherfrom either a key structure orfroma recipient structure. Implementations that are encryptingandor decrypting <bcp14>MUST</bcp14> validate that the key type, key length, and algorithm are correct and appropriate for the entities involved. </t><t>When<t indent="0" pn="section-6.2.1-3">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-6.2.1-4"> <li pn="section-6.2.1-4.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'Symmetric'.</li> <li>If"Symmetric".</li> <li pn="section-6.2.1-4.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the AES Key Wrap algorithm being used.</li><li>If<li pn="section-6.2.1-4.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'encrypt'"encrypt" or'wrap key'"wrap key" when encrypting.</li><li>If<li pn="section-6.2.1-4.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'decrypt'"decrypt" or'unwrap key'"unwrap key" when decrypting.</li> </ul> <table anchor="x-table_aes_keywrap"align="center"> <name>AESalign="center" pn="table-13"> <name slugifiedName="name-aes-key-wrap-algorithm-valu">AES Key Wrap Algorithm Values</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="center" colspan="1" rowspan="1">Key Size</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>A128KW</td> <td>-3</td> <td>128</td> <td>AES<td align="left" colspan="1" rowspan="1">A128KW</td> <td align="center" colspan="1" rowspan="1">-3</td> <td align="center" colspan="1" rowspan="1">128</td> <td align="left" colspan="1" rowspan="1">AES Key Wrap w/ 128-bit key</td> </tr> <tr><td>A192KW</td> <td>-4</td> <td>192</td> <td>AES<td align="left" colspan="1" rowspan="1">A192KW</td> <td align="center" colspan="1" rowspan="1">-4</td> <td align="center" colspan="1" rowspan="1">192</td> <td align="left" colspan="1" rowspan="1">AES Key Wrap w/ 192-bit key</td> </tr> <tr><td>A256KW</td> <td>-5</td> <td>256</td> <td>AES<td align="left" colspan="1" rowspan="1">A256KW</td> <td align="center" colspan="1" rowspan="1">-5</td> <td align="center" colspan="1" rowspan="1">256</td> <td align="left" colspan="1" rowspan="1">AES Key Wrap w/ 256-bit key</td> </tr> </tbody> </table><section> <name>Security<section numbered="true" removeInRFC="false" toc="exclude" pn="section-6.2.1.1"> <name slugifiedName="name-security-considerations-for-aes-">Security Considerations forAES-KW</name> <t>TheAES Key Wrap</name> <t indent="0" pn="section-6.2.1.1-1">The shared secret needs to have some methodto beof being regularly updated over time. The shared secret is the basis of trust. </t> </section> </section> </section><section> <name>Direct<section numbered="true" removeInRFC="false" toc="include" pn="section-6.3"> <name slugifiedName="name-direct-key-agreement">Direct Key Agreement</name><t><t indent="0" pn="section-6.3-1"> Direct KeyTransportAgreement is defined in<relref section="9.5.4" target="I-D.ietf-cose-rfc8152bis-struct"/>.<xref section="8.5.4" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.5.4" derivedContent="RFC9052"/>. Information about how to fill in the COSE_Recipient structure is detailed there. </t> <sectionanchor="ECDH"> <name>Directanchor="ECDH" numbered="true" removeInRFC="false" toc="include" pn="section-6.3.1"> <name slugifiedName="name-direct-ecdh">Direct ECDH</name><t>The<t indent="0" pn="section-6.3.1-1">The mathematics for ECDH can be found in <xreftarget="RFC6090"/>.target="RFC6090" format="default" sectionFormat="of" derivedContent="RFC6090"/>. In this document, the algorithm is extended to be used with the two curves defined in <xreftarget="RFC7748"/>. </t> <t>ECDHtarget="RFC7748" format="default" sectionFormat="of" derivedContent="RFC7748"/>. </t> <t indent="0" pn="section-6.3.1-2">ECDH is parameterized by the following: </t><ul> <li> <t>Curve Type/Curve: The<dl indent="3" newline="false" spacing="normal" pn="section-6.3.1-3"> <dt pn="section-6.3.1-3.1">Curve Type/Curve:</dt> <dd pn="section-6.3.1-3.2"> <t indent="0" pn="section-6.3.1-3.2.1">The curve selected controls not only the size of the shared secret, but the mathematics for computing the shared secret. The curve selected also controls how a point in the curve is represented and what happens for the identity points on the curve. In this specification, we allow for a number of different curves to be used. A set of curvesareis defined in <xreftarget="x-table-ec-curves"/>. </t> <t>target="x-table-ec-curves" format="default" sectionFormat="of" derivedContent="Table 18"/>.</t> <t indent="0" pn="section-6.3.1-3.2.2"> The math used to obtain the computed secret is based on the curve selected and not on the ECDH algorithm. For this reason, a new algorithm does not need to be defined for each of the curves. </t></li> <li>Computed</dd> <dt pn="section-6.3.1-3.3">Computed Secret to SharedSecret:Secret:</dt> <dd pn="section-6.3.1-3.4"> Once the computed secret is known, the resulting value needs to be converted to a byte string to run the KDF. The x-coordinate is used for all of the curves defined in this document. For curves X25519 and X448, the resulting value is useddirectlydirectly, as it is a byte string of a known length. For the P-256, P-384, and P-521 curves, the x-coordinate is run through theI2OSPInteger-to-Octet-String primitive (I2OSP) function defined in <xreftarget="RFC8017"/>,target="RFC8017" format="default" sectionFormat="of" derivedContent="RFC8017"/>, using the same computation for n as is defined in <xreftarget="ECDSA"/>. </li> <li>Ephemeral-Statictarget="ECDSA" format="default" sectionFormat="of" derivedContent="Section 2.1"/>. </dd> <dt pn="section-6.3.1-3.5">Ephemeral-Static orStatic-Static:Static-Static:</dt> <dd pn="section-6.3.1-3.6"> The key agreement process may be done using either a static or an ephemeral key for the sender's side. When using ephemeral keys, the sender <bcp14>MUST</bcp14> generate a new ephemeral key for every key agreement operation. The ephemeral key is placed in the'ephemeral key'"ephemeral key" parameter and <bcp14>MUST</bcp14> be present for all algorithm identifiers that use ephemeral keys. When using static keys, the sender <bcp14>MUST</bcp14> either generate a new random value or create a uniquevalue.value for use as a KDF input. For the KDFs used, this means that either the'salt'"salt" parameter for HKDF (<xreftarget="HKDF_Alg_Params"/>)target="HKDF_Alg_Params" format="default" sectionFormat="of" derivedContent="Table 9"/>) or the'PartyU nonce'"PartyU nonce" parameter for the context structure (<xreftarget="KDF_Context_Alg_Params"/>)target="KDF_Context_Alg_Params" format="default" sectionFormat="of" derivedContent="Table 10"/>) <bcp14>MUST</bcp14> be present (both can be present if desired). The value in the parameter <bcp14>MUST</bcp14> be unique for the pair of keys being used. It is acceptable to use a global counter that is incremented for everystatic-staticStatic-Static operation and use the resulting value. Care must be taken that the counter is saved to permanent storage in a wayto avoidthat avoids reuse of that counter value. When using static keys, the static key should be identified to the recipient. The static key can be identifiedeitherby providing either the key('static key')("static key") orby providinga key identifier for the static key('static("static keyid').id"). Both of these header parameters are defined in <xreftarget="x-table-ecdh-es-parameter-table"/>. </li> <li>Keytarget="x-table-ecdh-es-parameter-table" format="default" sectionFormat="of" derivedContent="Table 15"/>. </dd> <dt pn="section-6.3.1-3.7">Key DerivationAlgorithm: TheAlgorithm:</dt> <dd pn="section-6.3.1-3.8">The result of an ECDH key agreement process does not provide a uniformly random secret. As such, it needs to be run through a KDF in order to produce a usable key. Processing the secret through a KDF also allows for the introduction of context material: how the key is going to be used and one-time material forstatic-staticStatic-Static key agreement. All of the algorithms defined in this document use one of the HKDF algorithms defined in <xreftarget="HKDF-section"/>target="HKDF-section" format="default" sectionFormat="of" derivedContent="Section 5.1"/> with the context structure defined in <xreftarget="context"/>. </li> <li>Keytarget="context" format="default" sectionFormat="of" derivedContent="Section 5.2"/>. </dd> <dt pn="section-6.3.1-3.9">Key WrapAlgorithm:Algorithm:</dt> <dd pn="section-6.3.1-3.10"> No key wrap algorithm is used. This is represented in <xreftarget="x-table-ecdh-es-table"/>target="x-table-ecdh-es-table" format="default" sectionFormat="of" derivedContent="Table 14"/> as'none'."none". The key size for the context structure is the content layer encryption algorithm size.</li> </ul> <t></dd> </dl> <t indent="0" pn="section-6.3.1-4"> COSE does not have an Ephemeral-Ephemeral version defined. The reason for this is that COSE is not an online protocol by itself and thus does not have a methodto establishof establishing ephemeral secrets on both sides. The expectation is that a protocol would establish the secrets for both sides, and then they would be used asstatic-staticStatic-Static for the purposes of COSE, or that the protocol would generate a shared secret and a direct encryption would be used. </t><t>The<t indent="0" pn="section-6.3.1-5">The set of direct ECDH algorithms defined in this documentareis found in <xreftarget="x-table-ecdh-es-table"/>.target="x-table-ecdh-es-table" format="default" sectionFormat="of" derivedContent="Table 14"/>. </t> <table anchor="x-table-ecdh-es-table"align="center"> <name>ECDHalign="center" pn="table-14"> <name slugifiedName="name-ecdh-algorithm-values">ECDH Algorithm Values</name> <thead> <tr><th>Name</th> <th>Value</th> <th>KDF</th> <th>Ephemeral- Static</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">KDF</th> <th align="left" colspan="1" rowspan="1">Ephemeral-Static</th> <th align="left" colspan="1" rowspan="1">Key Wrap</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>ECDH-ES<td align="left" colspan="1" rowspan="1">ECDH-ES + HKDF-256</td><td>-25</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-25</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>yes</td> <td>none</td> <td>ECDH<td align="left" colspan="1" rowspan="1">yes</td> <td align="left" colspan="1" rowspan="1">none</td> <td align="left" colspan="1" rowspan="1">ECDH ES w/ HKDF--- generate key directly</td> </tr> <tr><td>ECDH-ES<td align="left" colspan="1" rowspan="1">ECDH-ES + HKDF-512</td><td>-26</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-26</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-512</td><td>yes</td> <td>none</td> <td>ECDH<td align="left" colspan="1" rowspan="1">yes</td> <td align="left" colspan="1" rowspan="1">none</td> <td align="left" colspan="1" rowspan="1">ECDH ES w/ HKDF--- generate key directly</td> </tr> <tr><td>ECDH-SS<td align="left" colspan="1" rowspan="1">ECDH-SS + HKDF-256</td><td>-27</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-27</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>no</td> <td>none</td> <td>ECDH<td align="left" colspan="1" rowspan="1">no</td> <td align="left" colspan="1" rowspan="1">none</td> <td align="left" colspan="1" rowspan="1">ECDH SS w/ HKDF--- generate key directly</td> </tr> <tr><td>ECDH-SS<td align="left" colspan="1" rowspan="1">ECDH-SS + HKDF-512</td><td>-28</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-28</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-512</td><td>no</td> <td>none</td> <td>ECDH<td align="left" colspan="1" rowspan="1">no</td> <td align="left" colspan="1" rowspan="1">none</td> <td align="left" colspan="1" rowspan="1">ECDH SS w/ HKDF--- generate key directly</td> </tr> </tbody> </table> <table anchor="x-table-ecdh-es-parameter-table"align="center"> <name>ECDHalign="center" pn="table-15"> <name slugifiedName="name-ecdh-algorithm-parameters">ECDH Algorithm Parameters</name> <thead> <tr><th>Name</th> <th>Label</th> <th>Type</th> <th>Algorithm</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Label</th> <th align="left" colspan="1" rowspan="1">Type</th> <th align="left" colspan="1" rowspan="1">Algorithm</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>ephemeral<td align="left" colspan="1" rowspan="1">ephemeral key</td><td>-1</td> <td>COSE_Key</td> <td>ECDH-ES+HKDF-256,<td align="left" colspan="1" rowspan="1">-1</td> <td align="left" colspan="1" rowspan="1">COSE_Key</td> <td align="left" colspan="1" rowspan="1">ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW</td><td>Ephemeral<td align="left" colspan="1" rowspan="1">Ephemeral public key for the sender</td> </tr> <tr><td>static<td align="left" colspan="1" rowspan="1">static key</td><td>-2</td> <td>COSE_Key</td> <td>ECDH-SS+HKDF-256,<td align="left" colspan="1" rowspan="1">-2</td> <td align="left" colspan="1" rowspan="1">COSE_Key</td> <td align="left" colspan="1" rowspan="1">ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Static<td align="left" colspan="1" rowspan="1">Static public key for the sender</td> </tr> <tr><td>static<td align="left" colspan="1" rowspan="1">static key id </td><td>-3</td> <td>bstr</td> <td>ECDH-SS+HKDF-256,<td align="left" colspan="1" rowspan="1">-3</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW </td><td>Static<td align="left" colspan="1" rowspan="1">Static public key identifier for the sender</td> </tr> </tbody> </table><t>This<t indent="0" pn="section-6.3.1-8">This document defines these algorithms to be used with the curves P-256, P-384, P-521, X25519, and X448. Implementations <bcp14>MUST</bcp14> verify that the key type and curve are correct. Different curves are restricted to different key types. Implementations <bcp14>MUST</bcp14> verify that the curve and algorithm are appropriate for the entities involved. </t><t>When<t indent="0" pn="section-6.3.1-9">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-6.3.1-10"> <li pn="section-6.3.1-10.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'EC2'"EC2" or'OKP'.</li> <li>If"OKP".</li> <li pn="section-6.3.1-10.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the key agreement algorithm being used.</li><li>If<li pn="section-6.3.1-10.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'derive key'"derive key" or'derive bits'"derive bits" for the private key.</li><li>If<li pn="section-6.3.1-10.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> be empty for the public key.</li> </ul><section> <name>Security<section numbered="true" removeInRFC="false" toc="exclude" pn="section-6.3.1.1"> <name slugifiedName="name-security-considerations-for-e">Security Considerations for ECDH</name><t><t indent="0" pn="section-6.3.1.1-1"> There is a method of checking that points provided from external entities are valid. For the'EC2'"EC2" key format, this can be done by checking that the x and y values form a point on the curve. For the'OKP'"OKP" format, there is no simple way todoperform point validation. </t><t><t indent="0" pn="section-6.3.1.1-2"> Consideration was given to requiring that the public keys of both entities be provided as part of the key derivation process (as recommended in<relref<xref target="RFC7748"section="6.4"/>).section="6.1" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc7748#section-6.1" derivedContent="RFC7748"/>). This was notdone asdone, because COSE is used in astore and forwardstore-and-forward format rather than in online key exchange. In order for this to be a problem, either the receiver public key has to be chosen maliciously or the sender has to be malicious. In either case, all security evaporates anyway. </t><t>A<t indent="0" pn="section-6.3.1.1-3">A proof of possession of the private key associated with the public key is recommended when a key is moved from untrusted to trusted (either by the end user or by the entity that is responsible for making trust statements on keys). </t> </section> </section> </section><section> <name>Key<section numbered="true" removeInRFC="false" toc="include" pn="section-6.4"> <name slugifiedName="name-key-agreement-with-key-wrap">Key Agreement with Key Wrap</name><t><t indent="0" pn="section-6.4-1"> Key Agreement with Key Wrap is defined in<relref section="9.5.5" target="I-D.ietf-cose-rfc8152bis-struct"/>.<xref section="8.5.5" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.5.5" derivedContent="RFC9052"/>. Information about how to fill in the COSE_Recipient structureareis detailed there. </t> <sectionanchor="ECDH-wrap"> <name>ECDHanchor="ECDH-wrap" numbered="true" removeInRFC="false" toc="include" pn="section-6.4.1"> <name slugifiedName="name-ecdh-with-key-wrap">ECDH with Key Wrap</name><t>These<t indent="0" pn="section-6.4.1-1">These algorithms are defined in <xreftarget="x-table-ecdh-es-table-wrap"/>. </t> <t>ECDHtarget="x-table-ecdh-es-table-wrap" format="default" sectionFormat="of" derivedContent="Table 16"/>. </t> <t indent="0" pn="section-6.4.1-2">ECDH with Key Agreement is parameterized by the same header parameters as for ECDH; see <xreftarget="ECDH"/>,target="ECDH" format="default" sectionFormat="of" derivedContent="Section 6.3.1"/>, with the following modifications: </t><ul> <li>Key<dl indent="3" newline="false" spacing="normal" pn="section-6.4.1-3"> <dt pn="section-6.4.1-3.1">Key WrapAlgorithm:Algorithm:</dt> <dd pn="section-6.4.1-3.2"> Any of the key wrap algorithms defined in <xreftarget="key_wrap_algs"/>target="key_wrap_algs" format="default" sectionFormat="of" derivedContent="Section 6.2"/> are supported. The size of the key used for the key wrap algorithm is fed into the KDF. The set of identifiersareis found in <xreftarget="x-table-ecdh-es-table-wrap"/>. </li> </ul>target="x-table-ecdh-es-table-wrap" format="default" sectionFormat="of" derivedContent="Table 16"/>. </dd> </dl> <table anchor="x-table-ecdh-es-table-wrap"align="center"> <name>ECDHalign="center" pn="table-16"> <name slugifiedName="name-ecdh-algorithm-values-with-">ECDH Algorithm Values with Key Wrap</name> <thead> <tr><th>Name</th> <th>Value</th> <th>KDF</th> <th>Ephemeral- Static</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">KDF</th> <th align="left" colspan="1" rowspan="1">Ephemeral-Static</th> <th align="left" colspan="1" rowspan="1">Key Wrap</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>ECDH-ES<td align="left" colspan="1" rowspan="1">ECDH-ES + A128KW</td><td>-29</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-29</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>yes</td> <td>A128KW</td> <td>ECDH<td align="left" colspan="1" rowspan="1">yes</td> <td align="left" colspan="1" rowspan="1">A128KW</td> <td align="left" colspan="1" rowspan="1">ECDH ES w/Concat KDFHKDF and AES Key Wrap w/ 128-bit key</td> </tr> <tr><td>ECDH-ES<td align="left" colspan="1" rowspan="1">ECDH-ES + A192KW</td><td>-30</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-30</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>yes</td> <td>A192KW</td> <td>ECDH<td align="left" colspan="1" rowspan="1">yes</td> <td align="left" colspan="1" rowspan="1">A192KW</td> <td align="left" colspan="1" rowspan="1">ECDH ES w/Concat KDFHKDF and AES Key Wrap w/ 192-bit key</td> </tr> <tr><td>ECDH-ES<td align="left" colspan="1" rowspan="1">ECDH-ES + A256KW</td><td>-31</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-31</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>yes</td> <td>A256KW</td> <td>ECDH<td align="left" colspan="1" rowspan="1">yes</td> <td align="left" colspan="1" rowspan="1">A256KW</td> <td align="left" colspan="1" rowspan="1">ECDH ES w/Concat KDFHKDF and AES Key Wrap w/ 256-bit key</td> </tr> <tr><td>ECDH-SS<td align="left" colspan="1" rowspan="1">ECDH-SS + A128KW</td><td>-32</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-32</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>no</td> <td>A128KW</td> <td>ECDH<td align="left" colspan="1" rowspan="1">no</td> <td align="left" colspan="1" rowspan="1">A128KW</td> <td align="left" colspan="1" rowspan="1">ECDH SS w/Concat KDFHKDF and AES Key Wrap w/ 128-bit key</td> </tr> <tr><td>ECDH-SS<td align="left" colspan="1" rowspan="1">ECDH-SS + A192KW</td><td>-33</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-33</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>no</td> <td>A192KW</td> <td>ECDH<td align="left" colspan="1" rowspan="1">no</td> <td align="left" colspan="1" rowspan="1">A192KW</td> <td align="left" colspan="1" rowspan="1">ECDH SS w/Concat KDFHKDF and AES Key Wrap w/ 192-bit key</td> </tr> <tr><td>ECDH-SS<td align="left" colspan="1" rowspan="1">ECDH-SS + A256KW</td><td>-34</td> <td>HKDF -<td align="left" colspan="1" rowspan="1">-34</td> <td align="left" colspan="1" rowspan="1">HKDF -- SHA-256</td><td>no</td> <td>A256KW</td> <td>ECDH<td align="left" colspan="1" rowspan="1">no</td> <td align="left" colspan="1" rowspan="1">A256KW</td> <td align="left" colspan="1" rowspan="1">ECDH SS w/Concat KDFHKDF and AES Key Wrap w/ 256-bit key</td> </tr> </tbody> </table><t>When<t indent="0" pn="section-6.4.1-5">When using a COSE key for this algorithm, the following checks are made: </t><ul> <li>The 'kty'<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-6.4.1-6"> <li pn="section-6.4.1-6.1">The "kty" field <bcp14>MUST</bcp14> be present, and it <bcp14>MUST</bcp14> be'EC2'"EC2" or'OKP'.</li> <li>If"OKP".</li> <li pn="section-6.4.1-6.2">If the'alg'"alg" field is present, it <bcp14>MUST</bcp14> match the key agreement algorithm being used.</li><li>If<li pn="section-6.4.1-6.3">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> include'derive key'"derive key" or'derive bits'"derive bits" for the private key.</li><li>If<li pn="section-6.4.1-6.4">If the'key_ops'"key_ops" field is present, it <bcp14>MUST</bcp14> be empty for the public key.</li> </ul> </section> </section> </section> <sectionanchor="Key-specific-labels"> <name>Keyanchor="Key-specific-labels" numbered="true" removeInRFC="false" toc="include" pn="section-7"> <name slugifiedName="name-key-object-parameters">Key Object Parameters</name><t>The<t indent="0" pn="section-7-1">The COSE_Key object defines a way to hold a single key object. It is still required that the members of individual key types be defined. This section of the document is where we define an initial set of members for specific key types. </t><t>For<t indent="0" pn="section-7-2">For each of the key types, we define both public and private members. The public members are what is transmitted to others for their usage. Private members allowfor the archival of keys by individuals.individuals to archive keys. However, there are some circumstances in which private keys may be distributed to entities in a protocol. Examples include: entities that have poor random number generation, centralized key creation formulti-cast typemulticast-type operations, and protocols in which a shared secret is used as a bearer token for authorization purposes. </t><t>Key<t indent="0" pn="section-7-3">Key types are identified by the'kty'"kty" member of the COSE_Key object. In this document, we define four values for the member: </t> <table anchor="x-table_key_types"align="center"> <name>Keyalign="center" pn="table-17"> <name slugifiedName="name-key-type-values">Key Type Values</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>OKP</td> <td>1</td> <td>Octet<td align="left" colspan="1" rowspan="1">OKP</td> <td align="center" colspan="1" rowspan="1">1</td> <td align="left" colspan="1" rowspan="1">Octet Key Pair</td> </tr> <tr><td>EC2</td> <td>2</td> <td>Elliptic<td align="left" colspan="1" rowspan="1">EC2</td> <td align="center" colspan="1" rowspan="1">2</td> <td align="left" colspan="1" rowspan="1">Elliptic Curve Keys w/ x- and y-coordinate pair</td> </tr> <tr><td>Symmetric</td> <td>4</td> <td>Symmetric<td align="left" colspan="1" rowspan="1">Symmetric</td> <td align="center" colspan="1" rowspan="1">4</td> <td align="left" colspan="1" rowspan="1">Symmetric Keys</td> </tr> <tr><td>Reserved</td> <td>0</td> <td>This<td align="left" colspan="1" rowspan="1">Reserved</td> <td align="center" colspan="1" rowspan="1">0</td> <td align="left" colspan="1" rowspan="1">This value is reserved</td> </tr> </tbody> </table><section> <name>Elliptic<section numbered="true" removeInRFC="false" toc="include" pn="section-7.1"> <name slugifiedName="name-elliptic-curve-keys">Elliptic Curve Keys</name><t>Two<t indent="0" pn="section-7.1-1">Two different key structures are defined for elliptic curve keys. One version uses both an x-coordinate and a y-coordinate, potentially with point compression('EC2').("EC2"). This is thetraditional ECconventional elliptic curve (EC) point representation that is used in <xreftarget="RFC5480"/>.target="RFC5480" format="default" sectionFormat="of" derivedContent="RFC5480"/>. The other version uses only thex-coordinatex-coordinate, as the y-coordinate is either to be recomputed or not needed for the key agreement operation('OKP').("OKP"). </t><t>Applications<t indent="0" pn="section-7.1-2">Applications <bcp14>MUST</bcp14> check that the curve and the key type are consistent and reject a key if they are not. </t> <table anchor="x-table-ec-curves"align="center"> <name>Ellipticalign="center" pn="table-18"> <name slugifiedName="name-elliptic-curves">Elliptic Curves</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Value</th> <th align="center" colspan="1" rowspan="1">Key Type</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>P-256</td> <td>1</td> <td>EC2</td> <td>NIST P-256<td align="left" colspan="1" rowspan="1">P-256</td> <td align="center" colspan="1" rowspan="1">1</td> <td align="center" colspan="1" rowspan="1">EC2</td> <td align="left" colspan="1" rowspan="1">NIST P-256, also known as secp256r1</td> </tr> <tr><td>P-384</td> <td>2</td> <td>EC2</td> <td>NIST P-384<td align="left" colspan="1" rowspan="1">P-384</td> <td align="center" colspan="1" rowspan="1">2</td> <td align="center" colspan="1" rowspan="1">EC2</td> <td align="left" colspan="1" rowspan="1">NIST P-384, also known as secp384r1</td> </tr> <tr><td>P-521</td> <td>3</td> <td>EC2</td> <td>NIST P-521<td align="left" colspan="1" rowspan="1">P-521</td> <td align="center" colspan="1" rowspan="1">3</td> <td align="center" colspan="1" rowspan="1">EC2</td> <td align="left" colspan="1" rowspan="1">NIST P-521, also known as secp521r1</td> </tr> <tr><td>X25519</td> <td>4</td> <td>OKP</td> <td>X25519<td align="left" colspan="1" rowspan="1">X25519</td> <td align="center" colspan="1" rowspan="1">4</td> <td align="center" colspan="1" rowspan="1">OKP</td> <td align="left" colspan="1" rowspan="1">X25519 for use w/ ECDH only</td> </tr> <tr><td>X448</td> <td>5</td> <td>OKP</td> <td>X448<td align="left" colspan="1" rowspan="1">X448</td> <td align="center" colspan="1" rowspan="1">5</td> <td align="center" colspan="1" rowspan="1">OKP</td> <td align="left" colspan="1" rowspan="1">X448 for use w/ ECDH only</td> </tr> <tr><td>Ed25519</td> <td>6</td> <td>OKP</td> <td>Ed25519<td align="left" colspan="1" rowspan="1">Ed25519</td> <td align="center" colspan="1" rowspan="1">6</td> <td align="center" colspan="1" rowspan="1">OKP</td> <td align="left" colspan="1" rowspan="1">Ed25519 for use w/ EdDSA only</td> </tr> <tr><td>Ed448</td> <td>7</td> <td>OKP</td> <td>Ed448<td align="left" colspan="1" rowspan="1">Ed448</td> <td align="center" colspan="1" rowspan="1">7</td> <td align="center" colspan="1" rowspan="1">OKP</td> <td align="left" colspan="1" rowspan="1">Ed448 for use w/ EdDSA only</td> </tr> </tbody> </table> <sectionanchor="EC2-Keys"> <name>Doubleanchor="EC2-Keys" numbered="true" removeInRFC="false" toc="include" pn="section-7.1.1"> <name slugifiedName="name-double-coordinate-curves">Double Coordinate Curves</name><t>The traditional way of sending ECs has been to send<t indent="0" pn="section-7.1.1-1">Generally, protocols transmit elliptic-curve points as eitherboththe x-coordinate and y-coordinate or the x-coordinate and a sign bit for the y-coordinate. The latter encoding has not been recommendedinby the IETF due to potential IPR issues. However, for operations in constrained environments, the ability to shrink a message by not sending the y-coordinate is potentially useful. </t><t>For<t indent="0" pn="section-7.1.1-2">For EC keys with both coordinates, the'kty'"kty" member is set to 2 (EC2). The key parameters defined in this section are summarized in <xreftarget="x-table-ec2-keys"/>.target="x-table-ec2-keys" format="default" sectionFormat="of" derivedContent="Table 19"/>. The members that are defined for this key type are: </t> <dl newline="false"indent="5"> <dt>crv:</dt> <dd>Thisindent="6" spacing="normal" pn="section-7.1.1-3"> <dt pn="section-7.1.1-3.1">crv:</dt> <dd pn="section-7.1.1-3.2">This contains an identifier of the curve to be used with the key. The curves defined in this document for this key type can be found in <xreftarget="x-table-ec-curves"/>.target="x-table-ec-curves" format="default" sectionFormat="of" derivedContent="Table 18"/>. Other curves may be registered in the future, and private curves can be used as well. </dd><dt>x:</dt> <dd>This<dt pn="section-7.1.1-3.3">x:</dt> <dd pn="section-7.1.1-3.4">This contains the x-coordinate for the EC point. The integer is converted to a byte string as defined in <xreftarget="SEC1"/>. Leading zerotarget="SEC1" format="default" sectionFormat="of" derivedContent="SEC1"/>. Leading-zero octets <bcp14>MUST</bcp14> be preserved. </dd><dt>y:</dt> <dd>This<dt pn="section-7.1.1-3.5">y:</dt> <dd pn="section-7.1.1-3.6">This contains either the sign bit or the value of the y-coordinate for the EC point. When encoding the value y, the integer is converted toana byte string (as defined in <xreftarget="SEC1"/>)target="SEC1" format="default" sectionFormat="of" derivedContent="SEC1"/>) and encoded as a CBOR bstr.Leading zeroLeading-zero octets <bcp14>MUST</bcp14> be preserved.The compressedCompressed point encoding is also supported. Compute the sign bit as laid out in the Elliptic-Curve-Point-to-Octet-String Conversion function of <xreftarget="SEC1"/>.target="SEC1" format="default" sectionFormat="of" derivedContent="SEC1"/>. If the sign bit is zero, then encode y as a CBOR false value; otherwise, encode y as a CBOR true value. The encoding of the infinity point is not supported. </dd><dt>d:</dt> <dd>This<dt pn="section-7.1.1-3.7">d:</dt> <dd pn="section-7.1.1-3.8">This contains the private key. </dd> </dl><t>For<t indent="0" pn="section-7.1.1-4">For public keys, it is <bcp14>REQUIRED</bcp14> that'crv', 'x',"crv", "x", and'y'"y" be present in the structure. For private keys, it is <bcp14>REQUIRED</bcp14> that'crv'"crv" and'd'"d" be present in the structure. For private keys, it is <bcp14>RECOMMENDED</bcp14> that'x'"x" and'y'"y" also be present, but they can be recomputed from the requiredelementselements, and omitting them saves on space. </t> <table anchor="x-table-ec2-keys"align="center"> <name>ECalign="center" pn="table-19"> <name slugifiedName="name-ec-key-parameters">EC Key Parameters</name> <thead> <tr><th>Key<th align="center" colspan="1" rowspan="1">Key Type</th><th>Name</th> <th>Label</th> <th>CBOR<th align="center" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Label</th> <th align="left" colspan="1" rowspan="1">CBOR Type</th><th>Description</th><th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>2</td> <td>crv</td> <td>-1</td> <td>int<td align="center" colspan="1" rowspan="1">2</td> <td align="center" colspan="1" rowspan="1">crv</td> <td align="center" colspan="1" rowspan="1">-1</td> <td align="left" colspan="1" rowspan="1">int / tstr</td><td>EC<td align="left" colspan="1" rowspan="1">EC identifier--- Taken from the "COSE Elliptic Curves" registry</td> </tr> <tr><td>2</td> <td>x</td> <td>-2</td> <td>bstr</td> <td>x-coordinate</td> </tr> <tr> <td>2</td> <td>y</td> <td>-3</td> <td>bstr<td align="center" colspan="1" rowspan="1">2</td> <td align="center" colspan="1" rowspan="1">x</td> <td align="center" colspan="1" rowspan="1">-2</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">x-coordinate</td> </tr> <tr> <td align="center" colspan="1" rowspan="1">2</td> <td align="center" colspan="1" rowspan="1">y</td> <td align="center" colspan="1" rowspan="1">-3</td> <td align="left" colspan="1" rowspan="1">bstr / bool</td><td>y-coordinate</td> </tr> <tr> <td>2</td> <td>d</td> <td>-4</td> <td>bstr</td> <td>Private<td align="left" colspan="1" rowspan="1">y-coordinate</td> </tr> <tr> <td align="center" colspan="1" rowspan="1">2</td> <td align="center" colspan="1" rowspan="1">d</td> <td align="center" colspan="1" rowspan="1">-4</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">Private key</td> </tr> </tbody> </table> </section> </section><section> <name>Octet<section numbered="true" removeInRFC="false" toc="include" pn="section-7.2"> <name slugifiedName="name-octet-key-pair">Octet Key Pair</name><t>A<t indent="0" pn="section-7.2-1">A new key type is defined for Octet Key Pairs(OKP).(OKPs). Do not assume that keys using this type are elliptic curves. This key type could be used for other curve types (for example, mathematics based on hyper-elliptic surfaces). </t><t>The<t indent="0" pn="section-7.2-2">The key parameters defined in this section are summarized in <xreftarget="x-table-ec1-keys"/>.target="x-table-ec1-keys" format="default" sectionFormat="of" derivedContent="Table 20"/>. The members that are defined for this key type are: </t> <dl newline="false"indent="5"> <dt>crv:</dt> <dd>Thisindent="6" spacing="normal" pn="section-7.2-3"> <dt pn="section-7.2-3.1">crv:</dt> <dd pn="section-7.2-3.2">This contains an identifier of the curve to be used with the key. The curves defined in this document for this key type can be found in <xreftarget="x-table-ec-curves"/>.target="x-table-ec-curves" format="default" sectionFormat="of" derivedContent="Table 18"/>. Other curves may be registered in thefuturefuture, and private curves can be used as well. </dd><dt>x:</dt> <dd>This<dt pn="section-7.2-3.3">x:</dt> <dd pn="section-7.2-3.4">This contains the public key. The byte string contains the public key as defined by the algorithm. (For X25519, internally it is a little-endian integer.) </dd><dt>d:</dt> <dd>This<dt pn="section-7.2-3.5">d:</dt> <dd pn="section-7.2-3.6">This contains the private key. </dd> </dl><t>For<t indent="0" pn="section-7.2-4">For public keys, it is <bcp14>REQUIRED</bcp14> that'crv'"crv" and'x'"x" be present in the structure. For private keys, it is <bcp14>REQUIRED</bcp14> that'crv'"crv" and'd'"d" be present in the structure. For private keys, it is <bcp14>RECOMMENDED</bcp14> that'x'"x" also be present, but it can be recomputed from the requiredelementselements, and omitting it saves on space. </t> <table anchor="x-table-ec1-keys"align="center"> <name>Octetalign="center" pn="table-20"> <name slugifiedName="name-octet-key-pair-parameters">Octet Key Pair Parameters</name> <thead> <tr><th>Name</th> <th>Key<th align="left" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Key Type</th><th>Label</th> <th>Type</th> <th>Description</th><th align="center" colspan="1" rowspan="1">Label</th> <th align="left" colspan="1" rowspan="1">Type</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>crv</td> <td>1</td> <td>-1</td> <td>int<td align="left" colspan="1" rowspan="1">crv</td> <td align="center" colspan="1" rowspan="1">1</td> <td align="center" colspan="1" rowspan="1">-1</td> <td align="left" colspan="1" rowspan="1">int / tstr</td><td>EC<td align="left" colspan="1" rowspan="1">EC identifier--- Taken from the "COSE Elliptic Curves" registry</td> </tr> <tr><td>x</td> <td>1</td> <td>-2</td> <td>bstr</td> <td>Public<td align="left" colspan="1" rowspan="1">x</td> <td align="center" colspan="1" rowspan="1">1</td> <td align="center" colspan="1" rowspan="1">-2</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">Public Key</td> </tr> <tr><td>d</td> <td>1</td> <td>-4</td> <td>bstr</td> <td>Private<td align="left" colspan="1" rowspan="1">d</td> <td align="center" colspan="1" rowspan="1">1</td> <td align="center" colspan="1" rowspan="1">-4</td> <td align="left" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">Private key</td> </tr> </tbody> </table> </section><section> <name>Symmetric<section numbered="true" removeInRFC="false" toc="include" pn="section-7.3"> <name slugifiedName="name-symmetric-keys">Symmetric Keys</name><t>Occasionally<t indent="0" pn="section-7.3-1">Occasionally, it is required that a symmetric key be transported between entities. This key structure allows for that to happen. </t><t>For<t indent="0" pn="section-7.3-2">For symmetric keys, the'kty'"kty" member is set to 4('Symmetric').("Symmetric"). The member that is defined for this key type is: </t> <dlnewline="false"> <dt>k:</dt> <dd>Thisnewline="false" indent="3" spacing="normal" pn="section-7.3-3"> <dt pn="section-7.3-3.1">k:</dt> <dd pn="section-7.3-3.2">This contains the value of the key. </dd> </dl><t>This<t indent="0" pn="section-7.3-4">This key structure does not have a form that contains only public members. As it is expected that this key structure is going to be transmitted, care must be taken that it is never transmitted accidentally or insecurely. For symmetric keys, it is <bcp14>REQUIRED</bcp14> that'k'"k" be present in the structure. </t> <table anchor="x-table-symmetric-keys"align="center"> <name>Symmetricalign="center" pn="table-21"> <name slugifiedName="name-symmetric-key-parameters">Symmetric Key Parameters</name> <thead> <tr><th>Name</th> <th>Key<th align="center" colspan="1" rowspan="1">Name</th> <th align="center" colspan="1" rowspan="1">Key Type</th><th>Label</th> <th>Type</th> <th>Description</th><th align="center" colspan="1" rowspan="1">Label</th> <th align="center" colspan="1" rowspan="1">Type</th> <th align="left" colspan="1" rowspan="1">Description</th> </tr> </thead> <tbody> <tr><td>k</td> <td>4</td> <td>-1</td> <td>bstr</td> <td>Key<td align="center" colspan="1" rowspan="1">k</td> <td align="center" colspan="1" rowspan="1">4</td> <td align="center" colspan="1" rowspan="1">-1</td> <td align="center" colspan="1" rowspan="1">bstr</td> <td align="left" colspan="1" rowspan="1">Key Value</td> </tr> </tbody> </table> </section> </section> <sectionanchor="COSE-Capabilities"> <name>COSEanchor="COSE-Capabilities" numbered="true" removeInRFC="false" toc="include" pn="section-8"> <name slugifiedName="name-cose-capabilities">COSE Capabilities</name><t> There are some situations that have been identified where identification of<t indent="0" pn="section-8-1"> The capabilities of an algorithm orakey type need to bespecified. One example of this isspecified in<xref target="I-D.ietf-core-oscore-groupcomm"/> where the capabilities of the counter signature algorithm are mixed into the traffic key derivation process.some situations. This has a counterpart in the S/MIMEspecificationsspecifications, where SMIMECapabilities is defined in <xref target="RFC8551"section="2.5a.2"/>.section="2.5.2" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8551#section-2.5.2" derivedContent="RFC8551"/>. This document defines the same concept for COSE. </t><t><t indent="0" pn="section-8-2"> The algorithm identifier is not included in the capabilitiesdatadata, as it should be encoded elsewhere in the message. The key type identifier is included in the capabilitiesdatadata, as it is not expected to be encoded elsewhere. </t><t><t indent="0" pn="section-8-3"> Two different types of capabilities are defined: capabilities for algorithms and capabilities for key type. Once defined by registration with IANA, the list of capabilities for an algorithm or key type is immutable. If it is later found that a new capability is needed for a key type oranalgorithm, it will require that a new code point be assigned to deal with that. As a general rule, the capabilities are going to map to algorithm-specific header parameters or key parameters, but they do not need to do so. An example of this is the HSS-LMS key type capabilities definedbelowbelow, where the hash algorithm used is included. </t><t><t indent="0" pn="section-8-4"> The capability structure is an array ofvalues,values; the values included in the structure are dependent on a specific algorithm or key type. For algorithm capabilities, the first element should always be a key type value if applicable, but the items that are specific to a key (forexampleexample, a curve) should not be included in the algorithm capabilities. This means that if one wishes to enumerate all of the capabilities for a devicewhichthat implements ECDH, it requires that all of the combinations of algorithms and key pairstobe specified. The last example of <xreftarget="cap-examples"/>target="cap-examples" format="default" sectionFormat="of" derivedContent="Section 8.3"/> provides a case where this is done by allowing for a cross product to be specified between an array of algorithm capabilities and key type capabilities (see the ECDH-ES+A25KW element). For a key, the first element should be the key type value. While this means that the key type value will be duplicated if both an algorithm and key capability are used, the key type is needed in order to understand the rest of the values. </t><section> <name>Assignments<section numbered="true" removeInRFC="false" toc="include" pn="section-8.1"> <name slugifiedName="name-assignments-for-existing-al">Assignments for Existing Algorithms</name><t><t indent="0" pn="section-8.1-1"> For the current set of algorithms in theregistry, thoseregistry other than IV-GENERATION (those in this document as well as those in <xreftarget="RFC8230"/>target="RFC8230" format="default" sectionFormat="of" derivedContent="RFC8230"/>, <xref target="RFC8778" format="default" sectionFormat="of" derivedContent="RFC8778"/>, and <xreftarget="I-D.ietf-cose-hash-sig"/>,target="RFC9021" format="default" sectionFormat="of" derivedContent="RFC9021"/>), the capabilities list is an array with one element, the key type (from the "COSE Key Types" Registry). It is expected that future registered algorithms could have zero, one, or multiple elements. </t> </section><section> <name>Assignments<section numbered="true" removeInRFC="false" toc="include" pn="section-8.2"> <name slugifiedName="name-assignments-for-existing-ke">Assignments for Existing Key Types</name><t><t indent="0" pn="section-8.2-1"> There are a number of pre-existing keytypes,types; the following deals with creating the capability definition for those structures: </t><ul> <li> <t>OKP,<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.2-2"> <li pn="section-8.2-2.1"> <t indent="0" pn="section-8.2-2.1.1">OKP, EC2: The list of capabilities is:</t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.2-2.1.2"> <li pn="section-8.2-2.1.2.1">The key type value. (1 for OKP or 2 for EC2.)</li><li>One<li pn="section-8.2-2.1.2.2">One curve for that key type from the "COSE EllipticCurve"Curves" registry.</li> </ul> </li><li> <t>RSA:<li pn="section-8.2-2.2"> <t indent="0" pn="section-8.2-2.2.1">RSA: The list of capabilities is:</t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.2-2.2.2"> <li pn="section-8.2-2.2.2.1">The key type value (3).</li> </ul> </li><li> <t>Symmetric:<li pn="section-8.2-2.3"> <t indent="0" pn="section-8.2-2.3.1">Symmetric: The list of capabilities is:</t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.2-2.3.2"> <li pn="section-8.2-2.3.2.1">The key type value (4).</li> </ul> </li><li> <t>HSS-LMS:<li pn="section-8.2-2.4"> <t indent="0" pn="section-8.2-2.4.1">HSS-LMS: The list of capabilities is:</t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.2-2.4.2"> <li pn="section-8.2-2.4.2.1">The key type value(5),</li> <li>Algorithm(5).</li> <li pn="section-8.2-2.4.2.2">Algorithm identifier for the underlying hash function from the "COSE Algorithms" registry.</li> </ul> </li> <li pn="section-8.2-2.5"> <t indent="0" pn="section-8.2-2.5.1">WalnutDSA: The list of capabilities is:</t> <ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.2-2.5.2"> <li pn="section-8.2-2.5.2.1">The key type value (6).</li> <li pn="section-8.2-2.5.2.2">The N value (group and matrix size) for the key, a uint.</li> <li pn="section-8.2-2.5.2.3">The q value (finite field order) for the key, a uint.</li> </ul> </li> </ul> </section> <sectionanchor="cap-examples"> <name>Examples</name> <t>anchor="cap-examples" numbered="true" removeInRFC="false" toc="include" pn="section-8.3"> <name slugifiedName="name-examples-2">Examples</name> <t indent="0" pn="section-8.3-1"> Capabilities can beuseused in a key derivation process to make sure that both sides are using the same parameters.This is the approach that is being used by the group communication KDF in <xref target="I-D.ietf-core-oscore-groupcomm"/>.The three examples below show different ways that one mightinclude things:utilize parameters in specifying an application protocol: </t><ul> <li> Just<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.3-2"> <li pn="section-8.3-2.1"> Only an algorithm capability: This is useful if the protocol wants to require a specificalgorithmalgorithm, such asECDSA,ES256, but it is agnostic about which curve is being used. Thisdoes requirerequires that the algorithm identifier be specified in the protocol. See the first example. </li><li> Just<li pn="section-8.3-2.2"> Only a key type capability: This is useful if theprotccolprotocol wants to require a specifica specifickey type and curve, such as P-256, but will accept any algorithm using that curve(e.g.(e.g., both ECDSA and ECDH). See the second example. </li><li><li pn="section-8.3-2.3"> Bothanalgorithm andakey typecapability:capabilities: This is used if the protocol needs to nail down all of the options surrounding an algorithmE.g.-- e.g., EdDSA with the curveX25519.Ed25519. As with the first example, the algorithm identifier needs to be specified in the protocol. See the thirdexampleexample, which just concatenates the two capabilities together. </li> </ul><artwork><sourcecode type="cbor-pretty" markers="false" pn="section-8.3-3"> AlgorithmECDSAES256 0x8102 / [2 \ EC2 \ ] / Key type EC2 with P-256 curve: 0x820201 / [2 \ EC2 \, 1 \ P-256 \] / ECDH-ES + A256KW with an X25519 curve: 0x8101820104 / [1 \ OKP \],[1 \ OKP \, 4 \ X25519 \] /</artwork> <t></sourcecode> <t indent="0" pn="section-8.3-4"> The capabilities can also be used byandan entity to advertise what it iscapabablecapable of doing. The decoded example below is one of manyencodingencodings that could be used for that purpose. Each array element includes three fields: the algorithm identifier, one or more algorithm capabilities, and one or more key type capabilities. </t><artwork><sourcecode type="cbor-diag" markers="false" pn="section-8.3-5"> [ [-8 / EdDSA /, [1 / OKP key type /], [ [1 / OKP /, 6 / Ed25519 / ], [1 /OKP/, 7 /Ed448 /] ] ], [-7 / ECDSA with SHA-256/, [2 /EC2 key type/], [ [2 /EC2/, 1 /P-256/], [2 /EC2/, 3 /P-521/] ] ], [ -31 / ECDH-ES+A256KW/, [ [ 2 /EC2/], [1 /OKP/ ] ], [ [2 /EC2/, 1 /P-256/], [1 /OKP/, 4 / X25519/ ] ] ], [ 1 / A128GCM /, [ 4 / Symmetric / ], [ 4 / Symmetric /] ] ]</artwork> <t></sourcecode> <t indent="0" pn="section-8.3-6"> Examining the above: </t><ul> <li>The<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-8.3-7"> <li pn="section-8.3-7.1">The first element indicates that the entity supports EdDSA with curves Ed25519 and Ed448.</li><li>The<li pn="section-8.3-7.2">The second element indicates that the entity supports ECDSA with SHA-256 with curves P-256 and P-521.</li><li><li pn="section-8.3-7.3"> The third element indicates that the entitysupport ephemeral-staticsupports Ephemeral-Static ECDH using AES256 key wrap. The entity can support the P-256 curve with an EC2 key type and the X25519 curve with an OKP key type. </li><li>The<li pn="section-8.3-7.4">The last element indicates that the entity supports AES-GCM of 128 bits for content encryption.</li> </ul><t><t indent="0" pn="section-8.3-8"> The entity does not advertise that it supports any MAC algorithms. </t> </section> </section> <sectionanchor="CBOR-Canonical"> <name>CBORanchor="CBOR-Canonical" numbered="true" removeInRFC="false" toc="include" pn="section-9"> <name slugifiedName="name-cbor-encoding-restrictions">CBOR Encoding Restrictions</name><t>This<t indent="0" pn="section-9-1">This document limits the restrictions it imposes on how the CBOR Encoder needs to work. The new encoding restrictions are aligned with the Core Deterministic Encoding Requirements specified in <xref sectionFormat="of" section="4.2.1" target="STD94" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8949#section-4.2.1" derivedContent="STD94">RFC 8949</xref>. It has been narrowed down to the followingrestrictions: </t> <ul> <li>restrictions:</t> <ul bare="false" empty="false" indent="3" spacing="normal" pn="section-9-2"> <li pn="section-9-2.1"> The restriction applies to the encoding of the COSE_KDF_Context. </li><li><li pn="section-9-2.2"> Encoding <bcp14>MUST</bcp14> be done using definitelengthslengths, and the length of the (encoded) argument <bcp14>MUST</bcp14> be the minimum possible length. This means that the integer 1 is encoded as "0x01" and not "0x1801". </li><li><li pn="section-9-2.3"> Applications <bcp14>MUST NOT</bcp14> generate messages with the same label used twice as a key in a single map. Applications <bcp14>MUST NOT</bcp14> parse and process messages with the same label used twice as a key in a single map. Applications can enforce theparse and processparse-and-process requirement by using parsers that will fail the parse step or by using parsers that will pass all keys to the application, and the application can perform the check for duplicate keys. </li> </ul> </section> <sectionanchor="iana-considerations"> <name>IANAanchor="iana-considerations" numbered="true" removeInRFC="false" toc="include" pn="section-10"> <name slugifiedName="name-iana-considerations">IANA Considerations</name><section> <name>Changes<t indent="0" pn="section-10-1">IANA has updated all COSE registries except for "COSE Header Parameters" and "COSE Key Common Parameters" to point to this document instead of <xref target="RFC8152" format="default" sectionFormat="of" derivedContent="RFC8152"/>.</t> <section numbered="true" removeInRFC="false" toc="include" pn="section-10.1"> <name slugifiedName="name-changes-to-the-cose-key-typ">Changes to the "COSE Key Types"registry.</name> <t>Registry</name> <t indent="0" pn="section-10.1-1"> IANAis requested to createhas added a new column in the "COSE Key Types" registry. The new column isto belabeled"Capabilities". The new column is to be"Capabilities" and has been populated according to the entries in <xreftarget="initial-kty-caps"/>.target="initial-kty-caps" format="default" sectionFormat="of" derivedContent="Table 22"/>. </t> <tableanchor="initial-kty-caps"> <name>Keyanchor="initial-kty-caps" align="center" pn="table-22"> <name slugifiedName="name-key-type-capabilities">Key Type Capabilities</name> <thead> <tr><th>Value</th> <th>Name</th> <th>Capabilities</th><th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Capabilities</th> </tr> </thead> <tbody> <tr><td>1</td> <td>OKP</td> <td>[kty(1),<td align="left" colspan="1" rowspan="1">1</td> <td align="left" colspan="1" rowspan="1">OKP</td> <td align="left" colspan="1" rowspan="1">[kty(1), crv]</td> </tr> <tr><td>2</td> <td>EC2</td> <td>[kty(2),<td align="left" colspan="1" rowspan="1">2</td> <td align="left" colspan="1" rowspan="1">EC2</td> <td align="left" colspan="1" rowspan="1">[kty(2), crv]</td> </tr> <tr><td>3</td> <td>RSA</td> <td>[kty(3)]</td> </tr> <tr> <td>4</td> <td>Symmetric</td> <td>[kty(4)]</td> </tr> <tr> <td>5</td> <td>HSS-LMS</td> <td>[kty(5),<td align="left" colspan="1" rowspan="1">3</td> <td align="left" colspan="1" rowspan="1">RSA</td> <td align="left" colspan="1" rowspan="1">[kty(3)]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">4</td> <td align="left" colspan="1" rowspan="1">Symmetric</td> <td align="left" colspan="1" rowspan="1">[kty(4)]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">5</td> <td align="left" colspan="1" rowspan="1">HSS-LMS</td> <td align="left" colspan="1" rowspan="1">[kty(5), hash algorithm]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">6</td> <td align="left" colspan="1" rowspan="1">WalnutDSA</td> <td align="left" colspan="1" rowspan="1">[kty(6), N value, q value]</td> </tr> </tbody> </table><t> IANA is requested to update the pointer for expert review to [[this document]]. </t></section><section> <name>Changes<section numbered="true" removeInRFC="false" toc="include" pn="section-10.2"> <name slugifiedName="name-changes-to-the-cose-algorit">Changes to the "COSE Algorithms"registry</name> <t>Registry</name> <t indent="0" pn="section-10.2-1"> IANAis requested to createhas added a new column in the "COSE Algorithms" registry. The new column isto belabeled"Capabilities". The new column is"Capabilities" and has been populated with "[kty]" for all current,non-provisional,nonprovisional registrations.It is expected that the documents which define those algorithms will be expanded to include this registration. If this is not done then the Designated Expert should be consulted before final registration for this document is done. </t> <t> IANA is requested to update all references from RFC 8152 to [[This Document]]. </t> <t> IANA is requested to update the pointer for expert rview to [[this document]].</t><t><t indent="0" pn="section-10.2-2"> IANAis requested to updatehas updated thereferenceReference column in the "COSE Algorithms" registry to include[[This Document]]this document as a reference for all rows where itiswas not already present. </t><t><t indent="0" pn="section-10.2-3"> IANAis requested to addhas added a new row to the "COSE Algorithms" registry. </t><table><table align="center" pn="table-23"> <name slugifiedName="name-new-entry-in-the-cose-algor">New entry in the COSE Algorithms registry</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th> <th>Reference</th> <th>Recommended</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> <th align="left" colspan="1" rowspan="1">Reference</th> <th align="left" colspan="1" rowspan="1">Recommended</th> </tr> </thead> <tbody> <tr><td>IV Generation</td> <td>IV-GENERATION</td> <td>For<td align="left" colspan="1" rowspan="1">IV-GENERATION</td> <td align="left" colspan="1" rowspan="1">34</td> <td align="left" colspan="1" rowspan="1">For doing IV generation for symmetric algorithms.</td><td>[[THIS DOCUMENT]]</td> <td>No</td><td align="left" colspan="1" rowspan="1">RFC 9053</td> <td align="left" colspan="1" rowspan="1">No</td> </tr> </tbody> </table><t><t indent="0" pn="section-10.2-5"> ThecapabilitiesCapabilities column for this registration is to be empty. </t> </section><section> <name>Changes<section numbered="true" removeInRFC="false" toc="include" pn="section-10.3"> <name slugifiedName="name-changes-to-the-cose-key-type">Changes to the "COSE Key Type Parameters"registry</name> <t>Registry</name> <t indent="0" pn="section-10.3-1"> IANAis requested to modifyhas modified the description to "Public Key" for the line with "Key Type" of21 and the "Name" of "x". See <xreftarget="x-table-ec1-keys"/>target="x-table-ec1-keys" format="default" sectionFormat="of" derivedContent="Table 20"/>, which has been modified with this change. </t><t> IANA is requested to update the references in the table from RFC8152 to [[This Document]]. </t> <t> IANA is requested to update the pointer for expert rview to [[this document]]. </t></section> <sectionanchor="IANA-Alg-Registry"> <name>COSE Header Algorithm Parameters Registry</name> <t> IANA created a registry titled "COSE Header Algorithm Parameters" as part of processing <xref target="RFC8152"/>. The registry has been created to use the "Expert Review Required" registration procedure <xref target="RFC8126"/>. </t> <t> IANA is requested to update the references from <xref target="RFC8152"/> to this document. </t> <t> IANA is requested to update the pointer for expert rview to [[this document]]. </t> </section> <section title="Expert Review Instructions"anchor="review"> <t>numbered="true" removeInRFC="false" toc="include" pn="section-10.4"> <name slugifiedName="name-expert-review-instructions">Expert Review Instructions</name> <t indent="0" pn="section-10.4-1"> All of the IANA registries established by <xreftarget="RFC8152"/>target="RFC8152" format="default" sectionFormat="of" derivedContent="RFC8152"/> are, at least in part, defined asexpert review.Expert Review <xref target="RFC8126" format="default" sectionFormat="of" derivedContent="RFC8126"/>. This section gives some general guidelines for what the experts should be looking for, but they are being designated as experts for a reason, so they should be given substantial latitude. </t><t>Expert<t indent="0" pn="section-10.4-2">Expert reviewers should takeinto considerationthe followingpoints:into consideration: </t><ul> <li>Point<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-10.4-3"> <li pn="section-10.4-3.1">Point squatting should be discouraged. Reviewers are encouraged to get sufficient information for registration requests to ensure that the usage is not going to duplicateone that is already registered,an existing registration and that the code point is likely to be used in deployments. Thezonesranges tagged as private use are intended for testing purposes and closed environments; code points in other ranges should not be assigned for testing. </li><li>Specifications<li pn="section-10.4-3.2">Standards Track or BCP RFCs are requiredfor the standards track range ofto register a code pointassignment.in the Standards Action range. Specifications should exist forspecification requiredSpecification Required ranges, but early assignment beforea specificationan RFC is available is considered to be permissible. Specifications are needed for the first-come,first-servefirst-served range iftheythe points are expected to be used outside of closed environments in an interoperable way. When specifications are not provided, the description provided needs to have sufficient information to identify what the point is being used for. </li><li>Experts<li pn="section-10.4-3.3">Experts should take into account the expected usage of fields when approving code point assignment. The fact thatthere is athe Standards Action rangefor standards trackis only available to Standards Track documents does not mean that astandards trackStandards Track document cannot have points assigned outside of that range. The length of the encoded value should be weighed against how many code points of that length areleft,left and the size of device it will be usedon, and the number of code points left that encode to that size. </li> <li>Whenon.</li> <li pn="section-10.4-3.4">When algorithms are registered, vanity registrations should be discouraged. One way to do this is to require registrations to provide additional documentation on security analysis of the algorithm. Another thing that should be considered is requesting an opinion on the algorithm from the Crypto Forum Research Group (CFRG). Algorithmsthat do notare expected to meet the security requirements of the community and themessagesrequirements of the message structuresshould notin order to beregistered.suitable for registration. </li> </ul> </section> </section> <sectionanchor="security-considerations"> <name>Securityanchor="security-considerations" numbered="true" removeInRFC="false" toc="include" pn="section-11"> <name slugifiedName="name-security-considerations">Security Considerations</name><t>There<t indent="0" pn="section-11-1">There are a number of security considerations that need to be taken into account by implementers of this specification. The security considerations that are specific to an individual algorithm are placed next to the description of the algorithm. While some considerations have been highlighted here, additional considerations may be found in the documents listed in the references. </t><t>Implementations<t indent="0" pn="section-11-2">Implementations need to protect the private key material foranyall individuals.There are someSome cases in this documentthatneed to be highlightedonwith regard to this issue. </t><ul> <li>Using<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-11-3"> <li pn="section-11-3.1">Use of the same key for two different algorithms can leak information about the key. It is therefore recommended that keys be restricted to a single algorithm. </li><li>Use<li pn="section-11-3.2">Use of'direct'"direct" as a recipient algorithm combined with a second recipient algorithm exposes the direct key to the secondrecipient.recipient; <xref section="8.5" target="RFC9052" sectionFormat="of" format="default" derivedLink="https://rfc-editor.org/rfc/rfc9052#section-8.5" derivedContent="RFC9052"/> forbids combining "direct" recipient algorithms with other modes. </li><li>Several<li pn="section-11-3.3">Several of the algorithms in this document have limits on the number of times that a key can be used without leaking information about the key. </li> </ul><t>The<t indent="0" pn="section-11-4">The use of ECDH and direct plus KDF (with no key wrap) will not directly lead to the private key being leaked; theone wayone-way function of the KDF will prevent that. There is, however, a different issue that needs to be addressed. Having two recipients requires that the CEK be shared between two recipients. The second recipient therefore has a CEK that was derived from material that can be used for the weak proof of origin. The second recipient could create a message using the same CEK and send it to the first recipient; the first recipient would, for eitherstatic-staticStatic-Static ECDH or direct plus KDF, make an assumption that the CEK could be used for proof oforiginorigin, even though it is from the wrong entity. If the key wrap step is added, then no proof of origin is implied and this is not an issue. </t><t>Although<t indent="0" pn="section-11-5">Although it has been mentioned before, it bears repeating that the use of a single key for multiple algorithms has been demonstrated in some cases to leak information about a key,provideproviding the opportunity for attackers to forge integritytags,tags or gain information about encrypted content. Binding a key to a single algorithm prevents these problems. Key creators and key consumers are strongly encouraged to not onlytocreate new keys for each different algorithm, but to include that selection of algorithm in any distribution of key material and strictly enforce the matching of algorithms in the key structure to algorithms in the message structure. In addition to checking that algorithms are correct, the key form needs to be checked as well. Do not use an'EC2'"EC2" key where an'OKP'"OKP" key is expected. </t><t>Before<t indent="0" pn="section-11-6">Before using a key for transmission, or before acting on information received, a trust decision on a key needs to be made. Is the data or action something that the entity associated with the key has a right to see or a right to request? A number of factors are associated with this trust decision. Someof the ones that arehighlighted here are: </t><ul> <li>What<ul bare="false" empty="false" indent="3" spacing="normal" pn="section-11-7"> <li pn="section-11-7.1">What are the permissions associated with the key owner?</li><li>Is<li pn="section-11-7.2">Is the cryptographic algorithm acceptable in the current context?</li><li>Have<li pn="section-11-7.3">Have the restrictions associated with the key, such as algorithm or freshness, beencheckedchecked, and are they correct?</li><li>Is<li pn="section-11-7.4">Is the request something that is reasonable, given the current state of the application?</li><li>Have<li pn="section-11-7.5">Have any security considerations that are part of the message been enforced (as specified by the application or'crit'"crit" header parameter)?</li> </ul><t>There<t indent="0" pn="section-11-8">There are a large number of algorithms presented in this document that use nonce values. For all of the nonces defined in this document, there is some type of restriction on the nonce being a unique valueeitherfor either a key orforsome other conditions. In all of these cases, there is no known requirement on the nonce being both unique and unpredictable; under these circumstances, it's reasonable to use a counter for creation of the nonce. In cases where one wants the pattern of the nonce to be unpredictable as well as unique, one can use a key created for that purpose and encrypt the counter to produce the nonce value. </t><t>One<t indent="0" pn="section-11-9">One area that has been getting exposure is traffic analysis of encrypted messages based on the length of the message. This specification does not providefora uniform methodoffor providing padding as part of the message structure. An observer can distinguish between two different messages (for example,'YES'"YES" and'NO')"NO") based on the length for all of the content encryption algorithms that are defined in this document. This means that it is up to the applications to document how content padding is to be done in order to prevent or discourage such analysis. (For example, the text strings could be defined as'YES'"YES" and'NO '.)"NO ".) </t><t><t indent="0" pn="section-11-10"> Theanalsysanalysis done in <xreftarget="I-D.ietf-quic-tls"/>target="RFC9147" format="default" sectionFormat="of" derivedContent="RFC9147"/> is based on the number ofrecords/packetsrecords that are sent. This should map well to the number of messages sent whenuse COSEusing COSE, so that analysis should hold here aswell.well, under the assumption that the COSE messages are roughly the same size as DTLS records. It needs to be noted that the limits are based on the number of messages, but QUIC and DTLS are alwayspair-wise based endpoints,pairwise-based endpoints. In contrast, <xreftarget="I-D.ietf-core-oscore-groupcomm"/> usetarget="I-D.ietf-core-oscore-groupcomm" format="default" sectionFormat="of" derivedContent="OSCORE-GROUPCOMM"/> uses COSE in a groupcommunication.communication scenario. Under thesecircumstancescircumstances, it may be that no one single entity will see all of the messages that areencrypted anencrypted, and therefore no single entity can trigger the rekey operation. </t> </section> </middle> <back><references> <name>References</name> <references> <name>Normative<displayreference target="I-D.ietf-core-oscore-groupcomm" to="OSCORE-GROUPCOMM"/> <displayreference target="I-D.mattsson-cfrg-det-sigs-with-noise" to="CFRG-DET-SIGS"/> <displayreference target="I-D.ietf-cose-countersign" to="COUNTERSIGN"/> <references pn="section-12"> <name slugifiedName="name-references">References</name> <references pn="section-12.1"> <name slugifiedName="name-normative-references">Normative References</name><xi:include href="reference.I-D.ietf-cose-rfc8152bis-struct.xml"/> <xi:include href="reference.RFC.2104.xml"/> <xi:include href="reference.RFC.2119.xml"/> <xi:include href="reference.RFC.3394.xml"/> <xi:include href="reference.RFC.3610.xml"/> <xi:include href="reference.RFC.5869.xml"/> <xi:include href="reference.RFC.6090.xml"/> <xi:include href="reference.RFC.6979.xml"/> <xi:include href="reference.RFC.7049.xml"/> <xi:include href="reference.RFC.8439.xml"/> <xi:include href="reference.RFC.7748.xml"/> <xi:include href="reference.RFC.8174.xml"/><reference anchor="AES-GCM"target="https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf">target="https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf" quoteTitle="true" derivedAnchor="AES-GCM"> <front> <title>Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC</title> <seriesInfoname="DOI" value="10.6028/NIST.SP.800-38D"/> <seriesInfoname="NIST Special Publication" value="800-38D"/><author> <organization>National Institute of Standards and Technology</organization> </author><author initials="M" surname="Dworkin"/> <date year="2007" month="November"/> </front> <seriesInfo name="DOI" value="10.6028/NIST.SP.800-38D"/> </reference> <reference anchor="DSS"target="http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf">target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf" quoteTitle="true" derivedAnchor="DSS"> <front> <title>Digital Signature Standard (DSS)</title> <seriesInfoname="DOI" value="10.6028/NIST.FIPS.186-4"/> <seriesInfoname="FIPS PUB" value="186-4"/> <author><organization>National<organization showOnFrontPage="true">National Institute of Standards and Technology</organization> </author> <date year="2013" month="July"/> </front> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.186-4"/> </reference> <referenceanchor="MAC"> <!-- RFC Editor - help A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, Inc., Boca Raton (1996). -->anchor="MAC" target="https://cacr.uwaterloo.ca/hac/" quoteTitle="true" derivedAnchor="MAC"> <front> <title>Handbook of Applied Cryptography</title> <author initials="A."surname="Menees"/>surname="Menezes"/> <author initials="P." surname="van Oorschot"/> <author initials="S." surname="Vanstone"/> <date year="1996"/> </front> <refcontent>CRC Press, Boca Raton</refcontent> </reference> <referenceanchor="SEC1" target="http://www.secg.org/sec1-v2.pdf">anchor="RFC2104" target="https://www.rfc-editor.org/info/rfc2104" quoteTitle="true" derivedAnchor="RFC2104"> <front><title>SEC 1: Elliptic Curve Cryptography</title> <author> <organization>Certicom Research</organization> </author><title>HMAC: Keyed-Hashing for Message Authentication</title> <author fullname="H. Krawczyk" initials="H" surname="Krawczyk"/> <author fullname="M. Bellare" initials="M" surname="Bellare"/> <author fullname="R. Canetti" initials="R" surname="Canetti"/> <dateyear="2009" month="May"/>month="February" year="1997"/> <abstract> <t indent="0">This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind</t> </abstract> </front> <seriesInfo name="RFC" value="2104"/> <seriesInfo name="DOI" value="10.17487/RFC2104"/> </reference><xi:include href="reference.RFC.8032.xml"/> <xi:include href="reference.RFC.8017.xml"/> </references> <references> <name>Informative References</name> <xi:include href="reference.RFC.8126.xml"/> <xi:include href="reference.RFC.8610.xml"/> <xi:include href="reference.RFC.4231.xml"/> <xi:include href="reference.RFC.4493.xml"/> <xi:include href="reference.RFC.5116.xml"/> <xi:include href="reference.RFC.5480.xml"/> <xi:include href="reference.RFC.6151.xml"/> <!-- <xi:include href="bibxml9/reference.STD.0090.xml"/> --> <referencegroup anchor="STD90" target="https://www.rfc-editor.org/info/std90"> <!-- reference.RFC.8259.xml --><referenceanchor="RFC8259" target="https://www.rfc-editor.org/info/rfc8259">anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119"> <front><title> The JavaScript Object Notation (JSON) Data Interchange Format </title><title>Key words for use in RFCs to Indicate Requirement Levels</title> <authorinitials="T." surname="Bray" fullname="T. Bray" role="editor"> <organization/> </author>fullname="S. Bradner" initials="S" surname="Bradner"/> <dateyear="2017" month="December"/>month="March" year="1997"/> <abstract><t> JavaScript Object Notation (JSON)<t indent="0">In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC3394" target="https://www.rfc-editor.org/info/rfc3394" quoteTitle="true" derivedAnchor="RFC3394"> <front> <title>Advanced Encryption Standard (AES) Key Wrap Algorithm</title> <author fullname="J. Schaad" initials="J" surname="Schaad"/> <author fullname="R. Housley" initials="R" surname="Housley"/> <date month="September" year="2002"/> </front> <seriesInfo name="RFC" value="3394"/> <seriesInfo name="DOI" value="10.17487/RFC3394"/> </reference> <reference anchor="RFC3610" target="https://www.rfc-editor.org/info/rfc3610" quoteTitle="true" derivedAnchor="RFC3610"> <front> <title>Counter with CBC-MAC (CCM)</title> <author fullname="D. Whiting" initials="D" surname="Whiting"/> <author fullname="R. Housley" initials="R" surname="Housley"/> <author fullname="N. Ferguson" initials="N" surname="Ferguson"/> <date month="September" year="2003"/> <abstract> <t indent="0">Counter with CBC-MAC (CCM) is alightweight, text-based, language-independent data interchange format. It was derived fromgeneric authenticated encryption block cipher mode. CCM is defined for use with 128-bit block ciphers, such as theECMAScript Programming Language Standard. JSON definesAdvanced Encryption Standard (AES).</t> </abstract> </front> <seriesInfo name="RFC" value="3610"/> <seriesInfo name="DOI" value="10.17487/RFC3610"/> </reference> <reference anchor="RFC5869" target="https://www.rfc-editor.org/info/rfc5869" quoteTitle="true" derivedAnchor="RFC5869"> <front> <title>HMAC-based Extract-and-Expand Key Derivation Function (HKDF)</title> <author fullname="H. Krawczyk" initials="H" surname="Krawczyk"/> <author fullname="P. Eronen" initials="P" surname="Eronen"/> <date month="May" year="2010"/> <abstract> <t indent="0">This document specifies asmall setsimple Hashed Message Authentication Code (HMAC)-based key derivation function (HKDF), which can be used as a building block in various protocols and applications. The key derivation function (KDF) is intended to support a wide range offormatting rulesapplications and requirements, and is conservative in its use of cryptographic hash functions. This document is not an Internet Standards Track specification; it is published for informational purposes.</t> </abstract> </front> <seriesInfo name="RFC" value="5869"/> <seriesInfo name="DOI" value="10.17487/RFC5869"/> </reference> <reference anchor="RFC6090" target="https://www.rfc-editor.org/info/rfc6090" quoteTitle="true" derivedAnchor="RFC6090"> <front> <title>Fundamental Elliptic Curve Cryptography Algorithms</title> <author fullname="D. McGrew" initials="D" surname="McGrew"/> <author fullname="K. Igoe" initials="K" surname="Igoe"/> <author fullname="M. Salter" initials="M" surname="Salter"/> <date month="February" year="2011"/> <abstract> <t indent="0">This note describes theportable representationfundamental algorithms ofstructured data. </t> <t>Elliptic Curve Cryptography (ECC) as they were defined in some seminal references from 1994 and earlier. These descriptions may be useful for implementing the fundamental algorithms without using any of the specialized methods that were developed in following years. Only elliptic curves defined over fields of characteristic greater than three are in scope; these curves are those used in Suite B. This documentremoves inconsistencies with other specificationsis not an Internet Standards Track specification; it is published for informational purposes.</t> </abstract> </front> <seriesInfo name="RFC" value="6090"/> <seriesInfo name="DOI" value="10.17487/RFC6090"/> </reference> <reference anchor="RFC6979" target="https://www.rfc-editor.org/info/rfc6979" quoteTitle="true" derivedAnchor="RFC6979"> <front> <title>Deterministic Usage ofJSON, repairs specification errors,the Digital Signature Algorithm (DSA) andoffers experience-based interoperability guidance. </t>Elliptic Curve Digital Signature Algorithm (ECDSA)</title> <author fullname="T. Pornin" initials="T" surname="Pornin"/> <date month="August" year="2013"/> <abstract> <t indent="0">This document defines a deterministic digital signature generation procedure. Such signatures are compatible with standard Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures and can be processed with unmodified verifiers, which need not be aware of the procedure described therein. Deterministic signatures retain the cryptographic security features associated with digital signatures but can be more easily implemented in various environments, since they do not need access to a source of high-quality randomness.</t> </abstract> </front> <seriesInfoname="STD" value="90"/> <seriesInfoname="RFC"value="8259"/>value="6979"/> <seriesInfo name="DOI"value="10.17487/RFC8259"/>value="10.17487/RFC6979"/> </reference></referencegroup> <xi:include href="reference.RFC.7252.xml"/> <xi:include href="reference.RFC.7518.xml"/> <xi:include href="reference.RFC.8152.xml"/> <xi:include href="reference.RFC.8551.xml"/> <xi:include href="reference.RFC.8230.xml"/> <xi:include href="reference.I-D.ietf-core-oscore-groupcomm.xml"/> <xi:include href="reference.I-D.ietf-cose-hash-sig.xml"/><referenceanchor="SP800-38d" target="https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf">anchor="RFC7748" target="https://www.rfc-editor.org/info/rfc7748" quoteTitle="true" derivedAnchor="RFC7748"> <front><title>Recommendation<title>Elliptic Curves forBlock Cipher ModesSecurity</title> <author fullname="A. Langley" initials="A" surname="Langley"/> <author fullname="M. Hamburg" initials="M" surname="Hamburg"/> <author fullname="S. Turner" initials="S" surname="Turner"/> <date month="January" year="2016"/> <abstract> <t indent="0">This memo specifies two elliptic curves over prime fields that offer a high level ofOperation: Galois/Counter Mode (GCM)practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit andGMAC</title>~224-bit security level, respectively, and are generated deterministically based on a list of required properties.</t> </abstract> </front> <seriesInfoname="NIST Special Publication 800-38D" value=""/>name="RFC" value="7748"/> <seriesInfo name="DOI" value="10.17487/RFC7748"/> </reference> <reference anchor="RFC8017" target="https://www.rfc-editor.org/info/rfc8017" quoteTitle="true" derivedAnchor="RFC8017"> <front> <title>PKCS #1: RSA Cryptography Specifications Version 2.2</title> <authorinitials="M." surname="Dworkin"/>fullname="K. Moriarty" initials="K" role="editor" surname="Moriarty"/> <author fullname="B. Kaliski" initials="B" surname="Kaliski"/> <author fullname="J. Jonsson" initials="J" surname="Jonsson"/> <author fullname="A. Rusch" initials="A" surname="Rusch"/> <dateyear="2007" month="Nov"/>month="November" year="2016"/> <abstract> <t indent="0">This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.</t> <t indent="0">This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.</t> <t indent="0">This document also obsoletes RFC 3447.</t> </abstract> </front> <seriesInfo name="RFC" value="8017"/> <seriesInfo name="DOI" value="10.17487/RFC8017"/> </reference> <referenceanchor="SP800-56A" target="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf">anchor="RFC8032" target="https://www.rfc-editor.org/info/rfc8032" quoteTitle="true" derivedAnchor="RFC8032"> <front><title>Recommendation<title>Edwards-Curve Digital Signature Algorithm (EdDSA)</title> <author fullname="S. Josefsson" initials="S" surname="Josefsson"/> <author fullname="I. Liusvaara" initials="I" surname="Liusvaara"/> <date month="January" year="2017"/> <abstract> <t indent="0">This document describes elliptic curve signature scheme Edwards-curve Digital Signature Algorithm (EdDSA). The algorithm is instantiated with recommended parameters forPair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography</title>the edwards25519 and edwards448 curves. An example implementation and test vectors are provided.</t> </abstract> </front> <seriesInfo name="RFC" value="8032"/> <seriesInfo name="DOI"value="10.6028/NIST.SP.800-56Ar2"/>value="10.17487/RFC8032"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author fullname="B. Leiba" initials="B" surname="Leiba"/> <date month="May" year="2017"/> <abstract> <t indent="0">RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfoname="NIST Special Publication 800-56A," value="Revision 2"/>name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RFC8439" target="https://www.rfc-editor.org/info/rfc8439" quoteTitle="true" derivedAnchor="RFC8439"> <front> <title>ChaCha20 and Poly1305 for IETF Protocols</title> <authorinitials="E." surname="Barker"> <organization>U.S. National Institutefullname="Y. Nir" initials="Y" surname="Nir"/> <author fullname="A. Langley" initials="A" surname="Langley"/> <date month="June" year="2018"/> <abstract> <t indent="0">This document defines the ChaCha20 stream cipher as well as the use ofStandardsthe Poly1305 authenticator, both as stand-alone algorithms andTechnology</organization>as a "combined mode", or Authenticated Encryption with Associated Data (AEAD) algorithm.</t> <t indent="0">RFC 7539, the predecessor of this document, was meant to serve as a stable reference and an implementation guide. It was a product of the Crypto Forum Research Group (CFRG). This document merges the errata filed against RFC 7539 and adds a little text to the Security Considerations section.</t> </abstract> </front> <seriesInfo name="RFC" value="8439"/> <seriesInfo name="DOI" value="10.17487/RFC8439"/> </reference> <reference anchor="RFC9052" target="https://www.rfc-editor.org/info/rfc9052" quoteTitle="true" derivedAnchor="RFC9052"> <front> <title>CBOR Object Signing and Encryption (COSE): Structures and Process</title> <author initials="J" surname="Schaad"> <organization showOnFrontPage="true"/> </author> <date month="August" year="2022"/> </front> <seriesInfo name="STD" value="96"/> <seriesInfo name="RFC" value="9052"/> <seriesInfo name="DOI" value="10.17487/RFC9052"/> </reference> <reference anchor="SEC1" target="https://www.secg.org/sec1-v2.pdf" quoteTitle="true" derivedAnchor="SEC1"> <front> <title>SEC 1: Elliptic Curve Cryptography</title> <author> <organization showOnFrontPage="true">Certicom Research</organization> </author> <date year="2009" month="May"/> </front> <refcontent>Standards for Efficient Cryptography</refcontent> </reference> <reference anchor="STD94" target="https://www.rfc-editor.org/info/std94" quoteTitle="true" derivedAnchor="STD94"> <front> <title>Concise Binary Object Representation (CBOR)</title> <authorinitials="L." surname="Chen"> <organization>U.S. National Institute of Standardsinitials="C." surname="Bormann" fullname="C. Bormann"> <organization showOnFrontPage="true"/> </author> <author initials="P." surname="Hoffman" fullname="P. Hoffman"> <organization showOnFrontPage="true"/> </author> <date year="2020" month="December"/> </front> <seriesInfo name="STD" value="94"/> <seriesInfo name="RFC" value="8949"/> </reference> </references> <references pn="section-12.2"> <name slugifiedName="name-informative-references">Informative References</name> <reference anchor="I-D.mattsson-cfrg-det-sigs-with-noise" quoteTitle="true" target="https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04" derivedAnchor="CFRG-DET-SIGS"> <front> <title>Deterministic ECDSA andTechnology</organization>EdDSA Signatures with Additional Randomness</title> <author fullname="John Preuß Mattsson"> <organization showOnFrontPage="true">Ericsson</organization> </author> <authorinitials="A." surname="Roginsky"> <organization>U.S. National Institutefullname="Erik Thormarker"> <organization showOnFrontPage="true">Ericsson</organization> </author> <author fullname="Sini Ruohomaa"> <organization showOnFrontPage="true">Ericsson</organization> </author> <date month="February" day="15" year="2022"/> <abstract> <t indent="0"> Deterministic elliptic-curve signatures such as deterministic ECDSA and EdDSA have gained popularity over randomized ECDSA as their security do not depend on a source ofStandardshigh-quality randomness. Recent research has however found that implementations of these signature algorithms may be vulnerable to certain side-channel andTechnology</organization>fault injection attacks due to their determinism. One countermeasure to such attacks is to re-add randomness to the otherwise deterministic calculation of the per-message secret number. This document updates RFC 6979 and RFC 8032 to recommend constructions with additional randomness for deployments where side-channel attacks and fault injection attacks are a concern. The updates are invisible to the validator of the signature and compatible with existing ECDSA and EdDSA validators. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-mattsson-cfrg-det-sigs-with-noise-04"/> <format type="TXT" target="https://www.ietf.org/archive/id/draft-mattsson-cfrg-det-sigs-with-noise-04.txt"/> <refcontent>Work in Progress</refcontent> </reference> <reference anchor="I-D.ietf-cose-countersign" quoteTitle="true" target="https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-08" derivedAnchor="COUNTERSIGN"> <front> <title>CBOR Object Signing and Encryption (COSE): Countersignatures</title> <author fullname="Jim Schaad"> <organization showOnFrontPage="true">August Cellars</organization> </author> <authorinitials="M." surname="Smid"> <organization>Orion Security Solutions, Inc.</organization>fullname="Russ Housley"> <organization showOnFrontPage="true">Vigil Security, LLC</organization> </author> <dateyear="2013" month="May"/>month="August" day="22" year="2022"/> <abstract> <t indent="0"> Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. CBOR Object Signing and Encryption (COSE) defines a set of security services for CBOR. This document defines a countersignature algorithm along with the needed header parameters and CBOR tags for COSE. This document updates RFC INSERT the number assigned to [I-D.ietf-cose-rfc8152bis-struct]. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-cose-countersign-08"/> <format type="TXT" target="https://www.ietf.org/archive/id/draft-ietf-cose-countersign-08.txt"/> <refcontent>Work in Progress</refcontent> </reference> <reference anchor="GitHub-Examples"target="https://github.com/cose-wg/Examples">target="https://github.com/cose-wg/Examples" quoteTitle="true" derivedAnchor="GitHub-Examples"> <front> <title>GitHub Examples of COSE</title> <author/> <date month="June" day="3" year="2020"/> </front> <refcontent>commit 3221310</refcontent> </reference><xi:include href="reference.I-D.mattsson-cfrg-det-sigs-with-noise.xml"/><reference anchor="HKDF"target="https://eprint.iacr.org/2010/264.pdf">target="https://eprint.iacr.org/2010/264.pdf" quoteTitle="true" derivedAnchor="HKDF"> <front> <title>Cryptographic Extraction and Key Derivation: The HKDF Scheme</title> <author initials="H." surname="Krawczyk"><organization>IBM<organization showOnFrontPage="true">IBM T.J. Watson Research Center</organization> </author> <date year="2010"/> </front> </reference> <reference anchor="I-D.ietf-core-oscore-groupcomm" quoteTitle="true" target="https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14" derivedAnchor="OSCORE-GROUPCOMM"> <front> <title>Group OSCORE - Secure Group Communication for CoAP</title> <author fullname="Marco Tiloca"> <organization showOnFrontPage="true">RISE AB</organization> </author> <author fullname="Göran Selander"> <organization showOnFrontPage="true">Ericsson AB</organization> </author> <author fullname="Francesca Palombini"> <organization showOnFrontPage="true">Ericsson AB</organization> </author> <author fullname="John Preuss Mattsson"> <organization showOnFrontPage="true">Ericsson AB</organization> </author> <author fullname="Jiye Park"> <organization showOnFrontPage="true">Universitaet Duisburg-Essen</organization> </author> <date month="March" day="7" year="2022"/> <abstract> <t indent="0"> This document defines Group Object Security for Constrained RESTful Environments (Group OSCORE), providing end-to-end security of CoAP messages exchanged between members of a group, e.g., sent over IP multicast. In particular, the described approach defines how OSCORE is used in a group communication setting to provide source authentication for CoAP group requests, sent by a client to multiple servers, and for protection of the corresponding CoAP responses. Group OSCORE also defines a pairwise mode where each member of the group can efficiently derive a symmetric pairwise key with any other member of the group for pairwise OSCORE communication. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-core-oscore-groupcomm-14"/> <format type="TXT" target="https://www.ietf.org/archive/id/draft-ietf-core-oscore-groupcomm-14.txt"/> <refcontent>Work in Progress</refcontent> </reference> <reference anchor="RFC4231" target="https://www.rfc-editor.org/info/rfc4231" quoteTitle="true" derivedAnchor="RFC4231"> <front> <title>Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512</title> <author fullname="M. Nystrom" initials="M" surname="Nystrom"/> <date month="December" year="2005"/> <abstract> <t indent="0">This document provides test vectors for the HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 message authentication schemes. It also provides ASN.1 object identifiers and Uniform Resource Identifiers (URIs) to identify use of these schemes in protocols. The test vectors provided in this document may be used for conformance testing. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4231"/> <seriesInfo name="DOI" value="10.17487/RFC4231"/> </reference> <reference anchor="RFC4493" target="https://www.rfc-editor.org/info/rfc4493" quoteTitle="true" derivedAnchor="RFC4493"> <front> <title>The AES-CMAC Algorithm</title> <author fullname="JH. Song" initials="JH" surname="Song"/> <author fullname="R. Poovendran" initials="R" surname="Poovendran"/> <author fullname="J. Lee" initials="J" surname="Lee"/> <author fullname="T. Iwata" initials="T" surname="Iwata"/> <date month="June" year="2006"/> <abstract> <t indent="0">The National Institute of Standards and Technology (NIST) has recently specified the Cipher-based Message Authentication Code (CMAC), which is equivalent to the One-Key CBC MAC1 (OMAC1) submitted by Iwata and Kurosawa. This memo specifies an authentication algorithm based on CMAC with the 128-bit Advanced Encryption Standard (AES). This new authentication algorithm is named AES-CMAC. The purpose of this document is to make the AES-CMAC algorithm conveniently available to the Internet Community. This memo provides information for the Internet community.</t> </abstract> </front> <seriesInfo name="RFC" value="4493"/> <seriesInfo name="DOI" value="10.17487/RFC4493"/> </reference> <reference anchor="RFC5116" target="https://www.rfc-editor.org/info/rfc5116" quoteTitle="true" derivedAnchor="RFC5116"> <front> <title>An Interface and Algorithms for Authenticated Encryption</title> <author fullname="D. McGrew" initials="D" surname="McGrew"/> <date month="January" year="2008"/> <abstract> <t indent="0">This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms. The interface and registry can be used as an application-independent set of cryptoalgorithm suites. This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5116"/> <seriesInfo name="DOI" value="10.17487/RFC5116"/> </reference> <reference anchor="RFC5480" target="https://www.rfc-editor.org/info/rfc5480" quoteTitle="true" derivedAnchor="RFC5480"> <front> <title>Elliptic Curve Cryptography Subject Public Key Information</title> <author fullname="S. Turner" initials="S" surname="Turner"/> <author fullname="D. Brown" initials="D" surname="Brown"/> <author fullname="K. Yiu" initials="K" surname="Yiu"/> <author fullname="R. Housley" initials="R" surname="Housley"/> <author fullname="T. Polk" initials="T" surname="Polk"/> <date month="March" year="2009"/> <abstract> <t indent="0">This document specifies the syntax and semantics for the Subject Public Key Information field in certificates that support Elliptic Curve Cryptography. This document updates Sections 2.3.5 and 5, and the ASN.1 module of "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="5480"/> <seriesInfo name="DOI" value="10.17487/RFC5480"/> </reference> <reference anchor="RFC6151" target="https://www.rfc-editor.org/info/rfc6151" quoteTitle="true" derivedAnchor="RFC6151"> <front> <title>Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms</title> <author fullname="S. Turner" initials="S" surname="Turner"/> <author fullname="L. Chen" initials="L" surname="Chen"/> <date month="March" year="2011"/> <abstract> <t indent="0">This document updates the security considerations for the MD5 message digest algorithm. It also updates the security considerations for HMAC-MD5. This document is not an Internet Standards Track specification; it is published for informational purposes.</t> </abstract> </front> <seriesInfo name="RFC" value="6151"/> <seriesInfo name="DOI" value="10.17487/RFC6151"/> </reference> <reference anchor="RFC7252" target="https://www.rfc-editor.org/info/rfc7252" quoteTitle="true" derivedAnchor="RFC7252"> <front> <title>The Constrained Application Protocol (CoAP)</title> <author fullname="Z. Shelby" initials="Z" surname="Shelby"/> <author fullname="K. Hartke" initials="K" surname="Hartke"/> <author fullname="C. Bormann" initials="C" surname="Bormann"/> <date month="June" year="2014"/> <abstract> <t indent="0">The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.</t> <t indent="0">CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.</t> </abstract> </front> <seriesInfo name="RFC" value="7252"/> <seriesInfo name="DOI" value="10.17487/RFC7252"/> </reference> <reference anchor="RFC7518" target="https://www.rfc-editor.org/info/rfc7518" quoteTitle="true" derivedAnchor="RFC7518"> <front> <title>JSON Web Algorithms (JWA)</title> <author fullname="M. Jones" initials="M" surname="Jones"/> <date month="May" year="2015"/> <abstract> <t indent="0">This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.</t> </abstract> </front> <seriesInfo name="RFC" value="7518"/> <seriesInfo name="DOI" value="10.17487/RFC7518"/> </reference> <reference anchor="RFC8126" target="https://www.rfc-editor.org/info/rfc8126" quoteTitle="true" derivedAnchor="RFC8126"> <front> <title>Guidelines for Writing an IANA Considerations Section in RFCs</title> <author fullname="M. Cotton" initials="M" surname="Cotton"/> <author fullname="B. Leiba" initials="B" surname="Leiba"/> <author fullname="T. Narten" initials="T" surname="Narten"/> <date month="June" year="2017"/> <abstract> <t indent="0">Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).</t> <t indent="0">To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.</t> <t indent="0">This is the third edition of this document; it obsoletes RFC 5226.</t> </abstract> </front> <seriesInfo name="BCP" value="26"/> <seriesInfo name="RFC" value="8126"/> <seriesInfo name="DOI" value="10.17487/RFC8126"/> </reference> <reference anchor="RFC8152" target="https://www.rfc-editor.org/info/rfc8152" quoteTitle="true" derivedAnchor="RFC8152"> <front> <title>CBOR Object Signing and Encryption (COSE)</title> <author fullname="J. Schaad" initials="J" surname="Schaad"/> <date month="July" year="2017"/> <abstract> <t indent="0">Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need for the ability to have basic security services defined for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.</t> </abstract> </front> <seriesInfo name="RFC" value="8152"/> <seriesInfo name="DOI" value="10.17487/RFC8152"/> </reference> <reference anchor="RFC8230" target="https://www.rfc-editor.org/info/rfc8230" quoteTitle="true" derivedAnchor="RFC8230"> <front> <title>Using RSA Algorithms with CBOR Object Signing and Encryption (COSE) Messages</title> <author fullname="M. Jones" initials="M" surname="Jones"/> <date month="September" year="2017"/> <abstract> <t indent="0">The CBOR Object Signing and Encryption (COSE) specification defines cryptographic message encodings using Concise Binary Object Representation (CBOR). This specification defines algorithm encodings and representations enabling RSA algorithms to be used for COSE messages. Encodings are specified for the use of RSA Probabilistic Signature Scheme (RSASSA-PSS) signatures, RSA Encryption Scheme - Optimal Asymmetric Encryption Padding (RSAES-OAEP) encryption, and RSA keys.</t> </abstract> </front> <seriesInfo name="RFC" value="8230"/> <seriesInfo name="DOI" value="10.17487/RFC8230"/> </reference> <reference anchor="RFC8446" target="https://www.rfc-editor.org/info/rfc8446" quoteTitle="true" derivedAnchor="RFC8446"> <front> <title>The Transport Layer Security (TLS) Protocol Version 1.3</title> <author fullname="E. Rescorla" initials="E" surname="Rescorla"/> <date month="August" year="2018"/> <abstract> <t indent="0">This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.</t> <t indent="0">This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.</t> </abstract> </front> <seriesInfo name="RFC" value="8446"/> <seriesInfo name="DOI" value="10.17487/RFC8446"/> </reference> <reference anchor="RFC8551" target="https://www.rfc-editor.org/info/rfc8551" quoteTitle="true" derivedAnchor="RFC8551"> <front> <title>Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification</title> <author fullname="J. Schaad" initials="J" surname="Schaad"/> <author fullname="B. Ramsdell" initials="B" surname="Ramsdell"/> <author fullname="S. Turner" initials="S" surname="Turner"/> <date month="April" year="2019"/> <abstract> <t indent="0">This document defines Secure/Multipurpose Internet Mail Extensions (S/MIME) version 4.0. S/MIME provides a consistent way to send and receive secure MIME data. Digital signatures provide authentication, message integrity, and non-repudiation with proof of origin. Encryption provides data confidentiality. Compression can be used to reduce data size. This document obsoletes RFC 5751.</t> </abstract> </front> <seriesInfo name="RFC" value="8551"/> <seriesInfo name="DOI" value="10.17487/RFC8551"/> </reference> <reference anchor="RFC8610" target="https://www.rfc-editor.org/info/rfc8610" quoteTitle="true" derivedAnchor="RFC8610"> <front> <title>Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures</title> <author fullname="H. Birkholz" initials="H" surname="Birkholz"/> <author fullname="C. Vigano" initials="C" surname="Vigano"/> <author fullname="C. Bormann" initials="C" surname="Bormann"/> <date month="June" year="2019"/> <abstract> <t indent="0">This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.</t> </abstract> </front> <seriesInfo name="RFC" value="8610"/> <seriesInfo name="DOI" value="10.17487/RFC8610"/> </reference> <reference anchor="RFC8778" target="https://www.rfc-editor.org/info/rfc8778" quoteTitle="true" derivedAnchor="RFC8778"> <front> <title>Use of the HSS/LMS Hash-Based Signature Algorithm with CBOR Object Signing and Encryption (COSE)</title> <author fullname="R. Housley" initials="R" surname="Housley"/> <date month="April" year="2020"/> <abstract> <t indent="0">This document specifies the conventions for using the Hierarchical Signature System (HSS) / Leighton-Micali Signature (LMS) hash-based signature algorithm with the CBOR Object Signing and Encryption (COSE) syntax. The HSS/LMS algorithm is one form of hash-based digital signature; it is described in RFC 8554.</t> </abstract> </front> <seriesInfo name="RFC" value="8778"/> <seriesInfo name="DOI" value="10.17487/RFC8778"/> </reference> <reference anchor="RFC9021" target="https://www.rfc-editor.org/info/rfc9021" quoteTitle="true" derivedAnchor="RFC9021"> <front> <title>Use of the Walnut Digital Signature Algorithm with CBOR Object Signing and Encryption (COSE)</title> <author fullname="D. Atkins" initials="D" surname="Atkins"/> <date month="May" year="2021"/> <abstract> <t indent="0">This document specifies the conventions for using the Walnut Digital Signature Algorithm (WalnutDSA) for digital signatures with the CBOR Object Signing and Encryption (COSE) syntax. WalnutDSA is a lightweight, quantum-resistant signature scheme based on Group Theoretic Cryptography with implementation and computational efficiency of signature verification in constrained environments, even on 8- and 16-bit platforms.</t> <t indent="0">The goal of this publication is to document a way to use the lightweight, quantum-resistant WalnutDSA signature algorithm in COSE in a way that would allow multiple developers to build compatible implementations. As of this publication, the security properties of WalnutDSA have not been evaluated by the IETF and its use has not been endorsed by the IETF.</t> <t indent="0">WalnutDSA and the Walnut Digital Signature Algorithm are trademarks of Veridify Security Inc.</t> </abstract> </front> <seriesInfo name="RFC" value="9021"/> <seriesInfo name="DOI" value="10.17487/RFC9021"/> </reference> <reference anchor="RFC9147" target="https://www.rfc-editor.org/info/rfc9147" quoteTitle="true" derivedAnchor="RFC9147"> <front> <title>The Datagram Transport Layer Security (DTLS) Protocol Version 1.3</title> <author fullname="E. Rescorla" initials="E" surname="Rescorla"/> <author fullname="H. Tschofenig" initials="H" surname="Tschofenig"/> <author fullname="N. Modadugu" initials="N" surname="Modadugu"/> <date month="April" year="2022"/> <abstract> <t indent="0">This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.</t> <t indent="0">The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.</t> <t indent="0">This document obsoletes RFC 6347.</t> </abstract> </front> <seriesInfo name="RFC" value="9147"/> <seriesInfo name="DOI" value="10.17487/RFC9147"/> </reference> <reference anchor="ROBUST"target="https://www.felixguenther.info/docs/QUIP2020_RobustChannels.pdf">target="https://eprint.iacr.org/2020/718.pdf" quoteTitle="true" derivedAnchor="ROBUST"> <front> <title>Robust Channels: Handling Unreliable Networks in the Record Layers of QUIC and DTLS</title> <author initials="M." surname="Fischlin"/> <author initials="F." surname="Günther"/> <author initials="C." surname="Janson"/> <date year="2020" month="Feb"/> </front> </reference><xi:include href="reference.I-D.ietf-quic-tls.xml"/><reference anchor="SP800-38D" target="https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf" quoteTitle="true" derivedAnchor="SP800-38D"> <front> <title>Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC</title> <seriesInfo name="NIST Special Publication" value="800-38D"/> <author initials="M." surname="Dworkin"/> <date year="2007" month="November"/> </front> </reference> <reference anchor="SP800-56A" target="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf" quoteTitle="true" derivedAnchor="SP800-56A"> <front> <title>Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography</title> <author initials="E." surname="Barker"> <organization showOnFrontPage="true"/> </author> <author initials="L." surname="Chen"> <organization showOnFrontPage="true"/> </author> <author initials="A." surname="Roginsky"> <organization showOnFrontPage="true"/> </author> <author initials="A." surname="Vassilev"> <organization showOnFrontPage="true"/> </author> <author initials="R." surname="Davis"> <organization showOnFrontPage="true"/> </author> <date year="2018" month="April"/> </front> <seriesInfo name="DOI" value="10.6028/NIST.SP.800-56Ar3"/> <refcontent>NIST Special Publication 800-56A, Revision 3</refcontent> </reference> <reference anchor="STD90" target="https://www.rfc-editor.org/info/std90" quoteTitle="true" derivedAnchor="STD90"> <front> <title>The JavaScript Object Notation (JSON) Data Interchange Format</title> <author initials="T." surname="Bray" fullname="Tim Bray" role="editor"> <organization showOnFrontPage="true"/> </author> <date month="December" year="2017"/> </front> <seriesInfo name="STD" value="90"/> <seriesInfo name="RFC" value="8259"/> </reference> </references> </references> <sectionnumbered="false"> <name>Acknowledgments</name> <t>Thisnumbered="false" removeInRFC="false" toc="include" pn="section-appendix.a"> <name slugifiedName="name-acknowledgments">Acknowledgments</name> <t indent="0" pn="section-appendix.a-1">This document is a product of the COSEworking groupWorking Group of the IETF. </t><t>The<t indent="0" pn="section-appendix.a-2">The following individuals are to blame for getting me started on this project in the first place:Richard Barnes, Matt Miller, and Martin Thomson. </t> <t>The<contact fullname="Richard Barnes"/>, <contact fullname="Matt Miller"/>, and <contact fullname="Martin Thomson"/>. </t> <t indent="0" pn="section-appendix.a-3">The initial draft version of the specification was based to some degree on the outputs of the JOSE and S/MIMEworking groups.Working Groups. </t><t>The<t indent="0" pn="section-appendix.a-4">The following individuals provided input into the final form of the document:Carsten Bormann, John Bradley, Brain Campbell, Michael<contact fullname="Carsten Bormann"/>, <contact fullname="John Bradley"/>, <contact fullname="Brian Campbell"/>, <contact fullname="Michael B.Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Göran Selander.Jones"/>, <contact fullname="Ilari Liusvaara"/>, <contact fullname="Francesca Palombini"/>, <contact fullname="Ludwig Seitz"/>, and <contact fullname="Göran Selander"/>. </t> </section> <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.b"> <name slugifiedName="name-authors-address">Author's Address</name> <author initials="J." surname="Schaad" fullname="Jim Schaad"> <organization showOnFrontPage="true">August Cellars</organization> <address> </address> </author> </section> </back> </rfc>